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Abstract—Temperature simulation is a classic problem in EDA,
and researchers have been working on it for at least the last
15 years. In this paper, we focus on fast Green’s function
based approaches, where computing the temperature profile is
as simple as computing the convolution of the power profile with
the Green’s function. We observe that for many problems of
interest the process of computing the Green’s function is the
most time consuming phase, because we need to compute it with
the slower finite difference or finite element based approaches.
In this paper we propose a solution, NanoTherm, to compute the
Green’s function using a fast analytical approach that exploits
the symmetry in the thermal distribution.

Secondly, conventional analyses based on the Fourier’s heat
transfer equation fail to hold at the nanometer level. To accu-
rately compute the temperature at the level of a standard cell, it is
necessary to solve the Boltzmann transport equation (BTE) that
accounts for quantum mechanical effects. This research area is
very sparse. Conventional approaches ignore the quantum effects,
which can result in a 25 to 60% error in temperature calculation.
Hence, we propose a fast analytical approach to solve the BTE
and obtain an exact solution in the Fourier transform space.

Using our fast analytical models, we demonstrate a speedup
of 7-668X over state of the art techniques with an error limited
to 3% while computing the combined Green’s function.

I. INTRODUCTION

For at least the last 15 years, the design community has
viewed on-chip temperature as one of the most important
criteria while designing a new SoC. High temperatures result
in several adverse effects. The reliability of the device is
negatively affected [1] and the carrier mobility is degraded,
resulting in poorer performance [1]. Moreover, the chip tem-
perature determines the leakage power. Finally, note that with
increasing power and transistor densities, the problem of high
on-chip temperatures is expected to get worse.

Different stages of the design process have different levels
of information available, and the requirements for thermal
optimization at each stage are different. For instance, at the
architecture level, standard cell information or package level
information such as the properties of the heat spreader and heat
sink may not be available. Hence designers make assumptions
about the missing information, and evaluate the design space
from a thermal point of view. After synthesis and standard
cell mapping, designers can conduct more accurate thermal
analyses to determine the nature of packaging and expected
on-chip temperatures for different workloads. The latter can be
conveyed to software and systems designers such that they can
optimize the system at their end. Over the entire design cycle,
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thousands of candidate designs have to be evaluated based
on the information available at each stage to determine the
optimal configuration. In such a case the speed of the thermal
simulation becomes a bottleneck in the design process [2], [3].
As a result, fast thermal estimation at all stages of the design
is necessary.

Many thermal simulators [4], [5], [6], [7] which are based
on the classical Fourier heat transfer equation exist in this
space. The fastest approaches use the Green’s function, which
is defined as the impulse response of a unit power source
(Dirac delta function) [5], [6], [8]. The main drawback of
many of the Green’s function based approaches is that they
rely on a traditional finite element or finite difference based
simulator to compute the Green’s functions [5], [6], [9]. If
the geometry of the chip or the boundary conditions change,
the Green’s function will have to be recomputed, making it a
very slow and time consuming process [3]. Moreover, as we
move down to smaller dimensions, at the nanometer scale, the
quantum effects become significant. Conventional approaches
do not take the quantum effects into account, and do a regular
analysis based on classical Fourier’s heat transfer equations.
It has been shown in [10], [11], [12] and in our analysis that
this leads to a 25 to 60% error in estimation. Particularly, in
the later stages of the design process, an accurate estimate
of temperature is needed at the nanometer scale for two
reasons: 1) to optimize the design of standard cells by taking
thermal effects into account, and 2) to design mixed-signal
blocks, where the analog functional units are highly sensitive
to temperature.

We address the drawbacks of existing works by proposing
NanoTherm.

1) We reduce an O(N?) problem to an O(N) problem,
and then use a Hankel transform based approach to solve the
traditional heat conduction problem using Fourier equations.

2) Using transform based approaches we derive an exact
analytical solution for the gray Boltzmann transport equation.
Our approach, NanoTherm, is 7-688 times faster than the state
of the art.

