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Ambient sensing, human activity recognition and indoor floor mapping are three classical context detection problems that hackers try
to crack using a variety of sources of side information. Other than overt signals such as microphones and cameras, covert channels
such as WiFi, Bluetooth, assisted and coarse-grained Global Positioning System (GPS) signals have been exploited to date. Fine-grained
or precise GPS information that is ubiquitously available to almost all Android devices as of today, has not been studied as a side
channel for these problems. We present a novel set of attacks that exploit the 9 parameters that precise GPS provides to infer such
contexts with an accuracy that often exceeds 99%. Specifically, this work reports a longitudinal study conducted over a period of
more than a year in a 40,000 sq. km geographical region, where data was passively collected in all kinds of settings including open
stadia, underground metros, flights, cruise ships, office spaces, dormitories and high-altitude locations. We propose a novel method,
AndroCon, that combines linear discriminant analysis, unscented Kalman filtering, gradient boosting and random forest based learning
to create a highly accurate context sensor. To the best of our knowledge, this study provides the most comprehensive characterization
of all the information that we get from precise GPS signals, finds the parameters of interest, and uses them effectively to match the
quality of results of other methods that rely on stronger channels such as WiFi. For instance, AndroCon can detect motions such as

hand waving in front of the phone, which is known to be a very challenging use case.
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1 INTRODUCTION

A user’s ambience and activities are a vital part of their personal space (defined as their context), and should remain
private, unless they decide to selectively disclose them. Sometimes this information can leak out as an unanticipated
consequence of doing some other activity like monitoring the strength of WiFi signals [24, 31, 45, 58]. Based on the
leaked signal’s characteristics, a malicious app can infer the user’s immediate environment or their activity, collectively

referred to as their context. Similar information leaks have been shown to happen with mobile phone signals[46],
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Bluetooth[26], coarse-grained GPS data that just provide location information[83], acoustic information [43], ultrasound
waves[42] mm waves [74] and even smart garments [44]. Additionally, optical wireless communication (OWC) methods,
including Light Fidelity (Li-Fi)[39] and Visible Light Communication (VLC)[40, 41] have also been used for retrieving
similar forms of context. In this paper, we shall confine our attention to the information obtained from ubiquitously

available GPS signals (multiple satellites) and show their potential for revealing all kinds of context-related private

information.

There are two kinds of GPS information that are provided by Android phones[1] (as of version 14): coarse (accuracy
at the level of city blocks) and fine (accuracy within meters). The latter is more accurate and is primarily used for
providing location-based services [19, 49, 73, 76]. This includes navigation, local search, traffic alerts, home delivery
and ride sharing. The market for such applications is currently 50 billion USD and is anticipated to soar to 400 billion
USD by 2030 (CAGR of 24.6%) [33, 57].

An app with fine location permissions can be compromised unbeknownst to the user. It can obviously misuse location

information [73]. However, it turns out that it can do much more because modern GPS chips typically provide
32 parameters (per satellite) to applications such that they can fine tune their location estimates. To the best of our
knowledge, this is among the first works that conclusively show that these parameters such as the Doppler shift,
uncertainty figures or signal-to-noise ratio can be used to create a strong information-leaking channel.

We can, for instance, find out whether the user is in a closed space or open space, is the place crowded, is the user
sitting, sleeping or standing, moving quickly or slowly, underground or overground, inside a flight, close to a lift or close
to a staircase, or even just moving their hand in front of the phone’s camera (refer to Section 6 for the full list). There is
no need to take the help of any other kind of sensor such as the camera, accelerometer, microphone or even consider the
GPS coordinates. Our claim is that semi-processed GPS data (collected in pure receive-only mode) is sufficient. In this
paper, we shall advance various arguments to convince the reader that this is indeed possible. We shall make theoretical
arguments, show the results of simulations, show real measurement data using GPS sensors and finally show extensive
evaluation results using multiple phones collected over a period of 1 year, across a 40,000 sq. km geographical region.

Let us try to understand why work in this space is so sparse even though this information has been available since the
release of Android 7 (August 2016). The only genre of work that we could locate is in the area of correcting the location
information [71]. This is anyway the original purpose of making this data available. It turns out that the computed
discrepancy between the location estimate before and after processing the additional parameters can be used to make
some broad inferences [18, 75, 83]: indoor, outdoor, semi-indoor and semi-outdoor. The accuracy for even detecting
such simple scenarios is limited to about 91% (in prior work), whereas our accuracies hover around 99% for far more
complex scenarios. Early approaches primarily rely on encoder-decoder networks. We, on the other hand, show that we
can use far simpler ML algorithms, which will also allow them to run surreptitiously. There are a few other problems in
such related work: reliance on too many features, limited training data and reduced noise tolerance.

We perform detailed correlation studies, semi-informal analysis based on EM-wave physics and narrow down the list
of features to 9 (out of 32). Next, we employ a nonlinear unscented Kalman filter for removing noise, which turned out
to be a crucial design decision in hindsight. It preserves the essential signal variations that our algorithm needs [32].
Subsequently, we apply Linear Discriminant Analysis (LDA) for feature reduction and identify linear combinations
of semi-processed parameters that effectively distinguish between different ambient contexts. The resulting data is
then fed into a simple, explainable ML model for context detection. Additionally, we detect indoor layouts (not just
positions) using this framework along with considering GPS coordinates.

This paper makes the following contributions:
Manuscript submitted to ACM
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@ To the best of our knowledge, this is among the first studies that characterize in-depth the potential of semi-
processed GPS signals for ambient sensing, barring a few works that use this information to correct the GPS coordinates
and make simple inferences based on the computed discrepancies.

@ We show how apps using GPS sensing can covertly capture semi-processed GPS data without consent and utilize it
to discern the user’s ambience (99.6%) and activities (87%) across diverse settings, effectively jeopardizing their privacy.
At the moment, this vulnerability affects over 90% of Android users.

© We propose effective solutions to the three main impediments to realizing high accuracies in all kinds of these
tasks: feature selection, noise removal and underfitting due to limited training data.

@ We infer indoor floor maps (error margin of 4 meters), using semi-processed GPS data and user trajectories,
without needing access to other ambient information leaking sources such as cameras.

The organization of this paper is as follows: section 2 provides the necessary background information. In section 3, we
discuss the semi-processed GPS parameters that we use and their effectiveness in classifying activities and environments
followed by characterization and validation of semi-processed data readings in section 4. The architecture of the model is
discussed in section 5 and its performance is evaluated in section 6. The overview and evaluation of the layout estimation
algorithm are presented in section 7. We finally review the relevant literature in section 9 and conclude in section 10.

Some additional results can be found in Appendix A; however, reading it is optional. The paper is self-contained.

2 BACKGROUND
2.1 Overview of GPS

The GPS was established by the US Department of Defense in 1973. It is a member of the Global Navigation Satellite
System (GNSS) constellation. GPS, in 2024, has 31 satellites that orbit the Earth in six planes of rotation. All of them are
in the medium earth orbit (20,000 kms above sea level [10]). These satellites transmit navigation signals, which contain
precise information about their position, velocity and current time (PVT).

Let us explain the physics. Every GPS satellite has an atomic clock that very accurately maintains time. The uncertainty

is less than 1 part in 101°

. There are delays induced due to the ionosphere, signal interference, multipath effects, etc.
Hence, modern receivers need to apply many different correction factors. There is thus a need to also transmit and
compute many other parameters (described in Section 3) as well such that receivers can correct the received data.
These include the pseudorange along with the SNR, phase shifts, Doppler shifts and details about the satellite and the
constellation (see Table 1). A GPS message also contains other parameters about the receiver’s clock (other than the
time itself). There are four unknowns here: the clock skew (between the receiver device and the satellite), x, y and z
coordinates of the GPS device. Hence, we need four equations, and as a result we need data from at least 4 satellites. In

practice, we need data from many more satellites for accuracy enhancement.

2.1.1  GPS Data Processing Pipeline. Figure 1 shows the GPS processing pipeline at the receiver. Code and carrier
tracking loops monitor all incoming GPS signals, demodulate and identify them. They identify the satellite for a given
signal, which aids in calculating the pseudorange — apparent distance between the satellite and the receiver [70].
Modern GPS chipsets allow an application to tap information at any point in the GPS processing pipeline. In general,
applications do not tap the information available at the intermediate stages because they don’t find it useful. We decided
to tap 9 of these semi-processed parameters (refer to Table 1, reasons mentioned in Section 3.2). We broadly use five types
of parameters that can be classified into the following buckets: received signal power, carrier phase shift, multipath
interference, signal-to-noise ratio (SNR) and the Doppler shift (due to motion). These parameters can be used to extract
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Fig. 1. GPS pipeline: From signal acquisition to position calculation

information about the surroundings because they are influenced by it. For instance, if there are a lot of objects around

the receiver, the multi-path interference and SNR will be high.

Table 1. List of semi-processed GPS signal parameters

‘ Field Notations | Description ‘ Unit ‘
PseudorangeRate PR Pseudorange rate at the associated timestamp. m/s
PseudorangeRateUncertainty PRU Pseudorange’s rate uncertainty (1-0). m/s
ReceivedSvTimeUncertainty RecSvTU Error estimate (1-0) for the received GNSS time. ns
AccumulatedDeltaRange ADRng Accumulated delta range since the last channel reset. m
AccumulatedDeltaRangeUncertainty | ADRngU Uncertainty of the accumulated delta range (1-0). m
CNoO CNO Carrier-to-noise density in the range [0,63]. dB-Hz
BasebandCn0DbHz BbCNO Baseband carrier-to-noise density (added in API level 30). dB-Hz
AgcDb Agc Incoming signal power. dB
State State Integer representing satellite sync state, with each bit indicating | -

a specific measurement status.

