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High-refresh rate displays have become very popular in recent years due
to the need for superior visual quality in gaming, professional displays and
specialized applications such as medical imaging. However, high-refresh rate
displays alone do not guarantee a superior visual experience; the GPU needs
to render frames at a matching rate. Otherwise, we observe disconcerting
visual artifacts such as screen tearing and stuttering. Real-time frame gen-
eration is an effective technique to increase frame rates by predicting new
frames from other rendered frames. There are two methods in this space:
interpolation and extrapolation. Interpolation-based methods provide good
image quality at the cost of a higher runtime because they also require the
next rendered frame. On the other hand, extrapolation methods are much
faster at the cost of quality. This paper introduces PatchEX, a novel frame
extrapolation method that aims to provide the quality of interpolation at
the speed of extrapolation. It smartly segments each frame into foreground
and background regions and employs a novel neural network to generate
the final extrapolated frame. Additionally, a wavelet transform (WT)-based
filter pruning technique is applied to compress the network, significantly
reducing the runtime of the extrapolation process. Our results demonstrate
that PatchEX achieves a 61.32% and 49.21% improvement in PSNR over the
latest extrapolation methods ExtraNet and ExtraSS, respectively, while being
3% and 2.6 X faster, respectively.
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1 INTRODUCTION

In the last few years, there has been a significant growth in the
demand for high-refresh rate displays. Refresh rates have reached
360 Hz for major monitor brands. This surge is driven by the need
for enhanced visual quality in various market segments such as
gaming, professional displays (used in fields like esports) and spe-
cialized applications such as medical imaging and scientific visu-
alization [Gembler et al. 2018; Huhti 2019; LED 2025; Murakami

Authors’ addresses: Akanksha Dixit, Electrical Engineering, Indian Institute of Tech-
nology Delhi, New Delhi, Delhi, India, Akanksha.Dixit@ee.iitd.ac.in; Smruti R. Sarangi,
srsarangi@cse.iitd.ac.in, Hi-Tech Robotics and Autonomous Systems Chair Professor,
Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, Delhi, India.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM XXXX-XXXX/2025/9-ART

https://doi.org/XXXXXXX.XXXXXXX

et al. 2021]. The global gaming monitor market alone was valued at
around USD 9.51 billion in 2022 and is projected to grow to approxi-
mately USD 16.04 billion by 2030 with a compound annual growth
rate (CAGR) of 6.76% between 2023 and 2030 [gam 2023]. The reason
for this trend is because low-refresh rate displays sometimes ex-
hibit various visual artifacts such as judder (non-continuous motion
perception) and motion blur during high-speed motion [Han et al.
2022]. High-frequency displays thus aim to deliver a smooth and
seamless experience by eliminating these artifacts.

GPU is the bottleneck: It is crucial to acknowledge that having
high-frequency displays alone may not always guarantee smooth
performance unless the frame rendering rate matches the refresh
rate. When the rendering rate is lower than the refresh rate, visual
artifacts such as screen tearing and stuttering can occur [Denes et al.
2020]. Technologies like G-Sync address this by enabling variable
refresh rates that synchronize with the rendering rate, though this
may result in underutilization of the display’s full refresh rate po-
tential [Slavenburg et al. 2020]. Therefore, it is essential for the GPU
to render frames at a matching rate, which is seldom feasible. As
graphics engineers continue to incorporate increasingly complex
effects into graphics applications to enhance realism, the rendering
process becomes more intricate and time consuming (please refer
to A.4). Several studies have shown the variation in the rendering
rate and its impact on the quality of experience for users [Klein
et al. 2024; Liu et al. 2023; Sabet et al. 2020; Xu and Claypool 2024].
This necessitates the exploration of strategies to produce additional
frames post-rendering such that the rate of frame generation is
equal to the refresh rate of the monitor.

Frame generation fills in frames missed by the GPU: One of
the most impactful approaches to increase the frame rate is frame
generation, which involves predicting frames using information
from the next and previously rendered frames [Guo et al. 2021; He
et al. 2024; Niklaus and Liu 2020; Wu et al. 2023a,b; Zhang et al.
2023]. The core concept here is that since rendering new frames is
time-consuming, we can expedite the process by predicting new
frames from previously rendered ones or the next frame (in tempo-
ral sequence) and interleave the frames at the display device. This
boosts the frame rate and achieves rate matching. For frame gen-
eration to be effective, it is important to ensure that the prediction
time is shorter than the rendering time and that the predicted frame
is of acceptable quality. Particularly in real-time systems like virtual
reality applications and games, minimizing runtime and ensuring
good quality are of utmost importance.

Interpolation: high quality, high runtime < Extrapolation:
low quality, low runtime: In the field of frame generation, two
primary methodologies exist: interpolation [Niklaus and Liu 2020;
Wu et al. 2023b; Zhang et al. 2023] and extrapolation [Guo et al. 2021;
He et al. 2024; Wu et al. 2023a]. As their names imply, interpolation
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predicts a frame using both past and future frames, whereas extrap-
olation creates a new frame by utilizing only the past few frames.
Fig. 1 shows the performance of a few recent works in terms of
quality and runtime. It is evident that interpolation yields superior
quality than the existing extrapolation methods but comes with
a higher runtime (almost 14 ms), whereas extrapolation offers a
lower runtime at the expense of inferior quality. This is because
interpolation takes into account both past and future frames (see
Section 2.1 for more details).

Therefore, the challenge is clear: to achieve the visual quality of
interpolation while maintaining the runtime efficiency of extrapola-
tion.
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Fig. 1. The solution space for frame generation at 720p. Each solution is run
on an NVIDIA RTX 4080 GPU. The detailed system configuration is shown
in Table 3.

Note that interpolation introduces an inherent latency by holding
an already rendered frame for a refresh interval before display-
ing it. This is something that the human visual system can easily
detect[Dixit and Sarangi 2024]. We thus propose an extrapolation-
based approach that does not incur this overhead. Given that histor-
ically such algorithms have produced low-quality outputs, real-time
extrapolation is a less explored area. As per our knowledge, there are
only three major works that specifically address this: ExtraNet [Guo
et al. 2021], ExtraSS [Wu et al. 2023a] and STSS [He et al. 2024].
These methods use a warping algorithm[Zhang et al. 2003] that
transforms the frame using a motion vector. Warping algorithms
often lead to invalid pixels and holes in certain regions and incorrect
shading in other regions. Various approaches such as using neural
networks have been employed to rectify these issues. They use the
information stored in G-buffers — these are data structures in the
rendering engine that store different properties of a scene such as
the scene depth, roughness, etc.. Despite these efforts, none of the
methods have produced satisfactory results in complex dynamic
environments with multiple characters and lighting sources. Even
though baseline extrapolation methods are fast, the moment neural
networks are added, they become very slow.

In this paper, we introduce PatchEX, a novel approach that is
significantly different from prior frame extrapolation methods. To
the best of our knowledge, our work is the first to explicitly incor-
porate perceptual sensitivity as a fundamental design principle in
frame extrapolation. This is a crucial consideration, as foreground re-
gions typically exhibit significantly more parallax than background
regions. This parallax difference leads to pronounced occlusion
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and disocclusion effects that require special attention. Unlike pre-
vious works that typically apply uniform processing across the
entire frame, potentially ignoring critical content while focusing
on regions of less importance, our method segments the frame
into foreground and background regions, taking into account the
idiosyncrasies of the human vision system (known as foreground-
background segmentation) [Bjorkman and Eklundh 2005] and pro-
cesses these regions differently.

Our extrapolation pipeline begins by warping the frame F; using
the current motion vector, which acts as an initial prediction for
extrapolation for the extrapolated frame F;.¢ 5. As discussed earlier,
the warped frame may have invalid pixels in the disoccluded regions
and incorrect shading. Hence, we propose a novel neural network
to fix this. We generate two binary masks: one to identify disoc-
cluded regions requiring inpainting, and another for foreground-
background separation. These masks are then provided as an input
to the neural network designed to repair invalid pixels and correct
shading. Our neural network leverages deformable convolution,
allowing the model to adaptively focus on content-specific trans-
formations. One more point to note is that previous extrapolation
methods rely on multiple G-buffers for warping, marking invalid pix-
els, and fixing those pixels using neural networks. However, these
G-buffers are expensive to generate and are often incompatible
with forward rendering in gaming and VR engines. To address this,
our approach uses only scene depth and motion vectors, making it
lightweight and suitable for both forward and deferred rendering
pipelines. Additionally, we incorporate a wavelet transform-based
filter pruning strategy for the proposed neural network, enabling the
network to maintain high performance with reduced computational
cost and runtime.

