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WaWoR: Wasted Work Reduction during
Snapshotting in EH-WSNs
Priyanka Singla , Smruti R. Sarangi , Member IEEE

Abstract—Energy harvesting wireless sensor networks (EH-
WSNs) are useful for ambient monitoring, especially in hazardous
and hard-to-reach environments, where sensor nodes sense and
transmit data to a remote sink via multi-hop communication,
enabling informed decision making. Accurate decisions require
a global snapshot that comprises environmental parameters si-
multaneously sensed from all nodes. To realize an efficient snap-
shot collection scheme, all nodes should send an equal number
of messages where each message contributes to the snapshot;
excessive messages from some nodes are ineffective and in-turn
increase the network traffic and contribute to the wasteful work
done by nodes. Reducing such ineffectual messages is challenging
due to the variable ambient energy supply at nodes, network
congestion, limited information about the overall state of the
system and varying node distances from the sink. To achieve this
objective, we introduce WaWoR, a novel distributed system where
nodes dynamically decide when to sense and transmit snapshot
messages based on their physical locations, energy availability and
perceived network congestion. WaWoR outperforms two theoretical
hypothetical baselines and two state-of-the-art-systems. It captures
[90−175]% of the snapshots compared to the theoretical baselines
and [1.02− 4.26]× more snapshots than state-of-the-art systems.
Additionally, it reduces wasted messages, which further reduces
the total energy consumption by [1.6− 9.9]×.

Index Terms—fairness, energy harvesting wireless sensor net-
works, adaptive sensing, snapshots, effective throughput, energy.

I. INTRODUCTION

Due to their nearly infinite lifespan and exceptionally low
power consumption, energy harvesting devices (EHDs) are
replacing traditional battery-powered Internet of Things (IoT)
devices [1]. Energy harvesting wireless sensor networks (EH-
WSNs) are predominantly used in applications that require
accessing difficult-to-reach remote locations, such as monitor-
ing submarine structures [2], forest fires, arctic oil pipelines,
military and nuclear facilities [3], [4]. Nodes in these networks
are typically arranged in a grid-like topology [5]–[7]. This
establishes redundant paths that prevent network partitioning
during periods of reduced ambient energy availability.
Data Collection at the Sink Node: Sensor nodes periodically
sense ambient parameters such as the temperature, pressure and
gas concentrations, and relay the readings through a multi-hop
network to a distant sink node [8]. The sink node collects this
data, analyzes it and then computes various spatio-temporal
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statistics to make informed decisions. For instance, consider
an Arctic oil pipeline monitoring system, where the sensor
data consists of oil pressure readings. When these readings are
collected at the sink, they help detect and quantify leaks, and
prompt necessary actions. To make accurate decisions, the sink
node requires high-quality data, i.e., it should receive sensor
values from all the nodes that are sensed at approximately the
same time. Specifically, a global snapshot of the entire network
state concerning the monitored parameter (e.g., pressure) is
required [9]. In our running example, if data about the oil
pressure is not received from all the nodes (collected at roughly
the same time), the sink cannot quantify the intensity and nature
of the leakage. Furthermore, if sensed data is not timely and
is stale, the sink may make incorrect decisions. For many such
reasons, an accurate global snapshot is often required.
Need for a New Data Collection Approach for EH-WSNs: Ex-
isting data and snapshot collection techniques for WSNs [10],
[11] cannot be readily applied to EH-WSNs due to limita-
tions imposed by the available ambient energy. Specifically,
ensuring successful communication between two nodes is not
always possible [12]. Consequently, considerable efforts have
been directed towards devising strategies for efficient snapshot
collection in EH-WSNs. These strategies primarily focus on
maximizing the number of data messages collected at the sink
per unit time [13], [14]. In these works, all nodes periodically
sense, and then transmit data messages towards the sink.
However, due to different node-to-sink distances, nodes closer
to the sink often end up sending more messages, which is
disadvantageous towards nodes farther away from the sink.
Significance of Snapshots: Although the sink collects a lot
of messages from nearby nodes, the overall quality of data
can be low if every message received from a nearby node is
not paired with a message received from a node placed farther
away whose reading was collected at roughly the same point
of time. In fact, the surplus messages waste network resources
and devices’ energy, which is especially limited in the case of
energy harvesting devices [1].

There is a body of work that proposes efficient snapshot
collection in EH-WSNs [8], [9], [15], [16]. However, these
approaches rely on several problematic assumptions (high-
lighted in Section II), rendering them practically unfeasible.
To remedy such issues and address the problem of achieving
efficient network snapshot collection, we propose WaWoR– a
practical distributed solution designed to maximize the number
of snapshots collected at the sink node. Before discussing
WaWoR, let us first understand the challenges of snapshot
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collection in detail.

A. Why Snapshot Collection is Challenging? Sensor Nodes

- High relay pressure
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Fig. 1. Pictorial representation of an EH-WSN
Let’s define the term “sensing period”. Generally, if a node has
a sensing period τ , it means it will send and transmit data every
τ units of time. However, in practice, a node’s buffer might get
full and due to inadequate space, sensing and transmission may
not be successful. Therefore, we interpret the sensing period as
a node’s aggressiveness or desire to send a message. A sensing
period τ means that a node will try to sense and send data
every τ milliseconds (the assumed unit of time).
Same Sensing Periods for All Nodes: Let us now begin
by considering a basic snapshot collection scheme where all
nodes have the same sensing period. Figure 1 shows a grid
(mesh-based) network. We consider the sensing period of each
node to be 150 ms. Although each node senses every 150
milliseconds, the number of messages reaching the sink varies
between 60 and 380 over a 60-second duration (details in
Section VII-A1). This variation is shown on the primary y-
axis in Figure 2(a). For collecting a global snapshot, the
sink needs to receive messages from all the nodes that were
collected at roughly the same time; therefore, the minimum
number of messages from any node determines the number
of global snapshots that can be collected. Excess messages
indicate wasted effort and contribute to unnecessary message
transmission and network congestion. Additionally, oversensing
leads to needless consumption of device energy – a critical
resource in energy harvesting systems. Thus, we can conclude
that this scheme does not capture snapshots efficiently.
Wasted Work: The disparity in the number of messages reach-
ing the sink in the aforementioned scheme can be explained as
follows. As indicated in Figure 1, nodes closer to the sink have
low latency but along with their own messages, they need to
relay messages from other upstream nodes. Conversely, nodes
farther from the sink have high latency due to their larger
distance from the sink and network congestion. Consequently,
nodes closest to the sink benefit from low latency, while those
farthest benefit from lower relay pressure. However, nodes
in the middle suffer from both high latency and high relay
pressure. These nodes in the middle determine the effective
rate of snapshot collection (e.g., 60 snapshots per minute, in
our example). The oversensed messages from the farthest and
closest nodes represent wasted work.
Reducing Wasted Work: One way to reduce oversensing is to
increase the sensing periods of nodes and make them much
larger than 150ms. However, this decrease in oversensing
comes at the expense of a reduced number of snapshots. A
more effective solution is to have different sensing periods for
nodes depending upon their position relative to the sink. Please
note, sensing periods cannot differ substantially, else they will

fail to serve the purpose of collecting a global snapshot, i.e.,
to provide a global picture of the network. In practice, the
ambient state does not change very rapidly and remains stable
at the millisecond granularity [17]–[19]. We leverage such
phenomena, and consider snapshots that are approximately
instantaneous i.e., nodes sense at slightly different times, but
within a close range (< 600 ms in our experiments). Using,
different sensing periods allowed us to increase the total number
of snapshots to 150 per minute (see Figure 2(b)), significantly
reducing the wasted effort.