2.1.2  Location Accuracy Permissions in Android. Android has coarse and fine location access permissions. Starting
from Android 12 (released: Oct’ 2021), users have the freedom to choose. However, the trade-offs are quite stark, and
the choice is quite clear. The former relies on assisted GPS (cellphone towers or WiFi networks) and its inaccuracies can

be as high as 50-100m. The latter uses satellites to provide an accuracy [20] of up to a few meters.

2.2 Unscented Kalman Filter

The Unscented Kalman Filter (UKF) [32] is an advanced unsupervised technique used for state estimation and noise
filtering in nonlinear systems [35]. It predicts the future state of a nonlinear system and updates this prediction
continually using incoming “noisy” measurements. Unlike the traditional Kalman Filter, which assumes linearity, UKF
employs a deterministic sampling approach to generate sample points around the mean, which are then passed as
inputs to nonlinear functions. This method accurately captures the mean and covariance, enhancing its effectiveness in
complex applications. The UKF is widely used in fields such as robotics and navigation, where precise state estimation
in the presence of noise is crucial. To the best of our knowledge, the application of the UKF to this type of precise GPS
data for context sensing is a novel approach.
Consider a nonlinear state-space model at time ¢:
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xe = f(xe-1) +we
z¢ = h(xt) + vt W
x; is the state vector and z; is the corresponding noisy measurement at time #; f(-) is the state transition function;

h(-) is the observation function; w; ~ N (0, Q) is the Gaussian noise representing the uncertainty in the model’s state
transition with covariance Q; v; ~ N(0, R) is the measurement noise representing the uncertainty in the measurements
with covariance R. The Unscented transform approximates the state distribution using a set of sigma points. These
points are passed as inputs to the the nonlinear functions f and h (resp.). -
@ Sigma Point Generation

(&)

Sigma points y,; are generated around the mean %;1:

)(t(g)l =%t

0 =t 4L DRy, i=1L @)
X =2 L+ DPoy, =1L

P;_1 is the error covariance matrix; L is the dimension of the state vector, and A is a scaling parameter describing the
spread of the sigma points around x;—1. Note that in the first case, we are adding a scaled version of the error, and in
the second case we are subtracting it. We set A = 107°L — L. L is approximately 70,000 (varies per iteration).

@ Prediction Step

The sigma points are next passed to the state transition function to generate a new set of samples.

X =) =0z 20 3)

The predicted mean and covariance are computed as:

2L
Feer = W i) @
i=0
S () [, 0 r
Py = ZWcl [)(”lt_l —ft\t—l] x [X”lt_l —Rpe-1| +0Q
i=0
; ®)
wil=1-L i=o,... 2L
w =2l =0l
w,;") and Wc(i) are the weights for the mean and covariance, respectively.
© Update Step
The predicted measurements are obtained by passing the sigma points to the observation function (h).
Yt(|lt)—1 = h(Xt(\lt)—l) ©)

The predicted measurement’s mean and covariance are as follows:
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2L
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i=0
SICING (0 T
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v | .
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C; is the cross-covariance matrix that represents the covariance between the state and the sigma points. S; is the
residual covariance matrix that includes the measurement noise covariance. The Kalman gain K; and the updated state

and covariance are as follows:

Ky =CyS;t
e =Ry + Ke(ze = 241521) ®)
Pr =Py - KiSiK}

We set all the elements in the matrices P, Q and R to 0.1. We keep repeating this process from the sigma point

generation step onwards for the subsequent inputs until all the data is processed.

2.3 Linear Discriminant Analysis (LDA)

Any kind of learning that involves a lot of parameters tends to be inefficient unless we have a large number of training
examples. Hence, dimensionality reduction needs to be done. We use LDA, which is a widely used supervised-learning
technique for dimensionality reduction in pattern-classification applications [59, 64, 65]. It projects a dataset into
a lower-dimensional space that enhances class separability through a linear combination of features. This is done
to address the curse of dimensionality and reduce computational costs [68]. Unlike a cognate technique, Principal
Component Analysis (PCA), which identifies the directions of maximum variance, LDA creates a transformation that
maximizes the separation between different classes — maximize the in-class variance and minimize the cross-class
variance. The linear transformation matrix used here is created by solving an eigenvalue problem. We have 9 classes.

We use the Isqr solver with auto shrinkage and a tol = 107°.

3 THE VALUE OF SEMI-PROCESSED GPS DATA

In this section, we begin by examining the way semi-processed GPS data is retrieved on an Android platform. Subse-

quently, we explain all the 9 GPS parameters we consider, and finally explain how ambient sensing can be achieved.

3.1 Accessing Semi-Processed GPS Measurements

Prior to Android 7, developers accessed location details via the android.gsm.location API, which provided basic satellite
information like C/NO (carrier-to-noise ratio), azimuth and elevation, along with the fundamental National Marine
Electronics Association (NMEA) sentences containing the PVT information [77]. Multipath effects and signal interference
greatly degrade the positioning accuracy by altering the computed distance between satellites and the user. GPS receivers
attempt to correct these errors, but since these measurements aren’t directly accessible to users, they rely on often
inadequate receiver-embedded correction models [22]. To foster the development of improved correction models for
higher accuracy, Google made the raw and semi-processed GPS data public on Android phones. This information
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comprises the semi-processed GPS data, which is available to developers via the android.location.GnssMeasurements

API within the android.location package (starting from Android 7 [48]).

3.2 Semi-Processed GPS Parameters

Please keep referring to Table 1 while reading this section. We specifically choose 9 out of the 32 semi-processed GPS
parameters because these parameters showed the least variance across phones (same time, same location). The rest
either produced very volatile and fluctuating values that were heavily dependent on the receiver’s clock’s characteristics
or were empty fields.

® Doppler Shift :

The Doppler shift (PR) indicates a change in frequency due to the relative motion between the signal source and the
receiver. Given that the satellites are moving and the receiver itself may be non-stationary, a Doppler shift is expected.
A positive shift indicates that the satellite is moving towards the receiver (increasing the perceived signal frequency),
and vice versa.

Multipath phenomena, where signals reflect off surfaces before reaching the receiver affect Doppler shifts. In open
areas with minimal multipath effects, the PR measurements remain stable, while in crowded or indoor areas, they can
fluctuate significantly due to multipath effects.

Similarly, the parameter PRU quantifies the uncertainty in PR measurements, which varies with environmental
conditions. In crowded or mobile environments, multipath effects and irregular Doppler measurements increase this
uncertainty, resulting in high PRU values. In open areas with minimal multipath effects, the uncertainty is lower, leading
to low PRU values. This analysis underscores the utility of PR and PRU in inferring both the state of motion and the
environmental context of individuals based on semi-processed GPS measurements.

@ Carrier Phase:

The parameter ADRng quantifies the accumulated error in the distance between the satellite and the receiver and is
calculated by measuring the phase shift (carrier phase). It mainly captures minor differences in the signal delay with
respect to historical values.

In open areas with minimal multipath interference, ADRng values are stable. ADRng and its associated uncertainty
(ADRngU) can detect subtle movements that are associated with the number of people in the room or a hand moving in
front of the mobile device.
© Signal-to-Noise Ratio: CNO, or Carrier-to-Noise (C/N) density in dB-Hz, is a crucial metric for evaluating the GNSS
signal quality. It typically ranges from 10 to 50 dB-Hz with a potential spectrum extending from 0 to 63 dB-Hz in
exceptional circumstances [6]. Variances in CNO allow differentiation between the following environmental conditions.

In congested or enclosed areas with signal interference, CNO levels decrease, indicating heightened noise in the GPS
signal and suggesting the individual’s presence in such environments. Conversely, open-sky scenarios with minimal
interference increase CNO levels. Similarly, BbCNO represents the C/N of the signal at the baseband, obtained after
demodulating the GPS signal received by the antenna. This value is typically slightly lower than the C/N measured
at the antenna port (CNO) [6]. Our experiments demonstrated a strong correlation (=0.98) between CNO and BbCNO,
indicating similar behavior in identifying the user’s context.

@ Received Signal Strength (RSS): The Agc (RSS) refers to the power of the incoming signal. Negative or low Agc
values indicate potential interference or presence of large obstacles [6]. We shall see that the value of Agc in combination

with other parameters helps differentiate between user activity — motion/rest — because the signal strength at rest is
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slightly higher. Agc values can distinguish between different ambient conditions such as crowded urban areas or open
spaces that are near mobile towers.
© Multipath Interference: The State field indicates the current synchronization state for each satellite signal. It can
assume a value that is either 0 or a combination of different synchronization states [6]. When the State is STATE_MSEC
AMBIGUOUS (value: 16), it implies millisecond-level ambiguity in the GPS measurement’s tracking state due to multipath
effects [6] or obstacles/movement in the immediate vicinity.

RecSvTU represents the error estimate (1-o) of the received GPS time of a particular SV (satellite vehicle) — it is
typically influenced by different sources of interference. As it quantifies uncertainty, its effectiveness in distinguishing

user activity and the immediate environment is similar to PRU And ADRngU.

