
Plan
Introduction

Building a Distributed System

Advanced Distributed Systems
Course Plan and Overview

Smruti R. Sarangi

Department of Computer Science
Indian Institute of Technology

New Delhi, India

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Outline

1 Plan

2 Introduction
Overview
Developing Distributed Systems: Pitfalls

3 Building a Distributed System
Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Lectures - I

Lecture Topic
1 Introduction and Structure
2 Communication – Client Server, RPC

Message Queue, Stream
3 Multicast Communication – Epidemic, Gossip
4 Naming : DNS, Chord
5 Naming : Pastry, Tapestry, LDAP
6 Physical Clock , Logical Clock, Totally ordered multicast
7 Mutual Exclusion Algorithms
8 Leader Election Algorithms
9 Consistency - I
10 Consistency - II
11 Fault Tolerance – Introduction, Log based recovery
12 Byzantine Fault Tolerance

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Lectures - II

Lecture Topic
13 Paxos
14 Distributed Commit
15 Security – Channels, Concepts
16 Security Applications – Kerberos

Diffie Helmann Key Exchange
17 Corba, EJB
18 AFS and NFS
19 Akamai and Corona
20 Dynamo and Voldemort
21 Coda, Fawn, and Google FS
22 Web Services
23 Dryad-LinQ

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Grading Scheme

Component Weightage
Attendance 10%
Midterm 15%
End term (take home) 25%
Programming Assignment 1 15%
Programming Assignment 2 15%
Programming Assignment 3 20%

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Outline

1 Plan

2 Introduction
Overview
Developing Distributed Systems: Pitfalls

3 Building a Distributed System
Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Distributed System: Definition

A distributed system is a piece of software that ensures that:

a collection of independent computers appears to its
users as a single coherent system

Two aspects:
1 independent computers
2 single coherent system ⇒ middleware .

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Goals of Distributed Systems

Goals
Making resources available
Distribution transparency
Openness
Scalability

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Distribution Transparency

Transp.
Description

Access Hides differences in data representation and invocation
mechanisms

Location Hides where an object resides
Migration Hides from an object the ability of a system to change that

object’s location
Relocation Hides from a client the ability of a system to change the

location of an object to which the client is bound
Replication Hides the fact that an object or its state may be replicated

and that replicas reside at different locations
Concurrency Hides the coordination of activities between objects to

achieve consistency at a higher level
Failure Hides failure and possible recovery of objects

Note
Distribution transparency is a nice a goal, but achieving it is a different story.

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Distribution Transparency

Transp.
Description

Access Hides differences in data representation and invocation
mechanisms

Location Hides where an object resides
Migration Hides from an object the ability of a system to change that

object’s location
Relocation Hides from a client the ability of a system to change the

location of an object to which the client is bound
Replication Hides the fact that an object or its state may be replicated

and that replicas reside at different locations
Concurrency Hides the coordination of activities between objects to

achieve consistency at a higher level
Failure Hides failure and possible recovery of objects

Note
Distribution transparency is a nice a goal, but achieving it is a different story.

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Degree of Transparency

Aiming at full distribution transparency may be too much

Users may be located in different continents

Completely hiding failures of networks and nodes is (theoretically
and practically) impossible

You cannot distinguish a slow computer from a failing one
You can never be sure that a server actually performed an
operation before a crash

Full transparency will cost performance , exposing distribution of
the system

Keeping Web caches exactly up-to-date with the master
Immediately flushing write operations to disk for fault toler-
ance

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Degree of Transparency

Aiming at full distribution transparency may be too much

Users may be located in different continents

Completely hiding failures of networks and nodes is (theoretically
and practically) impossible

You cannot distinguish a slow computer from a failing one
You can never be sure that a server actually performed an
operation before a crash

Full transparency will cost performance , exposing distribution of
the system

Keeping Web caches exactly up-to-date with the master
Immediately flushing write operations to disk for fault toler-
ance

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Degree of Transparency

Aiming at full distribution transparency may be too much

Users may be located in different continents

Completely hiding failures of networks and nodes is (theoretically
and practically) impossible

You cannot distinguish a slow computer from a failing one
You can never be sure that a server actually performed an
operation before a crash

Full transparency will cost performance , exposing distribution of
the system

Keeping Web caches exactly up-to-date with the master
Immediately flushing write operations to disk for fault toler-
ance