(a) (b)
Fig. 2. Number of snapshots captured, when nodes have the (a) same
sensing periods and (b) different sensing periods
Variable Sensing Periods: The last and most critical challenge
is to handle the variability in ambient energy at nodes and
the network dynamics (varying network congestion and nodes’
states). Given the dynamic nature of the system, fixed sensing
periods (even if it is different at different nodes) are insufficient.
Therefore, adaptive sensing periods are required, influenced by
factors such as the nodes’ positions relative to the sink, energy
availability and the instantaneous network state. To achieve
this, we introduce WaWoR– an algorithm that enables nodes to
autonomously and adaptively adjust their sensing periods. The
goal is to optimize the sensing periods to maximize the number
of snapshots captured while minimizing the wasted work.
B. Contributions
Our contributions in this work can be summarized as follows:
(1) We propose WaWoR– a distributed algorithm for adjust-
ing nodes’ sensing periods in accordance with their position,
available ambient energy, and network dynamics (network con-
gestion and nodes’ states); these adjustments rely on periodic
feedback received very infrequently from the sink.
(2) Unlike several existing works on EHD systems [6], [9],
which propose a single-node solution and then analytically
extend it to a multi-node system, abstracting out various details,
we conducted detailed simulations of WaWoR for a comprehen-
sive end-to-end system.
(3) We compared WaWoR against two theoretical baselines and
two state-of-the-art systems. To the best of our knowledge,
there does not exist a theoretical formulation that leads to
an optimization problem that can be solved using standard
solvers. The solution space is very complex given the size
and scale of the system. We thus designed two hypothetical
baselines: a static scheme where nodes have constant sensing
periods throughout the simulation and a dynamic scheme with
continuously changing sensing periods. Both of these schemes
consider nodes with omniscient capabilities – they are aware of
the ambient energy profiles at all nodes. Due to this, nodes are
able to perceive the instantaneous state of the entire network,
and choose optimal sensing periods.
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The first hypothetical scheme, OptStat, computes the sensing
periods by exhaustive experimentation statically (before exe-
cution commences). Specifically, it evaluates various sensing
periods and selects the one yielding the most snapshots at the
sink. The second scheme, OptDyn is an AI-based approach,
wherein nodes dynamically change their sensing periods in
response to the instantaneous energy available.

Please note that the energy profile has a very important
bearing on the final results. So, we have considered real-
world traces corresponding to the most commonly used ambient
sources: solar, vibrational, and RF sources [20]–[22]. The con-
sidered profiles have different power intensities and different
granularities of variation (from milliseconds to seconds).

Our experiments show that for all three sources, WaWoR
could capture 1.8-75% more snapshots as compared to OptStat,
and approximately [−10, 1.8]% more snapshots than OptDyn.
In our experimental comparison with two state-of-the-art meth-
ods, WaWoR demonstrated the ability to capture [1.03, 4.26]×,
[1.02, 3.64]× and [1.08, 3.41]× more snapshots for solar, vi-
brational and RF sources, respectively. Beyond the snapshot
count, we also assessed the number of wasted messages and
the corresponding wasted energy for the three methodologies.
The results show that the wastage in WaWoR was [1.8− 9.9]×
lower compared to the two state-of-the-art systems.

The paper is organized as follows: we discuss the related
work in Section II and provide the necessary background
in Section III. Section IV describes our nodes, the network
topology, and the end-to-end application. Then we provide
a mathematical formulation of the problem in Section V,
followed by discussing our proposed algorithm WaWoR in Sec-
tion VI. Subsequently, WaWoR is implemented and evaluated in
Section VII, and the paper is finally concluded in Section VIII.

II. RELATED WORK
Researchers have proposed various schemes to enhance data
collection efficiency in EH-WSNs, typically focusing on either
¶ energy efficiency, · high-throughput, or ¸ quality data de-
livery (fairness/latency) at the sink (explained and summarized
in Figure 3). We compare these approaches to WaWoR, which
offers all three benefits simultaneously. Additionally, most of
the existing proposals are not always practically deployable as
they rely either on ambient energy prediction, or lack low-level
communication details (e.g., the MAC protocol employed),
or use topologies without redundant paths risking network
disconnection (summarized in Table I).

Fig. 3. Goals of data collection algorithms
¶ Energy Efficiency: One approach to save energy is by
reducing the number of messages each node sends. Clustering-

based routing schemes, where sensor nodes form local sub-
networks, are quite popular in this space. In these schemes,
instead of each node sending messages individually to the
sink, a cluster head – usually the node with the most energy
– aggregates and transmits data to the sink via other cluster
heads. For more details on clustering-based routing, please
refer to the comprehensive survey by Sah et al. [23]. Although
clustering provides some energy efficiency, the challenge of
determining when cluster heads should transmit remains to be
a serious problem. These points become congested and act as
single points of failure. WaWoR addresses this problem and
provides many redundant paths. It can in principle be combined
with cluster-based schemes; however, during the development
process, we did not feel a strong necessity for doing so.

Another energy-saving mechanism is running nodes in a
duty-cycled mode [24], which can also be combined with
WaWoR for greater efficiency. Note that the problem with this
approach is that when a message is sent, the receiver node may
not be awake or be able to receive the message.

Next, let us discuss other goals, where approaches focus on
designing optimal sensing strategies, similar to WaWoR.

TABLE I
SUMMARY OF RELATED WORK

Reference Dual† Relies on MAC Topology with
Objective Energy Protocol Redundant

Prediction? Paths?
Zhang et al. [13] No Yes** B-MAC* No
Jeong et al. [14] No Yes Unspecified No
Blondia et al. [6] No Yes** Receiver-Initiated Yes

Zhu et al. [9] No Yes Unspecified No
Zhang et al. [8] No Yes** Unspecified No
Quan at al. [16] No No Unspecified No
Liu et al. [15] Yes Yes** Unspecified No

WaWoR Yes No Receiver-Initiated Yes
†: Maximize throughput and quality; **: Uses a predefined harvesting function or energy

harvesting rate; B-MAC*: Berkeley MAC [25], a type of sender-initiated protocol;

· Throughput Maximization: This section discusses ap-
proaches aimed at increasing the message throughput, measured
at the sink [13], [14]. Zhang et al. [13] present an algorithm
to optimize node sensing periods to maximize the number of
messages reaching the sink. However, unlike WaWoR, this ap-
proach does not consider fairness; it uses tree-based topologies,
which do not provide redundant paths. It also employs the B-
MAC protocol (Berkeley MAC) [25], where the sender initiates
communication, which is less efficient than receiver-initiated
communication. The latter is typically used in EH-WSNs for
performance reasons [12].

Jeong et al. [14] propose a scheme, where nodes periodically
forecast their energy levels and use two thresholds to decide
whether to transmit, sense or receive data. If the predicted
energy exceeds the capacitor’s limit, the node transmits; if
it falls below a threshold, the node turns off its radio to
conserve energy for sensing. For energy levels in between, the
node can sense or receive data. The approach’s dependence on
energy prediction limits its practicality as it is not always easy
to predict ambient energy. Moreover, prediction also requires
energy. Finally, the authors do not specify the MAC protocol
employed, a key factor in assessing performance. Unlike this
method, WaWoR does not rely on energy prediction and uses
the well-established receiver-initiated MAC protocol.
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Blondia et al. [6] use the receiver-initiated MAC protocol like
WaWoR, but their approach has a few impractical assumptions.
For instance, they assume a message can be received if the
node’s buffer has empty space, ignoring the node’s energy level.
However, without energy, in an EH-WSN, the node cannot
function – this makes the approach infeasible. Additionally,
they overlook the CSMA (carrier-sense multiple access) mode
before transmitting a beacon (a status message, refer to Sec-
tion IV-B). This choice disregards the possibility of potential
collisions, which can lead to errors.
· Quality Data Delivery: From the data collected, the sink
should be able to infer the entire network state. It thus clearly
requires data from all the nodes. However, depending on the
application, optimizations are possible where all the nodes
need not send data. For example, considering the cluster-based
routing scheme (discussed above) for a temperature monitoring
application, an average value can be sent by the cluster head if
neighboring nodes report the same temperature. However, the
core problem still exists – data from all the cluster heads should
reach the sink. Thus, determining an optimal transmission
schedule is nevertheless of prime importance. References [8],
[9], [16] propose algorithms to generate schedules but they rely
on ambient energy prediction, which is not always feasible, and
they do not specify the MAC protocol used1.

