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Abstract

Trusted execution environments (TEEs) are an integral part of modern
secure processors. They ensure that their application and code pages are
confidential, tamper-proof, and immune to diverse types of attacks. In 2021,
Intel suddenly announced its plans to deprecate its most trustworthy enclave,
SGX, on its 11th and 12th generation processors. The reasons stemmed from
the fact that it was difficult to scale the enclaves (sandboxes) beyond 256
MB – the hardware overheads outweighed the benefits. Competing solutions
by Intel and other vendors are much more scalable, but do not provide many
key security guarantees that SGX used to provide, notably replay attack
protection. In the last three years, no proposal from industry or academia
has been able to provide both scalability (with a modest slowdown) as well
as replay-protection on generic hardware (to the best of our knowledge). We
solve this problem by proposing SecScale that uses some new ideas centered
around a read-first, verify-later approach, creating a forest of MACs (instead
of a tree of counters), and providing complete memory encryption (no generic
unsecure regions). We perform a rigorous security analysis in this paper and
show that TOCTOU (time- of-check time-of-use) attacks are not possible.
Furthermore, we demonstrate a 56% speedup over the nearest competitor
that provides the same degree of fault coverage.

Keywords: Trusted Execution Environments(TEEs), Enclaves, Hardware
Security

1. Introduction

The attacks on remotely executing software in both public and private
clouds are on the rise[1]. Along with software-based attacks, a large number
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Table 1: Commercially available TEEs. Note: TD refers to a virtualization-based trust
domain, Realm and World are equivalent to VMs; Unlim Encl refers to unlimited
enclaves i.e. having no restriction on the number of enclaves, Isolation Gran. refers to
the isolation granularity.

System Arch. Year Mem Integrity Freshness Unlim Scalable Isolation
Encryption Encl Gran.

ARM-TrustZone[4] ARM 2004 × ✓ × ✓ ✓ World
SGX-Client[5] Intel 2015 ✓ ✓ ✓ ✓ × Process
SGX-Server[6] Intel 2016 ✓ ✓ × ✓ ✓ Process
SEV[7] AMD 2016 ✓ × × × ✓ VM
SEV-ES[8] AMD 2017 ✓ × × × ✓ VM
SEV-SNP[9] AMD 2020 ✓ ✓ × × ✓ VM
ARM-CCA[10] ARM 2021 × ✓ × ✓ ✓ Realm
TDX[11] Intel 2023 ✓ ✓ × × ✓ TD
SecScale Intel 2024 ✓ ✓ ✓ ✓ ✓ Process

of physical attacks such as cold boot attacks and bus snooping are also being
mounted [2]. According to an IBM report[3], the cost of a data breach in
2023 was $4.5 million and 82% of the data breaches involved data that was
stored in the cloud.

To secure data and computation in any such remote framework, we need
to use a combination of encryption, message authentication codes (MACs),
and digital signatures, respectively, for ensuring the following four ACIF
properties: authenticity(A), confidentiality(C), integrity(I) and freshness(F).
Authenticity refers to the fact that the data was indeed written by the server’s
CPU; confidentiality uses encryption to prevent snooping; integrity prevents
tampering (using hashes and keyed hashes(MACs)) and freshness ensures
that data that was valid in the past is not being replayed. Table 1 shows a
list of all the major commercially available TEEs including Intel SGX.

Among all the commercially available TEEs listed in Table 1, now- depre-
cated Intel SGX[5] (Software Guard Extensions) is the only one that provides
all four ACIF guarantees in HW (referred to as SGX-Client). Third-party
software on SGX-Client used to run in a HW-managed enclave securely in
spite of a potentially malicious OS or hypervisor. However, this robust protec-
tion came at a heavy price. The performance overheads limited the enclave
size to 128-256 MB [12]. As a result, Intel decided to deprecate SGX-Client in
its 11th and 12th generation processors and supplanted it with SGX-Server1.

1Both SGX-Client and SGX-Server are terms that we introduce in this paper for the
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SGX-Server adopts a different mode of memory encryption and eliminates
time-hungry integrity (Merkle) trees altogether. It scales to 512 GB; how-
ever, this scalability comes at the cost of security – it is possible to mount
replay attacks [12, 13].

This has sadly impacted different industries and products quite adversely.
For example, ultra HD Blu-ray disks require the support of SGX’s digital
rights management (DRM) service[14]. They can no longer be played on
new Intel processors that only support SGX-Server[15]. There are similar
issues with DRM-protected PC games[16] and secure 4K video streaming
apps [17]. SGX-Client allowed these apps to run in an enclave and conse-
quently guarantee that the viewer wasn’t able to steal video content [18].
References [19, 20] contain a lot of examples of replay attacks in distributed
systems and software such as Ethereum and Bitcoin (attacks SGX-Client
could prevent).

There are two strands of contemporary work. The first has been adopted
by commercial silicon vendors who provide security solutions primarily for
VMs (virtual machines) [9, 21, 10]. The assumption is that the entire guest
VM is trustworthy, including its software stack [22]. In the second strand
of recent work, proposed in academia (and the focus of our research), two
proposals stand out. Dynamic Fault History-Based Preloading (DFP)[23] im-
plements a prefetching-based mechanism to improve performance and sup-
port larger enclaves. Whereas, Penglai[24] is a bespoke RISC-V system that
relies on caching parts of the integrity verification tree (Merkle tree) in a sep-
arate physical memory that has strict architecture-level access protections.
It, however, violates our fault model, where we assume that the attacker can
write to any location at will.

The insights in our work SecScale are as follows. We observe that the
read-first, verify later approach that we adopt in the case of secure enclaves
is very different from traditional approaches of forwarding unverified data
in computer architecture. In this case, there are no rollbacks, and if some
malicious data is forwarded, it is regarded as a catastrophic event that leads
to system shutdown. This allows us to create a TOCTOU-attack-free scheme
where data arrives at the CPU along with its encrypted key. The CPU
immediately starts to use the data, albeit with safeguards. It waits till the
corresponding MAC (encrypted hash) is verified. In SecScale, we use a low-

ease of explanation.
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depth MAC forest as opposed to a traditional tree of counters. This is because
counters make more sense in the case of block-wise encryption, whereas we
mostly rely on page-wise encryption in SecScale for encrypting most of the
memory space. The smaller tree height and the 8× lower storage overhead
make our design much more scalable. Owing to these design choices, we need
not have complicated page table management schemes as there are in prior
work. Our page management scheme is quite scalable and straightforward,
and it stops malicious accesses by privileged software as well.

The specific contributions in this work are as follows: 1 Design of a
scalable integrity protection mechanism, where we split the physical memory
space into two parts: a 128 MB region with a traditional Merkle tree, and a
512 GB region with a MAC forest. 2 A secure and low-overhead page table.
3 A novel execution scheme in which the data that arrives along with its
key is immediately forwarded before verification (with safeguards) and which
is immune to TOCTOU (time-of-check time-of-use) attacks. 4 A detailed
performance and scalability analysis of SecScale. The design scales to 512
GB. It is 56% faster than the nearest competing work that assumes the same
threat model.

§2 introduces the necessary background. §3 outlines the threat model,
§4 characterizes the benchmarks and related work, §5 presents the proposed
design, §6 shows a detailed performance analysis, §7 presents the related
work, and we finally conclude in §8.

2. Background of Intel SGX

Intel Software Guard Extensions (SGX [5]) creates secure execution en-
vironments known as enclaves. The enclaves are located within a dedicated
portion of a processor’s memory – the Enclave Page Cache (EPC) whose size
is between 128-256 MB. In SGX, only the on-chip components such as the
processors, caches, NoC and memory encryption engine (MEE) are assumed
to be secure. The external main memory is outside the protected domain
and it is assumed that any adversary can read/write any location at will.

