
9
Processor Design

Now, we are all set to design a basic processor for the SimpleRisc instruction set. We have
assembled the arsenal to design a processor as well as making it efficient by our study of assembly
languages, basic elements of a digital circuit (logical elements, registers, and memories), and
computer arithmetic.

We shall start out by describing the basic elements of a processor in terms of fetching
an instruction from memory, fetching its operands, executing the instruction, and writing the
results back to memory or the register file. We shall see that along with the basic elements
such as adders and multipliers, we need many more structures to efficiently route instructions
between different units, and ensure fast execution. For modern processors, there are two primary
design styles – hardwired, and microprogrammed. In the hardwired design style, we complicate
a simple processor by adding more elaborate structures to process instructions. There is a net
increase in complexity. In the microprogrammed design style, we have a very simple processor
that controls a more complicated processor. The simple processor executes basic instructions
known as microinstructions for each program instruction, and uses these microinstructions to
control the operation of the complicated processor. Even though the hardwired design style is
much more common today, the microprogrammed design style is still used in many embedded
processors. Secondly, some aspects of microprogramming have crept into today’s complex
processors.

9.1 Design of a Basic Processor

9.1.1 Overview

The design of a processor is very similar to that of a car assembly line (see Figure 9.1). A car
assembly line first casts raw metal into the chassis of a car. Then the engine is built, and put
on the chassis. Then it is time to connect the wheels, the dashboard, and the body of the car.
The final operation is to paint the car, and test it for manufacturing defects. The assembly

357

c© Smruti R. Sarangi 358

Figure 9.1: Car Assembly Line

line represents a long chain of actions, where one station performs a certain operation, and
passes on a half built car to the next station. Each station also uses a pool of raw materials to
augment the half built car such as metal, paint, or accessories.

We can think of a processor on the same lines as a car assembly line. In the place of a car,
we have an instruction. The instruction goes through various stages of processing. The same
way that raw metal is transformed to a beautiful finished product in a car factory, a processor
acts upon a sequence of bits to do complex arithmetic and logical computations.

Instruction
Fetch
(IF)

Operand
Fetch
(OF)

Execute

(EX)

Memory
Access
(MA)

Register
Write
(RW)

Figure 9.2: Five stages of instruction processing

We can broadly divide the operation of a processor into five stages as shown in Figure 9.2.
The first step is to fetch the instruction from memory. The underlying organisation of the
machine does not matter. The machine can be a Von Neumann machine (shared instruction
and data memory), or a Harvard machine (dedicated instruction memory). The fetch stage has
logical elements to compute the address of the next instruction. If the current instruction, is
not a branch, then we need to add the size of the current instruction (4 bytes) to the address
stored in the PC. However, if the current instruction is a branch, then the address of the next
instruction depends on the outcome and target of the branch. This information is obtained
from other units in the processor.

The next stage is to “decode” the instruction and fetch its operands from registers. Simp-
leRisc defines 21 instructions, and the processing required for different instruction types is very
different. For example, load-store instructions use a dedicated memory unit, whereas arithmetic
instructions do not. To decode an instruction, processors have dedicated logic circuits that gen-
erate signals based on fields in the instruction. These signals are then used by other modules
to properly process the instruction. The SimpleRisc format is very simple. Hence, decoding
the instruction is very easy. However, commercial processors such as Intel processors have very
elaborate decode units. Decoding the x86 instruction set is very complicated. Irrespective of

359 c© Smruti R. Sarangi

the complexity of decoding, the process of decoding typically contains the following steps –
extracting the values of the operands, calculating the embedded immediate values and extend-
ing them to 32 or 64 bits, and generating additional information regarding the processing of
the instruction. The process of generating more information regarding an instruction involves
generating processor specific signals. For example, we can generate signals of the form “enable
memory unit” for load/store instructions. For a store instruction, we can generate a signal to
disable register write functionality.

In our SimpleRisc processor, we need to extract the immediate, and branch offset values
embedded in the instruction. Subsequently, we need to read the values of the source registers.
There is a dedicated structure in the processor called the register file that contains all the 16
SimpleRisc registers. For a read operation, it takes the number of the register as input, and
produces the contents of the register as its output. In this step, we read the register file, and
buffer the values of register operands in latches.

The next stage executes arithmetic and logical operations. It contains a arithmetic and
logical unit(ALU) that is capable of performing all arithmetic and logical operations. The ALU
is also required to compute the effective address of load-store operations. Typically this part
of the processor computes the outcome of branches also.

Definition 57
The ALU (arithmetic logic unit) contains elements for performing arithmetic and logical
computations on data values. The ALU typically contains an adder, multiplier, divider, and
has units to compute logical bitwise operations.

The next stage contains the memory unit for processing load-store instructions. This unit
interfaces with the memory system, and co-ordinates the process of loading and storing values
from memory. We shall see in Chapter 11 that the memory system in a typical processor is
fairly complex. Some of this complexity is implemented in this part of the processor. The last
step in processing an instruction is to write the values computed by the ALU or loaded values
obtained from the memory unit to the register file.

9.2 Units in a Processor

9.2.1 Instruction Fetch – Fetch Unit

We start out by fetching an instruction from main memory. Recall that a SimpleRisc instruction
is encoded as a sequence of 32 bits or 4 bytes. Hence, to fetch an instruction we need the starting
address of the instruction. Let us store the starting address of the instruction in a register called
the program counter (pc).

Important Point 13
Let us make an important distinction here between the terms PC and pc. PC is an acronym

c© Smruti R. Sarangi 360

for “program counter”. In comparison, pc is a register in our pipeline, and will only be used
to refer to the register, and its contents. However, PC is a general concept and will be used
in the place of the term, “program counter”, for the sake of brevity.

Secondly, we need a mechanism to update the PC to point to the next instruction. If the
instruction is not a branch then the PC needs to point to the next instruction, whose starting
address is equal to the value of the old PC plus 4 (REASON: each instruction is 4 bytes long).
If the instruction is a branch, and it is taken, then the new value of the PC needs to be equal
to the address of the branch target. Otherwise, the address of the next instruction is equal to
the default value (current PC + 4).

pc

Instruction
 memory

4

branchPC

Fetch unit

control signal

1 - input 1
0 - input 0
Multiplexer

isBranchTaken

triggered by a negative
clock edge

32

32
32

inst

1

0

1

0

32

Figure 9.3: The Fetch Unit

Figure 9.3 shows an implementation of the circuit for the fetch unit. There are two basic
operations that need to be performed in a cycle – (1) computation of the next PC, and (2)
fetching the instruction.

The PC of the next instruction can come from two sources in SimpleRisc as shown in
Figure 9.3. We can either use an adder and increment the current PC by 4, or we can get

361 c© Smruti R. Sarangi

the address from another unit that calculates the branch target(branchPC), and the fact that
the branch is taken. We can use a multiplexer to choose between these two inputs. Once, the
correct input is chosen, it needs to be saved in the pc register and sent to the memory system
for fetching the instruction. We can either use a combined memory for both instruction and
data (Von Neumann Machine) or use a separate instruction memory (Harvard Machine). The
latter option is more common. The instruction memory is typically implemented as an array
of SRAM cells. The fetch unit provides the address in the SRAM array, and then uses the 32
bits stored at the specified starting address as the contents of the instruction.

Before proceeding to decode the instruction, let us make an important observation. Let us
list down the external inputs of the fetch unit. They consist of the (1) branch target(branchPC),
(2) instruction contents, (3) and the signal to control the multiplexer (isBranchTaken). The
branch target is typically provided by the decode unit, or the instruction execution unit. The in-
struction contents are obtained from the instruction memory. Let us now consider the case of the
signal to control the multiplexer – isBranchTaken. The conditions for setting isBranchTaken
are shown in Table 9.1.

Instruction Value of isBranchTaken

non-branch instruction 0

call 1

ret 1

b 1

beq
branch taken – 1
branch not taken – 0

bgt
branch taken – 1
branch not taken – 0

Table 9.1: Conditions for setting the isBranchTaken signal

In our processor, a dedicated branch unit generates the isBranchTaken signal. It first
analyses the instruction. If the instruction is a non-branch instruction, or a call/ret/b instruc-
tion, then the value of isBranchTaken can be decided according to Table 9.1. However, if the
instruction is a conditional branch instruction (beq/bgt), then it is necessary to analyse the flags
register. Recall that the flags register contains the results of the last compare instruction (also
see Section 3.3.2). We shall describe a detailed circuit for the branch unit in Section 9.2.4.

Let us refer to this stage of instruction processing as the IF (instruction fetch) stage. Before,
we proceed to other stages, let us slightly digress here, and discuss two important concepts –
data path, and control path.

9.2.2 Data Path and Control Path

We need to make a fundamental observation here. There are two kinds of elements in a circuit.
The first type of elements are registers, memories, arithmetic, and logic circuits to process data
values. The second type of elements are control units that decide the direction of the flow of
data. The control unit in a processor typically generates signals to control all the multiplexers.
These are called control signals primarily because their role is to control the flow of information.

c© Smruti R. Sarangi 362

We can thus conceptually think of a processor as consisting of two distinct subsystems. The
first is known as the data path that contains all the elements to store and process information.
For example the data memory, instruction memory, register file, and the ALU (arithmetic logic
unit), are a part of the data path. The memories and register file store information, whereas
the ALU processes information. For example, it adds two numbers, and produces the sum as
the result, or it can compute a logical function of two numbers.

In comparison, we have a control path that directs the proper flow of information by gener-
ating signals. We saw one example in Section 9.2.1, where the control path generated a signal
to direct a multiplexer to choose between the branch target and the default next PC. The
multiplexer in this case was controlled by a signal isBranchTaken.