4 STUDY OF SEMI-PROCESSED GPS SIGNALS’ CHARACTERISTICS

This section aims to establish a correlation between quintessential EM wave parameters, such as the RSS and Doppler
shift, and the corresponding semi-processed GPS parameters. Subsequently, we examine the correlation among semi-

processed parameters to reinforce the idea that they can be fused to achieve improved classification outcomes.

4.1 Real-World Data Collection

Semi-processed GPS data was logged using the GnssLogger [5] Android application on six different Android phones
(refer to Table 2). Note that phones that use the Samsung Snapdragon chipset do not allow the user to retrieve the ADRng
measurements [8]. We deliberately used two phones with the same version (Redmi Note 9 Pro Max) to characterize
variations across two phones of the same model. There was some variation even in this case. Therefore, noise filtering

is required to ensure that our technique works across phones in a robust manner.

Table 2. Details of the phones

Model Name Android Chipset Year
version
Redmi Note 9 Pro Android 11 Snapdragon 720G 2020
Max
Redmi Note K20 Android 12 Snapdragon 855 2020
Pro
Redmi Note 9 Pro Android 11 Snapdragon 720G 2021
Max
OnePlus Nord Android 13 .Medzc?Tek 2022
CE2 Dimensity 900
Galaxy A54 Android 14 Exynos 1380 2023
Nothing Phone 3 Android 15 Snap dra‘gun § Gen 2025

4.2 Datasets: Synthetic (Kaggle) and Real-World

Along with the data that we collect using these phones, we use open-source datasets as well: a Raw GNSS dataset [67]
and the Kaggle GNSS dataset [27]. This is needed to ensure that similar effects are also being seen in those datasets
and our noise filtering techniques work. The Raw GNSS dataset includes 40 traces collected using the Xiaomi Mi8
and Google Pixel 5 smartphones, with each trace comprising approximately ten minutes of raw GNSS data per point,
recorded consistently over multiple days across open, semi-open, and covered environments. For this study, we have
only considered the Xiaomi Mi8 data [66], as it was logged using the GNSSLogger application, which aligns with our
data collection framework and captures all required parameters (see Table 1). On the other hand, the Google Pixel 5

data, logged in the RINEX [34] format, lacked the necessary raw parameters and was therefore excluded. The Kaggle
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GNSS dataset consists of 39 traces collected using the Pixel 4, Pixel 4 XL and Xiaomi Mi8 phones (resp.). This dataset
primarily contains measurements collected during motion (driving).

The open-source datasets, while valuable, were limited in their representation of diverse user activities and environ-
mental conditions. To simulate diverse user activities and environments, we generated supplementary data at different
sites using our 6 phones. The settings include an open ground, flights, indoors, inside a metro, in a stadium (crowded
and empty), while standing, sitting, lying down and waving a hand in front of the mobile device. The data collection
process lasted approximately 45-150 minutes at each site on an average.

The ionosphere’s electron density variations cause fluctuations in GPS signals [21], resulting in measurement
variability. Furthermore, diverse weather conditions can introduce additional fluctuations. Additionally, there are GPS
hardware-specific variations as well along with variations between two phones of the same age and model (same time,
same location). To simulate real-world settings and mitigate these effects, semi-processed data was collected three times
over the course of a year under various atmospheric conditions and at different times of the day. We tried to minimize
the experimental noise by ensuring that the ambient setting/activity was the same. Of course, there were variations due
to the weather, position of satellites, etc. We did not try to achieve consistency in these parameters because it is very
hard to do so.

4.3 Calibration with Real Sensors: Signal Power

Researchers have primarily used the RSS, the Doppler shift and SNR for designing human activity recognition (HAR)
and ambient sensing systems for WiFi, Bluetooth and cellular tower signals [28, 54, 60]. We, of course, use many more
parameters.

However, we stick to these three parameters for the purpose of characterization and calibration of our setup. We
map these parameters to the corresponding semi-processed GPS parameters. The GPS signal inherently captures the
Agc (RSS or signal power). We used an RF Explorer Spectrum Analyzer (Model B34J7ML7J58J9MD6) [9], which records
the signal RSS. We set the RF Explorer to the L1 GPS band frequency range (1575.42 MHz) [2]. We logged the GPS’s
RSS using the measurement device (RF Explorer) and simultaneously, we logged the Agc. We found a roughly linear

relationship between them (refer to Figure 2).

4.4 Correlation Results across the GPS Parameters: Feature Selection and LDA

Next, we consider all our data, i.e., our traces and the open-sourced GNSS traces. The trends are roughly similar. We
plot the correlation for all pairs of GPS signals (results shown in Figure 3). CNO exhibits a strong correlation with
BbCNO (0.98). Hence, only one of them is required. We choose CNO. The correlation of CNO with other signals is as
follows: ADRngU (0.68), PRU (0.48), and RecSvTU (-0.53). PR shows a correlation of 0.63 and 0.54 with ADRng and
RecSvTU, respectively. This means that we have a lot of pairs of parameters that have reasonably high correlations.

This motivates the use of a feature reduction algorithm such as LDA.

5 DESIGN OF THE INFERENCE PIPELINE

We shall use the same ML pipeline to classify both the ambience as well as human activity. Figure 4 shows our proposed
framework.

We first collect 8 features from each phone. Recall that we had discarded BbCNO. Then, we eliminate the nonlinear
noise using UKF. Next, we use StandardScaler [12] to normalize the data given that different fields have different units

and scales. Subsequently, we perform feature reduction using the LDA algorithm such that we can effectively classify
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Fig. 2. Correlation between Agc and RSS

the features into C classes. Here, the output is a vector with C — 1 elements (dimensions reduced). Then we use an
ML-based classifier to map the reduced set of features to a class label. In the subsequent evaluation section, we shall

evaluate different types of ML models.

6 AMBIENT SENSING AND HUMAN ACTIVITY RECOGNITION

We group ambient sensing and HAR into one section because the techniques that are used are similar.

6.1 Evaluation Setup

6.1.1 ML Models. We evaluated six machine learning algorithms: Random Forest (RF), K-Nearest Neighbor (KNN),
Support Vector Machine (SVM), Decision Tree (DT), Naive Bayes (NB) and Gradient Boosting (GB). Given that we
were getting a high accuracy, we did not use more sophisticated CNN-based models. These algorithms were selected
based on their established efficacy in prior research [31, 69]. Additionally, their relatively lightweight nature allows for
efficient execution on client devices while maintaining interpretability. To ensure the model’s generalizability to new
data and avoid overfitting, extensive empirical analyses were conducted to determine the optimal hyperparameters for
each model using GridSearchCV [38] (refer to Table 3).

Notably, for SVM, we employed the one-versus-one (OVO) strategy to handle class imbalance, decomposing the
multi-class classification problem into multiple binary classification tasks [17]. To mitigate overfitting, we utilized
ten-fold cross-validation. The dataset was randomly split into 80% for training and 20% for testing. The data collection
duration for classifying a setting ranged from 2 to 4 minutes, requiring a minimum of 1,000 samples.
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Fig. 3. Correlation of various semi-processed GPS parameters
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Fig. 4. Flow diagram of our ML pipeline

Table 3. Hyperparameters used for each classifier

Classifier Hyperparameters

Random Forest (RF) n_estimators: 100, max_depth: 10, min_samples_split: 10, min_samples_leaf:
4, bootstrap: True

Support Vector Machine (SVM) C: 110, kernel: rbf, tol: 0.001, break_ties: True

K-Nearest Neighbors (KNN) n_neighbors: 10, weights: distance, algorithm: auto, leaf_size: 30
Decision Tree (DT) max_depth: 20, min_samples_split: 20
Naive Bayes (NB) var_smoothing: le-9, fit_prior: True, class_prior: None

Gradient Boosting Classifier (GB)  n_estimators: 100, learning_rate: 0.01, max_depth: 10, min_samples_split: 10,
min_samples_leaf: 4
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6.1.2  Details of the Platform. The learning models were trained on the Google Collaboratory cloud platform (https:
//colab.research.google.com/). The cloud-based system was equipped with a dual-core Intel® Xeon® CPU running
at 2.20GHz, 13GB of RAM, and a disk capacity of 107.72 GB. The hyperparameter tuning task was slow and time
consuming. Hence, we used a NVIDIA® Tesla® T4 GPU equipped with 15GB of dedicated RAM.

6.2 Ambient Sensing

6.2.1 Data collection. For each ambient setting, over 100K samples were collected in various locations such as a
dormitory floor, stadium, bustling market and underground metro tunnel. The data collection involved 20 volunteers
who were graduate and undergraduate students studying in a university. They were aged between 19 and 28. The
volunteers were first rigorously trained on how to take measurements. Furthermore, to ensure the generality of the
dataset, the volunteers were requested to vary the settings (within limits). For example, one group put the mobile

phones in their shirt pockets, some kept it in their pant pockets and some in their purses.
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Fig. 5. Ambient sensing accuracy for each semi-processed GPS parameter

6.2.2 Class Labels. Five user environments were defined: flight!, indoor, metro tunnel, open ground and outdoor
crowded area. The objective of this work is to use GPS semi-processed data in isolation to classify the ambient. For
the open space and outdoor crowded area settings, samples were collected in an open-air stadium. We considered two
cases: empty and filled (with people). Additionally, we also included the open, semi-open, and covered environments
from the open-source GNSS dataset [67], treating the open environment as analogous to our open ground setting. We

will discuss the performance of our models on the open-source dataset separately in Section 6.2.7.