Enclaves are created before invoking the trusted code during execution.
When we call a trusted function, secure execution starts within the en-
clave. Once the execution completes, the function returns and the context is
switched back. Subsequently, normal unprotected execution of the applica-
tion resumes.
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The OS manages the page tables and the TLBs. However, any update to
the TLB needs to be vetted by the SGX subsystem. Hence, a dedicated HW
circuit verifies the integrity of the contents of the secure page and also ensures
that no “secure” virtual address is mapped to an “unsecure” physical page
or vice versa using an inverted page table. When the EPC is full, we need to
evict a page, encrypt it and store it in the unsecure part of memory. Some
metadata corresponding to it such as the key used to encrypt it and its MAC
(keyed hash) are stored in the EPC. To reduce storage space, we can create
an eviction tree of such evicted pages that is similar to the classical Merkle
tree. Note that entering and exiting secure mode are expensive operations
(≈ 20-40k clock cycles [25, 5]). So is bringing back an evicted page to an
EPC, hence, EPC misses should be minimized.

2.1. SGX-Client: (10th Gen. Intel CPUs)

SGX-Client employs a memory encryption engine (MEE) [26], which is
an extension of the memory controller. To maintain the confidentiality of the
data, the MEE encrypts the data using Advanced Encryption Standard (AES)
counter-mode encryption[27, 28] (AES-CTR). The counter values correspond
to different data blocks of a page; whenever a data block is modified, its
counter is incremented by one (to stop replay attacks). The inclusion of these
counters in the encryption processs guarantees that effectively a new key is
used for every encryption of the same block. The integrity of the counters is
essential to the system as their correctness directly affects the system security.
Their integrity is ensured in SGX via MACs stored in memory and a Merkle
tree that aggregates the counters.

2.1.1. Integrity Verification using Merkle Trees

The leaf nodes of the Merkle tree store counters for the secure pages
(part of the EPC), and the internal nodes of the tree store the counters
for each of their child nodes. Additionally, each node stores the MAC of its
counters (encrypted hash), in such a way that a Carter-Wegman[29] style tree
is created – the MAC is generated by encrypting the hash of the counters in
the node using the counters in its parent node. The root node thus captures
the information of all the nodes in the tree. If there is a change in any
counter, it will get reflected at the root. We thus need to store the root
of the tree in the TCB ( Trusted Computing Base ) and for efficiency, we
can store additional nodes of the tree in the TCB such that the root need

5



not be updated on every write. The Merkle tree is sadly not a very scalable
structure and thus it became difficult to scale the design beyond 128 MB.

2.2. SGX-Server: (11th and 12th Gen. Intel CPUs)

Intel launched a new version of SGX (SGX-Server) along with its 3rd

Gen. Xeon Processors that scales to 512 GB. In SGX-Server, the physical
memory is encrypted using the AES-XTS (Advanced Encryption Standard
– Tweakable Block Ciphertext Stealing) [30] encryption engine. The basic
idea is that multiple keys are used to encrypt data.

Sadly, the freshness security guarantee is sacrificed – this makes replay
attacks possible[31]. This means that it is possible to replace the value in a
memory location along with its MAC with a pair of values that were seen
in the past. The processor will not be able to perceive that the memory
contents have been tampered with. Moreover, it is possible to say that the
value in a memory location is the same as that at a previous point of time –
the ciphertext will be the same. This is an important side channel that leaks
data. As a result, many users of SGX-Client haven’t been able to migrate
their systems to SGX-Server[12] – this has resulted in severe disruptions to
their business.

3. Threat Model

SecScale considers a threat model similar to that of Intel SGX [5]. We
include only the on-chip hardware components in the TCB, which includes
the cores, caches, NoC, MEE and the hardware circuits that we introduce
in SecScale. Other than these components, we only trust the code running
within the enclaves with regards to their own execution. The SGX enclaves
and standard cryptographic operations maintain confidentiality and detect
integrity violations. The hardware components outside the TCB, the privi-
leged software stack and other user applications including unrelated enclaves,
are considered to be untrusted [32]. Figure 1 displays the trusted and un-
trusted components in the system.

Similar to [25, 33], SecScale assumes that the attacker controls the system
software stack and can misuse its privileges to launch attacks such as observ-
ing and modifying the contents of memory addresses [34]. The attacker can
also mount physical attacks such as snooping on the memory bus or cold
boot attacks – observe and modify any memory location at will[35].

We identify the following properties (as seen in SGX-Client) that must
be satisfied to ensure robust security:
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Figure 1: Threat model

1. Property 1: The sensitive data stored outside the EPC can be ac-
cessed and decrypted only by its owner.

2. Property 2: The integrity of sensitive data outside the EPC (in ad-
dition to data inside the EPC) is ensured.

3. Property 3: We never write unverified data to permanent storage or
to I/O ports.

4. Property 4: The page table is not a point of vulnerability.

SecScale provides all four ACIF guarantees: authenticity, confidentiality,
integrity and freshness. It protects the system against replay attacks[36],
where the adversary may replace a data-block/MAC pair in memory. Sec-
Scale is immune to TOCTOU (time- of-check time-of-use) attacks [37, 38, 39]
(refer §6). Akin to SGX and similar TEE schemes, SecScale does not con-
sider side channel attacks (power, EM and cache), DoS attacks and at-
tacks that introduce errors in the computation based on laser pulses or
voltage spikes [40]. However, it is possible to incorporate the features of
other solutions that mitigate side-channel attacks in SGX like Mirage[41],
ScatterCache[42], Dr.SGX[43] and MoLE[44]. SecScale is compatible with
all these solutions and can be used along with them to make it immune to
side-channel attacks (refer §6).

4. Characterization

The aim of characterization is to determine the sources of performance
degradation in SGX system by characterizing the behavior of benchmarks
and baseline design.
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4.1. Setup and Benchmarks

We ran the SPEC CPU 2017[45] benchmarks and characterized their
performance on the different systems (standard practice while evaluating
TEEs). These systems are modeled and simulated in a cycle-accurate sim-
ulator, Tejas[46]. Table 2 shows the simulation parameters. We used an
algorithm similar to PinPoints [47] and SimPoints [48] to find the regions to
simulate in each workload, and then we weighted them appropriately [49] to
arrive at the final figures. We used Intel Pintools 3.21 [50].

Table 2: System Specifications

Processor
Parameter Value Parameter Value

Cores 1 Pipeline 4 Issue (Out of Order)
Caches

Cache Size Type Associativity
L1 I-cache 32 KB Private 8
L1 D-cache 32 KB Private 8
L2 cache 8 MB Shared 8

Counter cache 32 KB Shared 1
Memory

Parameter Value Parameter Value
Frequency 3.6 GHz Channels 2
Ranks 2 Banks 8
Ports 1 Port Type FCFS

Systems Modeled: We model two systems; Baseline, a vanilla design with
no security, and SGX, the SGX-Client system that implements a Merkle Tree
and a 128MB EPC. It guarantees all ACIF properties.

4.2. Observations

4.2.1. Performance Comparison
The performance (reciprocal of the simulated execution time) of SGX,

normalized with respect to the baseline system performance, for different
workloads is shown in Table 3. Compared to Baseline, SGX shows a very
high performance degradation (mean: 83%) due to the overheads associated
with traversing the Merkle tree and the EPC page fault penalties. The
normalized performance varies from 9%, in mcf, to 93%, in xalanc.
Sources of Performance Overheads: Let us separately analyze the impact of Merkle
tree traversal and EPC page fault servicing.

The performance of SGX, normalized w.r.t. the Baseline, with only the integrity tree
(Merkle Tree) overheads, is shown in Table 4 (Merkle-only). We assume a zero EPC page
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Table 3: Normalized Performance w.r.t. Baseline

Performance deepsjeng gcc leela mcf parest xalanc xz Avg.
SGX Overall 0.12 0.55 0.92 0.09 0.74 0.93 0.20 0.17

Table 4: Normalized performance of SGX w.r.t. Baseline – considering individual overhead
sources. (In Merkle-only, we assume EPC page fault overhead as ’0’, & in EPC-only,
we assume Merkle tree overhead as ’0’.)

Performance deepsjeng gcc leela mcf parest xalanc xz Avg
Merkle-only 0.56 0.92 0.99 0.87 0.98 0.99 0.67 0.83
EPC-only 0.13 0.58 0.92 0.09 0.75 0.93 0.23 0.18

fault penalty. The performance degradation varies from benchmark to benchmark, with
the average performance degradation being 17%. The degradation is the lowest in leela
and xalanc benchmarks with a performance degradation of only 1%. A higher level of
degradation is observed in the other benchmarks, with the highest degradation of 44%
in deepsjeng. The memory bandwidth overhead incurred by the Merkle tree depends on
the number of memory accesses and the memory access pattern. Benchmarks with more
number of memory accesses show a higher degradation in performance.