Currently, we lack large-scale publicly available datasets or work-
loads for characterizing real-time rendering in graphics applications.
To address this, we created a dataset by downloading model and
scene files from Epic Games [Games 2023a] and rendering them
using Unreal Engine (v5.1) [Games 2023b]. Our dataset includes
multiple animation sequences featuring a diversity of characters,
lighting effects, background scenes and camera motions. Note that
our contributions are generic and are not specifically limited to our
chosen evaluation framework.

To summarize, our primary contributions are as follows:

@ We propose a lightweight frame extrapolation pipeline that
does not rely on expensive and rendering-mode-specific G-buffers.
@ We propose a novel perceptually guided neural network that
processes foreground and background regions differently using
deformable convolutions.
© We meticulously curated a comprehensive dataset featuring a
wide range of animation sequences encompassing diverse characters,
backgrounds, lighting settings and camera movements.

O To reduce computational cost and runtime, we propose a novel
and bespoke filter pruning technique that removes less important
filters from the neural network. This makes the network smaller
and faster while still producing high-quality results.

@ PatchEX shows an improvement of 61.32% and 49.21% in the
PSNR (peak signal-to-noise ratio) compared to the two most recent
extrapolation methods, ExtraNet and ExtraSS, respectively.

@ The proposed inpainting network is 5x and 2X faster than the
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Table 1. Conditions and resulting presentation latency for interpolation
and extrapolation techniques with associated latency constraints.

Vi,R; > D assumption
Pi=3D-R; . .
Ri+1<2D interpolation
P;=0 .
Rivi +E < 2D extrapolation

R, P: Rendering and presentation latency
D: Refresh Interval

corresponding inpainting networks in the nearest competing works
ExtraNet and ExtraSS, respectively.

The paper is organized as follows. Section 2 describes the back-
ground and related work in the area of various frame generation
techniques. Section 3 characterizes the datasets and provides the mo-
tivation for our proposed approach. Section 4 presents the method-
ology in detail. The implementation details are provided in Section 5.
Section 6 shows the experimental results, and we finally conclude
in Section 7.

2 BACKGROUND AND RELATED WORK
2.1 Real-Time Frame Generation

Recent works primarily focus on @ predicting new frames using
interpolation [Andreev 2010; Herzog et al. 2010; Nehab et al. 2007]
and @ generating new frames using extrapolation [Guo et al. 2021]
to increase the frame rate.

As mentioned in Section 1, apart from the runtime of the algo-
rithm used for interpolation, there is an additional delay incurred
here because interpolation predicts frames between two already
rendered neighboring frames. We thus need to wait more. In con-
trast, extrapolation-based methods predict frames solely based on
past frames. The difference can be observed in Fig. 2. Both processes
double the frame rate by generating a new frame after each rendered
frame. However, interpolation increases the display or presentation
latency. In the figure, the presentation latency is the delay between
the completion of a frame’s rendering and its actual display on the
screen.

The mathematical formulae for the presentation latency of in-
terpolation and extrapolation, respectively, are shown in Table 1
(keep referring to Fig. 2). The first assumption is that the rendering
time for every frame is greater than one refresh interval D (in the
super-sampled case). If this is not the case, than there is no need to
interpolate or extrapolate in the first place. It is further assumed that
the rendering duration plus the interpolation/extrapolation time
does not exceed two refresh intervals 2D. We observe in Fig. 2 that
if the sum exceeds 2D, then the interpolated frame will simply not
be ready by the time that it needs to be displayed. The assumption
here is that we are supersampling by a factor of 2x.

P; and R; denote the presentation latency and rendering latency
for the i*h frame, respectively. D represents the refresh interval.
E is the latency associated with generating an extrapolated frame
(the (i + 0.5);4, frame) based on frame F;, while I is the latency for
generating an interpolated frame using frames F; and Fi4q. If we

consider a 90 Hz display, the refresh interval D is 11.11 ms. Hence,
the presentation latency P; for interpolation falls within the range
of 11.11 ms to 22.22 ms; this is considerably larger than the latency
for extrapolation, which is 0 (in a system without slack).

This latency introduced by interpolation significantly affects the
user experience due to the human visual system’s acute sensitivity
to delays.
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Fig. 2. Interpolation and extrapolation explained. F; is the rendered frame.
R and D represent the rendering time and refresh latency, respectively.

We present a brief comparison of related work in Table 2.

2.1.1 Interpolation. Early frame generation methods used optical
flow-guided interpolation [Nehab et al. 2007], but they produced
subpar results when the scene contains areas visible in the current
frame but not in the previous one. Although Bowles et al. [Bowles
et al. 2012] proposed to fix this using an iterative method called
fixed point iteration (FPI), this did not provide satisfactory results.
To handle this case, various works [Burnes and C Lin 2023; Mueller
et al. 2018] propose a bidirectional reprojection method that tempo-
rally upsamples frames by reusing data from both the backward and
forward temporal directions. For example, NVIDIA’s latest DLSS3
engine does this using an optical flow generator, a frame generator
and a supersampling network that is Al-accelerated and integrated
into its latest GPU architecture (Ada Lovelace [Burnes and C Lin
2023]). This approach increases the frame rate but also leads to
an increased input latency that users can easily perceive (verified
in the lab and reported in the literature[Guo et al. 2021]). Since
our approach is not based on optical flow fields, it does not re-
quire future frames to predict a new frame. Other methods, such
as caching techniques [Nehab et al. 2007] and dividing frames into
slow-moving and fast-moving parts and rendering each part at a
different rate [Andreev 2010] have also been proposed but they in-
crease the time needed to construct a frame significantly. Recently,
DNN-based solutions [Niklaus and Liu 2020; Zhang et al. 2023] have
also been proposed to produce high-quality interpolated frames.
However, this increases the latency of the interpolation process due
to the complex structure of neural networks.

2.1.2  Extrapolation. Recent frame extrapolation methods designed
for desktop applications are ExtraNet [Guo et al. 2021], ExtraSS [Wu
et al. 2023a], and STSS [He et al. 2024]. To predict a new frame,
all of these works first propose a warping algorithm that helps
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Table 2. A comparison of related work
Year | Work Coherence Method ML- Real- | Upsampling Upsampling
Exploited Used based | time | Domain Factor
2007 | Nehab et al. [Nehab et al. 2007] Spatio-temporal | Interpolation X X Temporal
2010 | Andreev et al. [Andreev 2010] Temporal Interpolation X X Temporal X to 60
2010 | Herzog et al. [Herzog et al. 2010] Spatio-temporal | Interpolation X X Temporal
2012 | Bowles et al. [Bowles et al. 2012] Temporal Interpolation X X Temporal
2018 | SAS [Mueller et al. 2018] Temporal Interpolation X X Temporal x to 120
2020 | Softmax-splatting [Niklaus and Liu 2020] | Temporal Interpolation X Temporal up to 2
2021 | ExtraNet [Guo et al. 2021] Temporal Extrapolation Temporal up to 2X
2022 | DLSS 3 [Burnes and C Lin 2023] Spatio-temporal | Interpolation Temporal up to 4X
2023 | EMA-VFI [Zhang et al. 2023] Temporal Interpolation X Temporal up to 4X
2023 | ExtraSS [Wu et al. 2023a] Temporal Extrapolation Spatio-temporal | up to 2X
2024 | STSS [He et al. 2024] Temporal Extrapolation Spatio-temporal | 2X
2025 | PatchEX Temporal Extrapolation Temporal 2%

generate a warped frame that serves as an initial prediction. How-
ever, the warped frame may have invalid pixels or holes in disoc-
cluded regions where the temporal information is not available;
this leads to incorrect shading (shadows and reflections). To fix the
holes, they use a neural network similar to an image inpainting
network [Bertalmio et al. 2000; Guillemot and Le Meur 2013]. How-
ever, it may not be sufficient in cases where the shading information
changes dynamically over time. To handle this, ExtraNet [Guo et al.
2021] uses a history encoder to learn the shading pattern from the
previous few frames and fix that in the warped frame. This approach
works well when the lighting conditions change slowly over time.

On the other hand, STSS [He et al. 2024] uses light source in-
formation along with a history encoder. ExtraSS [Wu et al. 2023a]
introduces a new warping method to minimize the presence of in-
valid pixels in the warped frame. Their technique utilizes G-buffers’
information for the warping process. The G-buffer is a set of render
targets that store various properties of a scene during the rendering
process. It then uses a lightweight neural network to fine-tune the
shading. Sadly, none of these works produce a satisfactory result
in a complex dynamic environment with numerous characters and
lighting sources. Apart from the quality issue, the runtime of these
methods is significant owing to the presence of large neural net-
works. Note that the latest work ExtraNet [Guo et al. 2021] is a
frame generation approach that purely inserts frames in the tempo-
ral domain, while the remaining two [He et al. 2024; Wu et al. 2023a]
propose a joint neural network for supersampling in both temporal
and spatial domains. We focus our research solely on the temporal
domain. We can use a complementary spatial supersampling method
if there is a need to increase the resolution of our generated images.