We can think of the control path and data path as two distinct elements of a circuit much
like the traffic network of a city. The roads and the traffic lights are similar to the data path,
where instead of instructions, cars flow. The circuits to control traffic lights constitute the
control path. The control path decides the time of the transitions of lights. In modern smart
cities, the process of controlling all the traffic lights in a city is typically integrated. If it is
possible to intelligently control traffic to route cars around traffic jams, and accident sites.
Similarly, a processor’s control unit is fairly intelligent. Its job is to execute instructions as
quickly as possible. In this book, we shall study a basic version of a control unit. However, the
control unit will get very complicated in an advanced course on computer architecture.

Definition 58

Data Path The data path consists of all the elements in a processor that are dedicated to
storing, retrieving, and processing data such as register files, memories, and ALUs.

Control Path The control path primarily contains the control unit, whose role is to gener-
ate appropriate signals to control the movement of instructions, and data in the data
path.

A conceptual diagram showing the relationship between the control path and the data path
is shown in Figure 9.4. After this short digression, let us now move on to discuss the next stage
of instruction processing.

9.2.3 Operand Fetch Unit

SimpleRisc Instruction Format

Let us quickly recapitulate our knowledge about the SimpleRisc instruction format. The list of
SimpleRisc instructions is shown in Table 9.2 along with their opcodes, and instruction format.

SimpleRisc is a simple and regular instruction set. It has three classes of instruction formats
as shown in Table 9.3. The instruction formats are branch, register, and immediate. The add,
sub, mul, div, mod, and, or, cmp, not, lsl, lsr, asr, and mov instructions can have either the
register or the immediate format. This is decided by the I bit (27th bit) in the instruction.

363 c© Smruti R. Sarangi

Data path elements

Interconnection network

Control path

Figure 9.4: Relationship between the data path and control path

Inst. Code Format Inst. Code Format

add 00000 add rd, rs1, (rs2/imm) lsl 01010 lsl rd, rs1, (rs2/imm)

sub 00001 sub rd, rs1, (rs2/imm) lsr 01011 lsr rd, rs1, (rs2/imm)

mul 00010 mul rd, rs1, (rs2/imm) asr 01100 asr rd, rs1, (rs2/imm)

div 00011 div rd, rs1, (rs2/imm) nop 01101 nop

mod 00100 mod rd, rs1, (rs2/imm) ld 01110 ld rd, imm[rs1]

cmp 00101 cmp rs1, (rs2/imm) st 01111 st rd, imm[rs1]

and 00110 and rd, rs1, (rs2/imm) beq 10000 beq offset

or 00111 or rd, rs1, (rs2/imm) bgt 10001 bgt offset

not 01000 not rd, (rs2/imm) b 10010 b offset

mov 01001 mov rd, (rs2/imm) call 10011 call offset

ret 10100 ret

Table 9.2: List of instruction opcodes

Format Definition

branch op (28-32) offset (1-27)

register op (28-32) I (27) rd (23-26) rs1 (19-22) rs2 (15-18)

immediate op (28-32) I (27) rd (23-26) rs1 (19-22) imm (1-18)

op → opcode, offset → branch offset, I → immediate bit, rd → destination register

rs1 → source register 1, rs2 → source register 2, imm → immediate operand

Table 9.3: Summary of instruction formats

c© Smruti R. Sarangi 364

The cmp instruction does not have a destination register. The mov and not instructions have
only one source operand. For further details, the reader can refer to Table 9.2, or Section 3.3.

The Operand Fetch Unit

The operand fetch unit has two important functions – (1) calculate the values of the immediate
operand and the branch target by unpacking the offset embedded in the instruction, and (2)
read the source registers.

Computation of the Immediate Operand and the Branch Target

shift by 2 bits
and extend sign

pc

calculate
immediate

imm
inst[1:18]

immx

27 32

18 32

inst branchTarget

Figure 9.5: Calculation of the immediate operand and the branch target

Figure 9.5 shows the circuit for calculating the immediate operand, and the branch target.
To calculate the immediate operand, we need to first extract the imm field (bits 1-18) from
the instruction. Subsequently, we extract the lower 16 bits, and create a 32-bit constant in
accordance with the modifiers (bit 17, and 18). When no modifier is specified, we extend the
sign of the 16-bit number to make it a 32-bit number. For the u modifier, we fill the top 16
bits with 0s, and for the h modifier, we shift the 16-bit number, 16 positions to the left. The
newly constructed 32-bit value is termed as immx.

In a similar manner, we can compute the signal, branchTarget (branch target for all types
of branches excluding ret). We need to first extract the 27 bit offset (bits 1 to 27) from the
instruction. Note that these 27 bits represent the offset in terms of memory words as described
in Section 3.3.14. Thus, we need to shift the offset to the left by 2 bits to make it a 29
bit number, and then extend its sign to make it a 32-bit number. Since we use PC-relative
addressing in SimpleRisc , to obtain the branch target we need to add the shifted offset to the
PC. The branch target can either be derived from the instruction (branchTarget signal), as we
have just described, or in the case of a ret instruction, the branch target is the contents of the
ra register. In this case, the ra register comes from the register file. We choose between both
the values in the next stage, and compute branchPC.

There is a need to make an important observation here. We are calculating branchTarget
and immx for all instructions. However, any instruction in the SimpleRisc format will only
require at the most one of these fields (branchTarget or immx). The other field will have junk
values. Nevertheless, it does not hurt to pre-compute both the values in the interest of speed.
It is necessary to ensure that the correct value is used in the later stages of processing.

365 c© Smruti R. Sarangi

Reading the Registers

rs2

op1

op2

inst[15:18]

inst[23:26]

isSt Register
file

read port 1

read port 2

A D

A D

A

D

address
data

1

0

inst

isRet

1

0

rd

rs1
inst[19:22]

ra(15)

Figure 9.6: Reading the Source Registers

In parallel, we can read the values of the source registers as shown. Here, also we follow the
same strategy. We read more than what we require. Critics might argue that this approach
wastes power. However, there is a reason for doing so. Extra circuitry is required to decide if
a given operand is actually required. This has an adverse impact in terms of area, and time.
The operand fetch unit becomes slower. Hence, we prioritise the case of simplicity, and read
all the operands that might be required.

The circuit for reading the values of source registers is shown in Figure 9.6. The register
file has 16 registers, two read ports, and one write port (not shown in the figure). A port is a
point of connection (an interface) in a hardware structure, and is used for the purpose of either
entering inputs, or reading outputs. We can have a read port (exclusively for reading data), a
write port (exclusively for writing data), and a read-write port (can be used for both reading
and writing).

Definition 59
A port is a point of connection in a hardware structure, and is used for the purpose of
either entering inputs, or reading outputs. We can have a read port (exclusively for reading
data), a write port (exclusively for writing data), and a read-write port (can be used for both
reading and writing).

For the first register operand, op1, we have two choices. For ALU, and memory instructions,
we need to read the first source register, rs1 (bits 19 to 22). For the ret instruction, we need to
read the value of the return address register, ra. To choose between the contents of the field,
rs1, in the instruction and ra, we use a multiplexer. The multiplexer is controlled by a signal,
isRet. If isRet (is return) is equal to 1, then we choose ra, otherwise we choose rs1. This value

c© Smruti R. Sarangi 366

is an input to the register file’s first read port. We term the output of the first read port as op1
(operand 1).

We need to add a similar multiplexer for the second read port of the register file too. For
all the instructions other than the store instruction, the second source register is specified by
the rs2 (bits 15 to 18) field in the instruction. However, the store instruction is an exception.
It contains a source register in rd (bits 23 to 26). Recall that we had to make this bitter choice
at the cost of introducing a new instruction format. Since we have a very consistent instruction
format (see Table 9.3) the process of decoding is very simple. To extract different fields of the
instruction (rs1, rs2, opcode, and imm) we do not need additional logic elements. We need to
save each bit of the instruction in a latch, and then route the wires appropriately.

Coming back to our original problem of choosing the second register operand, we observe
that we need to choose the right source register – rs2 or rd. The corresponding multiplexer is
controlled by the isSt (is store) signal. We can quickly find out if the instruction is a store by
using a set of logic gates to verify if the opcode is equal to 01111. The result of the comparison
is used to set the isSt signal. The corresponding output of the register file is termed as op2
(operand 2).

rs1

rs2
 op2

inst[19:22]

inst[15:18]

shift by 2 bits
and extend sign

pc

calculate
immediate

imm
inst[1:18]

immx

(opcode, I bit)
inst[27:32]

Control
unit

Fetch unit Operand fetch unit Execute
unit

27 32

18 32

6

rd
inst[23:26]

isSt

re
g
.
o
p
e
ra

n
d
s

im
m

.
o
p
e
ra

n
d
s

Register
file

read port 1

read port 2

A D

A
D

A

D

address
data

inst

1

0

1

0

ra(15)
isRet

branchTarget

op1

Figure 9.7: Operand Fetch Stage

Lastly, it is necessary to send the opcode (5 bits), and the immediate bit (1 bit) to the
control unit such that it can generate all the control signals. The complete circuit for the
operand fetch unit is shown in Figure 9.7. op1, op2, branchTarget, and immx are passed to

367 c© Smruti R. Sarangi

the execute unit.

9.2.4 Execute Unit

Let us now look at executing an instruction. Let us start out by dividing instructions into
two types – branch and non-branch. Branch instructions are handled by a dedicated branch
unit that computes the outcome, and final target of the branch. Non branch instructions are
handled by an ALU (arithmetic logic unit).

Branch Unit

flags

flags.E

isBeq

flags.GT

isBgt

isUBranch

isBranchTaken

branchPC

branchTarget

op1
1

0

isRet

fr
o
m

 O
F

Figure 9.8: Branch Unit

The circuit for the branch unit is shown in Figure 9.8.
First, we use a multiplexer to choose between the value of the return address (op1), and the

branchTarget embedded in the instruction. The isRet signal controls the multiplexer. If it is
equal to 1, we choose op1; otherwise, we choose branchTarget. The output of the multiplexer,
branchPC, is sent to the fetch unit.