In Section II we introduce the relevant background and
related work. Then we discuss our methodology in Section III.
We proceed to Section IV to present the evaluation of our pro-
posed approach and the results obtained, and finally conclude
in Section V.



II. BACKGROUND AND RELATED WORK

A. Background of Heat Transfer

The classical Fourier equation is used to solve heat transfer
problems in solids. It does not model quantum effects and is
meant to be used in scenarios where the geometry is orders
of magnitude larger than the mean free path of phonons. It is
given by:

oT
Pca - kVQT = Quol, (1)

where, k is the thermal conductivity, p is the density, c is the
specific heat, and q,,; is the volumetric heat. The temperature
field is represented by 7, and time is represented by t.

This equation is typically solved using either finite el-
ement (FEM) or finite difference methods (FDM). In the
FEM technique, we divide a 3D region into small blocks,
and solve the heat transfer equation for each small block
by either finding an analytical solution, or by choosing a
function from a set of many trial functions that minimize the
residual error. These equations are then combined into a global
system of equations, which are solved using regular matrix
methods. In the case of the finite difference method, we replace
the differential equations with a set of algebraic equations.
They are similar to recurrence relations, and are solved using
linear algebra techniques. For example, we replace df (z)/dt
with (f(z + h) — f(z))/At, where At and h tend to 0. A
very important offshoot of finite difference methods comprise
techniques that model a temperature estimation problem as an
analogous electrical circuit simulation problem (HotSpot [4]
and 3D-ICE [7]).

1) Green’s Function based Techniques: Both the finite
difference and finite element methods require matrix inversion,
which is a slow process. A faster way of computing the thermal
profile is the Green’s function based technique [5], [6], [8].
A Green’s function is defined as the impulse response of a
unit power function. This can be obtained by applying 1 W
of power to a very small area (approximating the Dirac delta
function). The resultant temperature distribution is the Green’s
function, G. The advantage of this approach is that we can pre-
compute and store the Green’s functions, and then quickly use
them at runtime to compute the temperature profile for a given
power profile. This can be done as follows:

T =PxG, )

where, P is the power field, and x is the convolution
operator. There are many proposals [6], [5] that use Green’s
functions to speed up thermal estimation. However, these
techniques still rely on traditional FEM and FDM based
techniques to compute the Green’s function in the first place.
This is a very slow process. In situations where thousands of
geometries have to be evaluated, the time taken in computing
the Green’s function will dominate the total modeling time.
Hence, the main aim in this paper is fo very quickly compute
the Green’s function for a given geometry.
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2) Geometry of the Chip: Let us now look at the geometry
of a typical chip (shown in Figure 1a).

We have a layer of silicon that contains all the transistors.
Over that, we have a heat spreader, which is made of a high
thermal conductivity material. This helps spread the heat and
reduce the formation of thermal hot spots. Above the heat
spreader, we have a heat sink that has multiple fins to increase
the surface area. We can use an approximate model where we
remove the heat sink and substitute an isothermal layer in its
place; this is a standard approximation made by other authors
as well [8]. In any case, extending our model to include the
heat sink is trivial.

B. Boltzmann Transport Equation (BTE)

Atoms in a silicon substrate are arranged as a lattice.
Synchronized perturbation of groups of atoms from their
equilibrium positions is known as a vibration. The propagation
of this vibration is known as a lattice wave (also known
as phonons). This vibrational wave has a wavelength and a
velocity. From wave-particle duality, phonons also behave as
particles in the quantum mechanical sense. At the nanometer
scale, phonons play an important role in determining the
temperature distribution. Phonons are created because of ther-
mal fluctuations, and can be absorbed, or can get dispersed
while propagating through the silicon lattice. Hence, modeling
phonon creation and dispersion is crucial to estimate the
temperature at the nanometer scale. The distance that phonons
travel before losing their energy is of the order of several mean
free paths (~40-300 nm) [12]. When the dimensions under
consideration are smaller than the mean free path, the phonon
effects become significant. Hence, in modern day devices,
where the device feature size is lower than the mean free path
of phonons, modeling these effects is necessary to estimate
temperature accurately.