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Degree of Transparency

Aiming at full distribution transparency may be too much

Users may be located in different continents

Completely hiding failures of networks and nodes is (theoretically
and practically) impossible

You cannot distinguish a slow computer from a failing one
You can never be sure that a server actually performed an
operation before a crash

Full transparency will cost performance , exposing distribution of
the system

Keeping Web caches exactly up-to-date with the master
Immediately flushing write operations to disk for fault toler-
ance

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Openness of Distributed Systems

Open distributed system ⇒ Be able to interact with services
from other open systems, irrespective of the underlying en-
vironment:

Systems should conform to well-defined interfaces
Systems should support portability of applications
Systems should easily interoperate

Achieving openness ⇒ At least make the distributed system
independent from heterogeneity of the underlying environ-
ment:

Hardware
Platforms
Languages

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Openness of Distributed Systems

Open distributed system ⇒ Be able to interact with services
from other open systems, irrespective of the underlying en-
vironment:

Systems should conform to well-defined interfaces
Systems should support portability of applications
Systems should easily interoperate

Achieving openness ⇒ At least make the distributed system
independent from heterogeneity of the underlying environ-
ment:

Hardware
Platforms
Languages

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Scale in Distributed Systems

Observation
Many developers of modern distributed system easily use the adjective
“scalable” without making clear why their system actually scales.

Scalability – At least three components:

Number of users and/or processes (size scalability)

Maximum distance between nodes (geographical scalability)

Number of administrative domains (administrative scalability)

Observation
Most systems account only, to a certain extent, for size scalability. The
(non)solution: powerful servers. Today, the challenge lies in geograph-
ical and administrative scalability.

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Scale in Distributed Systems

Observation
Many developers of modern distributed system easily use the adjective
“scalable” without making clear why their system actually scales.

Scalability – At least three components:

Number of users and/or processes (size scalability)

Maximum distance between nodes (geographical scalability)

Number of administrative domains (administrative scalability)

Observation
Most systems account only, to a certain extent, for size scalability. The
(non)solution: powerful servers. Today, the challenge lies in geograph-
ical and administrative scalability.

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Scale in Distributed Systems

Observation
Many developers of modern distributed system easily use the adjective
“scalable” without making clear why their system actually scales.

Scalability – At least three components:

Number of users and/or processes (size scalability)

Maximum distance between nodes (geographical scalability)

Number of administrative domains (administrative scalability)

Observation
Most systems account only, to a certain extent, for size scalability. The
(non)solution: powerful servers. Today, the challenge lies in geograph-
ical and administrative scalability.

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Techniques for Scaling

Hide communication latencies – Avoid waiting for responses;
do something else:

Make use of asynchronous communication
Have separate handler for incoming response
Problem: not every application fits this model

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Techniques for Scaling

Distribution
Partition data and computations across multiple machines:

Move computations to clients (Java applets)
Decentralized naming services (DNS)
Decentralized information systems (WWW)

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Techniques for Scaling

Replication/caching
Make copies of data available at different machines:

Replicated file servers and databases
Mirrored Web sites
Web caches (in browsers and proxies)
File caching (at server and client)

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Scaling – The Problem

Observation
Applying scaling techniques is easy, except for one thing:

Having multiple copies (cached or replicated), leads to in-
consistencies : modifying one copy makes that copy differ-
ent from the rest.
Always keeping copies consistent and in a general way re-
quires global synchronization on each modification.
Global synchronization precludes large-scale solutions.

Observation
If we can tolerate inconsistencies, we may reduce the need for
global synchronization, but tolerating inconsistencies is applica-
tion dependent .

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Scaling – The Problem

Observation
Applying scaling techniques is easy, except for one thing:

Having multiple copies (cached or replicated), leads to in-
consistencies : modifying one copy makes that copy differ-
ent from the rest.

Always keeping copies consistent and in a general way re-
quires global synchronization on each modification.
Global synchronization precludes large-scale solutions.

Observation
If we can tolerate inconsistencies, we may reduce the need for
global synchronization, but tolerating inconsistencies is applica-
tion dependent .

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Scaling – The Problem

Observation
Applying scaling techniques is easy, except for one thing:

Having multiple copies (cached or replicated), leads to in-
consistencies : modifying one copy makes that copy differ-
ent from the rest.
Always keeping copies consistent and in a general way re-
quires global synchronization on each modification.

Global synchronization precludes large-scale solutions.