Let us now introduce some background techniques that we will
use in our solution.

2.2 Image Warping

Image warping is a technique that changes the shape or appear-
ance of an image by applying a spatial transformation. There are
two types of warping techniques: forward warping and backward
warping [Lee et al. 2018; Shimizu et al. 2022]. In forward warping,
each pixel in the frame that needs to be warped (the source frame)
is directly mapped to a corresponding position in the warped frame
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using motion information. The mapping is not necessarily injective
or surjective. On the other hand, backward warping produces a
surjective mapping (there will be no holes in the future frame). It
uses an inverse function (the backward map), which is computed
by traversing each pixel in a reference target frame and finding its
corresponding position in its source frame [Zhang et al. 2003]. This
map is subsequently used to perform frame interpolation in a for-
ward direction. Clearly, forward warping is simpler than backward
warping, since it directly uses the transformation function to map
source pixels to the target. There can be holes because the mapping
is not surjective. Backward warping, which is more time consuming,
does not have this issue and thus produces better images [Guo et al.
2021; Lee et al. 2018]. This is because of its guarantee of produc-
ing a surjective mapping and the fact that its implementations are
typically quite efficient.

Using motion vectors results in residual frames or trails of mov-
ing objects in the warped frame, also known as the ghosting effect.
To address this issue, Zeng et al. [Zeng et al. 2021] have proposed
a method for generating occlusion motion vectors. These vectors
calculate displacements in disoccluded regions as displacements
of nearby regions in the previous frame. But it still fails when the
background becomes complex. To overcome this challenge, Wu et
al. [Wu et al. 2023a] introduced a novel technique called G-buffer-
guided warping. Specifically, it considers a large area of pixels near
the warped pixel and uses weighted G-buffers’ values to blend them
to form the warped pixel. However, these G-buffers are expensive
to generate and not available in the forward rendering mode. To
address this limitation, our method, PatchEX avoids reliance on
such buffers and instead utilizes only scene depth and motion vec-
tors. Specifically, it uses the occlusion-aware motion vector-based
warping, followed by a dedicated inpainting and shading correction
network to eliminate visual artifacts and improve frame quality.
We have characterized the warping methods mentioned above in
Appendix A.1.

2.3 Foreground Bias Effect in Human Vision

The human visual system is an incredibly complex and sophisticated
mechanism responsible for perceiving and interpreting visual infor-
mation. The process of generating new frames can be challenging
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Table 3. Platform Configuration

Parameter Type/Value
CPU Intel®Xeon®Gold 6226R @ 2.90GHz
GPU NVIDIA RTX™4080

Game engine  Unreal Engine v5.1

due to the intricate nature of this system, which is highly sensitive
to even the slightest input delay and jitter [Ng et al. 2012; Weier et al.
2017]. However, certain characteristics of the human vision system
can be leveraged to optimize the frame generation process. One of
these characteristics is known as “foreground bias” or “foreground
dominance” [Fernandes and Castelhano 2021]. This phenomenon
occurs because the human visual system tends to focus more on
objects in the foreground than those in the background. The pri-
mary cause is that the foreground objects are usually closer to the
observer than background elements, this leads to a greater disparity
in the retinal image size. It also provides stronger depth cues. Our
visual system is highly sensitive to depth cues, which contribute
to the perceptual salience of foreground objects compared to back-
ground environments. The foreground bias effect can be used to our
advantage by extrapolating foreground interactions more efficiently
since artifacts are more noticeable in the foreground as compared
to the background.

3 CHARACTERIZATION AND MOTIVATION

In this section, we begin by presenting the benchmarks used in our
experiments. We then demonstrate how any frame can be segmented
into two distinct regions: foreground and background. Next, we eval-
uate the performance of various warping methods. We then present
the challenges associated with the frame extrapolation methods.

3.1 Overview of the Datasets

To ensure the generalizability of our approach, we aimed to create
a large and diverse dataset. We gathered 13 background environ-
ments from the UE Marketplace, each with unique artistic styles and
complexities. In these environments, we randomly inserted over 20
different characters along with 30 animation sequences, ranging
from simple walks to complex hip-hop dances. We then selected
good viewpoints and created camera paths to follow the main ani-
mation character for each animation sequence to create a variety of
sequences. In this regard, we followed the method used to create
datasets in recent works [Li et al. 2022; Shugrina et al. 2019] (refer
to Appendix A.2 for more details on the dataset). The details of the
benchmark applications are shown in Table 4, and sample scenes
from a few of the applications are shown in Fig. 3.

We render our datasets using Unreal Engine 5 (UE5 v5.1) on an
NVIDIA RTX 4080 GPU with the Ada Lovelace architecture. The
detailed configuration is shown in Table 3. To create the animation
sequences, we downloaded Unreal scene files from the UE Mar-
ketplace [Games 2023a]. We further complicated it by integrating
animations with characters from Mixamo [mix 2024] into the back-
ground scenes to generate various animation sequences.

Table 4. Graphics benchmarks

Abbr. Name Abbr. Name
PR City Park LB Lab

wT Western Town BK Bunker
RF Redwood Forest TR Tropical
CM Cemetery VL Village
BR Bridge IN Town
DwW Downtown West ~ SL Slum
C Tennis Court

3.2 Foreground-Background Segmentation

As mentioned in Section 2.3, the foreground bias effect can be used
to our advantage by extrapolating foreground interactions more
intricately since artifacts are more noticeable in the foreground
as compared to the background. To achieve this, we segment a
frame into two parts: foreground and background. We can then
use different extrapolation algorithms for each part and blend the
outputs.

Insight: Extrapolation can be performed more efficiently by exploit-
ing the fact that humans perceive different parts of an image with
varying levels of sensitivity.

3.3 Challenges in Frame Extrapolation

Our primary objective is to predict an intermediate frame called
Ft40.5 by utilizing the previously rendered frame, F;. We can gener-
ate an estimate of F;1¢ 5 using warping. It will have a lot of visual
artifacts primarily because of the presence of disoccluded regions.
Note that there are four types of occlusions: self, object-to-object,
object-to-background and static. This means that there are four
types of disoccluded regions as well (refer to Fig. 4). Self-occlusion
occurs when an object obstructs itself in the image. Object-to-object
occlusion happens when two or more objects overlap, object-to-
background occlusion occurs when an object is partially or wholly
occluded by the background, and static disocclusion occurs due to
camera movement. These disoccluded regions remain a challenge
to fill in making the extrapolation very challenging.

The other challenge in the extrapolation task is accurately pre-
dicting changes in shadows. Even minor changes in the movement
of a dynamic object can result in significant changes in the shadow
it casts, as illustrated in Fig. 5. This can have a significant impact
on the overall realism of graphics applications, as shadows play a
crucial role in conveying depth and dimensionality.

Insights:

@ The presence of disoccluded regions () and sudden changes in
the shadows (@) pose a significant challenge for frame extrapolation.
® We rely on a novel neural network to fix these issues. It uses
different inputs for foreground and background regions.

4 METHODOLOGY

In this section, we propose a formal definition of the frame ex-
trapolation problem before detailing our methodology. Our primary
objective is to predict the intermediate frame F;1¢ 5 based on the pre-
vious frame F; and some additional information. In simple terms, we
aim to generate a frame that visually sits halfway between two con-
secutive frames while ensuring coherence with the overall sequence
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(f) Bridge

Object-to-object
disocclusion Disoccluded

regions

Object-to-ground
disocclusion

Static
disocclusion

Self-
disocclusion

Fig. 4. Disoccluded regions in a frame

of frames. Our proposed method, PatchEX, for frame extrapolation
comprises two stages: @ mask generation, and @ inpainting and
shading correction. The goal is to accurately predict future frames
by handling disocclusion and appearance distortions introduced
during warping.

(1) Mask Generation: Segmentation and Disocclusion In
the first step, we identify regions that require inpainting due
to disocclusions. We achieve this by generating two types
of masks: disocclusion mask (for the disoccluded regions)
and segmentation mask (foreground-background separation).
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(g) Downtown West (h) Tennis Court

Fig. 3. Example views from a few sample scenes

(b) Frame Fy4q

(a) Frame F;

Fig. 5. Dynamic changes in the appearance of shadows between two suc-
cessive frames, F; and Fyyq.

To compute these masks, we utilize depth information and
motion vectors extracted from the rendering pipeline. Both
of them are binary masks.

(2) Inpainting and Shading Correction Network The second
stage is a neural network designed to inpaint the disoccluded
regions and apply shading corrections to produce a tempo-
rally coherent and photorealistic extrapolated frame. This is
the crux of our contribution.

In the following section, we provide a detailed discussion of
PatchEX.