Now, let us consider the circuit to compute the branch outcome. As an example, let us
consider the case of the beq instruction. Recall that the SimpleRisc instruction set requires a
flags register that contains the result of the last compare (cmp) instruction. It has two bits
– E and GT . If the last compare instruction led to an equality, then the E bit is set, and
if the first operand was greater than the second operand then the GT bit is set. For the beq
instruction, the control unit sets the signal isBeq to 1. We need to compute a logical AND of
this signal and the value of the E bit in the flags register. If both are 1, then the branch is

c© Smruti R. Sarangi 368

taken. Similarly, we need an AND gate to compute the outcome of the bgt instruction, as shown
in Figure 9.8. The branch might also be unconditional (call/ret/b). In this case, the control
unit sets the signal isUBranch to 1. If any of the above conditions is true, then the branch is
taken. We subsequently use an OR gate that computes the outcome of the branch, and sets
the isBranchTaken signal. This signal is used by the fetch unit to control the multiplexer that
generates the next PC.

ALU

op1

op2

immx

ALU
(Arithmetic
logic unit)

s

isImmediate aluSignals

aluResult

A
LU

 a
n

d
 m

e
m

 i
n
st

s

1

0

A

B

Figure 9.9: ALU

Figure 9.9 shows the part of the execution unit that contains the ALU. The first operand
(A) of the ALU is always op1 (obtained from the operand fetch unit). However, the second
operand (B) can either be a register or the sign extended immediate. This is decided by the
isImmediate signal generated by the control unit. The isImmediate signal is equal to the
value of the immediate bit in the instruction. If it is 1, then the multiplexer in Figure 9.9
chooses immx as the operand. If it is 0, then op2 is chosen as the operand. The ALU takes
as input a set of signals known collectively as aluSignals. They are generated by the control
unit, and specify the type of ALU operation. The result of the ALU is termed as aluResult.

Figure 9.10 shows the design of the ALU. The ALU contains a set of modules. Each module
computes a separate arithmetic or logical function such as addition or division. Secondly, each
module has a dedicated signal that enables or disables it. For example, there is no reason to
enable the divider when we want to perform simple addition. There are several ways that we
can enable or disable an unit. The simplest method is to use a transmission gate for every
input bit. A transmission gate is shown in Figure 9.11. If the signal(S) is turned on, then the
output reflects the value of the input. Otherwise, it maintains its previous value. Thus, if the
enabling signal is off, then the module does not see the new inputs. It thus does not dissipate
any power, and is effectively disabled.

Let us consider each of the modules in the ALU one after another. The most commonly
used module is the adder. It is used by add, sub, and cmp instructions, as well as by load and
store instructions to compute the memory address. It takes A and B as inputs. Here, A and B
are the values of the source operands. If the isAdd signal is turned on, then the adder adds the
operands. Likewise, if the isSub signal is turned on, then the adder adds the 2’s complement of
B with A. In effect, it subtracts B from A. If the isCmp flag is turned on, then the adder unit
subtracts B from A and sets the value of the flags register. If the output is 0, then it sets the E

369 c© Smruti R. Sarangi

Adder

isAdd isSub isCmp

Multiplier

isMul

A

B

A

B

Divider

isDiv

A

B

isMod

Logical
unit

isOr isNot isAnd

Mov

isMov

B

flags
Shift
unit

isLsl isLsr isAsr

A

B

A

B

aluResult

Figure 9.10: ALU

S

S

Figure 9.11: A transmission gate

bit. If the output is positive, it sets the GT bit. If none of these signals (isAdd/isSub/isCmp)
is true, then the adder is disabled.

The multiplier and divider function in a similar manner. The multiplier is enabled by the
isMul signal, and the divider is enabled by the isDiv or isMod signal. If the isDiv signal is
true, then the result is the quotient of the division, whereas, if the isMod signal is true, the
result is the remainder of the division.

The shift unit left shifts, or right shifts A, by B positions. It takes three signals – isLsl,
isLsr, and isAsr. The logical unit consists of a set of AND, OR, and NOT gates. They are
enabled by the signals isOr, isAnd, and isNot respectively. The Mov unit is slightly special
in the sense that it is the simplest. If the isMov signal is true, then the output is equal to B.
Otherwise, it is disabled.

To summarise, we show the full design of the execution unit (branch unit and ALU) in

c© Smruti R. Sarangi 370

Figure 9.12. To set the output (aluResult), we need a multiplexer that can choose the right
output out of all the modules in the ALU. We do not show this multiplexer in Figure 9.12.
We leave the detailed design of the ALU circuit along with the transmission gates and output
multiplexer as an exercise for the reader.

op1

op2

immx

Execute unit

ALU
(Arithmetic
logic unit)

s

isImmediate aluSignals

flags

aluResult

flags.E

isBeq

flags.GT

isBgt

isUBranch

isBranchTaken

A
LU

 a
n

d
 m

e
m

 i
n
st

s

1

0

A

B

branchPC

branchTarget

op1
1

0

isRet

fr
o
m

 O
F

Figure 9.12: Execute Unit (Branch and ALU unit)

9.2.5 Memory Access Unit

Figure 9.13 shows the memory access unit. It has two inputs – data and address. The address
is calculated by the ALU. It is equal to the result of the ALU (aluResult). Both the load and
store instructions use this address. The address is saved in a register traditionally known as
MAR (memory address register).

Let us now consider the case of a load instruction. In SimpleRisc , the format of the load
instruction is ld rd, imm[rs1]. The memory address is equal to the immediate value plus the
contents of register, rs1. This is the value of aluResult. The memory unit does not require any
other inputs. It can proceed to fetch the value of the memory address from the data memory.
The memory unit reads 4 bytes starting from the memory address. The result (ldResult) is
now ready to be written to the destination register.

371 c© Smruti R. Sarangi

ldResult

aluResult
Memory unit

isLd isSt

Data memory

mar

mdr
32

32

32

mar

mdr memory
data reg.

memory
address reg.

op2

Figure 9.13: Memory Unit

The format of the store instruction is : st rd, imm[rs1]. The address is computed using
the ALU similar to the way the address is calculated for the load instruction. For the store
instruction, rd is a source register. The contents of register rd (reg[rd]) are read by the operand
fetch unit (see Section 9.2.3). This value is termed as op2 in Figure 9.6. op2 contains the contents
of register rd, and represents the data of the store instruction. The memory unit writes the
value of op2 to the MDR (memory data register) register. In parallel, it proceeds to write the
data to data memory. The store instruction does not have an output.

Note that here also we follow the same naming scheme as we had followed for PC and pc.
MAR is an acronym for (memory address register), whereas mar refers specifically to the mar
register in the data path.

Now, the memory unit takes two control signals as inputs – isLd, and isSt. For obvious
reasons, at most one of these signals can be true at any one time. If none of these signals is
true, then the instruction is not a memory instruction, and the memory unit is disabled.

A subtle point needs to be discussed here. MAR and MDR are traditionally referred
to as registers. However, they are not conventional edge triggered registers. They are used
like temporary buffers that buffer the address and the store values till the memory request
completes.

9.2.6 Register Writeback Unit

The last step of instruction processing is to write the computed values back to the register file.
This value can be the output of a load or ALU instruction, or the return address written by
the call instruction. This process is known as writeback, or register writeback. We refer to this

c© Smruti R. Sarangi 372

Register writeback unit

ldResult

aluResult32

32 result

isLd

read port 1

read port 2

write port
rd (inst[23:26])

A
D

A
D

A
D

Register file

isWb
E

A

D

address
data

E enable

10pc32
01

00

isCall

0

1
ra(15)

isCall

4

Figure 9.14: Register Writeback Unit

unit as the register writeback(RW) unit. Its circuit diagram is shown in Figure 9.14.

We first need to choose the right source operand. We have three choices – aluResult,
ldResult, or the return address. The return address is equal to the PC of the call instruction
plus 4. We use a multiplexer to choose between the three input values. We use two control
signals to control the multiplexer. The first control signal is isLd (is load), and the second
control signal is isCall. We choose aluResult, when both the control signals are 0. We choose
ldResult, when isLd = 1, and isCall = 0, and lastly, we choose PC + 4, when isCall is equal
to 1. The output of the multiplexer, result, needs to be written to the register file.

Note that we had shown a partial view of the register file when we discussed the operand
fetch unit in Section 9.2.3. We showed only two read ports. However, the register file has also
a write port that is used to write data. The write port has three inputs – address, data, and
enable bit. The address is either the number of the destination register rd or the id of the
return address register (15). The correct address needs to be chosen with a multiplexer. The
destination register is specified by bits 23 to 26 of the instruction. The second multiplexer
chooses the data that needs to be written. The output of this multiplexer is sent to the data
pins of the write port. Lastly, we need an enable signal (isWb) that specifies if we need to write
the value of a register. For example, the store, nop, and compare instructions do not need a
register writeback. Hence, for these instructions, the value of isWb is false. It is also false for
branch (excluding call) instructions. isWb is true for the rest of the ALU instructions, mov
and ld instructions.