Zhu et al. [9] present a two-phase algorithm for creating data
collection schedules. In the first phase, nodes broadcast their
energy status to neighbors. The issue is that uncertain ambient
energy can cause nodes to miss these broadcasts, disrupting
coordination. Hence, successful broadcasts cannot be assumed,
which is the centerpiece of their approach.

Quan et al. [16] use a cluster-based routing protocol for
data aggregation – adaptively building an aggregation tree
based on nodes’ transmission schedules and energy harvesting
capabilities. They assume that all nodes know each other’s
schedules and energy levels, which is impractical in EH-WSNs.
Their method divides the network into layers, allowing nodes in
a layer to transmit only after all the nodes in the previous layer
have completed. This is challenging due to the communication
required within each layer. Furthermore, the authors do not
specify the MAC protocol employed. Second, in any EH-WSN,
excessive communication is not possible because of the paucity
of energy.

Besides single-objective approaches, [15] proposes a solution
addressing both throughput and fairness. It assumes nodes
know the ambient energy profiles similar to our hypothetical
omniscient baseline, which is seldom the case. This approach
uses a tree topology, which unlike the grid topology [5], [6],
[27], [28] does not provide redundant paths. Furthermore,
authors do not address how fairness is assured when some
nodes lack ambient energy, which affects communication.

Table I summarizes the related work highlighting the key
features of each approach. For capturing snapshots in energy

1Note that while low end-to-end latency is also crucial for quality, it is
a separate research area with extensive literature (e.g., Age of Information,
AoI [26]). Such approaches are orthogonal to our work. Therefore, they are
not discussed here.

harvesting systems, a topology with redundant paths and an ap-
proach independent of ambient energy prediction are crucial –
these are generic and practical requirements. The table summa-
rizes approaches targeting both throughput maximization and
good quality (low latency or high fairness or any other custom
definition as defined in the corresponding reference). WaWoR
complements all the known approaches that emphasize energy
efficiency and excels in other aspects: feasibility, redundant
paths and maximizing the rate of snapshot collection.

III. BACKGROUND

A. Energy Harvesting Devices
EHDs are low-powered, battery-free IoT devices that rely

on ambient energy. Due to the intermittent and unpredictable
nature of ambient energy, EHDs are equipped with a small
energy storage unit (typically a capacitor) to smooth out power
variations. These devices operate in two modes: (i) separate
charge-execution mode, where the capacitor is fully charged
and then it drives the device till it is fully discharged, and (ii)
parallel charge-execution mode, where the available ambient
energy simultaneously charges the capacitor and powers the
device. If no ambient energy is available, the capacitor drives
the device [1]. However, in both the modes, if there is an
extended period without ambient energy, leading to capacitor
discharge, the device becomes inoperable and loses its state.
To address this, checkpoint-restore mechanisms are employed
for correct and efficient functioning [1], [20], [21]. In this
paper, we opt for the parallel charge-execution mode as it
can take advantage of the ambient energy’s variable nature. If
abundant ambient energy becomes available during execution,
the device’s capacitor can be charged.
B. Medium Access Control (MAC) Protocols

MAC protocols define how the sensor nodes use their
radios, share the network, avoid collisions, etc. As network
communication is an energy-intensive activity, EHD MAC
protocols should be efficient. The existing MAC protocols for
wireless sensor networks can be categorized as synchronous or
asynchronous depending on whether the sensor nodes’ active
(ON) timings are synchronized or not. Synchronous MAC
protocols are inefficient for EH-WSNs due to the uncertainty
of the ambient energy; hence, such networks commonly use
asynchronous MAC protocols. Depending on who initiates the
communication, the two basic communication paradigms are
sender-initiated and receiver-initiated. EH-WSNs typically use
receiver-initiated MAC protocols to save energy [6], [12].

IV. ENERGY HARVESTING-BASED SENSOR NETWORK

A. Network Topology
The nodes in a wireless sensor network (WSN) can be

arranged as per a variety of topologies: star, tree, and grid
(mesh). However, energy harvesting wireless sensor networks
(EH-WSNs) predominantly adopt the grid topology [5], [6],
[27], [28]. Star and tree topologies are less commonly em-
ployed in EH-WSNs since they do not provide redundant paths
between nodes. Redundancy is necessary because EHDs rely
on unpredictable ambient energy; nodes can randomly turn
off, disconnecting the network. So, applications in EH-WSNs
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mostly use the grid topology since it provides diverse paths.
Grid topologies also cover the target area much better [29].

We considered an energy harvesting wireless sensor network
with a grid topology made up of m rows and n columns
(see Figure 4(a)). Similar to [6], we postulate that sensor
nodes situated at the intersections of rows and columns have
a limited communication range; hence, messages are sent to
the sink node (continuously powered) by performing hop-by-
hop communication via neighboring nodes. Particularly, a node
with coordinates (i, j) can send data to its immediate neighbors
(towards the sink node), that is, to nodes with coordinates
(i−1, j+1), (i, j+1), or (i+1, j+1). Similar to [6], we also
assume that the nodes within the same row do not communicate
with one another. However, we consider that nodes at both
ends of the last row, i.e., (m− 1)th row, forward data to their
neighboring nodes (in the same row) that are closer to the sink.
This is due to the nodes’ restricted communication range, which
prohibits them from sending messages directly to the sink.

B. Receiver-Initiated MAC Protocol
Similar to recent works on EH-WSNs [6], [12], we employ

a receiver-initiated MAC protocol for communication. Instead
of a time-slot-based protocol, we adopt a byte-based protocol,
as the former is inefficient in EH-WSNs due to nodes’ variable
energy. Below, we provide a brief overview; for a more detailed
discussion, please refer to the survey by Sherazi et al. [12].

In this protocol, a node can be in the ¶Receiving state or
·Sending state, depending on its current task (Figure 4(b)).
Each state comprises several modes: CSMA, Charge, Beacon-
Wait, TxBeacon, RcvBeacon, DataWait, TxData, and RcvData.

A node first monitors the network in CSMA (Carrier Sense
Multiple Access) mode for a time period before transmitting.
If the network is clear throughout the period, the node sends
the message; if not, it backs off and retries later. Additionally,
before any operation (sending/receiving), the node checks its
energy levels. If the energy is insufficient for completing the
operation, the node switches to charge mode.
¶Receiving State: Because this protocol is receiver-initiated,
the receiving node initiates communication by broadcasting
a beacon to its neighbors (indicated by the dotted arrow in
Figure 4(b)). During the broadcast, the node is in TxBeacon
mode. Following that, the node enters the DataWait mode and
awaits data from a sending node.

Beacon Structure: The beacon structure follows the design
used in the state-of-the-art MAC protocols. Particularly, a
beacon comprises a receiverId – the ID of the receiver initiating
the communication, which the sender uses to transmit data, and
beaconId – a unique identifier for the beacon, which can be a
sequence number or a timestamp.
·Sending State: A node with data to send initially waits for
a beacon in the BeaconWait mode. Upon receiving a beacon,
it transitions to the RcvBeacon mode. The node then monitors
the channel (in CSMA mode). If the channel is free, it switches
to the TxData mode and transmits the data (illustrated by the
dotted arrow in Figure 4(b)).
Data Packet Structure: Each data packet consists of (i) msgId
– a unique identifier for the data message, (ii) senderId – the
ID of the transmitting node, (iii) beaconId – the associated
beacon identifier, (iv) payload length – the size (in bytes) of
the transmitted data, and (v) payload – the actual data being
sent.

Please note, there are no packet losses in the system because
the sender transmits data only upon receiving the beacon, thus
knowing that the receiver would be awake to receive the data.
The beacon acts as a synchronization mechanism. Additionally,
to prevent buffer overflow, the receiver notifies the sender of
its available buffer space, which can be incorporated within the
beacon. Further details are discussed in Section IV-C.