As the Merkle tree height increases (with increasing memory size), the number of ver-
ifications (memory accesses) required to ensure integrity of the counters increases. Using
a single Merkle tree to secure the counters for a large memory imposes significant memory
access overheads, rendering it unsuitable for large systems (which is why Intel abolished
the Merkle tree in SGX-Server). We must limit the integrity tree’s height to control the
overheads associated with memory access. Rather than a huge Merkle tree of counters,
we need a more efficient structure to make the design scalable.
Insight 1: Encrypting large secure memory using counter-mode encryption
with an integrity tree (Merkle Tree) fails to scale well, it rather imposes large
performance overheads.

The performance of SGX, considering only the effect of overheads incurred due to EPC
page fault handling is shown in Table 4 (EPC-only). We assume the overheads associated
with the integrity tree to be zero. The performance degradation is much more drastic due
to these overheads. The existing EPC page fault-handling mechanism is very costly and
takes a large number of cycles (≈ 40k cycles [25]) to complete. The entire page loading
process is slow because of all the DRAM reads, decryption and the updation of metadata –
this increases the length of the critical path. The lowest degradation is exhibited in xalanc
(7%), which is closely followed by leela (8%). The performance degradation, imposed by
EPC page fault handling alone, is as high as 91% in mcf.

4.2.2. Analyzing EPC Page Fault Overheads
To analyze the impact of EPC page fault penalties on the performance of the system,

we simulate the system with varying values of the EPC page fault penalty and observe
the difference in the performance (see Figure 2). The EPC page fault penalty has a direct

9



impact on system performance as it directly affects the latency of the critical path. The
overhead increases from 44% (5k cycles) to 83% (40k cycles) relative to the baseline.

Figure 2: Performance comparison for varying page fault penalties in SGX. Baseline is
the unsecure system, 5k, 10k, 20k, 30k and 40k refer to the variation in EPC page fault
penalties, respectively (unit: clock cycles). Conclusion: The page fault penalty directly
increases the latency of the critical path.

Since EPC page faults result in large performance overheads, we analyzed the fre-
quency of such events by computing the number of evictions per 1000 instructions in
different workloads (see Figure 3). We observe that the value is quite low in most cases:
on an average 0.2 evictions per 1k instructions. Insight 2: Although infrequent, these
EPC page faults have a huge impact on the system performance due to their
excessively high latency.

Figure 3: Evictions per 1k instructions for different workloads

4.2.3. Storage Overheads
In addition to the performance overheads that we saw earlier, the additional storage

overhead can be visualized in Figure 4. The overhead varies linearly with the memory size.
Over 8 GB of memory is required to store the counters for 512 GB memory. Extending
the Merkle Tree to add a leaf node counter (for a page in secure memory) may require
the addition of multiple nodes in the tree (parent nodes). Insight 3: Unrestricted
scalability, with freshness guarantees, can only be achieved if key management
adds modest storage overheads. There is a need to devise a more efficient mechanism
for providing freshness guarantees that scale to TBs of physical memory.

10



Figure 4: Storage overhead of using counters for guaranteeing freshness

Insight 1 Encrypting large memory using counter-mode encryption with
a Merkle Tree does not scale well and imposes large performance over-
heads as the size of secure memory increases.
Insight 2 The huge latency of EPC page fault management is the reason
why merely 0.02% of instructions (that cause EPC page faults) lead to
about 82% performance reduction in SGX. Reducing the wait time asso-
ciated with this latency is the key to reducing the latency of the critical
path.
Insight 3 The management of keys to provide freshness guarantees
should not lead to large storage overheads.

5. System Design

5.1. Overview
The design principle of SecScale revolves around the read first, verify later paradigm.

Our system supports enclaves that are capable of handling large workloads up till 512 GB
(similar to SGX-Server); the users get full ACIF security (similar to SGX-Client). In the
basic design, an unlimited number of enclaves are supported (total size: 512 GB). This is
achieved through efficient utilization of the pre-existing 128 MB EPC (part of SGX-Client)
to create an eEPC (extended EPC) region of 512 GB (hereby, named eEPC). The design
decisions are summarized in Table 5 (based on the characterization). The high-level design
of SecScale is shown in Figure 5.

5.2. MAC Forest for Integrity Verification
Instead of a classical hash-tree of counters/keys, we propose a MAC forest mainly

because a MAC is 64 bits in our system and a key is 256 bits (contains other information
as well). In the eEPC region of SecScale, 64-bit MACs are computed at the page-level by
a MAC Engine (ME) rather than at the block-level. These MACs are stored as the leaf
nodes in the MAC forest that has different arities at each level (total: 3 levels for 512
GB). We group p MACs at the leaf nodes to generate a single 8-byte parent MAC. For
higher levels, the arity is q. A part of the eEPC is reserved to store the internal nodes of
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Table 5: Design decisions based on insights derived from characterization and high-level
requirements (Section 4).

Insight 1: The Merkle tree restricts scalability.
Partition the physical memory into two regions: EPC and eEPC (‘e’ for
extended). The former is a small region that uses block-level encryption
and a Merkle tree for protecting counters (akin to Client-SGX). The latter
can scale to TBs and uses page-level encryption.
Insight 2: The EPC page fault penalty needs to be reduced.
Let the data from the eEPC region come to the processor along with
its key. Immediately start using the data (using safeguards) and start
the verification in parallel. Before writing to durable storage, verify all
outstanding reads.
Insight 3: The freshness guarantee in a scalable system requires
managing billions of keys.
In the eEPC, encrypt data at the page level, and store an encrypted key
for each page. Counters are not very relevant here because such pages are
infrequently accessed and the storage overheads are prohibitive.

Requirement 1: Make it easy to manage the page table and the
interaction with a possibly malicious OS.
If different enclaves (secure programs including the OS) have separate en-
cryption keys, then this can be easily achieved. However, this will increase
the size of a key because it needs to contain the enclave/process id as
well. Hence, to save space, verify the integrity by creating a MAC forest
as opposed to a single integrity tree comprising keys.

the subtrees in the MAC forest. The topmost level of these subtrees is securely stored in
the EPC (part of the TCB). The MAC forest structure is shown in Figure 6.

We retain the use of counters and the Merkle tree for protecting the EPC region
(akin to SGX-Client) with the same permission scheme as SGX-Client for accesses. In our
evaluated design, we consider a MAC forest consisting of subtrees with q = 3 (3-level tree)
and p = 16 × 8 (arity 16 at the lower level and 8 at the higher level). In this case, the
MACs of 16 pages will be grouped in the lower level to generate a MAC at the parent.
For the next level, we group 8 MACs to generate a parent MAC which is part of the top
most level of the forest. For 512 GB memory, we get a MAC forest with the topmost level
containing 220 MACs (securely stored in the EPC, 8 MB total storage space). By limiting
the levels of the subtrees we can contain the additional memory bandwidth required for
integrity verification (maximum of 4 additional accesses in our representative design).
MAC Verification Circuit (MVC): We implement a MAC verification circuit (MVC)
that is responsible for verifying the integrity of the pages within the eEPC region. The
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Figure 5: The high-level design of SecScale

MVC performs this verification when a page is loaded into the EPC. Note that we perform
deferred MAC verification – we do not halt the normal execution to wait for the outcome
of the verification process. It uses the SHA-2 algorithm to compute MACs (Throughput:
40 Gbps at 5.15 GHz frequency at the 7 nm tech. node).
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Figure 6: MAC forest with numerous subtrees. (ME refers to the MAC engine)

We observe in section 4 that the memory access overheads associated with the Merkle
tree restrict the system’s scalability. Table 6 shows how the increase in memory size affects
the characteristics of the Merkle tree and the MAC forest. The Merkle tree height increases
as the memory size increases, whereas the MAC subtree height is smaller (as shown in our
evaluated design). As the tree height increases, additional memory accesses are required
to verify the integrity of the counters in the system, thereby increasing the memory access
latency. As shown in our evaluated design, we limit the height of the subtrees in the MAC
forest, ensuring fast MAC verification. Moreover, SecScale takes MAC verification off the
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critical path to further improve system performance. The integrity verification latency
(on the critical path) is higher for systems with a large Merkle tree compared to SecScale,
which has a small Merkle tree limited to the 128 MB EPC region. Thus, by leveraging
a MAC forest of small subtrees to secure page-level MACs for the large eEPC region, we
restrict the size of the integrity trees and control the associated memory access overheads.