6.2.3  Results with Parameters Considered Individually. We evaluated the effectiveness of each of the semi-processed
GPS parameters (after applying UKF) for characterizing the ambient environment (see Figure 5).
In the interest of space, only the most accurate results for each parameter (across all models) have been shown. Agc

classifies the ambient with an average accuracy of 86.7% while ADRng performs the worst with an accuracy of 40.6%.

LAll the signals were collected in passive, receive-only mode. There was no signal transmission. This is allowed as per rules.
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All other parameters have an accuracy range between 57.9-82.1%. This accuracy is on the lower side because we are

considering the parameters individually. We shall later combine the parameters to achieve much better results.
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Fig. 6. Pre vs. Post LDA accuracy for ambient sensing

6.2.4 Impact of LDA on Accuracy. We conducted a comparative study to analyze the accuracy before and after applying
LDA for ambient classification. While individual GPS parameters offer some discriminative ability, they also introduce
noise and redundancy, leading to lower accuracy. LDA improves feature separability by projecting the parameters into
a lower-dimensional space that maximizes class distinction. As shown in Figure 6, without LDA, the models struggled
with stability, particularly in challenging environments such as metro tunnels. After applying LDA, accuracy increased
to over 90% across all settings, with an average improvement of 22.14%, underscoring LDA’s effectiveness in enhancing

accuracy and its essential role in our pipeline.

6.2.5 Results with Combined Parameters. The accuracy of the models for each setting after all the steps (UKF + scaling
+ LDA) is shown in Table 4. Although SVM accurately predicted the results for three settings, it failed to classify the
Indoor and Metro environments with misclassification rates of 57.6% and 79.3%, respectively. Similarly, KNN achieved
over 90% accuracy for all the settings other than Metro, where it had a misclassification rate of 43.4%. The NB (Naive
Bayes) model also underperformed for Metro with a misclassification rate of 32.4%. The Metro setting is hard to classify
because several parameters such as ADRng and State are not available. In contrast, RF (Random Forest) and GB (Gradient
Boosting) exhibited the best performance with accuracies exceeding 90% for all the settings. We will discuss the reasons

for this trend in Section 7.4.

Table 4. Accuracy of ambient classifier models: GB and RF are the best. The results are averaged across all the phones and volunteers.

Classifier | Flight | Indoor | Metro | OpnGrnd | OutCrwd
GB 99.8 99.6 91.6 99.9 98.8
RF 99.5 99.3 88.0 99.8 98.8
DT 99.9 99.2 91.6 99.8 98.8
KNN 97.5 92.8 56.7 98.0 89.7
NB 79.1 89.7 67.6 97.6 90.2
SVM 96.4 42.4 20.7 97.9 84.9
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6.2.6  Characterization of Indoor Environments. Additionally, we further characterized the indoor environment based
on population density. We consider two settings: nobody is present in a small (12 ft x 8 ft) room and two people are

present. The GB model accurately classified both scenarios with an accuracy of 99.25%.

6.2.7 Evaluation on synthetic Dataset. We evaluated the efficacy of our models on the open-source GNSS dataset [67],
encompassing open, semi-open, and covered environments, as shown in Table 5. These findings are consistent with those
discussed in Section 6.2.5. The SVM exhibited the poorest performance, demonstrating inconsistency; it achieved 95.9%
accuracy in open environments but faltered in semi-open and covered settings, with misclassification rates reaching as
high as 51.3%. GB emerged as the top performer, attaining an average accuracy of 98.1%. Other classifiers, including KNN,
DT, NB, and RF, also performed robustly, achieving accuracies above 93% with average accuracies ranging from 93.3%
to 97.5%. These results underscore the capability of AndroCon to effectively classify diverse environments, affirming its

robustness across varied scenarios.

Table 5. Accuracy of ambient classifier models on Open-Source GNSS Dataset

Classifier | Open | Semi-Open | Covered
GB 99.8 96.5 98.2
RF 99.6 95.2 97.8
DT 99.6 94.3 96.5
KNN 96.8 94.0 88.6
NB 96.5 86.1 87.4
SVM 95.9 48.7 52.3

Fig. 7. Feature importance test for ambient classification (GB model)
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6.2.8 Relative Importance of Features. We further evaluated the importance of each feature. This involves randomly
perturbing the values of each parameter and measuring the resulting increase in the model’s prediction error (refer
to [4] for the definition of the importance metric). A feature is deemed important if perturbing its values leads to a
significant increase in the error, indicating that the model relied on that feature for accurate predictions. Agc has the
highest importance score of 0.78, while all other features have importance scores ranging from 0.55 to 0.75 (see Figure 7),

demonstrating their substantial contributions to classification.

6.3 Human Activity Recognition (HAR)

6.3.1 Class Labels. Prior work [11, 28, 51, 60, 78] has extensively explored various HAR systems. They cover both
static activities (sitting, lying and standing) and dynamic activities (such as walking, running or traveling in a vehicle).
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The latter can be discerned on the basis of the speed or velocity. The Android platform’s getSpeed API [7] in the
android.location.Location package facilitates this. In our case, we shall use Doppler shifts [7] (captured by the PR
attribute) to distinguish dynamic activities, obtained from the Kaggle GNSS dataset [27] in terms of vehicular motion.

Distinguishing static activities cannot be done on the basis of Doppler shifts. We wish to classify static activities into
four classes: sitting, standing, lying down and hand waving (mobile phone not held with the moving hand). In case of
hand waving, the device was mounted on a wall stand and hand movements were performed in its close proximity
(within 2m).

6.3.2  Results with Individual GPS Parameters. The results are consistent with previous observations (Figure 19 in the
appendix). Agc achieves the highest accuracy of 77.2%, while PR performs the worst with a high misclassification rate
of 59.8%. The accuracy for other parameters ranges from 52.5-71.5%. This reflects the inability of individual parameters

in classifying activities. Hence, we combine the parameters to achieve better results.
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Fig. 8. Pre vs. Post LDA accuracy for HAR

6.3.3 Impact of LDA on Accuracy. Similar to ambient classification, we conducted an experiment to evaluate the efficacy
of LDA in HAR. As shown in Figure 8, without LDA, the model exhibited low accuracies, particularly for activities such
as hand waving, where accuracy dropped to as low as 59%. Other activities also showed comparable results. However,
after applying LDA, we observed a significant improvement, with an average accuracy increase of approximately 14%,

underscoring the importance of LDA in enhancing the performance of our system.

6.3.4 Results with Combined Parameters. Table 6 compares model performance using all the parameters. SVM achieves
93.4% accuracy for lying down but has a an accuracy of < 60% for other activities. KNN accurately classifies hand
waving with an accuracy of 88.4% but has an average accuracy of 74.4% for other activities. NB identifies the lying down
posture with > 80% accuracy but performs poorly (about 67% on average) for the other three activities. RF, DT, and GB
are the best — they achieve a minimum accuracy of 80%. The peak accuracy is 97.2% (RF). Note that the use case of hand
waving is particularly very difficult. Recently proposed sophisticated schemes that use array radars [63] achieve an
accuracy in a similar range (80-88%).

Consequently, RF was selected as the model of choice for this activity.
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Table 6. Accuracy of activity classifier models: RF is the best. The results are averaged across all the phones and volunteers.

Classifier | HandWaving | LyingDown | Sitting | Standing
RF 77.5 97.2 91.2 82.7
DT 80.7 84.9 85.1 87.9
GB 82.4 96.9 86.7 82.8
KNN 71.8 88.4 68.9 56.9
NB 61.4 80.7 77.8 63.2
SVM 60.3 93.4 38.3 44.8

6.3.5 Evaluation on synthetic Dataset. We assessed the performance of our models on the Kaggle GNSS dataset [27]:
distinguishing vehicular motion from vehicle at rest, as shown in Table 7. RF delivered the highest performance,
achieving an average accuracy of 95.1% across both activities, while SVM and NB showed the weakest results, with
average accuracies of 68.6% and 69.0%, respectively. Other classifiers, including DT, GB, and KNN, exhibited strong
performance, with average accuracies ranging from 75.0% to 93.7%. A significant accuracy gap is observed, with models
classifying moving vehicle scenarios with higher accuracies (up to 98.5%) compared to vehicle at rest, where accuracies
drop by approximately 8.8% on average, due to overlap with other static activities in the dataset, posing static activity
classification challenges. Despite these difficulties, AndroCon’s robust pipeline achieved accuracies exceeding 90%,

outperforming results reported in related works.

Table 7. Accuracy of activity classifier models on the Kaggle GNSS Dataset: covering dynamic activities

Classifier | Moving Vehicle | Vehicle at Rest
RF 98.5 91.7
DT 97.3 90.1
GB 91.8 79.4
KNN 78.6 71.3
NB 70.2 67.8
SVM 71.4 65.7
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Fig. 9. Feature importance test for human activity recognition

6.3.6 Relative Importance of Features. Additionally, we evaluated the importance of each feature in HAR when they
are fused together. The feature Agc has the highest importance score of 0.88, while all other features have importance
scores in the range of 0.5 to 0.65, which means that they are also nonetheless quite important (see Figure 9). This further
strengthens our claim - using parameters in combination improves accuracy.
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6.4 Assessment of the Robustness

We conduct several experiments to demonstrate the robustness of our method, AndroCon. We consider different envi-
ronmental conditions, variations in the satellite vehicle ID (SvID) density, different test:train splits, sparse fingerprinting

techniques and accuracy variability across different phones.
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Fig. 10. Accuracy results: varying the number of SvIDs for (a) ambience classification and (b) activity classification

6.4.1 Variation in the Number of Unique SvIDs. Figure 10 shows the impact of varying the number of SvIDs on the
prediction accuracy. A subset of SvIDs was randomly selected from the logged data and only semi-processed GPS
data corresponding to these SvIDs was used for evaluation. Care was taken to maintain the integrity of the dataset by
ensuring that SvIDs representing a significant portion of the logged data were not removed. The dataset was becoming
really sparse in such cases.