Observation
If we can tolerate inconsistencies, we may reduce the need for
global synchronization, but tolerating inconsistencies is applica-
tion dependent .

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Scaling – The Problem

Observation
Applying scaling techniques is easy, except for one thing:

Having multiple copies (cached or replicated), leads to in-
consistencies : modifying one copy makes that copy differ-
ent from the rest.
Always keeping copies consistent and in a general way re-
quires global synchronization on each modification.
Global synchronization precludes large-scale solutions.

Observation
If we can tolerate inconsistencies, we may reduce the need for
global synchronization, but tolerating inconsistencies is applica-
tion dependent .

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Scaling – The Problem

Observation
Applying scaling techniques is easy, except for one thing:

Having multiple copies (cached or replicated), leads to in-
consistencies : modifying one copy makes that copy differ-
ent from the rest.
Always keeping copies consistent and in a general way re-
quires global synchronization on each modification.
Global synchronization precludes large-scale solutions.

Observation
If we can tolerate inconsistencies, we may reduce the need for
global synchronization, but tolerating inconsistencies is applica-
tion dependent .

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Outline

1 Plan

2 Introduction
Overview
Developing Distributed Systems: Pitfalls

3 Building a Distributed System
Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Types of Distributed Systems : Structure

Centralized Layered

Unstructured Peer to Peer Structured Peer to Peer

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Types of Distributed Systems : Synchronous vs
Asynchronous

Definition
Synchronous System The requester waits for the response be-
fore placing other requests.

Definition
Asynchronous System The requester does not wait for the re-
sponse before placing other requests. One example of such
systems are publish/subscribe systems. A given set of nodes
subscribe for a service. When a node is ready to publish some
data, it looks up the list of subscribers and sends them mes-
sages.

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Developing Distributed Systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by
mistakes that required patching later on. There are many false
assumptions :

The network is reliable
The network is secure
The network is homogeneous
The topology does not change
Latency is zero
Bandwidth is infinite
Transport cost is zero
There is one administrator

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Developing Distributed Systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by
mistakes that required patching later on. There are many false
assumptions :

The network is reliable

The network is secure
The network is homogeneous
The topology does not change
Latency is zero
Bandwidth is infinite
Transport cost is zero
There is one administrator

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Developing Distributed Systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by
mistakes that required patching later on. There are many false
assumptions :

The network is reliable
The network is secure

The network is homogeneous
The topology does not change
Latency is zero
Bandwidth is infinite
Transport cost is zero
There is one administrator

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Developing Distributed Systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by
mistakes that required patching later on. There are many false
assumptions :

The network is reliable
The network is secure
The network is homogeneous

The topology does not change
Latency is zero
Bandwidth is infinite
Transport cost is zero
There is one administrator

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Developing Distributed Systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by
mistakes that required patching later on. There are many false
assumptions :

The network is reliable
The network is secure
The network is homogeneous
The topology does not change

Latency is zero
Bandwidth is infinite
Transport cost is zero
There is one administrator

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Developing Distributed Systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by
mistakes that required patching later on. There are many false
assumptions :

The network is reliable
The network is secure
The network is homogeneous
The topology does not change
Latency is zero

Bandwidth is infinite
Transport cost is zero
There is one administrator

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Developing Distributed Systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by
mistakes that required patching later on. There are many false
assumptions :

The network is reliable
The network is secure
The network is homogeneous
The topology does not change
Latency is zero
Bandwidth is infinite

Transport cost is zero
There is one administrator

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Developing Distributed Systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by
mistakes that required patching later on. There are many false
assumptions :

The network is reliable
The network is secure
The network is homogeneous
The topology does not change
Latency is zero
Bandwidth is infinite
Transport cost is zero

There is one administrator

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Overview
Developing Distributed Systems: Pitfalls

Developing Distributed Systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by
mistakes that required patching later on. There are many false
assumptions :

The network is reliable
The network is secure
The network is homogeneous
The topology does not change
Latency is zero
Bandwidth is infinite
Transport cost is zero
There is one administrator

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

Computation and Communication

Components of a distributed System
Nodes that run the distributed software. (Computation)
Communication network. (Communication)

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

Outline

1 Plan

2 Introduction
Overview
Developing Distributed Systems: Pitfalls

3 Building a Distributed System
Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

Computing Nodes

A compute node can either be a process or a thread

Thread
A thread is a light weight process that shares the address space
with other threads.