Table 6: Merkle tree (in previous designs) vs MAC forest (in SecScale) for systems with
large memory size.

Feature Impact of Large Memory Size
Merkle Tree MAC forest

Tree height High Limited by the design
(6 levels for 512 GB) (3 levels for 512 GB)

Memory accesses Higher Limited by the design
(for integrity verifica-
tion)

(up to 6 for 512 GB) (up to 4 for 512 GB)

Critical path la-
tency

Higher due to increased
tree height.

eEPC: MAC verification off the
critical path.
EPC: Latency controlled by us-
ing a small Merkle tree (4 levels
for 128 MB EPC region irrespec-
tive of the system memory size).

Storage overhead Higher Comparatively low
(Refer section 6) (8322.06 MB) for 512

GB
(1098.06 MB for 512 GB i.e 8×
lower)

The Merkle Tree and counters are limited to the EPC (like SGX-Client)
and the MAC forest is used for the eEPC region (with the MVC). This
enables us to limit the tree height and control mamory access over-
heads.(Property 2)

5.3. Full Memory Encryption
To protect the pages in the eEPC region, we use vanilla 256-bit AES-ECB encryption

with a few tweaks. Every page in the eEPC region is encrypted using a different encryption
key that is randomly generated every time a modification is made. This mechanism
effectively safeguards against replay attacks because keys are not reused (probabilistically).

We use a 256-bit key to encrypt every block in a page: hardware-specific (HW) key (64
bits), enclave ID (31 bits), bits generated by a pseudo random number generator (128 bits)
seeded by the boot time and HW key, physical address of the page in 512 GB memory (27
bits) and block address within the page (6 bits, used while encryption/decryption only).
We keep the PRNG component large because a new value needs to be created for every
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encryption. The components of the key excluding the block-specific 6 bits constitute the
page specific key, K. The block-specific address bits are extracted for every block of the
page and concatenated with K to generate the block-specific key kb, where b represents
the bth page block. This ensures that the keys used for encrypting each block of the page
are different. Thus, if the same data is stored in different memory blocks of the page,
different ciphertexts will be generated.

AES-ECB
Decryption

AES-CTR
Decryption

AES-CTR
Encryption

Extended EPC EPC

Memory Encryption Engine

AES-ECB
Encryption

Page eviction flow

Page loading flow

Figure 7: Encryption-decryption during EPC page eviction and loading

5.3.1. EPC – eEPC Page Transfer
The encryption-decryption process when a page is getting transferred from the EPC

to the eEPC is shown in Figure 7. It is triggered by an EPC page fault. When a page
is evicted from the EPC, the encrypted page is first decrypted using the AES-CTR mode
(SGX-Client), and then it is re-encrypted using the AES-ECB-256 mode with a secret key
generated by the MEE.

In the eEPC region, SecScale generates a new key every time the page is
written to. This guarantees freshness.

The page specific key, K, is then encrypted using a system-specific key SSK. The SSK
is a concatenation of a second device-specific key (128 bits) and a 128-bit number generated
at boot time. The SSK is stored in a dedicated register in the TCB. The block-specific
values in the key are extracted from the address at the time of cryptographic operations,
and only the randomly generated page specific key, K, is stored in the eEPC region. When
encrypting and sending the key to the eEPC, the block address within the page is set to
zero. The encrypted page and its encrypted key are then moved to the eviction region –
both are stored in the eEPC region.

A section of the physical memory called the Key Table stores all the encrypted keys
for each of the physical pages. Given that we have 239−12 (=128M) physical pages in
our system and each key is 32 bytes, we need 4GB of storage for storing the keys. This
translates to 0.8% overhead for storing the keys in physical memory. The advantage of
storing the keys in this manner is that we can easily locate the key for a page and fetch
it along with the evicted page when it is required in the EPC. Basically, an evicted page
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comes to the EPC along with its encrypted key. We trust the key for the time being till
verification. Thus, key storage and management overheads are effectively reduced while
maintaining key freshness. While bringing a page from the eEPC to the EPC region, a
reverse process is followed (as shown in Figure 7). First the page is decrypted using the
AES-ECB mode using the encrypted key read from the Key Table and then its blocks are
re-encrypted using the AES-CTR mode (within

The integrity of the keys in the Key Table are maintained as follows: Use
the page-key to encrypt the hash of the page and generate the MAC. The
key cannot be unilaterally changed (the MAC check will fail), the key and
the MAC cannot be replayed (the MAC check at the higher level will fail)
and another enclave cannot read or write the data (the MAC check will
fail because of the incorrect enclave ID). Higher-level MACs are created
by encrypting the hash with the SSK.

5.4. Optimization of the EPC Page Fault Handling Mechanism
Figure 8 shows the entire process of fetching a page along with its key, decrypting and

verifying it.

Page fault

Read key

Processing

Update
ESHR

Read 
remaining

page blocks

Re-encrypt 
evicted page 
(CTR to ECB)

Evict page

Read 
page block 

Page load 
in prgress?

Yes

No

MAC 
verification

by MVC

Figure 8: Handling EPC page faults

If there is no other concurrent EPC miss, this process continues without interruption.
Assume another EPC page fault occurs before this page is fully loaded (i.e., before all
the blocks of the mapped page have been loaded into the EPC). The current process of
loading the EPC page must be run in parallel while also processing the new request. We
need to first store the status of the ongoing eviction/loading process so that loading can be
resumed later from the current state. We introduce an additional hardware structure called
the ESHR Table to store this information regarding the page loading and eviction status.
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Each entry in the table is an Eviction Status Holding Register (ESHR). Subsequently, the
block of the new page along with its key are fetched into the EPC. Once it is fully loaded
we resume the process of loading the rest of the blocks of the page whose status was saved
in an ESHR.
ESHR Table To keep track of which page blocks are loaded in the EPC, we maintain a
64-bit load status vector (LS vector) in the ESHR. We have 64 bits because there are 64
blocks in a page. When a block is loaded into the EPC, its corresponding bit in the LS
vector is set to 1. Once all the blocks are loaded, the valid bit (V ) is reset. The required
page (LPage) is loaded in place of the corresponding evicted page (EPage) as indicated
in the ESHR. The eviction bit (E) is set to 1 if there is an eviction along with loading.

Memory Controller

LPage LS Vector

MEE ESHR Table

EPage V E

Extended-EPC

LPage: 4
 001010 1 14

EPC

EPage: 10

Block 0
Block 1
Block 2
Block 3

Block 0
Block 1
Block 2
Block 3

Load the third data block from 
page ID 4 to the page ID 10 in EPC 

Figure 9: Handling EPC page faults using the ESHR table

The ESHR table stores 32 entries. Each entry in the ESHR table contains five fields:
EPage represents the page ID of the evicted page; LPage represents the page ID of the
page that is being loaded (newly mapped); LS Vector is a 64-bit vector that indicates the
loading status of LPage; E-bit is an eviction bit indicating we need an eviction (of the
EPage); and V-bit is a valid bit indicating if the page is fully loaded or not. We present a
dummy example in Figure 9, where each page comprises four blocks. The page blocks in
the LPage, which are located in the eEPC are loaded to the EPC at the position pointed
to by EPage.
Execution Flow:

5.4.1. Read Path
When an EPC miss occurs for a read request, the data is fetched immediately from

the eEPC region as it lies on the critical path (Figure 8 shows the steps).

5.4.2. Write Path
A write request does not lie on the critical path. In case of an EPC miss for a write

request, we do the following: 1 If there are no other requests queued in the memory bus,
the write request proceeds as usual. 2 If a previous operation is still ongoing, an entry for
the request is made in the ESHR; the request is made to wait til the process completes.
3 If a read request arrives while this write is waiting, the read request is given higher
priority . Additionally, if the two requests are for a memory region covered by the same
subtree, they are grouped together such that for the higher level MACs of the subtree, a
single verification operation would suffice for both the requests.
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5.4.3. Verification Path:
The MAC verification of the newly mapped page is carried out concurrently by the

MVC, while the page blocks are being moved to the EPC. The execution flow is not
hindered by this process. Additionally, the remaining page blocks are loaded/evicted in
parallel, while verification and MAC computation are underway. Thus, while fetching data
from the eEPC, the execution can be restarted after just two memory reads (requested
page block and its key). This drastically reduces the latency of the critical path. As the
overhead incurred during EPC page faults is comparable to the overhead of fetching data
from the EPC itself, the overall impact of the large eEPC is very small.