To model the nanometer scale phonon effects, we typi-
cally use the molecular dynamics method, ballistic-diffusive
method, or the Boltzmann transport equation. We shall focus
on the Boltzmann transport equation (BTE) because it is
relatively less computationally intensive and more accurate
than other methods [13]. They model the heat transfer by
modeling the scattering of phonons [14]. Specifically, we
consider the gray BTE model that assumes a single mean
frequency of phonons:
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where, e,, is the energy density function per unit solid angle,
V, is the group velocity of phonons, ¢ is the time, and @ is
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the volumetric heat generation. The term on the RHS models
the scattering of phonons [14].

C. Related Work

1) Green’s Functions: The most influential work in analyt-
ically computing the Green’s function has been done by Zhan
et al. [8]. They compute the Green’s function by dividing a
chip into multiple layers and solving the Fourier equation.
They assume that the Green’s function consists of a sum of
cosine based basis functions. Then they find the parameters
of these basis functions for different settings. This takes
O(N?log(N)) time primarily because the representation of
the Green’s function is generic, and the isotropic nature of
heat spreading is not exploited. Also, they have not modeled
the transient temperature profile. NanoTherm instead uses the
Hankel transform to solve the Fourier equation. This reduces
the complexity under consideration to O(N) by leveraging
the symmetry of the heat distribution. Our technique is also
capable of modeling the transient temperature distribution.
Other analytical Green’s function based techniques are not
capable of computing the transient temperature profile.

2) Fourier Analysis: In HotSpot [4], the authors divide the
volume into small blocks and create an equivalent electrical
circuit, and then solve it using matrix solvers. similar ap-
proach; and also models microchannels. All of these popular
tools solve the Fourier equation only.

3) Solutions of the BTE: Hua et al. [11] solve a different
variant of the BTE equation analytically, where they assume
that the relaxation time and the specific heat are dependent
on the frequency of phonons. We did not use this approach
because this increases the simulation time significantly, and
does not have commensurate gains in accuracy. Zahiri et al.
solve the gray BTE model by transforming the BTE equation
into a set of ordinary differential equations. Our approach gives
an exact solution in the Fourier transform space, and thus is
more efficient than solving a system of differential equations.
ThermalScope [10] is the most related work because it takes
into account both the Fourier and BTE models. It solves the
gray BTE model (similar to NanoTherm) at the nanometer
scale, and solves the Fourier equation at the level of the chip.
They solve the gray BTE model using FEM and the discrete
ordinate method (DOM). The slowest part of the algorithm is
the FEM-based analysis, making it orders of magnitude slower
than our approach.

III. MODELING METHODOLOGY

A. Fourier Analysis

1) Steady state: The Fourier’s heat equation is given by
Equation 1. Since we are solving at steady state and the prob-
lem under consideration is symmetric, the Fourier equation
will reduce to Equation 4 in cylindrical coordinates. We are
assuming that transistors are modeled as heat sources placed
at the bottom of a silicon sheet (same assumption as [8]).
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where [ is the layer number. In our case we have two layers.
The subscript 1 represents the silicon layer and 2 represents
the heat spreader layer (see Figure 1b). Our solution can be
easily extended to include more layers. Next we describe the
boundary conditions that we have considered for the chip.
Boundary conditions:
1) For a circular source of radius r,, the heat flux for |r| <
To 18 o, and for |r| > 7, the heat flux is zero.

aT‘l qo,
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2) Heat flux at the interface of the chip and the heat spreader
is equal. T T

w0 =2 ©)

z
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3) The temperature at the interface of the chip and the heat
spreader is equal.

for |r| <7y,

&)

otherwise

z2=0 z2=5

Ty (r, 2) =Ts(r, 2)

z=0
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4) The temperature at the top of the heat spreader is uniform
and it is maintained at the ambient temperature (7).

To(r, 2) =T, 8)

2=0+b

5) At large distances from the center, the temperature rise
is infinitesimally small, and can be considered as zero.