C. Node Design

Fig. 5. Primary components in a sensor node

As shown in Figure 5, each sensor node has four primary
components: an encryption engine, which encrypts the sensed
data; a data queue, which stores the sensed data as well as data
received from neighbors to forward towards the sink; a beacon
queue, which stores the received beacons; and an intelligent
network interface card (NIC) that adds the received packets
to the corresponding queue depending on whether they are
beacons or data. For ease of readability, we omit the sink node
and the energy harvesting components in the figure.

Instead of using a very elaborate and energy-hungry MAC
protocol [12], we used a standard EHD NIC, and then im-
plemented the following modifications on it to enhance the
operational performance of sensor nodes.
• Intelligent NIC: A basic NIC adds all the received packets

(both beacons and data) to a single queue. Due to the
limited queue size, beacons can clog the queue, preventing
incoming data packets from being queued and thus being
dropped. To avoid this packet loss, we use separate queues
– our intelligent NIC adds packets to the queues as needed.

• Selective beacon multicast: Broadcasting beacons to all
the neighbors may lead to an excessive number of data
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packets. This may exceed the receiver’s data queue capac-
ity. Thus, we follow a round-robin policy, i.e., the beacon
is multicast only to κ neighbors, where κ is the number
of empty slots in the receiver’s data queue.
Apart from this, a receiver node also checks if it has
received data from all of the neighbors to whom it sent
beacons. If data is not received from any neighbor for
multiple consecutive beacon periods, the node assumes
that the neighbor’s energy has been exhausted, and it stops
sending beacons to that neighbor for some time (η ms).
In our experiments, we used η = 12ms.
Due to this selective multicast, we augment the bea-
con structure with the transmitting node’s identifier
(SenderId) and the number of slots reserved for that
sender (Available Entries). Thus, the updated beacon
structure is: <ReceiverId, BeaconId, SenderId, Avail-
able Entries>.

• Removal of old beacons: It is possible for a node to
receive multiple beacons while performing other tasks
(e.g., sensing). Among these, only the latest beacon is
considered, and the rest are discarded.

D. End-to-end Application
We consider a scenario that is common in a variety of

applications – military monitoring, environmental sensing, and
structural health monitoring [4]. In this, nodes sense their
surroundings, encrypt the sensed data, and send it to the sink.
Please note, similar to prior work on energy harvesting [1], we
checkpoint the node’s state if its energy is about to exhaust.
The checkpointed state is restored, and the execution continues
when the device is recharged. Thus, the entire application flow
can be summarized as shown in Figure 4(c), wherein nodes
periodically perform the sensing operation after a time interval
known as the sensing period (SP). Then, after performing
local encryption (and possibly checkpointing), a node enters
either the receiving or the sending state. For a comprehensive
understanding, the entire process is illustrated using a finite
state machine in Section 1 of the Appendix.

E. Objective Function
We consider a system with N nodes, where the per-node

throughput, denoted by Ti (here, i ∈ 1, 2, . . . , N ), signifies the
number of messages arriving at the sink from a node i within
a specific time interval. Additionally, we use Tmin and Tmax

to represent the minimum and maximum number of messages
received at the sink from any node, i.e., Tmin = min∀i∈N Ti
and Tmax = max∀i∈N Ti. Please note that Tmin also represents
the number of snapshots collected at the sink node. We now
define define two system-wide metrics:
¶ Effective Throughput (ET ): It represents the total number of
useful messages received at the sink from all the nodes and is
computed as ET = Tmin×N . Please note, effective throughput
is not a novel metric; rather, it represents the real snapshot
throughput after discarding oversensed messages. ET serves
as a measure of the number of snapshots collected.
· Fairness (F): We define fairness as the ratio of the minimum
to the maximum throughput (F = Tmin/Tmax). The fairness

metric assesses the divergence in nodes’ throughputs and is a
measure of oversensing. A high value of the fairness metric
(F) indicates that the throughputs of all the nodes are similar,
signifying a low level of oversensing. Therefore, high fairness
corresponds to fewer wasted messages and less energy wastage.
Please note, this metric is well known for capturing divergence
and has been considered in previous works [30], [31].

Our objective is to determine the per-node sensing periods
(SP i, ∀i ∈ [1, N ]) that maximize the effective throughput
achieved at the sink while staying within some application-
specific fairness threshold (0 < Fth ≤ 1). Formally,

maximize ET
s.t. F >= Fth

(1)

Please note that the fairness constraint is important because
it is possible to have a scenario where the nodes’ per-node
throughputs are extremely skewed and thus the number of
oversensed messages is quite high in addition to a high Tmax.
The fairness constraint is a measure of the wasted work
(wasted work = 0 if fairness = 1).
Stable and Unstable System: Depending upon the value of F ,

we classify the system as stable or unstable. If F < Fth, the
system is unstable; otherwise, it is stable.

V. MATHEMATICAL FORMULATION

We formulate this as a control-theoretic problem where
the system evolves iteratively by dynamically adjusting the
sensing periods of nodes to achieve fairness (F ≥ Fth) while
maximizing the effective throughput (ET ). At each iteration
k, the sensing periods of nodes are updated based on their
observed throughputs at the sink node from the previous iter-
ation. These updates are designed to steer the system towards
the objective, eventually leading to a stable and fair system.
To demonstrate system stability and convergence, we employ a
Lyapunov function [32]. The notations used in the formulations
are summarized in Table II.

TABLE II
GLOSSARY OF TERMS

Notations Definition
N Total number of nodes in the network
i, T †i ID and throughput of node i at the sink node
SP†i Sensing period of node i
a†i Node specific parameter
F† System fairness
Fth Application-specific fairness threshold
T †min, T

†
max Min. and the max. throughput values in Tlist

G†,B†,N† Set of good, bad, and neutral nodes
G∗†,B∗†,N ∗† Subsets of good, bad, and neutral nodes

whose sensing periods have to be updated
θ Step size to update the nodes’ SP
V (k) Lyapunov function
T †list Array of 〈i, Ti〉, ∀i ∈ [1, N ]

G†list, B
†
list List of good and bad nodes, respectively

N†list List of all the nodes (sorted in ascending order of T )
M†i Number of messages sent by node i
p Probability of updating a node’s sensing period
m,n Number of rows and columns in the network
R rowi Relative row number of node i

†: These values are computed at the end of each iteration
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A. Sensing Period Update

The throughput of node i (Ti) is inversely proportional to
its sensing period (SPi). At the end of each iteration, the sink
nodes performs three tasks:
¶ System Stability Assessment: The sink computes Tmin(k)

and Tmax(k) to determine system’s stability, based on which,
it adjusts sensing periods. If the system is unstable (F(k) <
Fth), sensing periods are adjusted to stabilize the system – some
nodes’ sensing periods are increased while some are decreased.
If they system is stable, the sensing period of certain nodes
are reduced to enhance overall system’s effective throughput
(ET (k)).
· Node Classification: Nodes are categorized into three sets
based on their throughput: good nodes (G) – throughput close
to Tmax(k), bad nodes (B) – throughput close to Tmin(k), and
neutral nodes (N ) – the remaining nodes. The throughput range
[Tmin(k), Tmax(k)] is divided into three equal parts to classify
nodes. A node i is classified as follows:

i ∈


G, if Ti(k) ≥ Tmax(k)− Tmax(k)−Tmin(k)

3

B, if Ti(k) < Tmin(k) +
Tmax(k)−Tmin(k)

3

N , otherwise
(2)

Let |G|, |B|, |N | denote the number of nodes in these categories.
¸ Sensing Period Update: Based on the system stability,

sensing periods are updated as follows:
Case 1: Unstable System (F(k) < Fth) : To improve

fairness, the sensing periods of nodes in G are increased
(to reduce their throughput), while those in B are decreased
(to increase their throughput). However, to ensure minimal
perturbation, only min(|G|, |B|) nodes from each set undergo
updates. B∗ consists of the first min(|G|, |B|) elements of B,
sorted in ascending order. G∗ consists of the first min(|G|, |B|)
elements of G, sorted in descending order. Sorting helps in
updating the worse and the best nodes. The updated sensing
periods for the next iteration (k + 1) follow:

SPi(k + 1) =


SPi(k) + θ, if i ∈ B∗

SPi(k)− θ, if i ∈ G∗

SPi(k), otherwise
(3)

where θ > 0 is the step size.
Case 2: Stable System (F(k) ≥ Fth): A subset N ∗ ⊂

(G∪B∪N ) is identified, consisting of the 50% of all the nodes
with lowest throughput. Their sensing periods are reduced to
increase the system’s effective throughput (ET ):

SPi(k + 1) =

{
SPi(k)− θ, if i ∈ N ∗

SPi(k), otherwise
(4)

Only a subset of nodes is updated to prevent system instability.