5.4.4. Communication with the OS
We maintain a separate memory region with very few pages that has relaxed security

guarantees. This memory region is used for communication between trusted enclaves or
between an enclave and the untrusted OS. The enclaves use this memory as a scratchpad
for sending system call arguments and receiving data from the OS and other enclaves.
Similar to SGX-Client, this memory region can either have no security or it could be
encrypted with a session key.

5.5. Design Optimizations
MAC verification does not lie on the critical path, but it still accounts for DRAM

accesses. These accesses can delay regular accesses. They also increase DRAM power
consumption. Hence, there is a need to minimize such additional accesses.

5.5.1. Optimizing MAC Verification
We maintain a small cache in the TCB that stores r recently accessed top-level MACs

of the MAC forest (i.e., the roots of the recently accessed subtrees in the MAC forest).
Each MAC at the top level of the forest is the root MAC for a 512 KB memory region in
the eEPC region. This top-level MAC, which is stored in the EPC, needs to be retrieved
from the main memory while performing MAC verification of any of the pages belonging
to the region covered by this subtree root (defined as its subtree region). Hence, we reduce
one DRAM memory access by caching it.

5.5.2. Optimizing MAC Forest Updates
Updates to the MAC forest are required when pages are evicted from the EPC. The

page to be evicted is selected based on an LRU (least recently used) mechanism (state
stored in the EPC’s metadata, EPCM). We additionally store the ID of the page that
is next in line for eviction in an evict register (computation is off the critical path). If
both the currently evicted page and the next page to be evicted lie in the memory region
protected by the same subtree of the MAC forest, then the MAC updates to higher levels
of the subtree, for both the pages can be clubbed together – this reduces the number of
memory accesses at the higher levels of the MAC forest.
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5.5.3. Corner Cases
1 While the CPU execution using unverified data is in progress, if an I/O call occurs

or there is a write to any form of durable storage, the processor first waits for the MAC
verification to complete before taking any action.

2 Without waiting to pair a write with an eviction (for reducing DRAM writes), we
finish all verification operations as soon as possible.

The page table does not require significant modifications (discussed in Section 6.6.2).

5.6. SecScale Distinguishing Features
SecScale involves a fusion of multiple ideas that collectively represent a novel solu-

tion. We list the distinguishing features of our design that together constitute a unique
approach for providing secure and scalable TEEs.

• The read first, verify later approach takes integrity verification off the critical path
for eEPC region, significantly reducing the EPC eviction overheads.

• A fresh and unique key is generated for every encryption of every page in the secure
memory. The key arrives with the data when the page is accessed.

• A MAC forest of small height for integrity verification of the enhanced enclaves
(eEPC region) with a small Merkle tree for the 128 MB EPC region, limit memory
access overheads and critical path latency.

To the best of our knowledge, there is no work where the data arrives along with
its key, a MAC forest is used instead of a Merkle tree of counters, read first, verify later
approach is used in the manner described, and a low-overhead secure page table is created
for use in a TEE. SecScale offers a scalable and secure solution that provides all four ACIF
guarantees and efficiently secures systems with large memory.

6. Evaluation

We evaluate SecScale’s performance against that of SGX, as well as the other systems
in the domain, namely VAULT[25], Morphable Ctrs (Morphable Counters) [33], DFP[23],
and Penglai[24]. We simulate the systems in our cycle-accurate simulator, Tejas[46].

Table 7: Security Constructs of the Models Simulated

System Integrity Tree EPC

Baseline No No
SGX-Client Merkle Tree 128MB EPC
VAULT Merkle Tree No
Morphable Ctrs High-Arity Merkle Tree 128MB EPC
DFP Merkle Tree 128MB EPC
Penglai Mountable Merkle Tree No

Table 7 shows the security constructs of the systems. VAULT implements a large
Merkle Tree for the entire memory (512 GB). The whole memory can serve as the EPC.
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Morphable Counters implements a high-arity morphable Merkle Tree (128 arity) and 128
MB EPC. The high arity of the tree reduces its height (compared to VAULT). DFP has
a Merkle tree and a 128MB EPC, which is the same as SGX-Client. It additionally
implements a predictor that predicts page faults in the near future and prefetches the
pages. Penglai has a Mountable Merkle Tree (MMT), with a root tree and multiple
subtrees, that can support 512 GB of secure memory but does not have an EPC. It only
caches the 32 most recently seen subtree roots. For every LLC miss, multiple additional
memory accesses are required to retrieve the tree nodes for integrity verification.

6.1. Performance Analysis
Performance is proportional to the reciprocal of the simulated execution time. In most

workloads, the memory accesses are not very irregular. Hence, the frequency of EPC page
faults is low in general. The exceptions arise in the cases where the memory accessed
is very large and the pattern of page accesses is random. These benchmarks experience
an increased number of EPC page faults and incur a higher memory traffic overhead for
integrity verification. Consequently, the benchmarks with a larger number of page faults
will show a greater degradation in performance, as we can see in Figure 10.

Figure 10: Performance of different systems. (SecScale exhibits performance improvement
over all the systems.)

SGX exhibits a drastic degradation in performance compared to the baseline (83%).
Comparing the performance of the related work with that of SGX, we see that VAULT
and DFP show a 2% improvement in performance, and Penglai performs 49% better than
SGX. Morphable Counters, however, performs 2% worse than SGX. In 5/7 of the work-
loads, SecScale performs much better than all the others and exhibits the lowest degrada-
tion in average performance(24%) with respect to the baseline. On an average, SecScale
exhibits a 58% improvement in performance vis-a-vis SGX-Client. Additionally, it exhibits
a performance improvement of 56%, 60%, 56%, and 10%, over VAULT, Morphable Coun-
ters, DFP, and Penglai (respectively). A different version of SecScale, called SecScale vc,
where data is forwarded to the processor only after integrity verification is complete, was
implemented to analyze the system performance without employing the read first, verify
later approach. SecScale vc performs better than SGX and Morphable Counters for all
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the workloads. Its performance exceeds that of VAULT for gcc, leela, mcf, parest, xalanc
and xz by 30%, 18%, 8%, 43%, 10% and 7% respectively, and that of DFP for deepsjeng,
gcc and xz by 10%, 6% and 5% respectively. It performs better than Penglai for parest
benchmark. Its average performance degradation is 69%.

We observe that the average performance of DFP, VAULT, and Morphable Counters
is even worse than the version of SecScale that does not rely on the read first, verify later
strategy. Although VAULT does not have a limited EPC region (no EPC eviction), it
uses a single Merkle tree to protect the entire memory space. Morphable Counters utilizes
a high-arity tree to reduce the tree height. Even though these systems have explored
various enhancements on the Merkle tree, they do not successfully optimize memory access
overheads in large systems. These systems are specifically not designed to support a large
EPC size and thus underperform on many fronts. We cannot rely on one large Merkle tree,
like these designs do. SecScale overcomes the limitations of previous implementations and
enables large enclaves. To minimize memory access overheads, SecScale employs a MAC
forest (with several 3-level MAC subtrees) to protect the vast eEPC memory and a small
Merkle tree to secure the EPC region. In contrast to the previous solutions that leverage a
large Merkle tree, SecScale limits the height of the Merkle tree by restricting it to the EPC
region, and the small height of the MAC subtrees ensures fast completion of the MAC
verification (for eEPC pages). Thus, leveraging a MAC forest with small subtrees for the
eEPC region and a small Merkle tree for the EPC region proves to be an appropriate
design choice for a scalable solution. Furthermore, comparing the performance of the two
versions of SecScale, we can infer that the read first, verify later approach – leading to a
reduced wait time associated with EPC page fault management – is the key contributor
to the reduced execution time in SecScale.