The maximum number of unique SvIDs observed during the experiment was 28. The results show that even with a
SvID density as low as 50% of the total number of unique SvIDs (14 unique SvIDs) an accuracy of 92.1% (10(a)) and

84.4% (10(b)) in ambient and activity classification, respectively, can be achieved.

6.4.2 Different Train:Test Splits. Figure 11 shows the accuracies when we vary the train:test ratio. For example, a ratio
of 80:20 indicates that the training data is 80% of the overall dataset and the remaining 20% of the data is used for testing
purposes.

Even when the proportion of test data is as high as 50%, the average accuracy of ambient classification is 94.2%
(11(a)), and 85.4% (11(b)) for activity classification, respectively. We can attribute this high degree of resilience to the
UKF’s noise removal and feature preservation capabilities. When we remove the UKF phase, the accuracy drops

by more than 50%.

6.4.3 Unseen Events. The accuracy of AndroCon was further assessed by experiments performed by absolutely untrained
volunteers using another set of Android phones in different settings. It is important to note that up till now, we used a
set of 5 phones and the same settings, even though we varied the following parameters: time of the year, time of the day
and weather conditions. There was invariably some inherent noise. For example, in a crowded area, the composition of
the crowd varied. Such factors cannot be controlled.
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Fig. 11. Accuracy with different level of train:test ratio for (a) ambience classification and (b) activity classification

In this experiment, we vary everything else other than the inherent nature of the setting. For example, we collected
measurements at locations that were roughly 1000 kms away from our original location. One location had an altitude of

3.5 kms. We also tested on a cruise ship, which we categorized as an open space.
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Fig. 12. Accuracy of events performed by untrained volunteers at new locations for (a) ambience classification and (b) activity
classification

Figure 12 shows the results. While a decrease in accuracy was observed, it remained consistently above 91.5% 12(a)
for ambient recognition and 83% 12(b) for activity classification, respectively. The best-performing technique was still
GB for ambient classification and RF for human activity recognition. This reduction in precision was mainly due to
variations in multipath effects and the significantly different experimental setups. Moreover, these volunteers did not go

through our orientation process. There is a possibility that our orientation process may have sub-consciously created
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some degree of homogeneity and bias, which we sought to remove by doing such experiments. Note that we tried our

best to avoid such biases. With this fresh set of volunteers, it was not possible for such biases to creep in.

Table 8. Ambient sensing accuracy variability across mobile devices with and without UKF+LDA

Device Model (Year) Raw Data Post UKF+LDA Data
Accuracy (%) | Accuracy Variability (%) | Accuracy (%) | Accuracy Variability (%)
Redmi Note 9 Pro Max (2020) 58.7 +8.6 94.7 +3.8
Redmi Note K20 Pro (2020) 61.5 +9.0 95.2 +34
Redmi Note 9 Pro Max (2021) 66.3 +8.1 95.2 +4.0
OnePlus Nord CE2 (2022) 73.8 +7.0 98.3 +4.2
Galaxy A54 (2023) 82.2 £5.1 99.2 £3.0
Nothing Phone 3 (2025) 84.1 +4.8 99.4 *2.7

6.4.4 Variability across Different Phones. We studied the accuracy variability across various mobile devices under similar
conditions, as presented in Table 8. In the absence of UKF+LDA processing (unfiltered), a statistically significant 8%
accuracy difference was observed between two Redmi Note 9 Pro Max units (purchased in 2020 and 2021, respectively),
with accuracies declining to as low as 59%. Under identical settings, a 9% variation emerged for the same model across
different days, attributable to weather fluctuations, which escalated to 25% across distinct phone models (Redmi Note 9
Pro Max and Nothing Phone 3) at the same location. In our setup, the Nothing Phone 3 (2025) exhibited the highest
accuracy, whereas older models demonstrated notably inferior performance. Post-processing with UKF+LDA markedly
reduced these disparities: the maximum difference decreased to 3% for data collected simultaneously at the same location
and to 4.2% across different days (up to months apart), with absolute accuracy reaching up to 99%. For brevity, we focus

here on ambient sensing; similar trends were observed for HAR (see Table 15 in the appendix).

7 FINDING THE INDOOR FLOOR LAYOUT

Our goal is to create an indoor floor map using semi-processed GPS data and identify features such as rooms, lifts,
staircases, etc. Prior work [80] has used WiFi RSSI (received signal strength indicator), user activities (measured via
accelerometers or pressure sensors) in conjunction with graph optimization techniques to construct the indoor map.
These approaches do not work for us given that the RSSI proves to be quite a feeble variable in the case of GPS signals.
For WiFi, the source of the signal is nearby, hence, its strength variation carries much more information. However, for
us the source is very far away and the variation observed is minimal. It is often affected by noise to a much greater
degree. This had necessitated the need for using the UKF and LDA algorithms in the first place. We nevertheless found
RSS (Agc) to be a good starting point for our study. We then build on it since it is clearly inadequate for our purpose if

used exclusively.

7.1 Study of GPS RSS Patterns

To study GPS RSSI variations across different areas of a large indoor area, we conducted an experiment in a dormitory
corridor. It measured 32.3 m X 25.6 m (refer to Figure 13(a)). Our methodology involved collecting raw GPS signals from
10 volunteers traversing the corridor with phones in their pockets. To ensure data authenticity, participants walked

naturally without specific instructions, capturing realistic signal statistics.
Figure 13(b) depicts the averaged variation in the GPS AGC (RSS) parameter across the dormitory. The results
highlight significant differences in RSS readings at various locations within the site, suggesting the potential to infer
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Fig. 13. (a) Layout of a dormitory floor (the site), (b) GPS RSS (Agc) signal variation. Major signal drop is observed near the lifts, (c)
WiFi Signal strength heatmap

the building’s layout. Notably, a consistent and substantial signal drop was observed near the lifts, attributed to
electromagnetic shielding effects.

To further contextualize these findings and align with methodologies in related work [29, 30, 61, 80], we conducted a
supplementary study. Since no GPS-based heatmap simulators are available and civilian GPS operates at a frequency
close to 2.4 GHz WiFi, we used NetSpot, a commercial WiFi signal strength mapping tool, to approximate spatial
variations in GPS RSS. We generated a heatmap illustrating the relative GPS RSS levels across the site (see Figure 13(c)),
under the assumption of ideal, zero-noise conditions. To simulate a GPS environment, we positioned two access points
outside the site, specifically in the open areas to the northeast and southwest. The differences in the RSS readings
remains consistent with our previous observations. The data was scaled to align with real-world GPS signal intensity,
which was measured and validated using the RF Explorer Spectrum Analyzer at key points of interest, including
entrances, elevators, stairs, and corners. strong correlation of 0.83 was observed, reflecting the alignment between the
modeled and actual signal intensity. It is important to note that NetSpot was not intended to directly replicate GPS
signal characteristics but rather to model spatial variability in signal strength of a similar nature, enabling comparison
with related studies within a controlled indoor environment. Our study exclusively uses raw GPS signal values.

The combined results from our empirical study confirm that GPS signal variations can effectively identify points
of interest, such as elevators, rooms, and staircases. However, the data alone does not reveal specific features at these
points of interest. Even with WiFi signals, accelerometer and pressure sensor data are required [80]. We are replacing it

with semi-processed GPS data and the GPS location information (not used up till now).

7.2 Trajectory Creation Methodology: Use Location Data

7.2.1  Activity Landmarking. Our aim is to identify floor landmarks such as pathways, stairs, elevators, rooms and
obstructions based on user activity like walking across the site and GPS-based location information. We will not use
data from any other sensor.
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For example, users typically walk straight along pathways, turn when they encounter obstructions, and engage in
different activities like climbing stairs or entering elevators. These activities can be captured using our HAR framework.
Notably, elevators act as Faraday cages [3], and they block GPS signals. We shall rely on multiple users to collect this
data — semi-processed GPS parameters, HAR fingerprints and trajectory information. Then we shall merge these results

to identify the landmarks.

7.2.2  Trajectory Alignment. We collected the walking trajectories of our volunteers. It is necessary to employ a
trajectory alignment algorithm (akin to [80]) because different people will produce different trajectories. Let us briefly
describe the algorithm proposed by Zhou et al. [80]. Their algorithm involves using a transformation matrix, which
it creates for adjusting the curvilinear paths (translation and rotation operations). This matrix is based on “activity
landmarks” that are common to the different trajectories. Trajectory coordinates are classified as either activity landmark
coordinates (ALC) or non-activity landmark coordinates (NALC). When merging trajectories, we focus on common
ALCs and calculate their relative coordinates to determine the necessary translations and rotations. This iterative
process ensures a more accurate and consistent overall map by aligning each new path to the existing map. The
advantage of aligning trajectories is that we create a robust skeleton of the internal map. A single observation is prone
to a lot of noise especially when using GPS signals for precise location.