Process
A process is the runtime image of a program. It does not share
its address space.

We can use regular memory reads and writes to commu-
nicate across threads. However, inter-process communica-
tion requires OS intervention .
In practice, there are thousands of threads and processes
distributed across hundreds of sites.

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

Computing Nodes - II

Generic solution: Message passing across threads/processes.
Minimize shared data.
Fetch shared data through messages from a database.

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

Outline

1 Plan

2 Introduction
Overview
Developing Distributed Systems: Pitfalls

3 Building a Distributed System
Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

How do Nodes Talk to Each Other?

Distributed systems predominantly use application layer pro-
tocols.
This protocol layer is known as middleware .
They use standard sockets to send messages to other nodes.
Paradigms for sending messages

1 Synchronous vs Asynchronous
2 Transient vs Persistent

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

Middleware Layer

Observation
Middleware is invented to provide common services and proto-
cols that can be used by many different applications

A rich set of communication protocols
(Un)marshaling of data, necessary for integrated systems
Naming protocols , to allow easy sharing of resources
Security protocols for secure communication
Scaling mechanisms , such as for replication and caching

Note
What remains are truly application-specific protocols...
such as?

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

Outline

1 Plan

2 Introduction
Overview
Developing Distributed Systems: Pitfalls

3 Building a Distributed System
Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

Basic RPC operation

Application developers are familiar with a simple procedure model
Well-engineered procedures operate in isolation (black box)
There is no fundamental reason not to execute procedures on sep-
arate machines

Call local procedure
and return results

Call remote
procedure

Return
from call

Client

Request Reply

Server
Time

Wait for result

Conclusion
Communication between caller & callee can be hidden by using
procedure-call mechanism.

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

Basic RPC

Implementation
of add

Client OS Server OS

Client machine Server machine

Client stub

Client process Server process
1. Client call to

procedure

2. Stub builds
message

5. Stub unpacks
message

6. Stub makes
local call to "add"

3. Message is sent
across the network

4. Server OS
hands message
to server stub

Server stub
k = add(i,j) k = add(i,j)

proc: "add"
int: val(i)
int: val(j)

proc: "add"
int: val(i)
int: val(j)

proc: "add"
int: val(i)
int: val(j)

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

Basic RPC operation

1 Client procedure calls client stub.
2 Stub builds message; calls local OS.
3 OS sends message to remote OS.
4 Remote OS gives message to stub.
5 Stub unpacks parameters and calls server.

1 Server returns result to stub.
2 Stub builds message; calls OS.
3 OS sends message to client’s OS.
4 Client’s OS gives message to stub.
5 Client stub unpacks result and returns to the client.

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

RPC: Parameter passing

Parameter marshaling
There’s more than just wrapping parameters into a message:

Client and server machines may have different data repre-
sentations (think of byte ordering)
Wrapping a parameter means transforming a value into a
sequence of bytes
Client and server have to agree on the same encoding :

How are basic data values represented (integers, floats,
characters)
How are complex data values represented (arrays, unions)

Client and server need to properly interpret messages ,
transforming them into machine-dependent representations.

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

RPC: Parameter passing

RPC parameter passing: some assumptions
Copy in/copy out semantics: while procedure is executed,
nothing can be assumed about parameter values.
All data that is to be operated on is passed by parameters.
Excludes passing references to (global) data.

Conclusion
Full access transparency cannot be realized.

A remote reference mechanism enhances access
transparency:

Remote reference offers unified access to remote data
Remote references can be passed as parameter in RPCs

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

Asynchronous RPCs

Essence
Try to get rid of the strict request-reply behavior, but let the client
continue without waiting for an answer from the server.

Call local procedure

Call remote
procedure

Return
from call

Request Accept request

Wait for acceptance

Call local procedure
and return results

Call remote
procedure

Return
from call

Client Client

Request Reply

Server ServerTime Time

Wait for result

(a) (b)

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

Deferred synchronous RPCs

Call local procedure

Call remote
procedure

Return
from call

Client

Request
Accept
request

Server
Time

Wait for
acceptance

Interrupt client

Return
results Acknowledge

Call client with
one-way RPC

Variation
Client can also do a (non)blocking poll at the server to see
whether results are available.