6.2. Detailed Analysis

6.2.1. Impact of EPC Miss Rate on Performance
The EPC page fault rate, in terms of EPC misses (%) with respect to LLC misses is

shown in Figure 11. This map gives us an estimate of the spatial locality in the benchmark
suite. The benchmarks that access more memory pages are associated with a higher EPC
page fault percentage. The access pattern (randomness) of the pages also affects the EPC
page faults. The benchmarks with a high percentage of EPC misses with respect to LLC
misses like deepsjeng experience drastic degradation in performance (88% degradation
w.r.t. baseline in SGX) as shown in Figure 10. On the other hand leela, which has a
very low EPC miss rate w.r.t. to LLC misses, experiences a very low degradation (8%
degradation w.r.t. baseline in SGX).

6.2.2. Impact of Eviction Rate on Performance
Figure 12 shows the evictions per EPC miss for different models. The page access

pattern affects the eviction rate in the system.
The eviction rate is the same in both SGX and Morphable Counters, as their EPC

implementation is the same. Note that the number of evictions could be less than 1 if
we have already created space for the page using prefetching (like in DFP). Specifically,
the eviction rate varies (increases/decreases) in DFP, compared to SGX, because of its
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Figure 11: EPC miss % w.r.t. LLC misses for different benchmarks. (The benchmarks with
higher EPC miss rates (page faults) are the ones with a greater performance degradation.)

Figure 12: Evictions per EPC miss. (Eviction rate directly affects the extent of performance
degradation.)

predictions/mis-predictions. In deepsjeng and mcf, the evictions increase for DFP because
of mispredictions, whereas in xz, asynchronous preloading of correctly predicted faulting
pages reduces the evictions in the critical path. DFP, thus, shows better performance
than SGX in the case of xz even though both SGX and DFP impose the same penalty for
evictions. However, in SecScale, the system performs much better than SGX, Morphable
Counters and DFP in all the benchmarks (even though it has the same eviction rate as
SGX), including deepsjeng, mcf and xz with and improvement of 42%, 65%, and 35%
respectively, over SGX, because it drastically reduces the penalty associated with EPC
misses and evictions.

The page access pattern affects the integrity tree access overheads in every system. In
Penglai, it impacts the mountable Merkle tree (MMT) access overheads. The additional
bandwidth associated with integrity verification varies depending on this pattern, as can
be seen in the case of parest where it performs worse than SGX by 3% and DFP by 9%
even though it does not have an EPC (and EPC associated overheads). In VAULT, the
memory bandwidth overhead is very high due to the higher number of levels in the single
large integrity tree (for 512 GB memory) that it maintains. As such, its performance is
worse than SGX in 4/7 of the workloads (gcc, leela, parest and xalanc by 19%, 17%, 39%,
9% resp.). Morphable Counters performs worse than SGX in all the workloads. In the case
of SecScale, the Merkle tree protects the counters of only those pages that reside inside
the EPC, and therefore it has a fixed size. This ensures that the Merkle tree overhead is
minimized in SecScale. The result of these optimizations is evident in the performance
improvement seen in parest for SecScale (23% over SGX, 62% over VAULT, 37% over
Morphable Counters, 17% over DFP and 26% over Penglai).
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6.3. Proposed Optimizations for Reducing MAC Accesses
The MACs are accessed during the MAC verification and MAC update phases. These

processes require fetching MACs from different levels of the MAC forest (stored in mem-
ory). Although these accesses are not on the critical path, every memory access increases
DRAM traffic and DRAM power. We introduced optimizations in the design to reduce
the number of additional memory accesses required to perform these operations.

6.3.1. Optimizing MAC Updates
We club the MAC updates for the higher levels of the subtrees in the MAC forest

during consecutive evictions of pages that belong to the same subtree region. This reduces
the number of memory accesses required for updating the MACs in the higher levels of
the MAC forest. Figure 13a shows the frequency of clubbing of the updates observed in
our workloads (an average of 46% clubbing was observed). This plot depicts the spatial
locality in the benchmarks within a subtree region (512 KB memory region). Note that
clubbing of updates is possible only if consecutive pages fall in this region.

(a) (b)

Figure 13: (a) Frequency of clubbing (clubbing of updates is possible for the pages protected
by the same subtree.) (b) Top-level MAC cache hit rate.

6.3.2. Optimizing MAC Verification
We introduced a small cache in the TCB to store the 8 recently accessed MACs from

the top-most level of the MAC forest in the TCB. We attempt to leverage any locality
of accesses that might exist in the workloads for the pages secured by the subtrees of the
cached top-level nodes. This reduces the number of memory accesses required to retrieve
the top-level nodes from the EPC for MAC verification. Figure 13b shows the cache hit
rates in our design for various workloads. The average hit rate is 81.4%.

These optimizations leverage the temporal and spatial locality of EPC misses in order
to reduce the number of memory accesses to the higher level nodes in the MAC forest. If
we observe closely, both these figures show a similar pattern – they depict the extent of
locality in each workload. Comparing the pattern with DRAM traffic reduction (shown
in Figure 14), we see that the benchmark mcf that has a high MAC cache hit rate and
frequency of clubbing exhibits a larger decrease in DRAM traffic (24%), compared to
xalanx (16%) which has a low cache hit rate and clubbing frequency. We observe that
by employing both these optimizations, the overall additional memory accesses to retrieve
the MACs reduces by 23.5% in our workloads.
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Figure 14: Reduction in DRAM traffic due to optimizations for MAC accesses. (Result:
additional accesses reduced by 23.5% in our workloads.)

6.4. Extended Performance Analysis
We conducted additional simulations using custom workloads, representing VM-like

behavior, to extend our performance evaluation. A typical virtual machine (VM) can be
abstracted as a bag of processes running a full operating system and supporting multi-
tasking workloads, similar to a physical machine. The internal workings of these pro-
cesses—including memory mappings—remain invisible to the host system.

We aggregate different processes (SPEC 2017 Benchmarks) to form a bag of processes.
Each workload (WL) is composed of a distinct combination of processes. These workloads
are then run on the various systems to compare their average performance. Figure 15
shows the performance across all the systems.

Figure 15: Performance of different systems on Cloud-like Workloads. (SecScale exhibits
performance improvement over all the systems.)

The performance of different models varies for different workloads and depends on the
constituting processes in each WL. We compare the average performance of running the
different WLs on the various systems. SGX exhibits a performance degradation os 86%
compared to the baseline. The performance degradation for VAULT, Morphable Coun-
ters, and DFP is observed to be 87%, 93%, and 83%, respectively. We observe a lower
performance degradation for Penglai (42%). In 4/6 VMs, SecScale performs better than
all the others and exhibits the lowest average performance degradation (29%). SecScale
performs 57% better than SGX-Client. Additionally, it exhibits a performance improve-
ment of 45%, 51%, 41%, and 12% over Vault, Morphable Counters, DFP, and Penglai
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(respectively). SecScale vc (the SecScale version that doesn’t implement ‘read first, ver-
ify later’ approach) exhibits a better average performance (72% degradation) than SGX,
DFP, Vault, and Morphable Counters.

Table 8: Comparison of SecScale with Confidential Virtual Machines (CVMs). (MKTME
refers to Multi-Key Total Memory Encryption for encrypting private memory in each trust
domain (VM), SW refers to Software & HW refers to Hardware.)

Feature CVM (TDX) SecScale

Isolation Granularity VM VM & Process
TCB HW & SW HW

(On-chip HW components & (On-chip HW compponents)
SW Stack of Guest VMs)

ACIF Guarantees ACI ACIF
(No Freshness) (Key freshness: Merkle tree

for EPC & RNG for eEPC)
System Slowdown Lower Higher
(Compared to unse-
cure baseline)

(1.274) (1.418)

Enclave Count Limited by # MKTME keys Unlimited
(1 key per VM)

(62-63 in 4th and 5th Gen (No limit on #keys)
Intel Xeon Scalable processors)

Storage Overhead Higher Lower
(MAC Storage) (28 GB for 512 GB (1.07 GB for 512 GB

secure memory) i.e 26× lower than TDX)

6.4.1. SecScale vs Confidential Virtual Machines(CVMs)
To perform a comprehensive analysis, we compare SecScale with CVMs (Confidential

Virtual Machines) in Table 8. We analyze the trade-offs between CVMs (specifically Intel
TDX (Trust Domain Extensions)) and SecScale in terms of security, performance, and
resource usage. We modeled Intel TDX and simulated new workloads (representing VM-
like behavior) on both TDX and SecScale to evaluate performance slowdown. We ran
the different workloads on both systems and evaluated system performance relative to an
unprotected (baseline) system. The observed slowdowns with respect to the baseline were
1.274 for TDX and 1.418 for SecScale. While SecScale incurs a slightly higher slowdown, it
offers stronger security guarantees (satisfying all ACIF properties) and significantly lower
storage overhead (26× lower compared to TDX). Moreover, SecScale is a scalable design
that supports both process- and VM-level isolation and protection.