After aligning the trajectories with themselves and with a virtual coordinate system, we apply graph optimization
techniques (refer to [80]) to further refine the locations of the ALC and NALC trajectory points. We use the Levenberg-
Marquardt algorithm [56] for optimization. The result is a map of the site with the ALC points (specifically) indicated.

7.3 Evaluation of the Accuracy of Classifying ALC Points

7.3.1 Data collection. 10 volunteers participated in the data logging process. The data was collected using the Gnss-
Logger Android application, the same tool employed for ambience/HAR classification. Each volunteer carried a device
with the GnssLogger app installed and traversed the floor, and sometimes used the services at the landmarks. To ensure
robustness and mirror real-time scenarios, participants were requested to start and end their journeys at random points

on the site.

(@ (b)

Fig. 14. Result of the indoor floor mapping experiments: (a) Raw trajectories, (b) After trajectory alignment. Extended results that
show the trajectories after graph optimization are shown in Figure 21 in the appendix.
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7.3.2  Results of the Trajectory Creation Algorithm. Figure 14 illustrates the outcome of our trajectory mapping process
(setting: dorm-room corridor). The activity landmark trajectory data is shown in Figure 14(a). Given the initial random
alignment of the trajectories, we realign them to eliminate inconsistencies as shown in Figure 14(b). The resultant map
contains noise, which we remove using graph optimization to obtain an optimized floor map with reduced errors (see
Figure 21 in the appendix). The final step involves aligning the generated map with the ALC information, where we get
a near-ideal layout with the points of interest clearly shown (similar to Figure 13(a)). Note that we add the real layout

in the background only for the purpose of better visualization.
7.3.3  Accuracy Assessment.

Layout Shape. To evaluate the quality of the generated map, we use the following metrics [61, 79, 80]:
Graph Discrepancy Metric (GDM): This measures the differences between the landmark points of the generated
map and the real map (ground truth) using Euclidean distance. A smaller GDM indicates a closer match between the
generated map and the real map.
Shape Discrepancy Metric (SDM): This assesses the differences in the overall shape of the generated map as compared
to the real map. It involves uniformly sampling points along lines connecting landmarks in both the maps and measuring
the distances between corresponding sampling points. A smaller SDM indicates a greater similarity in shape between

the two maps.
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Fig. 15. CDF of (a) GDM and (b) SDM

Figure 15(a) shows the cumulative distribution function (CDF) plot for the GDM. The maximum error observed is

4.10m, and the 90th percentile error is 3.42m. Similarly, for SDM, the maximum error is 3.41m, and the 90th

percentile
error is 2.94m (refer to Figure 15(b)). Our results align closely with related work [79, 80], affirming the efficacy AndroCon

in constructing floor maps.

Landmark Detection Accuracy: We utilized our GPS-based HAR system to accurately detect landmarks and
categorized them as stairs, rooms, lifts and empty corners. Table 9 shows the accuracy of the models (RF, DT, GB, KNN,
NB, SVM) for four landmarks: lift, stairs, rooms and corners. RF shows a strong performance with an average accuracy

of 90.15%. DT and GB also perform well, with average accuracies of 87.5% and 87.7%, respectively. KNN has a moderate
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accuracy of 81%. NB performs adequately with an average accuracy of 70.8%, but has a notably lower accuracy for lifts
(61.4%).

7.4 Comparison of ML Models: All Settings

KNN is very sensitive to noise, outliers and dataset imbalance, which explains its low accuracy for all settings. Consider
SVM that has the lowest average accuracy of 50.2% for layout mapping and underperforms even otherwise for our use
cases. It is known to be inefficient with noisy data in multi-class labeling settings. It exhibits particularly poor accuracies
for rooms (54.7%) and corners (34.3%). NB assumes feature independence, which is not the case in our settings. It has
issues with continuous variables and assumes informative priors, which also don’t hold in our case. Decision trees (DT)
have issues with overfitting, high noise sensitivity and poor extrapolation capability. That leaves RF and GB, which are
fast, and do not have many of the aforementioned problems. One of the reasons is that they rely on randomization and

have more regularization.

Table 9. Accuracy of landmark classification models

Classifier | Lift | Stairs | Rooms | Corners
RF 98.5 | 96.2 86.2 79.7
DT 96.7 | 93.1 77.9 82.3
GB 96.6 | 93.0 78.3 82.8
KNN 91.8 | 84.4 72.9 74.9
NB 61.4 | 80.7 77.8 63.2
SVM 61.6 | 57.8 54.7 34.3

8 DISCUSSION

Our research uncovers a previously unexplored dimension: the ability to transform raw, semi-processed GPS data
into a high-fidelity context sensor. The results are not incremental but reveal a new class of information leakage
with high accuracy. Existing literature has extensively explored terrestrial RF signals, such as WiFi and Bluetooth, for
HAR and ambient sensing. Our findings demonstrate that these principles extend to low-power, non-terrestrial GPS
signals, opening new avenues for navigation data usage. Achieving over 99% accuracy across diverse and challenging
settings—ranging from underground metros to airborne flights—demonstrates that subtle modulations in satellite signals
encode a rich narrative of the surrounding environment, including fine-grained indoor context such as detecting human
presence in a room and distinguishing between crowded versus empty outdoor spaces. We extend this to precise HAR,
with AndroCon achieving over 97% accuracy in classifying postures such as lying, sitting, and standing, and detecting
subtle gestures like hand waving—a difficult HAR task—with performance comparable to recent radar-based systems [63].
Central to such precision is our processing pipeline, which fuses UKF with LDA to yield stable, class-separable signals;
robust across devices and environments.

In addition to ambient sensing and HAR, we also studied indoor mapping with semi-processed GPS. Our framework
builds on the graph-optimization and trajectory-alignment concepts pioneered by Zhou et al. [80]; however, it introduces
a key innovation. Their approach required complex fusion of multiple sensors—including WiFi, gyroscopes, and
magnetometers—to detect landmarks such as walls, rooms, lifts, and turns, AndroCon replaces this multi-sensor setup
with semi-processed GPS. This is motivated by our HAR system observations: users exhibit predictable activity patterns
at points of interest, typically walking straight along pathways, turning at obstructions, or performing activities like

Manuscript submitted to ACM



24 Nag et al.

climbing stairs or entering elevators. These behaviors are well captured by GPS, allowing landmarks to be reliably
inferred. Using this approach, AndroCon achieves comparable mapping precision, with a map reconstruction error of 3.9
m and an average landmark detection accuracy of 90.15%. This capability to reconstruct indoor layouts with a single,
ubiquitous sensor is a significant advancement in the state of the art.

Ultimately, these high-precision results expose a critical privacy vulnerability in the Android ecosystem, arising
from unrestricted access to semi-processed GPS data via the GnssMeasurements API [48]. This side-channel operates
under the standard fine-location permission, allowing any application granted this access—ostensibly for legitimate
location-based services—to covertly exploit the data. Such exploitation enables inference of a user’s environment, their
daily activities, and reconstruction of private space; creating a threat far greater than the sum of its parts. In effect, it
constructs a detailed and invasive profile of a user’s life, exposing over 90% [8] of Android users to this novel form of

surveillance.

8.1 Limitations & Future Work

Our work relies on the Android GNSSMeasurements API, which provides access to semi-processed GPS measurements
without explicitly informing users about associated privacy and side-channel risks. In contrast, iOS does not explicitly
expose comparable raw or semi-processed GNSS data to applications. Consequently, conducting similar studies on iOS
would require alternative approaches, such as developing new APIs, reverse engineering, or hardware instrumentation.
Therefore, the findings and implications presented here are specific to the Android ecosystem. Investigating analogous
side-channels on other platforms remains an important avenue for future research.

The proposed method assumes access to semi-processed GPS parameters on devices running Android 7 or later,
alongside fine-location permissions. However, device-level restrictions, custom ROMs, or user-configured privacy
settings may reduce parameter availability or sampling frequency, potentially affecting AndroCon’s performance.

Our evaluation focuses exclusively on GPS L1 signals, without fusion of data from other GNSS constellations. While
integrating data from multiple GNSS constellations could enhance robustness, it also introduces added complexity and
privacy considerations.

Although the dataset used in this study is extensive—encompassing diverse devices, participants, and environmental
conditions—dynamic factors pose ongoing challenges. Rapid ionospheric variations, satellite geometry shifts, and
weather fluctuations can influence GNSS signal characteristics and impact performance. Large-scale, long-term de-
ployment would therefore require regular dataset updates and periodic model retraining to adapt to such changes.
Currently, our classifiers are trained offline and do not update in real time; integrating online learning and scheduled
retraining is a promising direction for future work.

The effectiveness of trajectory alighment and indoor map reconstruction depends on the availability of sufficiently
dense and diverse crowdsourced user trajectories. In spatially sparse settings, supplementary data collection strategies

may be necessary to ensure consistent results.

9 RELATED WORK

Given that there is an overlap in prior work on activity and ambience recognition, we combine them and discuss
the combined related work in Section 9.1. Subsequently, we discuss the related work on indoor layout detection in
Section 9.2.

For both event recognition and indoor floor mapping, imaging-based solutions[36, 55] captured using cameras are

highly effective; however, they raise significant privacy concerns. This has limited their widespread adoption, and thus
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we don’t consider them in this section. We limit ourselves to methods that are primarily based EM waves (in some
form) like WiFi, GPS, Bluetooth, 5G, etc.