B. Convergence Analysis
In our update mechanism, poorly performing nodes (B)

increase their sensing rate, while well-performing nodes
(G) reduce theirs. Intuitively, this should shrink the range
[Tmin, Tmax], leading to fairness. However, intuition alone is
insufficient, as second-order effects introduce complexities.

One such complexity arises from the non-linear interactions
among nodes. The updates dynamically alter the number of

nodes in each category – Good (G), Bad (B), and Neutral
(N ) – leading to varying adjustment magnitudes across nodes.
Consequently, the system does not undergo a simple linear
transformation in each iteration. Additionally, since message
forwarding occurs in a multi-hop manner, a change in the
sensing period of one node influences downstream nodes.
This interdependence means that local sensing period changes
propagate in a complex manner, affecting message flow across
the network in a non-trivial way.

To formally establish convergence, we employ a Lyapunov
function, which satisfies the following properties:

1) Non-negativity: V (k) ≥ 0 at all times.
2) Strict decrease over iterations: V (k + 1) < V (k),

ensuring progression towards stability.
3) Equilibrium condition: V (k) = 0 only when the system

reaches the fair state.
We define our following Lyapunov function as follows:

V (k) = (Fth −F)2 + γ|Tmax(k)− Tmin(k)|2 (5)
where γ > 0 is a weighting parameter. The first term ensures
F(k) remains close to Fth, while the second ensures the
range Tmax(k)− Tmin(k) contracts over time. Both terms are
necessary: if only the first were considered, large variations in
sensing periods could persist, leading to instability. Similarly,
if only the second term were considered, the fairness (F(k))
could still deviate from Fth, violating the fairness constraint.

Now, we show that our considered function satisfies all the
three conditions of Lyapunov’s function. Since, both terms are
squared, so V (k) ≥ 0. To show V (k) is non-increasing (i.e.,
V (k + 1) < V (k)), we analyze both cases:

Case 1: F(k) < Fth The sorted selection mechanism
ensures that updates target the most extreme nodes, minimizing
oscillations. Since equal number of nodes from sets B and G are
updated, the gap Tmax(k)− Tmin(k) decreases. This increases
F(k), moving it towards Fth, ensuring V (k + 1) ≤ V (k).

Case 2: F(k) ≥ Fth Since 50% of nodes reduce their
sensing period, Tmin(k) increases, further shrinking Tmax(k)−
Tmin(k), leading to V (k + 1) ≤ V (k).

Since V (k) ≥ 0 and non-increasing, it converges to a steady
state where F(k) ≈ Fth and Tmin(k) is maximized.

VI. SIMULATED ALGORITHMS

The above formulation describes a simplified, non-
deterministic system, as it does not consider certain complex
aspects such as the nodes’ energy harvesting characteristics and
the MAC protocol. However, to implement a fully functional
system capturing all the real-world complexities and interac-
tions within the system, it is essential to simulate an entire
network of nodes. We accomplish this step-by-step through two
algorithms derived from the above mathematical formulation.

Overview: In the first algorithm, which is a hypothetical
baseline, we incorporate the energy harvesting characteristics
of the nodes and propose a centralized approach where the
sink node computes and assigns updated sensing periods to
all network nodes. We assume that the sink has complete
and instantaneous knowledge of the entire network, including
each node’s current energy level and buffer size. Leveraging



8

this global visibility, the sink determines the optimal sensing
periods and instantly communicates them to the nodes without
considering any communication overhead. As a result, this
serves as a hypothetical, omniscient solution, which we use
as an optimal baseline.

We then introduce a more practical version of this algorithm
that accounts for communication overheads and incorporates
the complexity of the MAC protocol. Since computing and
communicating updated sensing periods for all nodes would im-
pose significant overhead on the sink, we propose a distributed
algorithm in which each node determines its own sensing period
locally instead of relying on the sink for direct assignments.
These decisions are guided by minimal and infrequent feedback
from the sink, specifically the maximum and minimum through-
put values. This distributed approach improves scalability while
maintaining effectiveness.

A. Centralized Algorithm (Hypothetical and Omniscient)

The centralized algorithm operates at the sink, which ini-
tially assigns sensing periods to all nodes. These values are
chosen randomly but remain within a reasonable range. The
sink then periodically updates the sensing periods after every
epoch (a sufficiently long interval) by executing the function
UpdateAll SP (Algorithm 1). The notations used in the
algorithm are summarized in Table II. After multiple iterations
of this function, the sensing period configuration that yields the
highest effective throughput (ET ) is selected.

Algorithm 1 Function UpdateAll SP
1: procedure UpdateAll SP (Tlist)
2: F ← Tmin/Tmax;
3: if F < Fth then . unstable system
4: G ← goodNodes(Tlist)
5: B ← badNodes(Tlist)
6: Glist ← sortDescending(G)
7: Blist ← sortAscending(B)
8: n← min(|Glist|, |Blist|)
9: for itr ← 1 to n do . Update SP of n good and bad nodes

10: i← Glist[itr]
11: SPi ← SPi + θ . Increase the SP of the good node
12: i← Blist[itr]
13: SPi ← SPi − θ . Decrease the SP of the good node
14: end for
15: else . stable system
16: Nlist ← sortAscending(Tlist)
17: for itr ← 1 to |Nlist|/2 do . Update 50% of the nodes
18: i← Nlist[itr]
19: SPi ← SPi − θ
20: end for
21: end if
22: end procedure

Algorithm 1 - Function UpdateAll SP: The function takes as
input Tlist, a list containing the per-node throughput values
(Line 1). Each entry in the list is a tuple 〈i, Ti〉, representing
a node’s identifier and its corresponding throughput. The sink
first determines whether the system is in stable or unstable
state (Line 2,3).
Unstable system:
• The function goodNodes() identifies the set G (refer to

the mathematical formulation in Section V), which is then
sorted in descending order of throughout to form Glist.

Similarly, badNodes() identifies the set B, which is then
sorted in ascending order of throughput to form Blist

(Lines 4-7).
• As outlined in the formulation, the sensing periods of an

equal number of nodes from both Glist and Blist are
updated to improve fairness F and stabilize the system
(Lines 9-14).

• A very low value of θ can significantly slow down system
stabilization, whereas an excessively high θ may cause
oscillations, hindering convergence. Empirical evaluation
suggests that θ = 50 ms provides a reasonable balance.

Stable system:

• The nodes are sorted in ascending order of throughput
(Line 16) to form Nlist.

• The sensing periods of the first 50% of nodes in Nlist

are reduced, allowing them to transmit more messages and
thereby increasing the system’s effective throughput (Lines
17-20).

At the end of Algorithm 1, the updated sensing periods are
instantaneously transmitted to the nodes (i.e., updated func-
tionally). After 40 iterations, the sensing period configuration
that maximizes mathcalET , while satisfying the fairness con-
straint, is chosen. This marks the completion of the centralized
algorithm.

Note: All of this is happening in a software simulation.
Time Complexity: Since the algorithm involves sorting the
throughput values of N nodes, its runtime complexity is
O(N logN).
Challenges in Practical Deployment The centralized solution
is impractical for real-world deployment due to the absence of
real-time communication and integration with the MAC proto-
col. Introducing real-time communication trivially presents the
following challenges:

1) Broadcasting the entire sensing period (SP) vector to
all nodes instead of performing functional updates would
incur significant network overhead due to the large mes-
sage size (32N bits, assuming each sensing period is
represented by 32 bits). As N increases, encapsulating all
this information in a single message becomes infeasible.