6.5. Sensitivity Analysis
The hyperparameters in our system comprise the number of levels and the arity of the

subtrees in the MAC forest, which are used during the integrity verification of the pages.
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We compute an 8-byte MAC for every 4 KB page. A 512 GB memory, contains 227 MACs
(1 MAC per page), which is the number of nodes in the lowest level of the MAC forest.
We set the hyperparameters – q and p – such that the performance overhead is minimized.
Subtree Level Analysis (q) As we have observed in SGX and Penglai, the number of
levels in the integrity trees/forests correlate very well with the memory access overheads.
Additionally, the number of levels also influence the storage overheads. Keeping both in
mind, we chose q as 3 because it maximized our performance.

Figure 16: Storage overhead of varying arity of subtrees in the MAC forest

Subtree Arity Analysis (p) The storage and maintenance of the MACs is another
concern for the MAC forest. The arity of the subtrees also dictates the number of memory
accesses required while verifying or updating the MACs in the subtree region. Thus, we
decide to keep the arity small. We set the arity of the higher level as half of that of the
lower level to reduce the frequency of updates in the higher level nodes. Additionally,
we plotted the the storage overhead for different values of the hyperparameter p (see
Figure 16). The storage overhead shows a sharp decline in the beginning after which the
descent is more gradual. We thus decided to select the arity close to the knee of the curve
and set it to 16 for the lower level and 8 for the level above it..

The total storage space required for our forest is 1096 MB (for all three levels of the
tree). Our Merkle Tree (for the EPC) has arity (32 × 32 × 32) and a size of 2.06 MB.
Thus, the combined storage overhead of both these structures for 512 GB memory in our
design sums up to 1098.06 MB. This is 8 times smaller than what the SGX-Client Merkle
Tree would require (8322.06 MB) for securing 512 GB memory.

6.6. Security Analysis
SecScale ensures robust security guarantees (ACIF) across the complete system. Note

that the EPC provides all four guarantees because it is a superset of SGX-Client. Let us
thus focus on the eEPC.
▶ Authenticity (A) For authentication of the enclave pages in the eEPC, the key specif-
ically contains an enclave specific enclave ID (enclave-level). This ensures that only the
enclave that owns the page can access it. The MAC check for any other enclave including
the OS will fail. They will not have a valid enclave id to construct the key that is needed to
access (read/write) the page and recompute the MAC for verification. We thereby ensure
the authenticity by cryptographic means. This satisfies Property 1.
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▶ Confidentiality (C) is guaranteed by encrypting the data using standard AES-CTR
mode encryption for the EPC and AES-ECB mode encryption for eEPC regions. This
ensures that only the writing enclave can decrypt and access the original plaintext data.
▶ Integrity (I) In order to protect the data integrity of the eEPC, we maintain page-
level MACs for each eEPC page. These MACs are protected with a multi-level MAC forest
whose top-level nodes are stored in the EPC. Hence, any integrity violation will be caught
in the MAC verification phase. The integrity of the Key Table (stored in the EPC) is
established using the key to encrypt the hash of the page and construct the lowest level
MAC. This satisfies Property 2.
▶ Freshness (F) is guaranteed by generating a new key every time a page is written back
to the eEPC. We use a PRNG to generate the new key along with a bunch of other fields.
We consider this to be secure enough given that we don’t expect the same key to repeat
in any practically relevant duration of time. However, if more security is desired then a
global counter can be used.

6.6.1. Secure Execution and Side Channel Defence
The nature of data forwarding (before verification) in SecScale is very different from

that in transactional memory systems or microarchitectural mechanisms such as branch
prediction. Any security violation in SecScale is a catastrophic event – the system im-
mediately shuts down. There are no rollbacks. The only way to exfiltrate data is if the
learned values are sent to another system or durable storage. We shall show that this is
not possible in our design.

Ti
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MAC Engine starts MAC 
verification of data

Requested data block 
read from EPC

Requested data is brought 
from the eEPC to EPC

MAC verification 
of data completes 

Computation proceeds 
with data read

Results may be written 
to caches and memory

Window of 
Vulnerability

Figure 17: Window of Vulnerability

We define the time interval between the time that the data is read and its MAC
verification is complete, as the window of vulnerability (as shown in Figure 17), which is
4.63 µs in our system. While the MAC verification is in progress, the I/O and network ports
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are disabled such that no unverified data is exfiltrated to other systems. Even if unverified
data is sent to another process that is running on the same system, it cannot send the data
to any external entity, nor can it write it to permanent durable storage. If the attacker
modifies the data along with its MAC to launch a replay attack corresponding to that
address, only the lower two levels of the 3-level MAC subtree can be modified. Limiting
the height of the MAC subtrees to 3 levels ensures a narrow window of vulnerability and
consequently fast MAC verification. Since detecting a security breach at the end of MAC
verification results in system shut down (no rollbacks), the corrupt data will never leave
the system. As such, even if we assume that the adversary learns something from such a
replay attack, there is no way to exfiltrate the data to an external entity, as we do not
allow an I/O call to begin unless all pending MAC verifications are completed across cores.
This satisfies Property 3. Thus, SecScale is protected against all such TOCTOU attacks
(time-of-check time-of-use). There is no need to adopt more complex taint-based solutions
as proposed in [51, 52].

SGX per-se is not immune to side-channel attacks. However, we can complement our
design by adding elements of other designs to make it immune to side-channel attacks.
For cache-based side channels, we can implement Mirage [41] or ScatterCache [42] that
randomize physical addresses. Mirage defends against conflict-based attacks by fundamen-
tally changing how cache evictions occur (like global random evictions, i.e., evicting from
any random line in the cache). It is deployed at the last-level cache (LLC) so attackers
can no longer learn victim access patterns via eviction set construction, which is the basis
of Prime+Probe–style attacks. ScatterCache changes how memory addresses are mapped
to cache sets. It utilizes the skewed-associative cache design, and each memory address is
mapped to cache sets using a keyed cryptographic function. Its integration is entirely at
the hardware cache controller level. The enclaves need no modification to implement either
of these mitigation techniques. To randomize virtual addresses and avoid attacks that try
to get the page-access sequence, we can use classic techniques over and above SecScale,
such as Dr.SGX[43] and MoLE[44]. They add a dedicated compiler pass to dynamically
randomize and re-randomize virtual addresses such that the page-access sequence cannot
be used to obtain worthwhile information.

NOTE: System shutdown during a security breach is a well-accepted standard ap-
proach that helps keep the data from being exposed to the attacker and minimizes the
effects of the attack. Intel SGX, for example, uses Asynchronous Enclave Exit (AEX) to
safely stop enclave execution upon detecting exceptions or integrity violations, thereby
protecting sensitive state. AMD SEV-SNP injects #VC exceptions and halts secure VM
execution if integrity checks fail. Similarly, other secure systems employ similar mecha-
nisms, like entering prevention modes and halting execution. Our approach aligns with
these industry precedents. Moreover, cloud-based systems are expected to have redun-
dancy, so a redundant system can ensure availability if one machine fails. The system
treats a severe violation as a terminal event, triggering a controlled shutdown. This min-
imizes both the exposure window and potential cascading effects.