Tz(ﬂ Z)|7—>c>o -T,=0 &)

Hankel Transform: To solve Equation 4, let us use the
Hankel transform. A 1D Hankel transform is equivalent to
a 2D Fourier transform of an isotropic function in polar
coordinates. This reduces the complexity of the problem from
O(n?) to O(n). Now, let us simplify Equation 4.

2
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where V,, is zero order Bessel differential operator. Since we
are interested in the temperature rise, we subtract the ambient
temperature (7,) from 7}(r, z), and set it equal to ¢;(r, z):

o(ryz) =T(r,2) — T, (11)
Combining Equations 10 and 11 we get:
92
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We compute the zero order Hankel transform of both sides:

P _ o
5z =0 (13)
Here, — represents the Hankel transform. The solution for the

silicon plate and the heat spreader respectively are as follows:
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We apply the zero order Hankel transform to the boundary
conditions. Next we apply these transformed boundary condi-
tions to Equations 14 and 15 and solve for the constants. The
final solution is given by Equation 16.
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where J, and J; are the zero and first order Bessel functions
of the first kind respectively.

2) Transient Analysis: The analogous Fourier equation in
cylindrical coordinates is as follows:
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To remove the derivative with respect to time, we first compute
the Laplace transform of both sides of Equation 17, and after
that we compute the Hankel transform (similar to the steady
state analysis). We end up with a simple ordinary differential
equation (ODE).
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Here, boldface (¢) represents Laplace transform. The solutions
for the silicon plate and the heat spreader respectively are as

follows:

pi(s,0) =
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Applying the boundary conditions to Equations 19 and 20

and solving for constants, we get the temperature distribution
function for the silicon chip as given by Equation 21.
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k1p1(s, o) tanh(pa(s, 0)b) + kapa(s, o)
2D
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The integral of Equation 16 and 21 can be evaluated using
numerical integration techniques. The result is the Hankel
transform of the Green’s function. This can easily be converted
to a 2D Fourier transform given the equivalence of the Fourier
and Hankel transforms. This can subsequently be used to
compute the thermal profile.

B. Solution to the Boltzmann Transport Equations

1) Steady state: The gray Boltzmann equation is given by:

de Q
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TABLE I: Glossary
Full Form

Symbol Meaning

Thickness of the heat spreader
Thickness of the silicon die
Thermal Conductivity

Hankel domain

Laplace domain

Laplace Transform

Hankel Transform

Fourier Transform

Boldface
Overline
Overtilde
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The term in the RHS of Equation 22 comes from the
relaxation time approximation [12]. e is frequency independent
phonon energy density per unit solid angle, e, is the phonon
energy density, ) is the volumetric heat generation, and 7.y
is the effective relaxation time. The phonon energy density e,
follows Equation 23 [12].

. 1 1
60(7') = ECAT = EC(T — Tref), (23)

where C'is the specific heat at the reference temperature, T;.¢
is the reference temperature (computed by Fourier analysis),
and T is the lattice temperature. Here e and AT are unknown
variables and to relate them let us integrate Equation 22 over
all solid angles (47 steradians). The LH S of Equation 22 after
integration becomes:

OE

W + Vq - Qvolv

where E = [edQ, Q is the solid angle, E is the energy,
q = [V4.edQ is the heat flux, and Quo = [ Q/4mdQ is
the volumetric heat generation. Equation 24 is the energy
conservation equation, which must always be equal to zero.
Hence, the RH.S of Equation 22 (after integration) has to be
zero. We thus have:
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Putting the value of e, (Equation 23) into Equation 22, and
expanding V,.Ve, we have:

(24)

dQ=0

(25)
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At steady state % is equal to zero. Computing the Fourier

transform of Equations 26 and 25 and re-arranging the terms,
we get:

. C

5 AT—I—@Teff/C
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(27)

Here, ~ represents the Fourier transform, &;, , and &, are in
the spatial domain and ¢ is equal to v/—1. Putting Equation 27
into Equation 25, we thus have:

AT+éTeff/C

1
_ dQ2
47 /47r 1+ Acos i€, + Asin 6 cos ¢pi&, + Asin 0 sin ¢pi&y
(28)

AT




We convert the solid angle €2 into an azimuthal angle (¢)
and a polar angle (6). We assume: ;. = cos . We thus have:

AT =
AT + Qros/C dpds

1 27 1
E/O /—1 1+ Api&s + A/1 — p? cos i€y + Ay/1 — p? sin ¢i&y
(29)

Equation 29 can be solved analytically very easily. The
temperature distribution function for any arbitrary volumetric
power density is given by Equation 30.