373 c© Smruti R. Sarangi

9.2.7 The Data Path

pc

1

0

Instruction
memory

1 0

ALU fla
gs

Immediate and
branch target

Register
file

Branch
unit

Data memory Memory
unit

mar

isBeq

isBgt
isUBranch

pc + 4

rs1rs2rd

Instruction

1 0

immx
op2 op1

Control
unit

isSt

isImmediate

aluSignals

isLd

isSt

mdr

isWb

isBranchTaken
B A

1 0

ra(15)

isRet

0 1

isRet

01
isLd

data

rd

0010
4

isCall

ra(15)

0

1

pc

data

reg

Figure 9.15: A basic processor

Let us now form the whole by joining all the parts. We have up till now divided a processor
into five basic units: instruction fetch unit (IF), operand fetch unit (OF), execution unit (EX),

c© Smruti R. Sarangi 374

memory access unit (MA), and register writeback unit (RW). It is time to combine all the parts
and look at the unified picture. Figure 9.15 shows the result of all our hard work. We have
omitted detailed circuits, and just focused on the flow of data and control signals.

Every clock cycle, the processor fetches an instruction from a new PC, fetches the operands,
executes the instruction, and writes the results back to the data memory and register file. There
are two memory elements in this circuit namely the data and instruction memory. They can
possibly refer to the same physical memory structure, or refer to different structures. We shall
have ample opportunities to discuss the different schemes in Chapter 11.

The main state elements of the processor are the following registers: pc, and flags registers,
and the register file. We can optionally add mar and mdr registers with the memory unit. Note
that they are strictly not required in our simple version of the processor. However, they shall
be required in advanced designs where a memory request can possibly take multiple cycles. We
shall also require them in our microprogrammed processor. Hence, it is a good idea to keep
them in our basic design.

Note that most of the sets of wires in the data path have a top-down orientation i.e., the
source is above the destination in Figure 9.15. There are two notable exceptions. The source of
these wires is below the destination in Figure 9.15. The first such exception is the set of wires
that carry the branch target/outcome information from the execute unit to the fetch unit. The
second exception is the set of wires that carry the data to be written from the register writeback
unit to the register file.

We need to lastly note that the magic of a processor lies in the interplay of the data path
and the control path. The control signals give a form to the data path. The unique values of
the set of all the control signals determine the nature of instructions. It is possible to change
the behavior of instructions, or in fact define new instructions by just changing the control unit.
Let us take a deeper look at the control unit.

9.3 The Control Unit

Table 9.4 shows the list of control signals that need to be generated by the control unit along
with their associated conditions. The only control signal that is not generated by the control
unit is isBranchTaken. This is generated by the branch unit that is a part of the execute unit.
However, the rest of the 22 signals need to be generated by the control unit. Recall that the
inputs to the control unit are the opcode of the instruction, and the value of the immediate
bit.

Control
 unit

opcode
inst[28:32]

I bit
inst[27]

control
signals

Figure 9.16: Abstraction of a hardwired control unit

375 c© Smruti R. Sarangi

Serial No. Signal Condition

1 isSt Instruction: st

2 isLd Instruction: ld

3 isBeq Instruction: beq

4 isBgt Instruction: bgt

5 isRet Instruction: ret

6 isImmediate I bit set to 1

7 isWb Instructions: add, sub, mul, div,
mod, and, or, not, mov, ld, lsl, lsr,
asr, call

8 isUBranch Instructions: b, call, ret

9 isCall Instructions: call

aluSignals

10 isAdd Instructions: add, ld, st

11 isSub Instruction: sub

12 isCmp Instruction: cmp

13 isMul Instruction: mul

14 isDiv Instruction: div

15 isMod Instruction: mod

16 isLsl Instruction: lsl

17 isLsr Instruction: lsr

18 isAsr Instruction: asr

19 isOr Instruction: or

20 isAnd Instruction: and

21 isNot Instruction: not

22 isMov Instruction: mov

Table 9.4: List of control signals

The hardwired control unit for our simple processor can be thought of as a black box that
takes 6 bits as input (5 opcode bits, and 1 immediate bit), and produces 22 control signals as
its output. This is shown in Figure 9.16.

Internally, there are a set of logic gates that act on the input bits to produce each output
bit. For example, to set the isAdd signal, we need to check if the opcode is equal to 00000. Let
us number the five bits of the opcode as op1, op2, op3, op4 and op5. Here op1 is the LSB, and
op5 is the MSB. Let us refer to the immediate bit as I.

Table 9.5 shows the conditions for setting all the control signals. We leave the implemen-
tation of Table 9.5 using logic gates as an exercise to the reader. Note that it will take the
maximum amount of time to compute the value of isWb. Nevertheless, this circuit is extremely
simple as compared to a multiplier or a carry lookahead adder. Hence, the total execution time
of the control unit is expected to be small as compared to the execute unit.

The hardwired control unit is thus fast and efficient. This is the reason why most commercial
processors today use a hardwired control unit. However, hardwired control units are not very

c© Smruti R. Sarangi 376

Serial No. Signal Condition

1 isSt op5.op4.op3.op2.op1
2 isLd op5op4.op3.op2.op1
3 isBeq op5.op4.op3.op2.op1
4 isBgt op5.op4.op3.op2.op1
5 isRet op5.op4.op3.op2.op1
6 isImmediate I

7 isWb ∼ (op5 + op5.op3.op1.(op4 + op2)) +
op5.op4.op3.op2.op1

8 isUbranch op5.op4.(op3.op2 + op3.op2.op1)

9 isCall op5.op4.op3.op2.op1
aluSignals

10 isAdd op5.op4.op3.op2.op1+op5.op4.op3.op2
11 isSub op5.op4.op3.op2.op1
12 isCmp op5.op4.op3.op2.op1
13 isMul op5.op4.op3.op2.op1
14 isDiv op5.op4.op3.op2.op1
15 isMod op5.op4.op3.op2.op1
16 isLsl op5.op4.op3.op2.op1
17 isLsr op5.op4.op3.op2.op1
18 isAsr op5.op4.op3.op2.op1
19 isOr op5.op4.op3.op2.op1
20 isAnd op5.op4.op3.op2.op1
21 isNot op5.op4.op3.op2.op1
22 isMov op5.op4.op3.op2.op1

Table 9.5: Boolean conditions for setting all the control signals

flexible. For example, it is not possible to change the behavior of an instruction, or even
introduce a new instruction, after the processor has been shipped. Sometimes we need to change
the way an instruction is executed if there are bugs in functional units. For example, if the
multiplier has a design defect, then it is theoretically possible to run the Booth’s multiplication
algorithm with the adder, and shift units. We will however, need a very elaborate control unit
to dynamically reconfigure the way instructions are executed.

There are other more practical reasons for favoring a flexible control unit. Some instruction
sets such as x86 have rep instructions that repeat an instruction a given number of times. They
also have complicated string instructions that operate on large pieces of data. Supporting such
instructions requires a very complicated data path. In principle, we can execute such instruc-
tions by having elaborate control units that in turn have simple processors to process these
instructions. These sub processors can generate control signals for implementing complicated
CISC instructions.

377 c© Smruti R. Sarangi

Way Point 6

1. We have successfully designed a hardwired processor that implements the entire Sim-
pleRisc ISA.

2. Our processor is broadly divided into five stages: IF, OF, EX, MA, and RW.

3. The data path contains state elements (such as registers), arithmetic units, logical
units, and multiplexers to choose the right set of inputs for each functional unit.

4. The multiplexers are controlled by control signals generated by the control unit.

9.4 Microprogram-Based Processor

Let us now look at a different paradigm for designing processors. We have up till now looked
at a processor with a hardwired control unit. We designed a data path with all the elements
required to process, and execute an instruction. Where there was a choice between the input
operands, we added a multiplexer that was controlled by a signal from the control unit. The
control unit took the contents of the instruction as the input, and generated all the control
signals. This design style is typically adopted by modern high performance processors. Note
that efficiency comes at a cost. The cost is flexibility. It is fairly difficult for us to introduce
new instructions. We need to possibly add more multiplexers, and generate many more control
signals for each new instruction. Secondly, it is not possible to add new instructions to a
processor after it has been shipped to the customer. Sometimes, we desire such flexibility.

It is possible to introduce this additional flexibility by introducing a translation table that
translates instructions in the ISA to a set of simple microinstructions. Each microinstruction
has access to all the latches, and internal state elements of a processor. By executing a group
of microinstructions associated with an instruction, we can realise the functionality of that
instruction. These microinstructions or microcodes are saved in a microcode table. It is typically
possible to modify the contents of this table via software, and thus change the way hardware
executes instructions. There are several reasons for wanting such kind of flexibility that allows
us to add new instructions, or modify the behaviour of existing instructions. Some of the
reasons are as follows:

Definition 60
We can have an alternate design style, where we break instructions in the ISA to a

set of microinstructions (microcodes). For each instruction, a dedicated unit executes its
associated set of microinstructions to implement its functionality. It is typically possible
to dynamically change the set of microinstructions associated with an instruction. This
helps us change the functionality of the instruction via software. Such kind of a processor
is known as a microprogrammed processor.

c© Smruti R. Sarangi 378

1. Processors sometimes have bugs in the execution of certain instructions [Sarangi et al.,
2006]. This is because of mistakes committed by designers in the design process, or
due to manufacturing defects. One such famous example is the bug in division in the
Intel R© Pentium R© processor. Intel had to recall all the Pentium processors that it had
sold to customers [Pratt, 1995]. If it would have been possible to dynamically change
the implementation of the division instruction, then it would not have been necessary to
recall all the processors. Hence, we can conclude that some degree of reconfigurability of
the processor can help us fix defects that might have been introduced in various stages of
the design and manufacturing process.

2. Processors such as Intel Pentium 4, and later processors such as Intel R© CoreTMi3, and
Intel R© CoreTMi7 implement some complex instructions by executing a set of microinstruc-
tions saved in memory. Complicated operations with strings of data, or instructions that
lead to a series of repetitive computations are typically implemented using microcode.
This means that the Intel processor internally replaces a complex instruction with a snip-
pet of code containing simpler instructions. This makes it easier for the processor to
implement complicated instructions. We do not need to unnecessarily make changes to
the data path, add extra state, multiplexers, and control signals to implement complex
instructions.