6.6.2. Security Analysis of the Page Table
The page table needs to be protected in designs that have large unrestricted, unse-

cure memories or in cases where enclave isolation is not guaranteed (e.g. Intel SGX and
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Penglai). We argue that in SecScale, we do not need this kind of protection because of the
following reasons. Let us list the possible attacks that the OS can mount using the page
table as the via media.
A Secure → Unsecure Mapping: This is not relevant in our case because in our system
the entire memory is protected. However, this is a genuine problem in systems like Intel
SGX and ARM TrustZone as they have large unsecure memories.
B Unsecure → Secure Mapping: This cannot happen for the same reason as outlined in
the previous point.
C Secure → Secure Mapping: Another possibility is when the OS maps the secure page
of an enclave to the secure region of another enclave. The unauthorized enclave cannot
read or write the contents of the page since the enclave ID is a part of the key. The MAC
check will fail and this will be a catastrophic event. An OS can only create an enclave or
fully tear it down – it cannot access any page within it. For maintenance of enclave IDs,
we use the same system as SGX-Client. Thus, Property 4 is satisfied.
Shared Memory: A small unencrypted memory (other than the EPC and eEPC region)
is reserved for interaction with the OS and external components, which can be considered
the shared memory region. (In SGX, any memory outside the enclaves (EPC) is shared
and unprotected, while CVMs typically designate memory pages as private or shared[53,
54, 55]). Only the shared memory is utilized for communication with external entities
such as memory-mapped I/O (MMIO) or device direct memory access (DMA).
Data-Sharing between Enclaves: Direct enclave-to-enclave memory sharing (i.e., mapped
and hardware-encrypted) is not supported in SecScale (akin to SGX). When two enclaves
want to share data with each other, they can perform local attestation and establish a
protected secure channel. Further communication between the enclaves can take place
through this channel. The application is responsible for securing the data it shares with
the other enclaves.

Our security analysis shows that all the security properties specified as part of the
design are satisfied by SecScale. As such, it is evident that SecScale offers secure and
scalable TEEs.

7. Related Work

The size of the enclaves can be enhanced using two main approaches - by using bespoke
secure systems designed for server applications or by using certain optimization techniques
to enhance the enclave size (refer to Table 9).

7.1. Confidential Virtual Machines (CVMs)
Most state-of-the-art secure servers use a virtualization-based isolation mechanism to

enable large enclave support and provide virtual machine (VM) level isolation. Although
they extend the enclave to include the entire memory, they expand the trusted computing
base (which includes the guest VM, along with its software stack), affecting the system’s
vulnerability.

AMD’s SEV-SNP (Secure Encrypted Virtualization - Secure Nested Paging) [9] sup-
ports both main memory encryption and encrypted virtual machines (VMs). It does not
provide freshness or protection against some physical attacks – attacking the DDR bus
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Table 9: Comparison of related work. Note: Conf. refers to Confidentiality, Int. refers
to Integrity, Fresh. refers to Freshness, HW (excl.) refers to exclusively hardware based
security, Pg Fault Lat. Red. refers to reduction in EPC page fault management latency
and ‘-’ means not applicable.

Security Security Enclave
Components Features Enhancement

System Arch Conf. Int. Fresh. HW Standalone Scalable Pg Fault
(excl.) Security Lat. Red.

SGX-Client[5] Intel ✓ ✓ ✓ ✓ ✓ × ×
SGX-Server[6] Intel ✓ ✓ × ✓ ✓ ✓ ×
VAULT[25] Intel ✓ ✓ ✓ ✓ ✓ × -
Morphable Ctrs[33] Intel ✓ ✓ ✓ ✓ ✓ × ×
TDX[11] Intel ✓ ✓ × × ✓ ✓ -
SEV-SNP[9] AMD ✓ ✓ × × ✓ ✓ -
CoSMIX[56] Intel ✓ ✓ ✓ × ✓ × ×
DFP[23] Intel ✓ ✓ ✓ × ✓ × ×
Penglai[24] RISC-V ✓ ✓ ✓ × × ✓ -
ARM-CCA[10] ARM ✓ ✓ × × ✓ ✓ -
SecScale Intel ✓ ✓ ✓ ✓ ✓ ✓ ✓

while the VM is actively running. Additionally, it doesn’t inherently provide full disk en-
cryption. Intel TDX (Trust Domain Extensions)[11] provides security at the trust domain
(TD) level, which is built upon the existing virtualization infrastructure. Both SEV-SNP
and TDX expand the attack surface and do not protect the system against physical replay
attacks. Alternatively, SecScale provides robust security guarantees while enabling vast
enclaves, capable of supporting multi-tenant server workloads.

ARM’s recent Confidential Compute Architecture (ARM CCA)[10] is also based on
similar secure virtualization technologies. It introduces Realms, which enables isolated
memory for secure execution, and a page-locking mechanism to support large enclaves
(realms). However, CCA does not employ encryption and cannot defend against physical
attacks like cold boot attacks, live probing, or replay attacks. In contrast, SecScale provides
robust protection against such physical attacks through encryption and memory isolation,
while supporting huge enclaves.

7.2. Bespoke Systems
In VAULT [25], the entire memory can serve as the EPC, which helps avoid penalties

associated with EPC page faults. However, it implements a single Merkle Tree for the
entire memory region, which leads to a large Merkle tree. The tree height increases with
the memory size, leading to high memory access overheads. Although VAULT performs
better than traditional SGX designs, its scalability is limited. In contrast, the small Merkle
tree with the MAC forest in SecScale has very low overheads and is highly scalable. In
Table 6, we have highlighted the impact of large Merkle trees and compared them with
the MAC forest design of SecScale.
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Morphable Counters[33] implements a high-arity Merkle tree and can dynamically
change the size of selected minor counters based on the memory access pattern to reduce
expensive overflows. Although increasing the arity of the tree reduces its height, it is not an
optimal solution. Morphable Counters has a small EPC, resulting in huge EPC page fault
penalties that severely degrade the system performance. The single large Merkle tree and
EPC page fault penalties hinder its scalability. SecScale, however, offers a holistic solution
by taking a novel, multi-faceted approach. It makes use of a small Merkle tree and a MAC
forest along with the read first, verify later approach that together deal with the memory
access overheads (refer Table 6 for comparison between Merkle tree and MAC forest) as
well as the EPC page fault overheads.

A different approach is adopted in Penglai [24], which is a software-hardware co-
designed system that creates dedicated hardware augmentations on a RISC-V core. There
is one large EPC and its recipe for scalability is to mount sub-trees of the Mountable
Merkle tree (MMT) on demand. It caches few subtree roots in the TCB. In the event
of an LLC miss, if the MMT root is found in the MMT cache, then the counters can be
verified with additional memory accesses. However, if there is a miss, then the penalty is
quite large. Additionally, it relies on dedicated HW support to ensure that the memory
region that stores the MMTs is not tampered with. This is not possible to ensure in the
context of our threat model where we allow the attacker to modify any memory location
at will.

7.3. Enclave Enhancement via Memory System Optimizations
CoSMIX [56] proposes a software cache to store evicted EPC pages. It instruments

the application code such that accesses to enclave memory are replaced with accesses to
allocated memory buffers, which reduces EPC page faults and gives the illusion of having
enclaves with larger capacity. However, providing the same level of security in software as
hardware offers is not possible [23].

Liu et al. [23] (DFP) attempt to decrease the number of EPC page faults on the critical
path by prefetching pages into the EPC. They leverage sequential access patterns and use
a list-based prefetcher. This approach is ineffective when memory accesses are random,
and increased mispredictions could cause negative effects. Consequently, the accuracy of
the predictor is low.

8. Conclusion

We introduced three new ideas in this paper, which allowed us to solve a problem
that was known for a long time and had become a matter of great concern ever since
Intel deprecated SGX-Client in 2021. Sacrificing freshness is the industry standard today
mainly because providing it requires maintaining counters for every block and a Merkle
tree, which are not scalable by design. We leveraged the fact that the catastrophic nature of
a security verification failure can be used to take verification off the critical path. To ensure
immunity from TOCTOU attacks, we employ two safeguards – the system shuts down in
the event of an integrity verification failure, and all I/O calls are blocked until integrity
verification completes. The state-of-the-art has put its full might behind protecting the
integrity aspects of the key, such as the counters. However, we opt for a diametrically
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different approach, where a read arrives at the processor with a key that has supposedly
been used to encrypt it. This allowed us to create a MAC forest where we could verify the
integrity of the key and the data together in a delayed fashion. A MAC forest has a much
lower storage overhead than a Merkle tree and is a far more scalable alternative. These
ideas and some design optimizations to reduce DRAM accesses allowed us to achieve a
56% speedup over our nearest competitor, VAULT, and a 58% speedup over SGX-Client.
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