9.1 Ambient Sensing and HAR
Year | Work Approach WiFi | WiFi IMU | Cell Tower | GPS | RFID | Camera | Optical
| e ™ [ ] |
2012 | Iodetector [82] Multi-sensor (Light + Cell + X X X X X X X
Magnetic)
2015 | PAWS [28] RSS-Based X X X X X X X
2016 | Wang et al. [72] Wireless signal CSI patterns X X X X X X X
2017 | Gao etal. [25] Wireless signal CSI patterns X X X X X X X
2020 | Muaaz et al. [50] WiFi CSI + IMU sensors X X X X X X
2020 | Buietal. [16] Processed GPS signals X X X X X X X
2020 | Bhat et al. [15] WiFi and RSS-based X X X X X X X
2020 | Shuaeib et al. [62] RFID-Based X X X X X X X
2021 | Ramirez et al. [55] Video-based trajectory X X X X X X X
2021 | Kouhini et al. [39] Li-Fi X X X X X X X
2021 | Sekiguchi et al. [60] | GPS coordinates + Other wire- X X X X X
less signals
2023 | Fuada etal. [23] Passive WiFi probe X X X X X X X
2024 | Lietal [41] VLC X | X X X X X X
2024 | Zhuetal. [83] Processed GPS signals X X X X X X X
2024 | AndroCon Semi-processed GPS signal pa- X X X X X X X
rameters
Table 10. Comparison of HAR/ambient classification approaches
‘ Year | Work Approach ‘ SLAM ‘ WiFi | Smartphone] IMU ‘ GPS ‘
sensors
2012 | Alzantot et al. [13] | User trajectories X X X X
2013 | Shenetal. [61] WiFi RSS alignment X X X X
2014 | Philipp et al. [52] Pedestrian movement+crowd-sourced structural X X X X
(external) information of buildings
2015 | Zhou et al. [79] Link-node approach X X X
2016 | Guetal. [29] User trajectory +WiFi+Bluetooth X X X
2018 | Zhou et al. [80] Link-node approach+GO X X X
2020 | Karam et al. [37] IMU + LiDAR X X X
2023 | Girolami et al. [26] | Bluetooth- based localization X X X X
2023 | Liu et al. [46] 5G-signal based positioning X X X X
2024 | AndroCon GPS Semi-processed data + user trajectory X X X X

Table 11. Comparison of indoor floor mapping approaches

We present a brief comparison of the related work on ambience/HAR (events) recognition in Table 10. One of the
earliest works in pure RSS-based solutions is PAWS [28], which utilizes ambient WiFi signals to create RSSI fingerprints.
Bhat et al. [15] refined existing techniques to develop a recognition system using the RSS of a single communication
channel. Shuaeib et al. [62] introduced an RFID-based indoor HAR system that uses RSS from passive RFID tags to track
activity in real-time by mapping the analyzed data to reference datasets. Such solutions rely heavily on the availability
of good-quality WiFi signals, which may not always be feasible especially in outdoor settings. GPS, on the other hand,
is ubiquitously available. More recently, Fuada et al. [23] leverage the WiFi probe requests from smartphones for indoor
crowd monitoring, capturing RSSI, MAC addresses, and timestamps via portable nodes, and applying an UKF for noise
reduction. This requires additional infrastructure and is limited by MAC randomization [14] in modern smartphones. In
contrast, AndroCon relies solely on semi-processed GPS signals, enabling finer-grained classification beyond indoor
settings.
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Let us now look at works that use RSS and the channel state information (CSI). Wang et al. [72] introduced a
deep learning technique, a sparse autoencoder (SAE), which recognizes events using WiFi CSI (channel state info.)
signals. Gao et al. [25] developed another CSI-based system for event classification using deep learning, where they
converted CSI measurements into radio images, extracted features, and then applied an SAE network for better accuracy.
Muaaz et al. [50] proposed WiWeHAR, a multimodal HAR system that combines WiFi CSI data and wearable inertial
measurement unit (IMU) sensor data. These systems demand precise feature engineering, efficient signal processing
and noise removal.

Researchers have also explored multi-sensor frameworks for ambient sensing- IODetector from Zhou et al. [82],
employing an integration of light sensors, cellular signal strength, and magnetometers to distinguish between indoor,
outdoor, and semi-outdoor environments with approximately 90% accuracy, though it requires multiple sensors,
adjustments and is limited to specific scenarios. In contrast, our work, AndroCon, utilizes only semi-processed GPS
signals—a widely available resource—eliminating the need for additional hardware while achieving a superior 99.6%
accuracy across diverse settings, including crowd density estimation in open spaces, metro stations, and conditions
during flights. Zhou et al. [81] subsequently adapted IODetector for commercial deployment in China’s food delivery
sector, scaling it to nationwide implementation and demonstrating tangible business benefits; underscoring the practical
efficacy of ambient sensing technologies. This accomplishment further strengthens the case for AndroCon’s potential
adoption in industry, offering a streamlined, GPS-only sensing solution characterized by simplicity and precision.

Beyond RF-based methods, OWC has also been explored for localization and HAR. Kouhini et al. [39] employed active
tracking by estimating distances using the Time of Flight of LED signals transmitted from ceiling-mounted sources
to a user’s device. Li et al. [41] extended this to passive, device-free sensing, using ceiling-mounted transmitters and
receivers to detect human activities via machine learning on reflected light disturbances. However, these approaches
rely on specialized infrastructure, controlled environments, and line-of-sight conditions, making real-world deployment
challenging. Importantly, AndroCon circumvents these limitations by exploiting only ubiquitous GPS signals, highlighting
its robustness across diverse, real-world environments.

Prior studies have also attempted event classification using GPS and cellular signals. Sekiguchi et al. [60] categorize
events based on GPS coordinates along with cell tower and WiFi signal data. This approach, however, is limited by its
reliance on a stable location fix and the availability of heterogeneous signals (cellular and WiFi), confining its use to
well-connected environments. Our approach does not use GPS coordinates or any other kind of location information.
We solely focus on semi-processed GPS signal parameters, which are almost always available. We do not use any WiFi or
assisted-GPS signals (signals from cellphone towers). This makes our work a more self-contained sensing modality. Bui
etal. [16] utilized the magnitude of the received GPS signal for distinguishing between indoor and outdoor environments.
Zhu et al. [83] classify ambient conditions based on visible satellites, GNSS distribution, C/N0 and multipath effects. All
these studies utilize processed signal data, which, being devoid of context-rich signal-environment interactions, yields
lower accuracy - at most 92.72% in the best case. On the other hand, our work leverages raw, semi-processed GPS data,
a methodological choice that allows AndroCon to achieve a much higher accuracy that often exceeds 99%. Additionally,
the range of settings considered in prior work is extremely restricted. Our work considers a very diverse set of settings

(similar to prior work using stronger signals like WiFi and radars).

9.2 Indoor Layout Mapping

We show a comparison of related work in Table 11. Most approaches utilize Simultaneous Localization and Mapping

(SLAM), a computer vision technique designed to localize a robot in an unknown environment while concurrently
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generating a map. Conventional SLAM techniques typically depend on visual cues such as landmarks, camera-detected
obstacles, sonar data or laser-range sensors (Kamar et al. [37]) [36, 47, 53]. However, these approaches incur high costs
and can possibly be quite intrusive in terms of privacy.

Alzantot et al. [13] propose to use crowd-sourced user trajectories to construct indoor maps. However, their method
was susceptible to errors due to the non-alignment of trajectories. Addressing the issue, Shen et al. [61] presented an
indoor pathway mapping system using WiFi RSS fingerprints to align trajectories. Gu et al. [29, 30] further improved the
performance by employing Bluetooth and WiFi data for trajectory alignment, but sparse WiFi access point deployment
posed practical challenges. Philipp et al. [52] propose Mapgenie — generating maps from pedestrian movement traces
and utilizing external building data. They propose an elaborate grammatical model to interpret pedestrian movement
patterns and additionally use IMUs. Zhou et al. [79] use a link-node approach (landmarks as node and pathways and
links). This method utilizes smartphone sensors and WiFi RSS fingerprinting, complemented by geometric scaling
methods. However, challenges arise in accurately representing curved features within the maps. Zhou et al. [80] address
these challenges through graph optimization methods.

Our approach AndroCon builds on the work of Zhou et al. [80] that requires WiFi RSS and MAC address fingerprinting,
gyroscope and compass readings for trajectory alignment and landmark identification. AndroCon, on the other hand,

does not need any of these sensor readings and only relies on semi-processed GPS data and GPS coordinates.

10 CONCLUSION

The fact that semi-processed GPS data can be used to sense the ambient, recognize human activity and infer floor
layouts was hitherto unknown. We successfully showed that all of the above can be achieved, and that too with a high
accuracy that ranges from roughly 99.5% in controlled conditions to 87% in absolutely uncontrolled conditions. We
conducted an extensive set of experiments with tens of volunteers, many phones of different makes and brands, diverse
set of scenarios and hundreds of sample points. We collected data for a year across a large geographical area — some
of the collection points were 1000 kms away from the place where the research was primarily carried out. We also
collected data on flights, cruise ships and high-altitude locations. Our results are thus quite robust.

Furthermore, our approach can construct floor maps with a maximum error margin of 4.1m as compared to the
ground truth. We can classify points of interest within an indoor layout such as elevators, stairs, corridors, empty
corners and rooms with a roughly 90.15% accuracy, while just relying on GPS data. Currently, Android does not address
this vulnerability, which leaves approximately 90% [8] of users exposed.