3. Nowadays processors are part of a chip with many other elements. This is known as a
system-on-chip (SOC). For example, a chip in a cellphone might contain a processor, a
video controller, an interface to the camera, a sound and network controller. Processor
vendors typically hardwire a set of simple instructions, and a lot of other instructions
for interfacing with peripherals such as the video and audio controllers are written in
microcode. Depending on the application domain and the set of peripheral components,
the microcode can be customised.

4. Sometimes custom diagnostic routines are written using a set of dedicated microinstruc-
tions. These routines test different parts of the chip during its operation, report faults,
and take corrective action. These built-in-self-test (BIST) routines are typically customis-
able, and are written in microcode. For example, if we desire high reliability, then we can
modify the behaviour of instructions that perform reliability checks on the CPU to check
all components. However, in the interest of time, these routines can be compressed to
check fewer components.

We thus observe that there are some compelling reasons to be able to programatically alter
the behaviour of instructions in a processor to achieve reliability, implement additional features,
and improve portability. Hence, modern computing systems, especially, smaller devices such as
phones, and tablets use chips that rely on microcode. Such microcode sequences are popularly
referred to as firmware.

Definition 61
Modern computing systems, especially, smaller devices such as phones, modems, printers,

379 c© Smruti R. Sarangi

and tablets use chips that rely on microcode. Such microcode sequences are popularly referred
to as firmware.

Let us thus design a microprogram-based processor that provides us significantly more flexi-
bility in tailoring the instruction set, even after the processor has been fabricated and sent to the
customer. Before we proceed to design the data path and control path of a microprogrammed
processor, we need to note that there is a fundamental tradeoff between a regular hardwired
processor as presented in Section 9.2.7, and a microprogrammed processor. The tradeoff is
efficiency versus flexibility. We cannot expect to have a very flexible processor that is fast and
power efficient. Let us keep this important tenet in mind and proceed with the design.

9.5 Microprogrammed Data Path

Let us design the data path for a microprogrammed processor. Let us not design it from scratch.
Let us rather modify the data path for the processor as shown in Section 9.2.7. Recall that
it had some major units such as the fetch unit, register file, ALU, branch unit, and memory
unit. These units were connected with wires, and whenever there was a possibility of multiple
source operands, we added a multiplexer in the data path. The role of the control unit was to
generate all the control signals for the multiplexers.

The issue is that the connections to the multiplexers are hardwired. It is not possible
to establish arbitrary connections. For example, it is not possible to send the output of the
memory unit to the input of the execute unit. Hence, we wish to have a design that is free of
fixed interconnections between components. It should be theoretically possible for any unit to
send data to any other unit.

The most flexible interconnect is a bus based structure. A bus is a set of common copper
wires that connect all the units. It supports one writer, and multiple readers at any point of
time. For example, unit A can write to the bus at a certain point of time, and all the other
units can get the value that unit A writes. It is possible to send data from one unit to another
unit, or from one unit to a set of other units if required. The control unit needs to ensure that
at any point of time, only one unit writes to the bus, and the unit that needs to process the
value that is being written, reads the value from the bus.

Definition 62 A bus is a set of common wires that connect all the functional units in a
processor. It supports one writer, and multiple readers at any point of time.

Let us now proceed to design simplified versions of all the units that we introduced for
our hardwired processor. These simplified versions can aptly be used in the data path of our
microprogrammed processor.

c© Smruti R. Sarangi 380

Shared bus

pc Instruction memory ir

Figure 9.17: The fetch unit in a microprogrammed processor

9.5.1 Fetch Unit

Let us start out by explaining the design philosophy of the microprogrammed processor. We
add registers with every unit. These registers store the input data for the specific unit, and a
dedicated output register stores the results generated by the unit. Both these sets of registers
are connected to the common bus. Unlike the hardwired processor, where there was a good
amount of coupling across different units, units in a microprogrammed processor are fairly
independent of each other. Their/ job is to perform a set of actions, and put the results back
on to the bus. Each unit is like a function in a programming language. It has an interface
comprising of a set of registers to read data in. It typically takes 1 cycle to compute its output,
and then the unit writes the output value to an output register.

In concordance with this philosophy, we present the design of the fetch unit in Figure 9.17.
It has two registers – pc (PC), and ir (instruction register). We shall use the acronym, IR, for
the instruction register. ir contains the contents of the instruction. The pc register can read
its value from the bus, and can also write its value to the bus. We have not connected ir to the
bus because no other unit is typically interested in the exact contents of the instruction. Other
units are only interested in different fields of the instruction. Hence, it is necessary to decode
the instruction and break it into a set of different fields. This is done by the decode unit.

9.5.2 Decode Unit

This unit is similar in function to the operand fetch unit as described in Section 9.2.3. How-
ever, we do not include the register file in this unit. We treat it as a separate unit in the
microprogrammed processor. Figure 9.18 shows the design of the operand fetch unit.

Shared bus

ir
rd rs1 rs2I Immediate

unit
immx calc.

offset
branchTarget

pc

Figure 9.18: The decode unit in a microprogrammed processor

The job of the decode unit is to break down the contents of the instruction into multiple

381 c© Smruti R. Sarangi

fields, and export them as registers. In specific, the following registers are made available to the
bus, I (immediate bit), rd (destination register), rs1 (source register 1), rs2 (source register
2), immx (after processing the modifiers), and branchTarget (branch target). To compute the
branch target we calculate the offset from the current PC by extracting bits [1:27] from ir, and
shifting it to the left by 2 places. This is added to the current value of the PC. Table 9.6 shows
the range of bits extracted from ir for each output register.

Register Bits in ir

I 27

rd 23-26

rs1 19-22

rs2 15-18

immx 1-18 (process modifiers)

branchTarget PC + (ir[1 : 27]� 2)

Table 9.6: List of bits in ir corresponding to each register in the decode unit

It is possible that a given program execution might not have values for all the registers.
For example, an instruction in the register format will not have an embedded immediate
value. Hence, in this case the immx register will have junk data. However, it does not hurt
to extract all possible fields from the instruction, and store them in registers. We can use
only those registers that contain valid data, and ignore those registers that are not relevant to
the instruction. This ensures that our data path remains simple, and we do not need costly
multiplexers in the decode unit.

9.5.3 Register File

We had combined the decode unit and the register file, into one unit called the operand fetch
unit of the hardwired processor. However, we prefer to keep the register file separate in the
microprogrammed processor. This is because in the hardwired processor it was accessed right
after decoding the instruction. However, this might not be the case in the microprogrammed
processor. It might need to be accessed possibly several times during the execution of an
instruction.

The register file has two source registers – regSrc, and regData. The regSrc register
contains the number of the register that needs to be accessed. In the case of a write operation,
the regData register contains the value to be written. The args values are directly read from
the bus. They contain the commands to the register file. We assume that there are dedicated
wires in the shared bus to carry the arguments (args) values. They take different values, where
each value corresponds to an unique operation of an unit. The value 00...0 is a distinguished
value that corresponds to a nop (no operation).

The arguments to the register file, are very simple – read, write, and nop. If the args specify
a write operation, then the value in regData is written to the register specified by the regSrc
register. If a read operation is specified, then the register specified by regSrc is read and its
value is stored in the register, regV al (register value).

c© Smruti R. Sarangi 382

Register
file

regSrcregDataregVal a
rg

s

Shared bus

Figure 9.19: The register file in a microprogrammed processor

To access the register file it is thus necessary to write the number of the register to the regSrc
register, write the value to be written to the regData register if required, and finally specify
the appropriate arguments. The assumption is that after 1 cycle the operation is complete. In
the case of a read operation, the value is available in the regV al register.

9.5.4 ALU

Shared bus

ALU

A BaluResult

flags

flags.E flags.GT

a
rg

s

Figure 9.20: The ALU in a microprogrammed processor

The structure of the ALU is shown in Figure 9.20. It has two input registers, A and B.
The ALU performs actions on the values contained in registers, A and B. The nature of the
operation is specified by the args value. For example, if it specifies an add operation, then the
ALU adds the values contained in registers, A and B. If it specifies a subtract operation, then
the value in B is subtracted from the value contained in A. For the cmp instruction, the ALU
updates the flags. Recall that in SimpleRisc we use two flags that specify the equality, and
greater than conditions. They are saved in the registers flags.E and flags.GT respectively.
The result of the ALU operation is then saved in the register aluResult. Here also, we assume
that the ALU takes 1 cycle to execute after the args values are specified on the bus.

383 c© Smruti R. Sarangi

9.5.5 Memory Unit

Shared bus

Data
memory

mar mdrldResult ar
gs

Figure 9.21: The memory unit in a microprogrammed processor

The memory unit is shown in Figure 9.21. Like the hardwired processor, it has two source
registers – mar and mdr. The memory address register(mar) buffers the memory address, and
the memory data register (mdr) buffers the value that needs to be stored. Here also, we require
a set of arguments that specify the nature of the memory operation – load or store. Once, a
load operation is done, the data is available in the ldResult register.

9.5.6 Overview of the Data Path

Shared bus

pc Instruction memory ir
rd rs1 rs2I Immediate

unit
immx calc.

offset
branchTarget

Register
file

regSrcregDataregVal

ALU

A BaluResult

flags

flags.E flags.GT

Data
memory

mar mdrldResult

μcontrol
unit

a
rg

s

a
rg

s

opcode

a
rg

s

Figure 9.22: The data path in a microprogrammed processor

Let us now add all the individual units, and take a look at the entire data path as shown
in Figure 9.22. Along with all the units that we just described, we have added an extra unit,
which is the microprogrammed control unit (µcontrol unit). Its role is to execute a set of
microinstructions corresponding to each program instruction, and orchestrate the flow of data

c© Smruti R. Sarangi 384

values across the different units in the data path of the microprogrammed processor. It is
mainly responsible for the execution of microinstructions, data transfers across the different
units, and for transferring control to the correct program instruction by updating the PC. Note
that we have also added an extra connection between the ir register and the µcontrol unit to
transfer the opcode of the instruction. We require the µcontrol unit to load the appropriate
set of microinstructions corresponding to the program instruction. By design, we do not wish
to make the value of the opcode available to other units. This is because, we have a set of
microinstructions for each opcode, and there is no reason why other units should require the
value of the opcode.