5 IMPLEMENTATION

To realize our two-stage frame extrapolation pipeline after warping,
we extract auxiliary buffers directly from the rendering pipeline for
each frame: scene depth (used in mask generation), pretonemapped
color (used in warping), and motion vectors (used in mask genera-
tion and provided as an input to the neural network). We use these
G-buffers for mask generation and motion-aware extrapolation. A
visualization of all these buffers is shown in Fig. 6.
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(b) (©

Fig. 6. (a) Scene depth; (b) PretonemapHDRColor; (c) Motion vector

5.1 Mask Generation: Segmentation and Disocclusion

Segmentation Mask: In this section, we divide the frame into the
foreground and background regions by creating a binary mask. Fore-
ground detection is in general a complex task in video processing,
but with access to some auxiliary information, we can efficiently
separate the foreground from the background. The motion vectors
encode the displacement of each pixel between the frames F;_; and
F;. Since the camera may also be moving, we compensate for global
motion by subtracting the average displacement from the motion
vectors. We classify a pixel as foreground if it meets two conditions:
(1) it moves at a speed greater than a predefined threshold, and (2)
its depth falls within a specified range. This method provides an
efficient and adaptive way to segment the scene, reducing reliance
on manually generated masks while improving accuracy in han-
dling occlusion and disocclusion. To decide the threshold values, we
perform a sensitivity analysis in Section 6.8.

Disocclusion Mask: To detect regions that become newly visible in
a frame due to moving objects (and not just camera motion), we use
scene depth and motion vector data exported from the rendering
pipeline. We start by aligning the scene depth map from the previous
frame with the current frame’s viewpoint. To do this, we warp the
previous depth map so that it matches the perspective of the current
frame. After aligning the depth maps, we subtract the warped depth
map from the current depth map. If the difference in the depth at a
pixel is greater than a threshold (=0.1), we consider that pixel to be
disoccluded. We generate a binary mask where these disoccluded
pixels are marked. This mask highlights the regions that were hidden
in the last frame but are now visible, and is later used to guide
the extrapolation network in focusing on these newly revealed
(disoccluded) areas. Fig. 7 shows an example of foreground and
disocclusion masks.

5.2 Inpainting and Shading Correction Network

Following the generation of both segmentation and disocclusion
masks, we employ a custom-designed inpainting and shading cor-
rection neural network to generate the final extrapolated frame.

5.2.1 Neural Network Architecture. We propose a novel, bespoke
neural network for the extrapolation task. Its job is to take the
masks, the warped frame and remove all visual artifacts. The archi-
tecture of the network is shown in Fig. 8. Our network is inspired
by the classical encoder-decoder architecture. In our design, the
encoder and decoder comprise three hierarchical stages. Each stage
in the encoder consists of a downsampling operation, followed by a
convolutional block composed of a convolutional layer, batch nor-
malization and a ReLU activation. The decoder mirrors this structure,

Fig. 7. (a) Frame Fy; (b) Scene depth; (c) Motion vector; (d) Foreground
mask; (e) Disocclusion mask.

with each stage performing an upsampling operation followed by
a similar convolutional block. However, instead of using conven-
tional convolutional layers, we replace them with Lightweight Gated
Convolution layers. These layers adopt the efficient gated convo-
lution mechanism introduced by Yi et al. [Yi et al. 2020] (refer to
Equation 1). The network was chosen because it can efficiently
subtract the background, amplify salient structures, nicely track
object boundaries and has a fast implementation. To the best of our
knowledge, this is a novel network where we have skip connections
with two destinations and one skip connection is interjected by a
deformable convolution layer.

G(gating) =Conv(Wy, I)
F(features) =Conv(Wf, 1) (1)

0 =o(G) @ F

Wy and Wy denote two distinct learnable filters. (©) denotes
Hadamard (element-wise) multiplication, and o represents the sig-
moid activation function. The latter ensures that the output gating
values are in the range [0, 1]. This approach helps in treating differ-
ent pixels differently in the network since there are invalid pixels in
the warped frame. Our gating mechanism diminishes the influence
of invalid pixels (holes).

Additionally, to enhance spatial adaptability in regions of com-
plex motion or occlusion, we incorporate deformable convolutions
as proposed by Dai et al. [Dai et al. 2017]. Specifically, we insert
deformable convolution layers at the first stage of the encoder and
before the final stage of the decoder. These layers enable the network
to learn large and flexible receptive fields (refer to Fig. 9), allowing
for more precise feature alignment in challenging regions of the
frame. Please refer to Appendix A.5 for seeing how deformable
convolution is different from the standard convolution.

5.2.2 Inputs to the Network. We provide a comprehensive set of
inputs: the warped frame, a hole mask indicating disoccluded re-
gions marking invalid pixels, one G-buffer (motion vector) and one
binary mask for foreground regions. Unlike previous works, we
also provide as input the LBP (local binary pattern) feature map of
the warped frame. It computes an LBP code for each pixel, which
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Encoder

LWGatec Conv. +

Deformable
Conv. BN + RelLU

ﬁ Downsample ﬁ Upsample T~ Skip connection

Fig. 8. The neural network architecture for fixing the invalid pixels.

Fig. 9. lllustration of the sampling locations using 3 X 3 standard and
deformable convolutions. Left figure: regular sampling grid (blue points) of
standard convolution. Right figure: deformed sampling locations (dark red
points) with augmented offsets (black arrows) in deformable convolution.

can help us further classify it into the following categories: flat re-
gion, bright spot, edge, corner, etc. By incorporating the LBP feature
map, we leverage its robust feature extraction capabilities and its
resilience to uneven illumination. This addresses the challenge of
extracting detailed features from images with inconsistent lighting,
significantly boosting the generalizability and effectiveness of our
method.

5.2.3 Loss Functions. The loss function used for training the net-
works has broadly two components (refer to Equation 2). The first
component penalizes the pixel-wise error between the ground truth
F and the predicted frame F’. The second component is the per-
ceptual loss, which was not considered in previous works [Guo
et al. 2021; He et al. 2024]. The perceptual loss plays a crucial role in
enhancing the performance of neural networks, particularly in tasks
related to shading correction[Ran et al. 2023] because it focuses on
capturing high-level perceptual features, mimicking human visual
perception.

L =~£pixel + Lperceptual (2)

, Vol. 1, No. 1, Article . Publication date: September 2025.

Pixel-wise Errors: To calculate the error on a pixel-by-pixel basis,
we use the £ loss metric, which can be computed using the formula
shown in Equation 3. We employ the £; loss in two different forms.
First, we calculate the total £; loss between the entire ground truth
frame and the predicted frame. Next, we calculate the error between
the pixels that were marked as holes or invalid pixels during using
the disocclusion mask. This loss is designed to emphasize more on
invalid regions. The total loss is the weighted sum of these two
losses (refer to Equation 4).

LL] :”X - Y”l
H W (3)
Lp, =), D IXGH) =Y
i=1 j=1
'££1 :”F _F,”l
Liote =lI(F = F') - (1=m)|lx @

Lpixel ZA.C1 : LLl + /Ihole ' Lhole

m is a binary mask used for identifying the invalid pixels. A 7,

and Ay, are the weights assigned to each component loss function
to balance out their effects. In our current implementation, A o, and
Anole are set to 1 and 0.4, respectively.
Perceptual Losses: We adopt the perceptual loss function proposed
by Johnson et al. [Johnson et al. 2016], which comprises two compo-
nents: VGG loss and style loss. These components jointly guide the
neural network to generate images that better align with human
visual perception. Lygg is the VGG loss (shown in Equation 5).
Here, ®; is the activation map of the i/ layer of the VGG-16 [Liu
and Deng 2015] network pre-trained on ImageNet.

Lycc =E (5)

D N2i(E) = @i ()]s

We use another loss function called style loss to maintain a degree
of similarity between the predicted and the original image (refer to
Equation 6). The joint perceptual loss is shown in Equation 7. The
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Table 5. Statistics of the training and testing dataset

Training | Training Testing Testing
Scenes

Sequences Frames Sequences | Frames
PR 5 5000 3 3000
wT 5 5000 3 3000
RF 5 5000 3 3000
CM 5 7000 3 3000
BR 5 5000 3 3000
DW 5 4000 3 3000
TC 5 4000 3 3000
N 5 5000 3 3000
BK 0 0 3 3000
LB 0 0 3 3000
TR 0 0 3 3000
VL 0 0 3 3000
SL 0 0 3 3000

key idea is that we are preventing hallucination, where the output
of the model can be very different from the original image. The
main aim is to fix the base image created by warping and not make
unconstrained errors.

Laryie =B | Y IGT (F) = GT(F)ly ©)

G;?i (F) is the Gram matrix computed from the jt feature map
of the ith layer of the VGG network (®;).

Lperceptual =Avee - Lvee + Astyle : Lstyle (7)

AvGe and Agpy . are the weights assigned to each loss to balance

their effects. In our current implementation, Ay g is set to 0.1 and
Astyle 1s set to 0.01.