2) Variations in node distances from the sink cause delays in
the timely reception of updated sensing periods. Addition-
ally, fluctuations in node energy availability may hinder
reliable reception of updates, particularly for distant nodes.

B. WaWoR - A Distributed Algorithm
To address these challenges, we propose WaWoR– a novel

best-effort distributed solution where nodes locally compute
and incrementally update their sensing periods based on their
proximity to the sink. This computation logic requires minimal
feedback from the sink, which is sent only after an epoch. The
feedback consists of a 4-tuple 〈Tmin, Tmax, |Glist|, |Blist|〉,
where |...| denotes set cardinality. The sink efficiently transmits
this feedback to all nodes by piggybacking it onto beacon mes-
sages already used in the MAC protocol, avoiding additional
network overhead of broadcasting the feedback explicitly.
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Concept: The core idea aligns with Algorithm 1, with key
differences:

1) Unlike Algorithm 1, where the sink had instant system-
wide visibility, in WaWoR, nodes update their sensing
periods probabilistically, due to the absence of a complete
set G and B.

2) Determining whether the node itself belongs to the set G,
B, or N is more complex, as nodes lack direct throughput
visibility at the sink. Instead, each node tracks the number
of its sensed messages (Mi) that have been transmitted
into the network, and use it as an estimate for throughput
(Ti). Although some messages may still be in transit, Mi

won’t be much smaller than Ti because if messages are
unable to pass through the network, a back pressure builds,
stopping further transmissions. Thus, given sufficient time
and assuming no message losses (Section IV-B), Mi serves
as a reasonable approximation for Ti.

Algorithm 2 - WaWoR Algorithm: Each node periodically
executes update SPi() locally, based on the received feedback
〈Tmin, Tmax, |Glist|, |Blist|〉 (Line 1). The fairness metric F
is computed (Line 2), and its comparison with the application-
specific fairness threshold (Fth) determines stability.

Algorithm 2 Distributed Algorithm
1: procedure Update SPi(〈Tmin, Tmax, |Glist|, |Blist|〉, Mi, R rowi)
2: F ← Tmin/Tmax;
3: if F < Fth then . unstable system
4: if Mi ≥ Tmax − (Tmax−Tmin

3
) then . good node

5: if |Glist| ≤ |Blist| then . definitely update all good nodes
6: p← 1
7: else
8: p← 0.5 + 0.5 ·R rowi

9: end if
10: SPi ← SPi + θ, with probability p
11: else if Mi ≤ Tmin + (Tmax−Tmin

3
) then . bad node

12: if |Blist| ≤ |Glist| then . definitely update all bad nodes
13: p← 1
14: else
15: p← 0.5 + 0.5 · (1−R rowi)
16: end if
17: SPi ← SPi − θ, with probability p
18: end if
19: else . stable system
20: p← 0.5
21: SPi ← SPi − θ, with probability p
22: end if
23: end procedure

Unstable system:

• If the node is a good node (Line 4), it increases its
sensing period, while it decreases its sensing period if
it is a bad node (Line 11). The classification is based
on Mi (the estimate for Ti) and the received Tmin and
Tmax values (as described in Section VI-A). Similar
to Algorithm 1, WaWoR intends to update the sensing
periods of min(|Glist|, |Blist|) nodes, to avoid excessive
perturbations.

• However, unlike the centralized algorithm, here we do not
know the relative goodness or badness of a node. There-
fore, we devise a heuristic approach to probabilistically
update the sensing periods (with probability p).

• A good node increases its sensing period with probability 1
if |Glist|< |Blist| (Lines 5,6), and a bad node decreases its
sensing period with probability 1 if |Blist| < |Glist| (Lines
12,13). This ensures that at least min(|Glist|, |Blist|)
nodes from one of the sets (good/bad nodes) are updated.

• For other nodes, update probability p is based on the
following intuition. A node farther from the sink will
experience a higher message latency compared to the
closer nodes. So a good node that is closer to the sink
should increase its sensing period. However, this increase
in the sensing period should be done with a low likeli-
hood, as otherwise, it may start contributing to system
instability by becoming a bad node in the next epoch (its
throughput might get reduced drastically). We take this
effect into account using the relative row number. For
node i, its relative row number (R rowi) is computed
as R rowi = rowi/m, where rowi is its row number and
m is the total number of rows in the network (refer to
Figure 4(a) - row number 0 is the row farthest from the
sink). If nodes far away from the sink are good nodes, their
sensing periods will be updated with a low probability as
compared to the good nodes closer to the sink.

• Line 8 ensures that update probability is always > 0.5;
otherwise, it could be very small for nodes far away
from the sink, given their small relative row number
(particularly for large networks). In contrast to good nodes,
the probability of a bad node decreasing its sensing period
should be high for far away nodes. Particularly, for node
i, its p is proportional to 1 − R rowi (Line 15). Once
p is calculated, a good node probabilistically increments,
while a bad node probabilistically decrements its sensing
period by a step size θ (Lines 10 and 17).

Stable system:
• A node decreases its sensing period with 50% probability

(Lines 19-22), aiming to increase the message transmis-
sion and hence the effective throughput (ET ).

Time Complexity: Unlike Algorithm 1, which requires sorting
operations at the sink, WaWoR relies on simple arithmetic
computations performed locally by individual nodes, thereby
reducing the runtime complexity to O(1).

C. Overheads of WaWoR
WaWoR has a negligible additional overhead as compared

to a standard receiver-initiated MAC protocol’s overheads. Wa-
WoR’s overhead is primarily due to the periodic feedback broad-
casts from the sink node. The frequency of these broadcasts
depends on the variability of the energy of the ambient source.
Furthermore, as mentioned before, we piggyback the broadcast
values on the beacon messages rather than send any additional
messages. In addition, the feedback information is quite small:
we add four fields to the beacon: Tmin, Tmax, |Glist|, and
|Blist|. Among these, both Tmin and Tmax can be represented
as 32-bit integers, while the list sizes are bounded by the
number of nodes (N ) in the system and thus, each size can
be represented using log2N bits. As a result, the size overhead
is 2 ∗ (32 + log2N) bits. Please note that in comparison to
the total number of message transmissions (both beacons and
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sensed data) in the network, these feedback messages are quite
infrequent and are sent after every epoch.
Impact of WaWoR on EH-WSNs: The proposed approach
will enhance existing EH-WSNs without interfering with their
current functionality. It will make global snapshot collection
more efficient, sending fewer but more effective messages to
the sink, thereby conserving energy. This enhancement requires
only a minor hardware upgrade to the NIC, which can be easily
implemented in existing EHDs.

VII. EVALUATION

A. Description of the Simulation Environment

We used NetSim [33], a widely-adopted commercial event-
driven simulator known for its accuracy. NetSim was chosen
for its built-in energy model, which facilitates precise power
consumption analyses. It also has a modular and extensible
architecture that allows the incorporation of energy harvesting
and custom MAC protocols. We enhanced NetSim by integrat-
ing the following two key components: ¶ energy harvesting
support, enabling nodes to adapt their operation based on
harvested energy, and · a receiver-initiated MAC protocol,
designed to enhance communication efficiency [6], [12].

NetSim was selected over other simulators (e.g., NS-3 [34],
OMNET++ [35] and OPNET [36]), due to its ease of ex-
tensibility, built-in support for wireless networks, and capa-
bility to model energy-aware protocols. These enhancements
ensured that our evaluation framework effectively captures the
challenges and trade-offs in energy harvesting wireless sensor
networks (EH-WSNs).

Figure 6 shows the high-level structure of the sensor nodes
(both the sender and receiver) and the network (simulated as a
queue of outstanding packets).