Definition 63

The microcontrol unit, also referred to as the µcontrol unit is a dedicated piece of hard-
ware that is responsible for the execution of a set of microinstructions corresponding to each
program instruction. Its role is to fetch the appropriate set of microinstructions from a ded-
icated microprogram memory, and execute them in sequence. A register called the micro
PC (µpc) points to the currently executing microinstruction.

We envision a microprogram memory that is a part of the µcontrol unit. It contains the
set of microinstructions corresponding to each program instruction. It is thus necessary for the
µcontrol unit to jump to the starting address of the set of microinstructions corresponding to
each program instruction. We also need a microPC that points to the current microinstruction
being executed.

Before discussing the design and implementation of the µcontrol unit, let us first look at pro-
gramming, or rather microprogramming our new processor. We need to design a microassembly
language that will help us write programs for it.

9.6 Microassembly Language

9.6.1 Machine Model

All the internal registers in Figure 9.22 are the set of registers that are visible to microassem-
bly instructions. Ideally microassembly instructions are not supposed to be aware of regular
architectural registers, and other aspects of architectural state. They are only supposed to be
aware of internal registers that are not externally visible.

Table 9.7 shows the list of internal registers in our microprogrammed data path. Note that
we have 1-bit registers, 4-bit registers, and 32-bit registers.

Microprogrammed instructions do not access memory. Hence, they do not need a view of
memory.

9.6.2 Microinstructions

Let us look at the life cycle of a regular program instruction. The first step is to fetch the
contents of the instruction from the instruction memory. Let us introduce a microinstruction

385 c© Smruti R. Sarangi

Serial No. Register Size
(bits)

Function

1 pc 32 program counter

2 ir 32 instruction register

3 I 1 immediate bit in the instruc-
tion

4 rd 4 destination register id

5 rs1 4 id of the first source register

6 rs2 4 id of the second source regis-
ter

7 immx 32 immediate embedded in the
instruction (after processing
modifiers)

8 branchTarget 32 branch target, computed as
the sum of the PC and the off-
set embedded in the instruc-
tion

9 regSrc 4 contains the id of the register
that needs to be accessed in
the register file

10 regData 32 contains the data to be writ-
ten into the register file

11 regV al 32 value read from the register
file

12 A 32 first operand of the ALU

13 B 32 second operand of the ALU

14 flags.E 1 the equality flag

15 flags.GT 1 the greater than flag

16 aluResult 32 the ALU result

17 mar 32 memory address register

18 mdr 32 memory data register

19 ldResult 32 the value loaded from memory

Table 9.7: List of all the internal registers

to read the contents of the instruction from the instruction memory and place it in the IR
(ir). Let us call it mloadIR. Note that we will add the prefix m (m for micro) to every
microinstruction. This is to denote the fact that it is a microinstruction, and differentiate it
from regular program instructions.

Microinstruction Semantics

mloadIR Loads the ir with the contents
of the instruction

c© Smruti R. Sarangi 386

Once, we have loaded the instruction register, it automatically sends the contents to all
the subunits in the decode unit, and they extract the appropriate bit fields, and save them
in the decode registers – I, rd, rs1, rs2, immx, and branchTarget. We envision an mdecode
instruction in the 0-address format that makes the µcontrol unit wait for 1 cycle. In this cycle,
all the decode registers get populated.

Microinstruction Semantics

mdecode Waits for 1 cycle. Meanwhile,
all the decode registers get
populated.

Note that these two steps (mloadIR and mdecode) are common for all program instructions.
After this, we need to load the microinstructions for the specific program instruction. This
is achieved through a mswitch instruction that instructs the µcontrol unit to jump to the
appropriate location in the microinstruction memory, and begins executing microinstructions
starting from that location.

Microinstruction Semantics

mswitch Load the set of microinstruc-
tions corresponding to the
program instruction

Now, the processing of the instruction can start. The aim here is to use as few microin-
structions as possible. We want to keep the microassembly interface very simple. Let us first
introduce the mmov instruction that moves data from the source register to a destination regis-
ter. Additionally, it can set the arguments of the unit corresponding to the destination register.
We thus introduce a 2-address and 3-address format of the mmov instruction. The 3-address
format contains the arguments (args) of the unit corresponding to the destination register, as
shown below.

Microinstruction Semantics

mmov r1, r2 r1← r2

mmov r1, r2, 〈args〉 r1 ← r2, send the value of
args on the bus

We sometimes face the need to load constants into registers. Hence, we introduce the mmovi
instruction that loads a constant into a register.

Microinstruction Semantics

mmovi r1, 〈imm〉 r1← imm

mmovi r1, 〈imm〉, 〈args〉 r1 ← imm, send the value of
args on the bus

We need an madd instruction because we need to increment the values of registers such as
the pc. Instead of using the main ALU, we can have a small adder as a part of the µcontrol
unit. We refer to this as the µadder. Here, there is a tradeoff to make. Do we need an add
instruction that adds two registers, and saves it in another register? At the microinstruction

387 c© Smruti R. Sarangi

level, this is seldom required. We definitely do not require this instruction to implement the
SimpleRisc instruction set. Hence, we do not see a reason to include this microinstruction. If
there is ever a need to have one such microinstruction, then we can always use the main ALU
in the data path to perform the addition. We thus introduce a simple add instruction in the
2-address format. It adds an immediate value to a register. The semantics of this instruction
is shown below.

Microinstruction Semantics

madd r1, 〈imm〉 r1← r1 + imm

madd r1, 〈imm〉, 〈args〉 r1← r1+imm, send the value
of 〈args〉 on the bus

Here, the madd instruction adds imm to r1, and saves the result in r1. imm can be a
positive or a negative number. We restrict it to a 12-bit number, because we do not need more
bits in most cases. The range of the immediate is thus between -2048 and +2047.

Lastly, we need branch instructions. We need both conditional branches, and unconditional
branches. We thus introduce two new microinstructions – mb (branch) and mbeq (branch if the
arguments are equal). The mb microinstruction takes a single argument, which is the address
of the target microinstruction (or its label while writing microassembly code). We use the
PC-direct addressing mode here as compared to the PC-relative addressing mode because, we
expect the total number of microinstructions to be small. Secondly, if we would have use a
PC-relative addressing mode, then we would have required an extra adder in our data path
to add the offset to the PC. The SimpleRisc instruction set allocates 5 bits for the opcode.
This means that at the most we can have 32 instructions in our instruction set. Let us assume
that in the worst case, an instruction translates to 20 microinstructions. We would thus need
to store 640 microinstructions. We can thus allocate 10 bits for the specifying the address of
the microinstruction and our µpc (micro-PC) can also be 10 bits wide. This means that at
the most we can support a total of 1024 microinstructions. This is much more than what we
actually require. However, it is not a bad idea to over design hardware because it cannot be
changed later. Note that in the microinstruction memory, the address refers to the index of the
microinstruction (not to the starting address of the first byte).

The mbeq instruction requires three operands. The first operand is a register, the second
operand is an immediate, and the third operand is the address(label) of a microinstruction. If
the value contained in the register is equal to the immediate operand, then the microPC jumps
to the microinstruction specified by the third operand. Otherwise, the next microinstruction in
sequence is executed.

Microinstruction Semantics

mb 〈addr〉 execute the microinstruction at
〈addr〉(label) in the microprogram
memory

mbeq reg, imm, 〈addr〉 If the value in the internal register
reg is equal to imm, then the mi-
croPC needs to jump to 〈add〉(label)

c© Smruti R. Sarangi 388

Serial No. Microinstruction Semantics

1 mloadIR ir ← [pc]

2 mdecode populate all the decode regis-
ters

3 mswitch jump to the µpc correspond-
ing to the opcode

4 mmov reg1, reg2, 〈args〉 reg1 ← reg2, send the value
of args to the unit that owns
reg1, 〈args〉 is optional

5 mmovi reg1, imm, 〈args〉 reg1 ← imm, 〈args〉 is op-
tional

6 madd reg1, imm, 〈args〉 reg1← reg1 + imm, 〈args〉 is
optional

7 mbeq reg1, imm, 〈addr〉 if (reg1 = imm) µpc ←
addr(label)

8 mb 〈addr〉 µpc ← addr(label)

Table 9.8: List of microinstructions

To summarise, Table 9.8 shows the 8 microinstructions that we have described in this section.
We have a compact list of 8 microinstructions, and thus we can encode each microinstruction
using just 3 bits.

9.6.3 Implementing Instructions in the Microassembly Language

Let us now try to implement program instructions in the microassembly language using the set
of basic microinstructions enumerated in Table 9.8.

For all the instructions, they start with a common set of microinstructions as shown below.
We refer to these 4 microinstructions as the preamble.

1 .begin:

2 mloadIR

3 mdecode

4 madd pc, 4

5 mswitch

Definition 64
A set of microinstructions that is common to all program instructions and is executed at
the beginning before proceeding to implement the logic of the instruction, is known as the
preamble, or microcode preamble.