5.2.4 Training and Testing. In our work, we utilize 13 benchmark
scenes as discussed in Section 3.1. These scenes are divided into two
groups: nine for training and four for testing. For each scene, we
created five animation sequences for training and three sequences
for testing. The number of frames in each sequence varies. The
total number of frames for training and testing for each scene are
specified in Table 5. We implemented the neural network using
the PyTorch framework [Paszke et al. 2019]. To divide the data for
training and validation in an 80:20 ratio, we utilized PyTorch’s inbuilt
random_split function. We use the Adam optimizer for optimization
with batch sizes set to 16 and epoch sizes to 100. The network
initialization is as per the default settings in PyTorch.

5.3 Neural Network Compression

We propose a filter pruning technique to remove filters that corre-
spond to feature maps with low importance. This compresses the
size of the network and makes its implementation more efficient.
Our pruning strategy is guided by the region-specific perceptual
relevance of features and is motivated by the observation that fore-
ground regions typically contain high-frequency content, while
background regions are dominated by low-frequency components.
To capture this distinction, we apply a wavelet transform to the fea-
ture maps [Liu et al. 2024], which allows us to decompose them into
frequency bands while preserving spatial information. Unlike other
frequency transforms, the wavelet transform provides a localized
view of both high- and low-frequency features, making it well-suited

for tasks that require spatial awareness—such as distinguishing fore-
ground from background. We then compute the energy in these
frequency bands to derive a perceptual importance score for each
filter. Filters contributing primarily to low-importance (typically
background) regions are pruned.

Assume that we have a CNN with L convolution layers and the
¢£t" convolution layer C has Ny filters. The output feature map of

this layer can be represented as Ff = {fl{,le, .. ,fj", .. .,f]f]}, If we

compute the wavelet transform (WT) of the j th feature map fj ¢ it
yields four frequency domain components: the low-frequency com-
ponent LL, the horizontal high-frequency component HL, the verti-
cal high-frequency component LH and the diagonal high-frequency
component HH. We set LF = LL and HF = LH + HL + HH. Hence,
the wavelet transform map of the output feature map F; of the £*"
convolution layer can be represented as:

wT = {(LF",HF{’), (LFLHFY), .., (LF‘.’,HFf),,..,(LF]{,[,HF]{]{)}
(®)

where (LFf, HF;) represents the WT of the j’ h feature map of the
¢th convolutional layer. This can also be written as WT( fj[). We
then compute the energy of each feature map in both frequency
bands as follows:

H W,

Ej:LF = Z ZLF]‘.’ (m, n)?

m=1n=1
He W,

Ej?HF = Z ZHFf(m n)?

m=1n=1

©

Here, EjfLF

for low and high-frequency bands, respectively. We then define
a scalar perceptual importance score of the jth feature map that
blends the two energy terms using a tunable hyperparameter «
(refer to Equation 10).

and ESHF refer to the energy of the j*" feature map

Eji,HF Eﬁ’LF
N £ R S T
Ej,HF +E§’LF Ej.’HF +E§,LF

imsco(fj[) =a

Here, a (=0.8) controls the weight assigned to foreground activity
vs. background response. According to previous studies, it is known
that the importance scores generated from individual feature maps
using wavelet transform are robust to the input images [Lin et al.
2020]. Finally, we sort the filters in ascending order of their im-
portance score and the filters corresponding to the sorted feature
maps are pruned. The pruned network is then retrained, and this
pruning-retraining process is repeated iteratively for 200 epochs
using a batch size of 128.

6 RESULTS AND ANALYSIS

® To evaluate the visual quality of the proposed method, PatchEX,
we conduct a comprehensive comparison with various state-of-the-
art frame extrapolation techniques. Since all these approaches rely
on machine learning, we fine-tune their respective neural networks
on our dataset before assessing their performance.
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@ Subsequently, we perform an ablation study to analyze the con-
tribution of individual components to the overall effectiveness of
PatchEX.

® Moreover, we compare PatchEX against state-of-the-art frame
generation techniques based on interpolation.

@ Specifically, we measure the runtime of each component in PatchEX.
® To assess robustness, we compare PatchEX with VR-style extrap-
olation scenarios that demand wide field-of-view consistency and
perceptual quality.

® We further compare PatchEX with commercial extrapolation
solution to highlight its practical advantages and limitations.

@ We analyze the scalability of PatchEX in high-resolution scenarios
to verify its performance in more demanding use cases.

For all these experiments, we use the same system configuration
(refer to Table 3). Unless otherwise specified, all comparisons are
performed at a default spatial resolution of 720p, which is consistent
across all experiments. Also, the input frames are rendered at 60 fps
from UE. The results of PatchEX, along with those of other state-
of-the-art approaches, are available at the following link [Authors
2024].

6.1 Comparison with Frame Extrapolation Methods

In this section, we compare the visual performance of ExtraNet [Guo
et al. 2021] and ExtraSS [Wu et al. 2023a] with PatchEX, both quali-
tatively and quantitatively. As mentioned in Section 2.1.2, ExtraNet
and ExtraSS are the two nearest competing methods that perform
frame extrapolation in real-time. However, ExtraSS does not solely
extrapolate in the temporal domain; it also extrapolates in the spatial
domain. Since we are dealing in the temporal domain not spatial,
we only consider its temporal component for the purpose of com-
parison.

6.1.1 Qualitative Comparisons. In this section, we compare the
quality of the frame generated using various extrapolation meth-
ods. In Fig. 10, we show the extrapolated frames for four distinct
benchmark scenes.

As explained in Section 3.3, the challenges for extrapolation al-
gorithms are to properly fill the disoccluded regions created by the
movements in the scene and to extrapolate the shadows accurately.
Both ExtraNet and ExtraSS fail to address these challenges effec-
tively in many scenarios. For example, ExtraNet does not generate
accurate shadows for complex movements such as the kick in the
RF scene. It also performs poorly in capturing complex structures
such as tree leaves and facial features in scenes such as BK, RF and
WT. On the other hand, ExtraSS leverages G-buffer-guided warp-
ing and performs better than ExtraNet in most cases. However, it
is unable to correctly extrapolate facial features during intricate
motions like those in a hip-hop dance. In the DW scene, ExtraSS
handles the out-of-screen areas well, whereas ExtraNet does not.
PatchEX handles all of these complex cases very well (much better
than ExtraNet and ExtraSS). To summarize, PatchEX excels by not
only preserving sharp features and intricate geometries but also
generating plausible shadows that closely match the ground truth.

6.1.2  Quantitative Comparisons. In this section, we present a quan-
titative comparison of PatchEX, ExtraNet, and ExtraSS using four
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performance metrics: PSNR, SSIM [Hore and Ziou 2010], VMAF [Net-
flix 2016], and LPIPS [Belhe et al. 2023]. We present the full-frame
quality assessment in Table 6. We also evaluate the region-wise
performance of different frame extrapolation methods by analyzing
their PSNR values for foreground, disoccluded, and background
regions. This analysis provides insights into how each method per-
forms under varying motion complexities and occlusion patterns.
The results are summarized in Table 7. Based on these results, we
derive the following conclusions:

@ PatchEX performs better than ExtraNet and ExtraSS across all
benchmarks for all the performance metrics.

@ There is a 61.32%, 33.46%, and 90.16% increase in PSNR, SSIM,
and LPIPS in PatchEX, respectively, as compared to ExtraNet.

© Compared to ExtraSS, PatchEX achieves an improvement of
49.21%, 32.29%, and 91.20% in PSNR, SSIM, and LPIPS, respectively.

6.2 Ablation Study

To thoroughly understand the impact of different components in
PatchEX, we conducted an ablation study focusing on three key
elements: foreground-background segmentation, deformable con-
volution layer and perceptual loss. This analysis helps to isolate
the contribution of each component to the overall performance of
PatchEX. We evaluate three distinct variants of PatchEX: one where
foreground-background segmentation is not used, another without
deformable convolution, and a third without perceptual loss. The
quantitative comparison of these variants along with the original
method is given in Table 8. We make the following observations
from the results:

@ These results highlight the significant impact of foreground-
background segmentation on improving image quality. Without
segmentation, the average PSNR decreases by almost 4.14 dB.

® Similarly, we see the impact of the deformable convolution
layers, there is an improvement of 4.0 dB in PSNR.

© Likewise, we observe the significant impact of the perceptual
loss we included in the training of neural networks, resulting in an
improvement of 1.61 dB in PSNR. These findings remain consistent
for SSIM as well. This underscores the effectiveness of incorporating
perceptual loss in improving both pixel-level fidelity and structural
similarity in the reconstructed frames.