-~ 0 L tan"H(A
AT = QTess _2e . El ) , (30)
where § =, /62 + &2 + &2 and A is the mean free path of the

phonon.

2) Transient analysis: The analogous transient BTE equa-
tion is given by Equation 26. This time we assume that g—f # 0.
We compute the Fourier transform of both sides of Equation 26
and after re-arranging the terms, we have:

™

AT+ @Teff/c
14 inTess + Acos0i€, + Asin 0 cos ¢pi&; + A sin 0 sin ¢i&y
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We compute the Fourier transform of Equation 25 and putting
Equation 31 into it, we have:

AT =
w/
47

Again we convert the solid angle 2 into an azimuthal angle
(¢) and a polar angle (¢) and assume p = cos 6.

AT 4 Q7eps/C X d

14 inTess + A cos0i, + Asin 0 cos il + A sin 0 sin ¢i&y
(32)

AT =
AT + Qref/C % dudé

1 2w 1
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(33)

Equation 33 can be solved analytically. The final tempera-
ture distribution function for any arbitrary volumetric power
density is given by Equation 34.

~ 1 —1 Ag
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where 7 is in temporal domain.
For detailed solution of the Fourier and the BTE model,
interested readers can refer to [15].

C. Combined Solution

We compute the base temperature profile of the chip by
convolving the Fourier Green’s function with the power profile
of the chip, and then we use this thermal profile to compute
the temperature of 1000 x 1000 nm? blocks using the BTE
based Green’s function (see Figure 2). This gives us the
temperature profile of regions of interest: standard cells, and

small functional units.
- }

Fig. 2: Fourier-Boltzmann framework
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1) Correction for Edges and Corners: The size of the
chip is finite; however, for simplicity, we assume it to be
infinite. This assumption results in an error in the calculation
of the Green’s function at the edges and the corners. To
overcome this problem, we calculate the Green’s function
beyond the boundary of the chip (extended Green’s function).
This extended Green’s function is then convolved with the
power profile to obtain an extended thermal profile. The profile
is then folded across the corners and edges to get the corrected
thermal profile, since the boundaries are adiabatic.

IV. EVALUATION
A. Setup

We run the simulations on an Intel i7 3"%generation proces-
sor based desktop with 8GB RAM running Ubuntu 18.04. For
validating our Fourier analysis results, we used a commercial
CFD simulator COMSOL (Version 5.3b), and we compare our
BTE solution against ThermalScope (available as ISAC2). The
Fourier solution was done in R (version 3.5.1), and the BTE
solution was done on Matlab 17b.

Error Metric: We have reported the root mean square
(RMS) value of the error for all the test cases. Where per-
centage errors are reported, these are relative to the maximum
temperature rise (similar to [7]). In ThermalScope the authors
report the average error (average error is always less than the
RMS error).

B. Fourier Analysis

We run the Fourier steady-state simulation for a chip with
a heat spreader on top of it. The chip and heat spreader
dimensions are 10 mm x 10 mm x 0.15 mm and 10 mm X
10 mm x 3.52 mm [9], [1] respectively. The conductivity of
silicon and the heat spreader is 150 W/mK and 256 W/mK
respectively (it is the effective conductivity of the heat spreader
and the TIM).

1) Steady State: Green’s function based full chip tempera-
ture calculation can be broken down into two parts [16], [6],
[9]:

1) Green’s function computation (offline)

2) Full chip thermal profile computation (online)



Green’s function: We have calculated the Green’s function
assuming the source to be a circle of finite radius applied at
the center of the chip (to exploit the symmetry of the thermal
distribution).