We assume that all the nodes have synchronized clocks and
operate at the same frequency. The network is represented by
a global 1D circular array (referred to as the network queue)
indexed by the global clock. When a node has to transmit a
message over the network, it checks if the network is free
(modeled by a single bit to indicate the network status) and
adds the message to the network queue. The index at which
the message is added is computed based on the transmission
latency. We have used the latency values corresponding to TI’s
CC1310 device [37], which has been used as a sensor node in
recent energy harvesting-based monitoring applications [38].

We assume that all the nodes have static routes configured,
which means that each node knows its position in the network
and is aware of its neighbors.

1) Simulation Details: Each node primarily performs three
tasks: sensing, sending and receiving messages (Section IV-B).
To carry out the sensing task, the node senses its environment,
encrypts the sensed data using the encryption engine, and adds
the encrypted packet to the node’s data queue (shown by steps
(1.1) and (1.2) in Figure 6).

To perform the sending and receiving tasks, the following
sequence of steps is followed. Since a receiver-initiated protocol
is used, the receiver first multicasts a beacon to its neighboring
nodes by adding the beacon messages to the network queue

Fig. 6. Brief overview of the simulator

(step 2.1). Upon receiving the beacon (step 2.2), the sender
node processes it by transmitting a data packet from its data
queue, which is then added to the network queue (steps 2.3
and 2.4). This completes the sending process. The data packet
is then removed from the network queue and delivered to the
receiver based on the transmission and reception latencies (step
2.5), thus completing the receiving task.

B. Network configuration
After integrating WaWoR into our network simulator, we con-
ducted experiments using the following network configuration.
We examined networks of various sizes and skews (a skew of
η means the number of rows in the network grid is η times
the number of columns, as shown in Figure 4(a)). Specifically,
we considered networks with 50, 75, 100, and 150 nodes, with a
skew set to 6 (other skew values yielded similar results). Similar
to previous studies, nodes were assumed to be stationary
and aware of their immediate neighbors on the path to the
sink [6], so node discovery was not included in our experiments.
The simulation was run for two minutes to allow the system
to stabilize completely. A fairness threshold (Fth) of 0.75
(adjustable based on application requirements) was employed in
all our experiments. Each node sensed according to its sensing
period as described in Section IV-E.
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Fig. 7. Ambient power profiles of three sources: (a) solar and
vibrational (b) RF (adapted from [20], [21])

C. Ambient Energy Profiles
We conducted experiments using commonly used ambient

power profiles (Figure 7): solar, RF (radio frequency) and
vibrational [20], [21], [38]. These profiles were chosen because
the corresponding sources are easily accessible in various en-
vironments. The profiles differ in intensity and variability. The
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solar profile provides a constant power of 14mW [21], [22],
while the vibrational and RF profiles offer variable power. The
vibrational profile exhibits a roughly sinusoidal pattern [21],
and the RF power fluctuates significantly, representing a mix
of power from multiple sources, as modeled by an RF trace
from Mementos [20].

D. Baselines Considered for Comparison
As outlined in Section I, WaWoR is initially compared

against two theoretical baselines, consisting of two hypothetical
omniscient algorithms. Subsequently, we compare WaWoR with
two state-of-the-art EH-WSN algorithms.
(1) Hypothetical Baselines The two hypothetical omniscient
algorithms are (i) OptDyn and (ii) OptStat. OptDyn is the same
as the Centralized Algorithm discussed in Section VI-A, where
sensing periods of nodes are dynamically changed based on
the instantaneous energy available. OptStat, on the other hand,
statically experiments with a very large number of sensing
periods and chooses the one that maximizes the effective
throughput at the sink. Both OptDyn and OptStat are omniscient
– fully aware of the ambient energy profiles at all nodes –
and hypothetical, meaning they are practically infeasible. In
contrast, WaWoR operates with each node only aware of its
own state, without any knowledge of the network dynamics
(network congestion and the states of nodes’ queues) or the
energy profiles at other nodes.

In OptStat, we consider a set of sensing periods (referred
to as SPset). For our experiments, we considered SPset =
{50, 100, 150, 200, . . . , 3000} milliseconds, covering the entire
spectrum of practically possible sensing periods. From this set,
we choose two values X and Y s.t. X < Y , and fit a function
between them. Similar to Sah et al.’s [7], we have considered
linear and exponential functions. The sensing periods of the
nodes are set according to this function (row-wise). Specifically,
all the nodes in the first row (farthest from the sink) sense after
every X time units and nodes in the last row (closest to the
sink) sense after every Y time units. The sensing period of
the intermediate nodes varies linearly (or exponentially) in the
interval [X,Y ]. We sweep through SPset, experimenting with
every possible combination of X and Y from SPset, and then
choose the sensing periods that result in the maximum effective
throughput at the sink. In Section 2 of the Appendix, we have
shown the significance of OptSat, i.e., why is it required to
perform extensive experimentation.

Please note that the results of OptStat depend upon the
granularity of SPset; the finer the granularity, the greater is the
probability of achieving a higher effective throughput. Despite
their impracticality, these two omniscient algorithms provide a
good baseline for evaluating WaWoR.
(2) State-of-the-art Algorithms Among the existing works
discussed in Section II, the most recent state-of-the-art con-
tributions are by Jeong et al. [14] and Quan et al. [16], which
have dynamic sensing periods similar to WaWoR. Therefore, we
decided to compare WaWoR against these approaches. However,
as noted in Section II, these approaches lack comprehensive
implementation details and rely on some impractical assump-
tions. In our evaluation, we have accounted for practical con-

siderations, implementing these approaches using a receiver-
initiated MAC protocol to establish a common baseline for a
fair comparison. Additionally, we used the same application
flow for all three approaches, where each node sequentially
performs sensing, encryption and reception/transmission tasks
(see Figure 4(c)).

We primarily compare the effective throughput (ET ), which
reflects the number of snapshots captured (i.e., ET =
no of snapshots × no of network nodes within a given
time interval)2. Similar to prior work [13]–[16], our focus is
on maximizing throughput at the sink rather than minimizing
the end-to-end delay since the snapshotting throughput is a
more relevant metric in EH-WSNs. It is important to note that
throughput and delay are distinct and orthogonal concepts, and
the choice of metric depends on the specific use case.

E. Experiments
1) WaWoR’s efficiency compared to theoretical baselines:

Next, we demonstrate the efficiency of WaWoR by comparing
it with OptDyn and OptStat. To illustrate WaWoR’s scalability3,
we present results for networks with varying node counts: 50,
100, and 150.
(1) Network Size - 50: Figure 8 compares the effective
throughputs (messages received in 2 seconds in the steady
state) and the corresponding sensing periods (SP ) of the three
systems. It shows that WaWoR achieves an effective throughput
similar to and sometimes better than both the hypothetical
systems across all the energy sources. Specifically, WaWoR’s
throughput is within 1% of OptDyn for vibrational and RF
sources and 1.8% higher for the solar source. WaWoR’s ad-
vantage over OptDyn arises because OptDyn instantly adjusts
sensing periods, while WaWoR updates them only after receiv-
ing feedback from the sink causing updates to be delayed,
which paradoxically prove to also be timely. This positively
impacts ET as nodes closer to the sink receive feedback
earlier, adjust their sensing periods, and thus improve network
dynamics (congestion level), which in turn helps farther nodes
make better decisions. This is a stable observation.

Compared to OptStat, WaWoR performs better by 1.8%, 19%
and 75% for solar, vibrational and RF sources, respectively.
The greater gains for sources with more variability highlight
the benefits of WaWoR’s adaptive nature.

Figures 8(d,e,f) compare the sensing periods across all
the three systems. The graphs demonstrate that the per-node
throughputs align with the per-node sensing periods: nodes with
smaller sensing periods tend to have higher throughputs. Note
that if a node’s sensing period is set to τ ms, the actual duration
between two consecutive sensing events may differ from τ due
to the node potentially being off at the scheduled sensing time
(due to variable and uncertain ambient energy). Therefore, we
plot the sensing periods actually observed by the nodes.
(2) Network Size - 100: Figure 9 compares the three systems
in a 100-node network. Its results are similar to the nodes
in a 50-node network. For the solar source, all the three

2Henceforth, we interchangeably use ET and number of snapshots
3Due to space limitations, the sensing periods for larger networks have been

moved to Section 3 of the Appendix.