6.3 Performance Comparison with Frame Interpolation
Methods

In this section, we compare the performance of PatchEX with two
state-of-the-art interpolation-based methods. The interpolation-
based methods are Softmax Splatting [Niklaus and Liu 2020] and
EMA-VFI [Zhang et al. 2023]. Both of these methods are DNN-based
techniques. Softmax splatting uses forward warping using optical
flow. However, in this approach, multiple pixels may map to the
same target location in the frame F;. Softmax splatting uses a mod-
ified softmax layer, which takes the frame’s depth data to resolve
this ambiguity. EMA-VFI uses a transformer network to perform
frame interpolation.



PatchEX: High-Quality Real-Time Temporal Supersampling through Patch-based Parallel Extrapolation « 11

- ‘
Sy

(a) PatchEX (Entire Frame) (b) GT (c) PatchEX (d) ExtraNet (e) ExtraSS
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Fig. 10. Visual comparison of the frame extrapolation methods: ExtraNet [Guo et al. 2021] and ExtraSS [Wu et al. 2023a]

6.3.1 Qualitative Comparisons. In this section, we perform a quali- present frames from three distinct scenes in Fig. 11, emphasizing
tative comparison. It is important to note that while all interpola- the visual quality and effectiveness of each approach.

tion methods require pre-rendered future frames, our extrapolation- In the PR scene, both interpolation-based techniques produce
based method exclusively relies on historical frames that have al- shadows that closely resemble the ground truth. However, in the
ready been rendered. Still, there are instances where interpolation- BK scene, the sharp definition of the shadow structure is compro-
based methods exhibit shortcomings. To illustrate such cases, we mised for both these methods. This can be attributed to the higher

glossiness factor present in the BK scene as compared to others.
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Table 6. Quantitative comparison of various extrapolation methods against PatchEX in terms of PSNR (dB), SSIM, LPIPS and VMAF. Throughout this paper,
the best and second-best results of each test setting are highlighted in bold red and underlined blue, respectively.

Scenes PSNR (dB) T SSIM T LPIPS | VMAF 7
ExtraSS ExtraNet PatchEX ExtraSS ExtraNet PatchEX ExtraSS ExtraNet PatchEX ExtraSS ExtraNet PatchEX
PR 24.21 24.26 27.18 0.906 0.899 0.941 0.190 0.185 0.107 84.15 83.25 88.69
BK 28.78 26.87 31.49 0.948 0.909 0.958 0.111 0.118 0.106 87.25 85.36 91.25
WT 26.01 23.75 27.32 0.848 0.796 0.898 0.109 0213 0.108 87.47 83.29 89.25
RF 21.55 20.51 24.55 0.785 0.733 0.895 0.261 0.342 0.105 82.35 81.02 85.01
cM 2324 22.97 24.72 0.867 0.802 0.869 0.226 0.261 0.117 83.97 82.05 85.02
BR 26.55 24.69 28.78 0.814 0.783 0.887 0.384 0.465 0.109 87.20 85.02 90.36
DW 23.03 21.63 24.55 0.876 0.791 0.884 0376 0.269 0.124 85.20 82.98 87.58
TC 23.78 22.36 26.63 0.729 0.705 0.880 0.398 0362 0.122 83.14 80.14 86.39
LB 27.54 24.49 28.59 0.846 0.801 0.889 0.191 0.414 0.111 86.05 84.25 89.25
TR 27.86 27.40 30.92 0.837 0.877 0.879 0.295 0.445 0.121 90.25 88.74 91.19
VL 22.19 21.00 26.23 0.817 0.818 0.895 0.178 0314 0.123 83.04 81.25 88.05
N 26.91 25.39 27.35 0.854 0.815 0.905 0.205 0.305 0.109 84.16 85.87 90.03
SL 26.47 26.52 31.19 0.867 0.810 0.898 0.496 0.409 0.154 87.25 87.34 91.58

Table 7. Region-wise performance comparison of various extrapolation methods against PatchEX in terms of PSNR (dB).

Scenes Foreground Disoccluded Background
ExtraSS ExtraNet PatchEX ExtraSS ExtraNet PatchEX ExtraSS ExtraNet PatchEX
PR 20.80 2881 29.87 35.73 26.77 28.36 20.22 20.39 27.86
BK 25.00 19.03 30.25 26.26 20.90 28.30 20.12 21.79 23.68
WT 25.54 22.30 35.47 30.88 29.81 30.25 21.33 25.55 31.39
RF 24.52 16.16 28.47 25.89 22.47 25.47 18.83 18.44 23.85
cM 28.77 24.00 30.14 30.17 27.52 30.90 21.28 19.75 24.27
BR 34.01 29.11 35.40 21.98 27.21 31.98 19.99 19.90 22.99
DW 32.30 24.94 33.12 25.13 26.30 30.63 26.25 24.27 28.22
TC 34.53 23.85 35.24 26.64 25.68 34.66 2344 22.27 29.40
LB 28.29 26.33 29.29 2747 22.58 32.74 22.97 27.82 32.87
TR 23.19 16.18 25.14 26.70 20.18 30.81 19.66 18.76 24.66
VL 17.62 2030 28.25 26.09 22.94 32.49 16.08 16.35 20.36
TN 30.78 24.82 36.25 25.83 24.23 34.47 20.24 21.81 26.94
SL 26.13 21.20 30.01 23.50 28.89 33.90 20.05 19.79 25.45

Table 8. Quantitative comparison of various variants of PatchEX in terms of PSNR (dB) and SSIM. w/o FS refers to without foreground-background segmentation.
w/o DC refers to the case where the deformable convolution layer is not used. w/o £, refers to without perceptual loss taken into account.

Scenes PSNR (dB) | SSIM T
w/oFS w/oDC w/o 'CP PatchEX w/oDC w/oFS w/o 'CP PatchEX
PR 23.91 21.64 26.61 27.18 0.790 0.791 0.892 0.941
BK 24.32 25.40 27.50 31.49 0.785 0.785 0.885 0.958
WT 25.70 21.55 2771 27.32 0.794 0.795 0.884 0.898
RF 21.43 20.44 23.43 24.55 0.791 0.793 0.893 0.895
CM 21.59 20.52 22.54 24.72 0.761 0.759 0.860 0.869
BR 21.42 23.10 2644 28.78 0.779 0.781 0.879 0.887
DW 21.04 22.83 23.82 24.55 0.781 0.782 0.882 0.884
TC 24.54 20.28 2591 26.63 0.774 0.779 0.877 0.880
LB 24.26 26.75 27.01 28.59 0.785 0.788 0.888 0.889
TR 25.89 28.50 29.61 30.92 0.780 0.781 0.881 0.879
VL 22.58 23.55 24.98 26.23 0.794 0.787 0.896 0.895
TN 23.59 25.92 26.05 27.35 0.789 0.791 0.892 0.905
SL 26.72 27.12 28.23 31.19 0.798 0.794 0.897 0.898

Notably, PatchEX excels in this scenario. Another notable artifact in
interpolation methods is the potential for blurriness during complex
movements, as observed in the WT scene.

6.3.2 Quantitative Comparisons. In addition to the qualitative anal-
ysis, we also perform a quantitative comparison of the frame inter-
polation methods. Table 9 presents the quantitative evaluation in
terms of the PSNR, SSIM and VMAF metrics. From these results, we
make the following observations:

@ In terms of PSNR, PatchEX consistently outperforms both EMA-
VFI and Softmax-splatting across most scenes. Even in cases where it
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is not the best, the performance gap remains negligible. On average,
PatchEX achieves a PSNR gain of 1.68 dB over EMA-VFI and 1.21
dB over softmax-splatting.

@ In terms of SSIM, PatchEX demonstrates superior performance
in several scenes. This is primarily because interpolation-based
methods tend to introduce blurriness, which degrades structural
fidelity and leads to lower SSIM values. By contrast, PatchEX better
preserves fine structural details, resulting in consistently higher
SSIM scores.
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Fig. 11. Visual comparisons against two frame interpolation methods: EMA-VFI [Zhang et al. 2023] and Softmax-splatting (SS) [Niklaus and Liu 2020]

6.4 Runtime Performance of PatchEX

As mentioned in Section 4, we divide PatchEX into several steps. In
Table 10, we report the runtime of each step, measured as the exe-
cution time on a single frame. We make the following observations
from the table:

@ Due to the proposed filter pruning for the inpainting and shading
correction network, the inference time is very low. Specifically, for
720p resolution, the inference time is just 1.08 ms. In comparison,
ExtraNet and ExtraSS have inference times of 5.39 ms and 2.05 ms,
respectively. This makes our neural network 5x and 2X faster than
ExtraNet and ExtraSS, respectively.

@ Even for higher resolutions such as 1080p, the inference time of
PatchEX remains remarkably low, averaging only about 1.24 ms.
© For other components, such as warping and mask generation, we
observe an expected increase in runtime as resolution increases.