RESPONSIBLE DISCLOSURE: We reported the identified vulnerability and use-cases, excluding the floor mapping

use-case to the Android security team.
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A APPENDIX
A.1 Glossary

Table 12 lists the abbreviations used in this paper along with their expanded forms.

Table 12. List of abbreviations used in this paper.

Abbreviation Expanded Form

ADRng Accumulated Delta Range

ADRngU Accumulated Delta Range Uncertainty
Agc Automatic Gain Control (incoming signal power)
BbCNO Baseband Carrier-to-Noise Density

CNO Carrier-to-Noise Density

DT Decision Tree

GB Gradient Boosting

GNSS Global Navigation Satellite System

GPS Global Positioning System

HAR Human Activity Recognition

KNN K-Nearest Neighbor

LDA Linear Discriminant Analysis

NB Naive Bayes

NMEA National Marine Electronics Association
OovO One-Versus-One

PCA Principal Component Analysis

PR Pseudorange Rate

PRU Pseudorange Rate Uncertainty

PVT Position, Velocity, and Time

RecSvIU Received SV (Satellite Vehicle) Time Uncertainty
RF Random Forest

RINEX Receiver Independent Exchange Format
RSS Received Signal Strength

SNR Signal-to-Noise Ratio

SVM Support Vector Machine

SvID Satellite Vehicle ID

UKF Unscented Kalman Filter

A.2 Semi-processed GPS Data Parameters: Mindmap

A brief taxonomy of the chosen GPS parameters is shown in Figure 16. We broadly use five types of parameters that
can be classified into the following buckets: received signal power, carrier phase shift, multipath interference, SNR and
the Doppler shift (due to satellite motion). These parameters can be used to extract information about the surroundings
because they are influenced by it. For instance, if there are a lot of objects around the receiver, the multi-path interference
and SNR will be high.
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ADRngU

ADRng

RecSvTU

GPS Signal

Doppler Shift

BbCNO

Fig. 16. Representation of the semi-processed GPS signal parameters that we use. RSS stands for “Received Signal Strength”

A.3 Ambient Classification

Figure 17 illustrates the accuracy of the selected models under each experimental configuration, after going through
a pre-processing pipeline consisting of UKF, normalization through scaling, LDA, and parameter fusion. The figure
shows the confusion matrices.

Table 13 shows the same data for each setting using several popular ML metrics: accuracy, sensitivity, specificity and
the F-score.

Figure 18 shows that GB achieves an accuracy of 99.25% in further classifying indoor environments based on

population density.
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Fig. 18. Confusion matrix of indoor environments with different population densities

A4 Activity Classification

Figure 19 shows the utility of each GPS parameter in classifying the activity. We can clearly see State, Agc, CN0O, BbCNO

and ADRng to be important parameters. However, in isolation their accuracy hovers in the low 80-85% range. Hence,

fusing the parameters is essential.

Figure 20 compares the accuracies of different models using the pre-processed data and fused parameters. Table 14

shows the same data along with other ML metrics: sensitivity, specificity and the F-score. We can observe that SVM

performs the worst (accuracy = 57.4%) and RF performs the best (accuracy = 87%).
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Table 13. Performance metrics of ambient classifier models: GB and RF are the best. The results are averaged across all the phones
and volunteers.

Classifier | Ambience | Acc | Sen | Spe F-score

GB Flight 99.8 | 99.8 | 99.9 99.8
Indoor 99.6 | 99.6 | 99.8 99.4
Metro 91.6 | 91.6 | 99.9 93.9

OpnGrnd 99.9 | 99.9 | 100.0 | 99.9
OutCrwd 98.8 | 98.8 | 99.8 98.7

RF Flight 99.5 | 99.9 | 99.9 99.8
Indoor 99.3 | 993 | 99.8 99.2
Metro 88 88.0 | 100.0 | 93.3

OpnGrnd 99.8 | 99.8 | 100.0 | 99.9
OutCrwd 98.8 | 98.8 | 99.7 98.4

DT Flight 99.9 | 99.9 | 99.9 99.8
Indoor 99.2 | 99.2 | 99.8 99.1
Metro 91.6 | 91.6 | 99.9 93.2

OpnGrnd 99.8 | 99.8 | 99.9 99.9
OutCrwd 98.8 | 98.8 | 99.9 98.9

KNN Flight 97.5 | 97.5 | 98.7 97.2
Indoor 92.8 | 92.8 | 98.4 92.4
Metro 56.7 | 56.7 | 99.7 62.2

OpnGrnd 98 98.0 | 99.0 98.3
OutCrwd 89.7 | 89.7 | 98.4 89.1

NB Flight 79.1 | 79.1 | 99.6 87.8
Indoor 89.7 | 89.7 | 93.0 79.6
Metro 67.6 | 67.6 | 98.7 51.0

OpnGrnd 97.6 | 97.6 | 99.1 98.2
OutCrwd 90.2 | 90.2 | 97.4 86.0

SVM Flight 96.4 | 96.4 | 88.4 85.4
Indoor 424 | 424 | 977 55.0
Metro 20.7 20.7 100.0 33.7

OpnGrnd 97.9 | 97.9 | 974 97.2
OutCrwd 84.9 | 849 | 973 82.9

1001 mm Standing
- Sitting
B lyingDown
80 mmm HandWaving

g 60
o
>
[}
<
40
20
0 N N O (o) N Q Q < <
< & & < S & ¥ &
& Q & N 2
© A ?9 Q

Fig. 19. Activity classification accuracy for each semi-processed GPS parameter

A4.1 HAR Accuracy Across Mobile Devices. Table 15 shows HAR accuracy across devices under consistent conditions.
Raw accuracies ranged from 47.8% (Redmi Note K20 Pro, 2020; +9.3% variance across same model) to 74% (Nothing
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Fig. 20. Activity classification confusion matrix: (a) RF, (b) DT, (c) SVM, (d) KNN, (e) NB, and (f) GB

Phone 3, 2025; +4.1% variance), indicating uneven performance. Post-UKF+LDA, accuracies increased to 84.5-88%, with

variance reduced to +3.2-4.6%, improving stability across diffferent mobile devices.
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Table 14. Performance metrics of activity classifier models

Classifier | Activity Acc | Sen | Spe | F-score
RF HandWaving | 77.5 | 77.5 | 98.9 | 85.6
LyingDown 97.2 | 97.2 | 96.5 | 92.6
Sitting 91.2 | 91.2 | 923 | 86.4
Standing 82.7 | 82.7 | 94.7 | 83.8
DT HandWaving | 80.7 | 80.7 | 94.7 | 81.7
LyingDown 84.9 | 949 | 98.2 | 94.2
Sitting 85.1 | 85.1 | 93.2 | 84.0
Standing 87.9 | 87.9 | 96.3 | 88.8
GB HandWaving | 82.4 | 82.4 | 96.7 | 85.4
LyingDown 96.9 | 96.9 | 96.7 | 92.8
Sitting 86.7 | 86.7 | 94.1 | 85.9
Standing 82.8 | 82.8 | 94.8 | 84.0
KNN HandWaving | 71.8 | 71.8 | 94.2 | 754
LyingDown 88.4 | 88.4 | 934 | 833
Sitting 68.9 | 68.9 | 85.6 | 66.8
Standing 56.9 | 56.9 | 87.3 | 59.3
NB HandWaving | 61.4 | 61.4 | 94.6 | 68.8
LyingDown 80.7 | 80.7 | 89.5 | 73.8
Sitting 778 | 77.8 | 90.1 | 76.4
Standing 63.2 | 63.2 | 86.6 | 63.1
SVM HandWaving | 60.3 | 60.3 | 91.0 | 63.8
LyingDown 93.4 | 93.4 | 78.1 | 68.7
Sitting 38.3 | 38.8 | 87.7 | 454
Standing 448 | 448 | 86.8 | 494

Table 15. HAR accuracy variability across mobile devices with and without UKF+LDA

Device Model (Year) Raw Data Post UKF+LDA Data
Accuracy (%) | Accuracy Variability (%) | Accuracy (%) | Accuracy Variability (%)
Redmi Note 9 Pro Max (2020) 47.8 +9.2 84.5 +44
Redmi Note K20 Pro (2020) 51.2 +9.3 85.3 +3.9
Redmi Note 9 Pro Max (2021) 52.1 +8.4 84.9 +3.7
OnePlus Nord CE2 (2022) 67.6 +7.8 85.3 +4.6
Galaxy A54 (2023) 72.1 +4.3 87.3 +3.5
Nothing Phone 3 (2025) 74.0 +4.1 88.2 +3.1

A.5 Indoor Layout Mapping

Figure 21 shows the extended results for indoor floor mapping. Figure 21(a) shows the raw trajectories that need to

be rotated and aligned. Figure 21(b) shows the results after alignment. Subsequently, some graph-based optimization

is performed to reduce the noise and create a fine trajectory (results in Figure 21(c)). Finally, the trajectory is rotated

and aligned. The points of interest (based on the Agc) are also demarcated. Figure 21(d) shows the final output of the

trajectory with the points of interest clearly marked. Note that the layout is shown in the background to enhance

readability. It is not available to our algorithm at this stage.
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Fig. 21. Result of the indoor floor mapping experiments: (a) Raw trajectories, (b) After trajectory alignment, (c) After graph
optimization, and (d) Final result after aligning with a coordinate system
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