389 c© Smruti R. Sarangi

Every instruction needs to pass through at least three of these steps. We need to fetch the
contents of the PC and load them into the ir register. Then, we need to decode the instruction,
and break it down into its constituent fields. For instructions, other than branches, we need
to increment the value of the PC by 4. In our microcode we prefer to do this step for all the
instructions. For taken branches, we need to later overwrite the PC with the branch target.
Lastly, we need to execute the mswitch instruction to jump to the starting location of the set
of microinstructions that are specific to the program instruction.

The label .begin points to the beginning of this routine. Note that after finishing the exe-
cution of an instruction, we need to jump to the .begin label such that we can start processing
the next instruction in the program. Note that in our microassembly code we specify the
label that we need to branch to. When the microassembly code is translated to actual ma-
chine level microinstructions, then each label is replaced by the address of the corresponding
microinstruction.

9.6.4 3-Address Format ALU Instructions

Let us now look at implementing 3-address format ALU instructions. These instructions are:
add, sub, mul, div, mod, and, or, lsl, lsr, and asr.

First, we need to read the value of the first operand stored in rs1 from the register file, and
send it to the ALU. The microcode snippet to achieve this is as follows:

1 mmov regSrc, rs1, <read>

2 mmov A, regVal

Note, that we are combining a functional unit operation, and a register transfer in the same
cycle. This can be confusing at the beginning. Hence, the reader should read this example
several times and ensure that she has a clear understanding. The reason that we fuse both
the operations is because microcode registers are typically very small, and thus they can be
accessed very quickly. Hence, it is not a good idea to use a complete cycle for transferring data
between micro registers. It is a better idea to fuse a register transfer with a functional unit
operation, such that we can ensure that we are roughly doing a similar amount of work every
cycle.

Let us proceed. Subsequently, we need to check if the second operand is a register or an
immediate. This can be achieved by comparing the I register with 1. If it is 1, then the second
operand is an immediate, else it is a register. The following piece of code first checks this
condition, and then performs data transfers accordingly.

1 mbeq I, 1, .imm

2 /* second operand is a register */

3 mmov regSrc, rs2, <read>

4 mmov B, regVal, <aluop>

5 mb .rw

6 /* second operand is an immediate */

7 .imm:

8 mmov B, immx, <aluop>

c© Smruti R. Sarangi 390

9 /* write the ALU result to the register file*/

10 .rw:

Here, we first check if the value stored in the I register is equal to 1, using the mbeq
instruction. If it is not 1, then the second operand is a register, and we start executing the
subsequent microinstruction. We move the contents of the register, rs2, to the regSrc register
that contains the index of the register that we need to read from the register file. Then we move
the value of the operand read from the register file (regV al) to the ALU (register B). Since
the value in register A is already present, we can directly start the ALU operation. This is
indicated to the ALU by sending an extra argument (〈aluop〉) that encodes the ALU operation.
〈aluop〉 corresponds to one of the following operations: add, sub, mul, div, mod, and, or, lsl,
lsr, and asr.

However, if the value of the I register is 1, then we need to branch to .imm. The value of the
immediate embedded in the instruction is already available with appropriate sign extensions in
the register immx. We need to simply transfer the value of immx to B (second ALU register),
and the arguments (〈aluop〉) to the ALU. Similar to the case with the second operand being a
register, 〈aluop〉 encodes the ALU operation. Once, we are done, we need to start execution at
the label, .rw.

The label .rw needs to point to code that writes the value of the computed result to the reg-
ister file, and then proceeds to execute the next instruction. The code for these two operations
is shown below.

1 .rw:

2 mmov regSrc, rd

3 mmov regData, aluResult, <write>

4 mb .begin

We write the result of the ALU into the register file, and then branch to the beginning,
where we proceed to execute the next instruction. To summarise, here is the code for any
3-address format ALU instruction (other than the preamble).

1 /* transfer the first operand to the ALU */

2 mmov regSrc, rs1, <read>

3 mmov A, regVal

4

5 /* check the value of the immediate register */

6 mbeq I, 1, .imm

7 /* second operand is a register */

8 mmov regSrc, rs2, <read>

9 mmov B, regVal, <aluop>

10 mb .rw

11 /* second operand is an immediate */

12 .imm:

13 mmov B, immx, <aluop>

14

391 c© Smruti R. Sarangi

15 /* write the ALU result to the register file*/

16 .rw:

17 mmov regSrc, rd

18 mmov regData, aluResult, <write>

19 mb .begin

This code snippet has 10 microinstructions. Recall that we also need to execute 4 more
microinstructions as a part of the preamble before this. They read the PC, decode the instruc-
tion, set the next PC, and jump to the beginning of the appropriate set of microinstructions.
Executing 14 microinstructions for 1 program instruction is clearly a lot of effort. However, the
reader must recall that we are not really after performance here. We wanted to design a very
clean and flexible means of accessing different units.

9.6.5 2-Address Format ALU Instructions

The three ALU instructions in the 2-address format, are not, mov, and cmp. not and mov have
a similar format. They do not use the first source operand, rs1. They operate on either rs2,
or immx, and transfer the result to the register pointed by rd.

Let us look at the mov instruction first. We first check whether the second operand is an
immediate, or not, by comparing the value in register I with 1. If it is equal to 1, then we jump
to the label, .imm. Otherwise, we proceed to execute the subsequent instructions in Lines 4,
and 5. In Line 4, we transfer rs2 to regSrc, along with the 〈read〉 command. The operand is
read and stored in regV al. In the next cycle, we transfer regV al to regData such that it can be
written back to the register file. If the second operand was an immediate, then we execute the
code in Line 9. We transfer the immediate (stored in immx) to the regData register. In either
case, regData contains the value to be written to the register file. Then we transfer the id of
the destination register (stored in rd) to regSrc, and simultaneously issue the write command
in Line 13.

mov instruction
1 /* check the value of the immediate register */

2 mbeq I, 1, .imm

3 /* second operand is a register */

4 mmov regSrc, rs2, <read>

5 mmov regData, regVal

6 mb .rw

7 /* second operand is an immediate */

8 .imm:

9 mmov regData, immx

10

11 /* write to the register file*/

12 .rw:

13 mmov regSrc, rd, <write>

14

15 /* jump to the beginning */

16 mb .begin

c© Smruti R. Sarangi 392

Let us now write a similar routing for the not instruction. The only additional step is to
transfer the value read from the register to the ALU, compute the logical negation, and then
transfer the value back to the register file. A hallmark feature of our microassembly language
is that we can transfer a value to a unit, and if all the other operands are in place, then we can
also perform an operation in the unit in the same cycle. The implicit assumption here is that 1
clock cycle is enough to transfer the data between registers, and perform a computation. In line
with this philosophy we transfer the value of immx, or regV al to register B of the ALU, and
also perform a 〈not〉 operation in the same cycle (see Lines 5 and 9). Like the mov instruction,
we transfer the ALU result to the regData register, and write it to the register file in Lines 13,
and 14.

not instruction
1 /* check the value of the immediate register */

2 mbeq I, 1, .imm

3 /* second operand is a register */

4 mmov regSrc, rs2, <read>

5 mmov B, regVal, <not> /* ALU operation */

6 mb .rw

7 /* second operand is an immediate */

8 .imm:

9 mmov B, immx, <not> /* ALU operation */

10

11 /* write to the register file*/

12 .rw:

13 mmov regData, aluResult

14 mmov regSrc, rd, <write>

15

16 /* jump to the beginning */

17 mb .begin

Let us now look at the compare instruction that does not have a destination operand. It
compares two operands, where one is a register operand, and the other can be either a register
or an immediate. It saves the results automatically in the flags.E and flags.GT registers.

Let us now consider the microcode for the cmp instruction.

cmp instruction
1 /* transfer rs1 to register A */

2 mmov regSrc, rs1, <read>

3 mmov A, regVal

4

5 /* check the value of the immediate register */

6 mbeq I, 1, .imm

7 /* second operand is a register */

8 mmov regSrc, rs2, <read>

9 mmov B, regVal, <cmp> /* ALU operation */

10 mb .begin

11

393 c© Smruti R. Sarangi

12 /* second operand is an immediate */

13 .imm:

14 mmov B, immx, <cmp> /* ALU operation */

15 mb .begin

Here, we first transfer the value in register rs1 to the ALU (in register A). Then, we check
if the second operand is an immediate. If it is an immediate, then we transfer the value of
immx to the ALU (in register B), and simultaneously issue a command to execute a compare
in Line 14. However, if the second operand is a register, then we need to read it from the
register file (Line 8), and then transfer it to the ALU (Line 9). The last step is to branch to
the beginning (mb .begin).

9.6.6 The nop Instruction

Implementing the nop instruction is trivial. We just need to branch to the beginning as shown
below.