We further evaluate the runtime efficiency of PatchEX across
different resolution levels w.r.t state-of-the-art methods: ExtraNet
and ExtraSS (ExtraSS-E: without spatial supersampling). The time
includes all the steps (G-buffers generation, pre-processing, warping
and inference). Table 11 shows the runtime (in milliseconds) for all
three methods at various resolutions.

@ The efficiency gain of PatchEX becomes more pronounced at
higher resolutions. For instance, at 1080p, PatchEX runs in 4.01 ms,
compared to 9.05 ms for ExtraSS and 15.10 ms for ExtraNet.

@ The runtime of PatchEX increases much more slowly with res-
olution than both baselines, highlighting its scalability. While Ex-
traNet’s runtime increases fivefold from 360p to 1080p, PatchEX
only doubles (2.6 X).
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Table 9. Quantitative comparison of various interpolation methods against PatchEX in terms of PSNR (dB), SSIM and VMAF.

Scenes PSNR (dB) T SSIM T VMAF |
EMA-VFI  SS  PatchEX EMA-VFI SS  PatchEX EMA-VFI  SS  PatchEX
PR 25.05 2647  27.18 0.818 0809  0.941 85.36 86.21  88.69
BK 33.56 34.47 31.49 0.958 0.865 0.958 92.50 93.05 91.25
WT 26.91 25.62 27.32 0.881 0.878 0.898 85.31 85.11 89.25
RF 23.92 2411 2455 0.861 0.863  0.895 83.14 8436 85.01
CM 23.48 22.22 24.72 0.875 0.866 0.869 82.36 80.28 85.02
BR 27.23 2773 2878 0.885 0886  0.887 88.21 88.68  90.36
DW 24.17 23.88 24.55 0.857 0.855 0.884 85.07 83.25 87.58
TC 28.27 27.89 26.63 0.880 0879  0.880 89.36 88.41 86.39
LB 29.22 21.58 28.59 0.891 0.891 0.889 90.14 81.57 89.25
TR 28.74 2908 30.92 0.889  0.889  0.879 88.27 9024 9119
VL 26.09 2614 2623 0.886 0886  0.895 84.21 8536  88.05
™ 29.59 28.96 27.35 0.884 0884  0.905 88.97 8917  90.03
SL 29.10 2974 3119 0.883 0884  0.898 90.21 9118 91.58

Table 10. Runtime (ms) breakdown of PatchEX at various resolution levels

Res Step
Warping Mask-generation Inference
360p  0.75 0.34 0.56
480p 079 0.59 0.88
720p 091 0.73 1.08
1080p 135 141 1.24

Table 11. Runtime (ms) comparison with the state-of-the-art methods at
various resolution levels

Res ExtraNet ExtraSS PatchEX
360p 3.7 2.99 1.65
480p 411 3.89 2.26
720p 7.9 7.08 2.72
1080p  15.10 9.05 4.01

The impact of our filter pruning-based network compression
method is summarized in Table 12. The results highlight how prun-
ing leads to significant reductions across all three dimensions: pa-
rameter count, the total number of floating-point operations (FLOPs),
and inference time (ms).

o The total parameter count is reduced from 12.62M to 3.35M
(a reduction of 73.5%).

e The total FLOPs drop from 368.35M to 131.63M (a reduction
of 64.3%).

e The total inference time decreases from 3.12 ms to 1.08 ms,
achieving a runtime speedup of 2.98 x.

6.5 Comparison with VR-style Extrapolation Methods

ASW (Asynchronous Spacewarp) [Beeler and Gosalia 2016; Dean
et al. 2016] is a technique used in head-mounted displays (HMDs),
such as Oculus Quest, to maintain visual smoothness when the VR
application does not maintain the required frame rate. It achieves
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Table 12. Layer-wise comparison of parameters, inference time, and FLOPs
before and after pruning at 720p resolution.

Layer #Params  #Params | #FLOPs #FLOPs | Time Time
Before After Before After Before  After
DefConv 1 0.23 M 017 M 10.87 M 599 M 0.089 0.049
LWGatedConv 1 0.54 M 0.14 M 18.15M 426 M 0.149 0.035
LWGatedConv 2 0.54 M 0.48 M 18.15 M 6.79 M 0.149 0.056
DownLWGated 1 1.63 M 0.20 M 15.76 M 7.53 M 0.129 0.062
DownLWGated 2 1.63M 0.47M 10.46 M 227M 0.086 0.019
DownLWGated 3 1.63M 0.20 M 1.81 M 0.55 M 0.015 0.005
UpLWGated 1 1.74 M 0.46 M 29.11 M 512M | 0.239 0.042
UpLWGated 2 2.03M 0.54 M 39.81 M 9.18 M 0.327 0.075
DefConv 2 1.10 M 0.28 M 82.28 M 2359 M 0.675 0.194
UpLWGated 3 1.56 M 0.46 M 141.89 M 50.94 M 1.264 0.543
Total 12.62 M 335 M 368.35M 13163 M | 3.122 1.080

DefConv: Deformable Conv., LWGatedConv: LW Gated Conv + BN + ReLU,
DownLWGated: Downsample + LWGatedConv,
UpLWGated: Upsample + LWGatedConv

this by extrapolating the previously rendered frame to generate a
plausible new frame, leveraging re-projection based on the current
head position. In this section, we compare the quality of PatchEX
against ASW. While most of our test scenes are not compatible
with Oculus Quest 2, the Bunker (BK) scene is. As shown in Fig. 12,
ASW struggles in complex scenarios involving large disocclusion
or nonlinear motion, whereas PatchEX significantly outperforms it
in terms of image quality and temporal consistency.

6.6 Comparison with Commercial Extrapolation Methods

As mentioned in Section 1, DLSS 3 (Deep Learning Super Sampling)
is an advanced frame generation technology developed by NVIDIA
to enhance frame rates in real-time graphics applications (released
in Oct ’22). It utilizes deep learning-based motion vector analysis
and optical flow estimation to synthesize intermediate frames, effec-
tively increasing perceived smoothness without requiring additional
rendering. By leveraging Al-driven extrapolation, DLSS 3 predicts
and generates frames based on historical motion data and scene



PatchEX: High-Quality Real-Time Temporal Supersampling through Patch-based Parallel Extrapolation « 15

bLss

Frame Ft PatchEX

Fig. 12. Quality comparison with the VR-style extrapolation method ASW
and NVIDIA DLSS 3

dynamics. Fig. 12 shows a representative result with DLSS 3. We
can clearly observe that PatchEX is quite close to the ground truth
(GT), and the discrepancy of the image generated by DLSS 3 is quite
high.

6.7 Performance Analysis for High-Resolution Frames

In this area, the standard practice is to perform extrapolation at a
lower resolution (360p or 720p), and then use spatial supersampling
to increase the resolution of all the frames (original and generated).
All the prior works in this area [Guo et al. 2021; Wu et al. 2023a]
have done the same. Akin to PatchEX, they assume that the spatial
supersampling technique is orthogonal. Nevertheless, for gaining
valuable insights into the efficiency of our algorithm, let us evaluate
its effectiveness when we directly work with frames at a full-HD
resolution, i.e., 1080p. This is a thought experiment. We maintain the
same experimental setup and use the same evaluation metrics.

Fig. 13 shows that the extrapolated frames in this setting closely
match the ground truth. Table 13 reports the average PSNR, SSIM
and LPIPS values across benchmarks for various frame resolutions.
In the interest of saving space, we are not showing all the results.
However, a comparison with ExtraSS that has a built-in spatial su-
persampler was done. Representative results are shown in Table 13.

" (b) PatchEX

(c) ExtraSS

Fig. 13. Performance on high-resolution frames

Table 13. Performance of PatchEX in terms of average PSNR (dB), SSIM,
and LPIPS at various resolution levels.