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

RPC in practice

C compiler

Uuidgen

IDL compiler

C compiler C compiler

Linker Linker

C compiler

Server stub
object file

Server
object file

Runtime
library

Server
binary

Client
binary

Runtime
library

Client stub
object file

Client
object file

Client stubClient code Header Server stub

Interface
definition file

Server code

#include#include

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

Client-to-server binding (DCE)

Issues
(1) Client must locate server machine, and (2) locate the server.

Endpoint
table

Server

DCE
daemon

Client
1. Register endpoint

2. Register service3. Look up server

4. Ask for endpoint

5. Do RPC

Directory
server

Server machineClient machine

Directory machine

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

Outline

1 Plan

2 Introduction
Overview
Developing Distributed Systems: Pitfalls

3 Building a Distributed System
Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

Message-Oriented Communication

Transient Messaging
Message-Queuing System
Message Brokers
Example: IBM WebSphere

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

Transient messaging: sockets

Berkeley socket interface

SOCKET Create a new communication endpoint
BIND Attach a local address to a socket
LISTEN Announce willingness to accept N connections
ACCEPT Block until request to establish a connection
CONNECT Attempt to establish a connection
SEND Send data over a connection
RECEIVE Receive data over a connection
CLOSE Release the connection

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

Transient messaging: sockets

connect

socket

socket

bind listen read

read

write

write

accept close

close

Server

Client

Synchronization point Communication

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

Message-oriented middleware

Essence
Asynchronous persistent communication through support of
middleware-level queues. Queues correspond to buffers at com-
munication servers.

PUT Append a message to a specified queue
GET Block until the specified queue is nonempty, and re-

move the first message
POLL Check a specified queue for messages, and remove

the first. Never block
NOTIFY Install a handler to be called when a message is put

into the specified queue

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

Message broker

Observation
Message queuing systems assume a common messaging pro-
tocol : all applications agree on message format (i.e., structure
and data representation)

Message broker: Centralized component that takes care of
application heterogeneity in an MQ system

Transforms incoming messages to target format
Very often acts as an application gateway
May provide subject-based routing capabilities ⇒ Enter-
prise Application Integration

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

Message broker

Queuing
layer

Broker
program

Repository with

conversion rules

and programsSource client Destination client

OS OSOS

Message broker

Network

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

IBM’s WebSphere MQ

Application-specific messages are put into, and removed
from queues
Queues reside under the regime of a queue manager
Processes can put messages only in local queues, or through
an RPC mechanism

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

IBM’s WebSphere MQ

Message Transfer
Messages are transferred between queues
Message transfer between queues at different processes,
requires a channel
At each endpoint of channel is a message channel agent
Message channel agents are responsible for:

Setting up channels using lower-level network communica-
tion facilities (e.g., TCP/IP)
(Un)wrapping messages from/in transport-level packets
Sending/receiving packets

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

IBM’s WebSphere MQ

MCA MCAMCA MCA

MQ Interface

Stub Stub
Server
stub

Server
stub

Send queue

Program Program
Queue
manager

Queue
manager

Routing table

Enterprise network
RPC
(synchronous)

Local network

Message passing
(asynchronous)

To other remote
queue managers

Client's receive
queueSending client Receiving client

Channels are inherently unidirectional
Automatically start MCAs when messages arrive
Any network of queue managers can be created
Routes are set up manually (system administration)

Smruti R. Sarangi Advanced Distributed Systems

Plan
Introduction

Building a Distributed System

Computation
Communication
Remote Procedure Calls
Message-Oriented Communication

IBM’s WebSphere MQ

Routing

By using logical names , in combination with name resolution to local
queues, it is possible to put a message in a remote queue

SQ1SQ2

SQ1

SQ1
SQ1
SQ2

QMB
QMC
QMD

SQ1

SQ1
SQ1

SQ1

SQ2
SQ1

SQ1

SQ1
SQ1

QMA

QMA QMA

QMC

QMC
QMB

QMD

QMB
QMD

Routing table
Routing table

Routing table Routing table

QMB

QMC

QMA

LA1
LA1

LA1

LA2
LA2

LA2

QMC
QMA

QMA

QMD
QMD

QMC

Alias table
Alias table

Alias table

QMD

SQ1

SQ2

SQ1

Smruti R. Sarangi Advanced Distributed Systems

	Plan
	Introduction
	Overview
	Developing Distributed Systems: Pitfalls

	Building a Distributed System
	Computation
	Communication
	Remote Procedure Calls
	Message-Oriented Communication