10mm 10mm

Fig. 3ga3a) Circular source (b) Squargb)source

However, the floorplan elements in a real chip are rect-
angular; they can only be discretized into small square grid
points. Thus we need a way of mapping these square grid
points to circular sources (for which we calculate the Green’s
function). For this, we take a circular source of equal area
as the square source. We sample the continuous Green’s
function at the centers of the grid points determined by
discretizing the chip into a grid. We have found that a grid
size of 0.2 mm provides sufficient accuracy for a chip of area
100 mm? or more (Figure 3). Similar discretizations were
found to be sufficient in [1]. The RMS error obtained by this
approximation is 0.023°C/, which is small enough compared
to the maximum temperature rise of 17°C' (maximum error
of 1.7%). Figure 4 shows the comparison of the calculated
Green’s function (using the circular source) against the Green’s
function obtained in COMSOL (using a square source of equal
area).
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Our implementation takes 0.082 s to compute the Green’s
function for a 10 x 10 mm? chip. We also calculated the
Green’s function using COMSOL for the same configuration,
and observed a simulation time of 305 s. Other Green’s
function based simulators such as LightSim [6], [9] and
PowerBlurring [1] depend on FEM based simulators for the
calculation of the Green’s function. If the geometry of the chip
or the boundary conditions change, the Green’s function will
have to be recomputed. In our work, since we analytically
obtain the Green’s function, our approach gives designers
the flexibility to experiment with the package, as there is no
dependence on any external tool.

Full Chip Thermal Profile: We computed the thermal
profile for four test cases (Figure 5 and 6). In the first two
test cases we discretized a 10 x 10 mm? chip into a 50 x 50
grid. Test cases 3 and 4 have been implemented to evaluate
our algorithm on two real floorplans.

Test Case 1: In this case, we have applied power sources at
the center and all corners of the chip. This represents one of
the worst case power profiles possible, since the corners and
edges contribute to a large part of the error in Green’s function
based approaches [1]. We obtained an RMS error of 0.046°C'
(maximum error 1.57%) compared to COMSOL (Figure 5b).
This verifies our corners and edge correction approach.

Test Case 2: This test case is similar to Test case 1, except
that the power densities are much higher here (2500 W/cm?).
We have used a very high power density figure to evaluate
our algorithm for extreme cases anticipated in next genera-
tion processors. An RMS error of 0.169°C' (maximum error
2.88%) was observed in comparison to COMSOL.

Test Case 3: We have further evaluated our algorithm
using the floorplan of a processor containing a single core of
Alpha21264 and an L2 cache. The dimensions of the processor
are 16 mm x 16 mm x 0.15 mm. The core has 15 functional
units. The power density of each functional unit is shown in
Figure 6a (obtained from HotSpot). The calculated thermal
profile of the chip is shown in Figure 6b. An RMS error
of 0.047°C (maximum error 3.2%) was observed against the
COMSOL model. This error is greater than that of test cases
1 and 2, since all the major sources have been placed along
an edge of the processor.

Test Case 4: We have also implemented a dual-core pro-
cessor in 45 mm technology based on the Intel Gainestown
architecture. Each core is divided into six sub-units, and
all cores share an L3 cache. The power density of each
block is shown in Figure 6c. The size of the processor is
11.2 mm x 11.2 mm x 0.15 mm. The calculated thermal
profile is shown in Figure 6d. An RMS error of 0.099°C'
(maximum error 1.9%) was observed against the COMSOL
model.

Runtime: The total runtime of the algorithm was 83.5 ms for
all the test cases (including the Green’s function computation
time). We need only 1.5 ms in the online stage to compute the
full chip temperature profile, by taking the FFT of the Green’s
function and the power profile and computing the inverse
transform of the product. To compute the same steady state
thermal profile, COMSOL requires 305 s. Thus NanoTherm
provides a speedup of 3652X over COMSOL.