Scene PatchEX ExtraSS

res. PSNRT  SSIMT LPIPS| PSNRT SSIMT LPIPS|
360p 36.67 0971  0.024 2470 0758  0.246
480p 3590  0.967  0.035 2298 0769 0258
720p 3623  0.963  0.019 2188 0747 0247
1080p 3625  0.969  0.026 2077 0718 0218

6.8 Sensitivity Analysis

To quantitatively validate the effectiveness of our foreground back-
ground segmentation, we compare our binary segmentation masks
with human visual saliency maps generated using MLNet [Cornia
et al. 2016], a state-of-the-art model trained to predict perceptual
sensitivity or human attention. We use Intersection over Union
(IoU) as the evaluation metric to measure how well our segmenta-
tion aligns with the predicted salient regions. Specifically, for each
frame in our diverse set of scenes, we compute the IoU between our
binary segmentation mask and the binarized MLNet saliency map
for various thresholds for motion and depth values. Our method
achieves a mean IoU of 0.71 when the foreground is defined using
a motion threshold of 0.1 (i.e., 10% of the maximum motion value,
which is 1 in our HDR linear range [0, 1]) and a scene depth thresh-
old of 0.8 (i.e., selecting pixels with depth values less than 80% of
the maximum). These thresholds correspond to our best-performing
setting, where foreground regions strongly align with salient areas
predicted by MLNet. To further validate the robustness of our seg-
mentation, we evaluate performance across a range of threshold
values:

e Motion thresholds: 0.05 (5%), 0.1 (10%), 0.2 (20%)
e Depth thresholds: 0.6 (60%), 0.8 (80%), 0.95 (95%)

These variations help us analyze how sensitive the segmentation
quality is to the choice of thresholds. As expected, thresholds that
are too lenient (e.g., motion > 0.05 and depth < 0.95) tend to over-
segment background regions, lowering IoU scores, while overly
strict thresholds (e.g., motion > 0.2 and depth < 0.6) may miss salient
parts of the foreground, also leading to suboptimal alignment. These
results quantitatively confirm that our segmentation strategy re-
liably targets perceptually important regions that closely match
human visual attention.

6.9 Failure Cases

While PatchEX produce plausible results in all the cases, our method
has a few limitations. Specifically, we do not incorporate a dedicated
algorithm for handling out-of-screen regions, which may impact
extrapolation quality near image boundaries, especially during rapid
global camera motion. Fig. 14 (top row) illustrates such a case, when
the camera moves quickly, noticeable artifacts appear near the image
edges. These are the areas that were previously out of the screen
and thus lack reference information from earlier frames. Moreover,
in scenes with highly complex geometries (e.g., dense foliage), our
method can produce visual artifacts at high resolutions. This is
shown in the bottom row of Fig. 14, where frames extrapolated at 4K
exhibit distortions that were not seen in lower-resolution outputs
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such as 1080p (see Fig. 13), indicating that our current network
design may not be fully optimized for spatial supersampling.

PatchEX 6T _PafchEX

P i

Fig. 14. Failure cases for our method.

7 CONCLUSION AND FUTURE WORK

With high-frequency displays becoming increasingly popular, gener-
ating frames for real-time applications at higher rates with superior
quality is necessary. Since applications are very demanding in terms
of processing power, even most GPUs cannot provide a consistently
high frame rate at an HD or 4K resolution. This work illustrates one
such method, PatchEX, that strives to provide the quality of interpo-
lation with the latency of extrapolation. We proposed a perceptually
guided neural network that adaptively processes foreground and
background regions using deformable convolutions. Furthermore,
to reduce the model size and inference time, we employed a novel
wavelet transform-based filter pruning approach that prunes re-
dundant filters. We achieved an improvement of 48.46% in quality
(PSNR) and 2.6X better runtime as compared to the nearest com-
peting work ExtraSS. As future work, we plan to develop a unified
framework that jointly addresses temporal extrapolation and spatial
supersampling, aiming to enhance both temporal consistency and
spatial fidelity in high-resolution frame generation.
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A APPENDIX
A.1  Performance of Various Warping Methods

In our scheme, we start with generating a quick estimate of the target
frame using a warping-based technique. Hence, let us characterize
different methods of warping. In Fig. 15, we present the results of
various warping techniques: traditional motion vector-based warp-
ing, occlusion motion vector-based warping and G-buffer-based
warping, in comparison to the ground truth. The results demon-
strate that both motion vector-based warping methods exhibit some
degree of ghosting, which affects the overall quality of the output.
However, in the case of G-buffer-based warping, ghosting is absent
but it leads to incorrect shading in the resulting frame. However,
as mentioned in Section 2.2, we use occlusion motion vector-based
warping in this paper.

A.2 Dataset

To demonstrate the effectiveness of PatchEX, we have created ded-
icated scenes featuring both camera motion and complex object
movements. Specifically, we introduce the following variations:

e Camera Motion: We incorporate two types of camera mo-
tion: (i) the camera tracking moving objects and (ii) the cam-
era following predefined linear trajectories (left, right, zoom
in, zoom out, tilt).

o Complex Object Motion: Our dataset includes objects per-
forming diverse, intricate motions such as hip-hop dancing,
push-ups, and ascending stairs.

e Variable Motion Speeds: To capture different motion dy-
namics, we systematically vary the speed of movement across
frames.

e Multiple Moving Objects: We include scenes with multiple
independent objects located at varying scene depths, moving
in different directions and at different speeds. These interac-
tions create high motion complexity and diverse disocclusion
regions as objects pass each other.

This ensures a more comprehensive evaluation of PatchEX in
various real-world motion scenarios.

A.3  LBP Computation

We compute LBP input on-the-fly during runtime using OpenCV
integrated into Unreal Engine. We use the basic 3 X 3 LBP oper-
ator, where each pixel compares its intensity with 8 surrounding
neighbors at a radius of 1, also known as LBP(8,1) [Ojala et al. 2002].
The RGB frame is first converted to grayscale, and then the LBP
is computed using a lightweight custom implementation based on
OpenCV’s primitives [Wagner 2011]. This computation runs in paral-
lel with the warping process using Unreal Engine’s multi-threading
capabilities to minimize overhead. Once computed, the LBP map is
passed as an input channel to the neural network, alongside other
inputs.

A.4 Variation in the Frame Rate

As highlighted in Section 1, visual artifacts such as screen tearing
and judder can occur even with a high refresh rate display. This is
often due to the irregular delivery of frames from the GPU. This
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section delves deeper into the variability of frame rates in real-world
applications. We conducted extensive experiments, measuring the
total rendering time for each frame in a scene with a single dynamic
object. By plotting these values over time (see Fig. 16), we observe
significant fluctuations in the FPS (frames per second) with some
frames taking considerably longer to render. The average FPS is
almost 29, while the standard deviation is 6.6, indicating that the
FPS values show considerable variability or spread around the mean.
This inconsistency leads to noticeable flickering, distracting viewers
and degrading image quality. Our findings underscore the necessity
of temporal supersampling to stabilize the frame rate, aligning it
more closely with the display’s refresh rate, and thus ensuring high-
quality, flicker-free images.

When a frame is being rendered, it passes through a series of
steps that form the rendering pipeline. To better understand the
reasons behind the high rendering time and variability, we con-
ducted a detailed analysis of the pipeline. We identified the top ten
high-latency steps that cause delays and plotted them in Fig. 17. The
plot shows that the ShadowDepths, BasePass, PrePass and Shadow-
Projections steps are the most time-consuming ones. These steps
involve complex calculations and require significant computing
resources, which can result in high rendering times.
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Fig. 17. Top 10 high-latency steps in the rendering process
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Fig. 15. Comparison of various warping techniques

Insight: For a real-world application, we achieve an average FPS of
29 with a standard deviation of 6.6. This is notably lower than the
typical 60 Hz refresh rate of most monitors, potentially leading to
visible stuttering or motion instability. This highlights the necessity
of using frame generation methods to ensure a smoother and more
stable visual experience.

A.5 Deformable Convolution

Recall that a standard convolution operation applies a fixed kernel
across an input feature map, computing the output at location py as:

Y(po) = D, W(pn) - X(po+pn), (1)
pne€R

where:

o R is the fixed receptive field of size K X K.

o W(pn) represents the convolutional weights.

e X(po + pn) is the sampled input feature at position pg + pn.
However, standard convolution is limited by its fixed sampling loca-
tions, making it less effective for capturing deformations in spatial
structures. Deformable convolution enhances standard convolution
by introducing **learnable offsets* Apj, allowing dynamic sam-
pling at adaptive locations:

Y(po) = ). W(pn) - X(po +pn +Apn). (12)
preR

Here, Apy, represents the offset at each sampling position, learned
via an additional **offset prediction** network:

Ap = fo(X), (13)

where fp is a convolutional layer that predicts offsets from input
features. Also, we apply deformation based on the motion vector and
adjust the offset scaling dynamically based on motion magnitude.

Specifically: Large motion — Larger receptive field (increased offset).
Small motion — Smaller receptive field (reduced offset).

A.6 Discussion with the Concurrent Work

Concurrent work, Mob-FGSR [Yang et al. 2024], also investigates
frame generation, with a focus on mobile platforms. They propose
a lightweight motion vector (MV) reconstruction method to per-
form extrapolation; however, this approach can lead to ghosting
artifacts in disoccluded regions. Furthermore, due to computational
constraints, Mob-FGSR does not account for shading variations,
which causes artifacts in visually critical elements such as shadows,
reflections, and transparent objects. In contrast, our method uses
an occlusion-aware MV-based warping strategy combined with an
inpainting network to address these challenges. While Mob-FGSR
prioritizes efficiency at the cost of visual quality, we achieve both
high quality and fast inference through a filter pruning-based com-
pression technique.
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