12

designs achieve 2 − 3× the throughput compared to the other
two sources. This is due to the high power availability when
the solar source (constant 14mW ) is used. This increases
the likelihood of successful communication since nodes have
sufficient energy.

WaWoR outperforms OptDyn by 2−26% for vibrational and
RF sources, respectively, and is 90% as effective for the solar
source. WaWoR’s advantage with fluctuating-energy sources
comes from its delayed updates, leading to better decision
making. This delay helps distant nodes adapt better to net-
work changes and choose more appropriate sensing periods. In
contrast, OptDyn’s instantaneous updates make it excessively
reactive, causing nodes to increase sensing and transmission
immediately (based on the sink’s decision) when a burst of
energy is available at these nodes. This can lead to network
congestion without significantly improving the sink throughput.
Thus, there is a non-linear relationship between sensing periods
and the throughput. Delayed updates favor WaWoR as they
let the network to stabilize allowing distant nodes to adapt.
However, this advantage is only for variable sources like RF
and vibrational. For the constant solar source, where there are
no bursts, OptDyn performs better as the sink’s decisions
remain optimal. In contrast, WaWoR’s delayed updates cause
distant nodes to continue with suboptimal sensing periods for
a longer time, reducing performance, especially as network size
increases.

When compared to OptStat, WaWoR’s dynamic nature en-
abled it to achieve 3% higher throughput for the solar source
and 11− 57% higher throughput for the other two sources.
(3) Network Size - 150: Figure 10 shows that for larger net-
works (with 150 nodes), all the three systems show a similar
ET across the three energy sources. WaWoR is within 95−98%
of OptDyn and 2− 8% better than OptStat. WaWoR’s slight
underperformance compared to OptDyn is due to a larger delay
in feedback reaching distant nodes, leading them to continue

sensing at outdated and suboptimal periods for extended dura-
tions.

The experiments show that WaWoR excels in small and
medium-sized networks. In larger networks, it performs com-
parably to other systems. It is also important to note that
OptStat may not always perform very well as its performance
depends on the granularity of SPset and the choice of the
function for setting the sensing periods. A single function may
not be optimal for all the sources and network sizes – for
example, OptStat performed well with a linear function in
large networks yet struggled with an RF source in smaller
networks.

2) Throughput Efficiency of WaWoR compared to State-of-
the-art Systems: Table III compares the effective throughputs
(ET ) of WaWoR with that of Quan et al.’s [16] and Jeong et
al.’s [14] works. The results show that WaWoR consistently
outperforms Jeong et al.’s work [14] across all the ambient
sources and network sizes with performance improvements
ranging from [1.14− 4.26]×. This notable performance differ-
ence is due to Jeong et al.’s conservative transmission strategy,
which only allows transmission when the device’s estimated
energy exceeds the capacitor’s limit. In contrast, WaWoR allows
transmission whenever there is sufficient energy to send the
stored data packets. In the case of WaWoR, this strategy does
not lead to congestion in the network or dropped messages.

Compared with Quan et al.’s [16] approach, WaWoR shows
a [1.02− 1.35]× increase in ET . While Quan et al.’s approach
reduces traffic by sending packets layer by layer (at any time,
only one layer sends and the next layer receives), it incurs
substantial overheads. Nodes coordinate within each layer to
ensure that the previous layer has completed its transmissions.

3) Energy Efficiency of WaWoR compared to State-of-the-
art Systems: Table III compares the three approaches in terms
of wasted messages and energy consumption. Jeong et al.’s [14]
approach resulted in [0.8 − 9.9]× more wasted messages and

(a) (b) (c)

(d) (e) (f)
Fig. 8. Network size: 50 (a-c) Effective Throughput (ET ) comparison for different ambient power profiles: (a) solar, (b) vibrational, (c) RF
and (d-f) Sensing periods (SP ) comparison for different ambient power profiles: (d) solar, (e) vibrational, (f) RF
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(a) (b) (c)
Fig. 9. Network size: 100 (a-c) Effective Throughput (ET ) comparison for different ambient power profiles: (a) solar, (b) vibrational, (c) RF

(a) (b) (c)
Fig. 10. Network size: 150 (a-c) Effective Throughput (ET ) comparison for different ambient power profiles: (a) solar, (b) vibrational, (c)
RF TABLE III

EFFECTIVE THROUGHPUT AND THE WASTEFUL WORK COMPARISON OF THE THREE SYSTEMS
#Nodes 50 Nodes 100 Nodes 150 Nodes
Source WaWoR Jeong Quan WaWoR Jeong Quan WaWoR Jeong Quan

Solar
ET 537 126 520 226 60 202 101 30 93
Msgs(K) 1.5 14.5 5.7 3.6 8.4 16.2 3.4 8.3 11.6
En(mJ) 2.1 20.9 4.1 5.2 12.1 11.7 4.9 11.9 8.4

Vib.
ET 209 139 200 102 28 100 43 34 40
Msgs(K) 1.6 4.4 9 1.8 3.9 8 1.6 1.1 5
En(mJ) 2.3 6.3 6.5 2.6 5.6 5.8 2.3 1.5 3.6

RF
ET 183 90 169 109 32 81 41 36 33
Msgs(K) 1.7 3.2 7.6 1.9 3.6 6.5 1.2 0.9 4.1
En(mJ) 2.5 4.6 5.5 2.7 5.2 4.7 1.7 1.3 3

Msgs(K): Number of wasted messages (×1000); En(mJ): Energy (in mJ) consumed in wasteful work

energy consumption than WaWoR with [1.14 − 4.26]× lower
ET . Similarly, Quan et al.’s [16] approach had [3.4 − 5.6]×
more wasted messages and [1.6−2.8]× higher energy wastage.
Despite using a layer-by-layer communication strategy, Quan
et al.’s approach requires additional intra-layer communication,
which WaWoR avoids.

To summarize, WaWoR captures [1.02− 4.26]× more snap-
shots than state-of-the-art approaches, while also achieving
energy savings of up to 9.9× compared to Jeong et al. and
2.8× compared to Quan et al.

VIII. CONCLUSION AND FUTURE WORK

A. Conclusion
In this paper, we propose WaWoR– a distributed system

in which the nodes locally update their sensing periods so
that the effective throughput (number of snapshots) at the
sink is maximized while satisfying the fairness constraints.
The nodes can adapt their sensing periods to the variation in
ambient energy. This proposal does not substantially impact
the functionality of existing EH-WSNs, but will increase their
efficiency by reducing the redundant messages and the overall
energy usage. We show the efficiency of WaWoR by comparing
it with four different systems, which include two theoretical

baselines (both are hypothetical omniscient) and two state-
of-the-art systems. Our system achieves a throughput ranging
from [90− 126]% of OptDyn and is within [101.8− 175]% of
OptStat. Compared to two state-of-the-art systems, WaWoR has
an effective throughput that is [1.02−4.26]× higher. Along with
this, WaWoR wastes around [1.8 − 9.9]× fewer messages and
consumes approximately [1.6− 9.9] lesser energy as compared
to two state-of-the-art algorithms.
B. Future Work

The proposed work can be further optimized in several
ways. First, nodes can adjust the sensing periods based on
the characteristics of the sensed signal. For instance, if the
signal fluctuates only once a week (on average), frequent
sensing isn’t necessary, regardless of energy availability or
network traffic. Furthermore, akin to cluster-based routing,
nodes can be “locally grouped” (limited clustering) to reduce
the number of redundant connections. We can have a few
redundant cluster heads such that there is no single point of
failure. The spatio-temporal similarities in the sensed values
can be further leveraged to reduce the amount of sensing. This
means that if a node detects that a neighboring node has already
sensed and transmitted similar data, it need not send a message
itself. This will require some coordination among nodes, which
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incurs an energy cost, but it could be advantageous in certain
environments. REFERENCES
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