2) Transient:: For transient analysis, we use the same
setup. The density of silicon and the heat spreader are
2330 kg/m? and 8960 kg/m? respectively, and the specific
heat values are 700 J/kg.K and 390 J/kg.K respectively.

Step response: We start with applying a 1 W step source at
the center of the chip. We calculated the step response of the
chip for 100 radial points and 40-time steps. The runtime of
the algorithm was 4.15 s (Note: 25% of the time is going in the
slow inverse Laplace transform routine of R). Also, NanoTh-
erm has been implemented in R whereas HotSpot and 3DICE
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tures

have been implemented in C++. R is several times slower than
C++, and hence, the implementation of NanoTherm in C++
or any other similar language would be faster. In comparison,
for calculating the same step response, COMSOL took 3005 s
(NanoTherm is faster by roughly 724X). Figure 8 compares
the accuracy of our transient simulation against COMSOL,
where the error is limited to 1%.

Full Chip Thermal Profile: We compute the transient ther-
mal profile of a 10 x 10 mm? chip for the power profile given
in Figure 11. The calculated thermal profiles at time instants
t = 0.01 ms, 2ms, and 4ms are shown in Figure 12, 13,
and 14 respectively. An RMS error of 0.057°C was observed
for t = 4 ms. A total simulation time of 4.2 s was observed.
To compute the same transient thermal profile COMSOL took

3005 s (speedup of 715.X).

C. BTE Analysis:

We compare the BTE steady state solution against the
Fourier steady state solution for a 60 nm x 45 nm X 20nm
channel FET. Solving the Fourier equation only results in a
maximum error of 1.59°C' or 53% (Figure 10), similar to [17].

1) Steady State: We run the simulation for steady state
BTE with a 60 nm x 45 nm x 20nm channel FET [10], [12].
A simulation time of 3.3 s was observed for 400 x 400 x 200
grid points. In comparison the steady state simulation in Ther-
malScope takes 36.76 min (speedup of 641.X). An RMS error
of 0.06°C' was observed against the ThermalScope. Figure 7

compares the results of NanoTherm and ThermalSc%pe. )
2) Transient: We used the same steady state configuration

for the transient simulation as well. A simulation time of 39.5 s
was observed for 200 time steps. We run the same simulation
with ThermalScope with the same meshing (as we had for
steady state) and the simulation time observed was 48.1 min.
An RMS error of 0.087°C was observed. Figure 9 compares
the result of NanoTherm and ThermalScope.

D. Simulation Speed

Table II summarizes the time needed to compute the tem-
perature profile for all cases (chip level and nanometer level,
steady state and transient) by popular commercial and open
source tools. The time taken by COMSOL to obtain the
steady state thermal profile was 305 s. Therefore our algorithm
is 3652X faster than COMSOL. We are 7X faster than
ThermalScope in calculating the transient Fourier solution. For
BTE solution, we are 668X faster than ThermalScope while
calculating the steady state profile and 73X faster in computing
the transient thermal profile.

TABLE II: Speed of popular simulators

Simulator Fourier heat eq BTE

Steady  Transient  Steady  Transient
Hotspot! 1s 36 s - -
3DICE 1.36 s 1.77 s - -
COMSOL 305 s 3005 s - -
ThermalScope  11.1 s 32.55 s 2206 s 2888 s
NanoTherm 0.083s 4.2s 3.3s 39.5s

I. For an acceptable accuracy in Hotspot and 3DICE, a grid size of
~ 128 x 128 is used.
2. HotSpot, 3D-ICE and COMSOL do not solve the BTE equations.

V. CONCLUSION

In this paper, we proposed a fast and analytical thermal
estimation technique that solves both the Fourier and BTE
equations using novel transform based approaches. As com-
pared to other tools that solve the Fourier equations, we are
at least 12X faster for steady state analysis, and within 3X
of the best tool for transient analysis. For the BTE based
analysis, our tool is 7-668X faster than the state of the art
tool, ThermalScope, with an error limited to 3%.
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