1 mb .begin

9.6.7 ld and st instructions

Let us now look at the load instruction. We need to transfer the value of the first source register
to the ALU. Then we transfer the value of the immediate to the second ALU register (B), and
initiate the add operation to calculate the effective address. Once the effective address has been
calculated, it is available in the aluResult register. Subsequently, we move the contents of the
aluResult register to the memory address register (mar), and initiate a load operation. The
result is available in the ldResult register in the next cycle. We write the loaded value to the
register specified by rd in the next two cycles.

ld instruction
1 /* transfer rs1 to register A */

2 mmov regSrc, rs1, <read>

3 mmov A, regVal

4

5 /* calculate the effective address */

6 mmov B, immx, <add> /* ALU operation */

7

8 /* perform the load */

9 mmov mar, aluResult, <load>

10

11 /* write the loaded value to the register file */

12 mmov regData, ldResult

13 mmov regSrc, rd, <write>

14

15 /* jump to the beginning */

16 mb .begin

c© Smruti R. Sarangi 394

The microcode for the store instruction is similar to that of the load instruction. We first
calculate the effective memory address and store it in the mar register. Then we read the value
of the rd register that contains the data to be stored (Line 10). We save this in the mdr register,
and issue the store (Line 11).

st instruction
1 /* transfer rs1 to register A */

2 mmov regSrc, rs1, <read>

3 mmov A, regVal

4

5 /* calculate the effective address */

6 mmov B, immx, <add> /* ALU operation */

7

8 /* perform the store */

9 mmov mar, aluResult

10 mmov regSrc, rd, <read>

11 mmov mdr, regVal, <store>

12

13 /* jump to the beginning */

14 mb .begin

9.6.8 Branch Instructions

There are five branch instructions in SimpleRisc : b, beq, bgt, call, and ret.
Implementing the unconditional branch instruction is trivial.We simply need to transfer the

value of the branch target to the PC.

b instruction
1 mmov pc, branchTarget

2 mb .begin

We can make a minor modification to this code to implement the beq, and bgt instructions.
We need to check the value of the flags registers, and set the branchTarget to the PC only if
the corresponding flags register contains a 1.

beq instruction
1 /* test the flags register */

2 mbeq flags.E, 1, .branch

3 mb. begin

4

5 .branch:

6 mmov pc, branchTarget

7 mb .begin

bgt instruction
1 /* test the flags register */

2 mbeq flags.GT, 1, .branch

3 mb. begin

4

5 .branch:

6 mmov pc, branchTarget

7 mb .begin

The last two instructions that we need to implement are the call and ret instructions. The
call instruction is a combination of a simple branch, and a register write operation that adds
the value of the next PC (PC + 4) to the return address register (register 15). The microcode

395 c© Smruti R. Sarangi

is as follows. Note that we do not increment the PC by 4 because it is already incremented in
the preamble.

call instruction
1 /* save PC + 4 in the return address register */

2 mmov regData, pc

3 mmovi regSrc, 15, <write>

4

5 /* branch to the function */

6 mmov pc, branchTarget

7 mb .begin

We save the address of the next PC in the register file in lines 2 to 3. Then we move
the branchTarget to the PC, and then proceed to execute the first instruction in the invoked
function.

The ret instruction performs the reverse operation, and transfers the return address to the
PC.

ret instruction
1

2 /* save the contents of the return

3 address register in the PC */

4 mmovi regSrc, 15, <read>

5 mmov pc, regVal

6 mb .begin

We have thus implemented all our SimpleRisc instructions in microcode. A microcoded
implementation is definitely slower that our hardwired datapath. However, we have gained a
lot in terms of flexibility. We can implement some very complex instructions in hardware, and
thus make the task of software developers significantly easier. We can also dynamically change
the behaviour of instructions. For example, if we wish to store the return address on the stack
rather than the return address register, we can do so easily (see Examples 132 and 133).

Example 132
Change the call instruction to store the return address on the stack. The preamble need not
be shown (study carefully).
Answer:

stack based call instruction
1

2 /* read and update the stack pointer */

3 mmovi regSrc, 14, <read> /* regSrc contains the id

4 of the stack pointer */

5 madd regVal, -4 /* decrement the stack pointer */

6 mmov mar, regVal /* MAR contains the new stack pointer */

7

c© Smruti R. Sarangi 396

8 mmov regData, regVal, <write> /* update the stack pointer */

9

10 /* write the return address to the stack */

11 mmov mdr, pc, <store>

12

13 mb. begin

Example 133
Change the ret instruction to load the return address from the stack. The preamble need
not be shown.
Answer:

stack based call instruction
1 /* read the stack pointer */

2 mmovi regSrc, 14, <read>

3

4 /* set the memory address to the stack pointer */

5 mmov mar, regVal, <load>

6

7 mmov pc, ldResult /* set the PC */

8

9 /* update the stack pointer */

10 madd regVal, 4 /* sp = sp + 4 */

11 mmov regData, regVal, <write> /* update stack pointer */

12

13 /* jump to the beginning */

14 mb .begin

Example 134
Implement an instruction to compute the factorial of the number saved in register r2. You
can destroy the contents of r2. Save the result in register r3. Assume that the number is
greater than 1.

stack based call instruction
1

2 /* code to set the inputs to the multiplier */

3 mmovi B, 1

4 mmovi regSrc, 2, <read>

5 mmov A, regVal

6 /* at this point A = r2, B = 1 */

397 c© Smruti R. Sarangi

7

8 /* loop */

9 .loop:

10 /* Now begin the multiplication */

11 mmov B, B, <multiply> /* aluResult = A * B */

12 mmov B, aluResult /* B = aluResult */

13

14 /* decrement and test */

15 madd A, -1 /* A = A - 1 */

16 mbeq A, 1, .out /* compare A with 1 */

17 mb .loop

18

19 .out:

20 mmov regData, aluResult

21 mmovi regSrc, 3, <write> /* all done */

22

23 mb .begin

Example 135
Implement an instruction to find if the value saved in register r2 is a cubic Armstrong
Number. A cubic Armstrong number is equal to the sum of the cubes of its decimal digits.
For example, 153 is one such number. 153 = 13 + 53 + 33. Save the Boolean result in r3.
Assume two scratch registers: sr1 and sr2.

stack based call instruction
1

2 /* Set the inputs of the ALU */

3 mmovi regSrc, 2, <read>

4 mmov A, regVal

5 mmov sr1, regVal

6 mmovi B, 10

7 mmovi sr2, 0 /* sum = 0 */

8

9 /* loop */

10 .loop:

11 /* test */

12 mbeq A, 0, .out

13

14 /* compute the mod and cube it */

15 mmov B, B, <mod> /* aluResult = A % B */

16 mmov B, aluResult /* B = aluResult */

17 mmov A, aluResult, <multiply> /* aluResult = (A%B)^2 */

c© Smruti R. Sarangi 398

18 mmov A, aluResult, <multiply> /* aluResult = (A%B)^3 */

19 mmov A, aluResult /* A = (A%B)^3 */

20 mmov B, sr2, <add> /* add the running sum */

21 mmov sr2, aluResult /* sr2 has the new sum */

22

23 /* test */

24 mmov A, sr1 /* old value of A */

25 mmovi B, 10, <divide>

26 mmov A, aluResult /* A = A / 10 */

27 mmov sr1, A /* sr1 = A */

28

29 mb .loop

30

31 /* out of the loop */

32 .out:

33 mmov A, sr2 /* A contains the sum */

34 mmov B, regVal, <cmp> /* compare */

35 mmov regSrc, 3

36 mbeq flags.E, 1, .success

37

38 /* failure */

39 mmov regData, 0, <write>

40 mb .begin

41

42 .success:

43 mmov regData, 1, <write>

44 mb .begin

Example 136
Implement an instruction to test if a number saved in register r2 is prime. Assume that
the number is greater than 3. Save the result in r3.

stack based call instruction
1

2 /* Read the register and set the ALU inputs */

3 mmovi regSrc, 2, <read>

4 mmov A, regVal

5 mmovi B, 1

6

7 .loop:

8 /* test for divisibility */

9 madd B, 1, <mod> /* aluResult = A % (B+1), B = B + 1 */

399 c© Smruti R. Sarangi

10 mbeq aluResult, 0, .failure

11

12 /* test B */

13 mmov A, A, <cmp> /* compare A with B */

14 mbeq flags.E, 1, .success

15

16 mb .loop

17

18 .success:

19 mmovi regSrc, 3

20 mmovi regData, 1, <write>

21 mb .begin

22

23 .failure:

24 mmovi regSrc, 3

25 mmovi regData, 0, <write>

26 mb. begin

9.7 Shared Bus and Control Signals

Let us take a look again at the list of implemented microinstructions in Table 9.8. We observe
that each microinstruction has at the most one register read operand, and one register write
operand. We typically read from one internal register, and then use it as a part of a computation
(addition or comparison), and then write the result to another internal register.

We thus propose the design of a shared bus that actually consists of two buses as shown in
Figure 9.23. The first bus is known as the write bus that is connected to all the registers that
might potentially write data to the bus. The output of the write bus, the embedded immediate
(µimm) in the microinstruction, and the output of the µadder are sent to a multiplexer. Recall
that the µadder adds the embedded immediate with the contents of a register. Now, this
multiplexer chooses one value among the three, and then sends it on the read bus. We refer
to this multiplexer as the transfer multiplexer. All the registers that might potentially read a
value are connected to the read bus. The PC is connected to both the buses. The µadder has
two inputs. One of them is the sign extended immediate that is a part of the microinstruction,
and the other is the output of the write bus.

Simultaneously, we compare the value sent on the write bus with the embedded immediate
(µimm). The result is contained in the isMBranch signal. The isMBranch signal is required
for implementing the mbeq instruction.

To create a flexible data path, we need to add as many interconnections between units as
possible. We thus decide to connect every register other than the decode, and flags registers
to both the read and write buses. These registers are the input/output registers of the register
file (regSrc, regData, and regV al), the ALU registers (A, B, aluResult), and the registers

c© Smruti R. Sarangi 400

Decode unit pc

Reg. file, ALU, Mem unit
Reg. file, ALU, Mem unit

pc

immμ

Microcontrol unit

Shared bus

Write bus
Read bus

isMBranch

Figure 9.23: The design of the shared bus

associated with the memory unit (mar, mdr, ldResult). To support branch instructions, it is
also necessary to connect the PC to both the buses.

9.7.1 Control Signals

Each register that writes to the write bus needs a control signal. If it is asserted (equal to 1),
then the value of the register appears on the write bus. Otherwise, the value of the register
does not get reflected on the write bus. For example, the register, aluResult, contains the
result of an ALU operation, and it is sometimes necessary to transfer its value to the write bus.
The signal aluResultout controls the behaviour of the aluResult register. We associate similar
signals with the subscript, out with all the registers that need to access the write bus.

Likewise, we associate a set of signals with the registers that are connected to the read bus.
For example, the register mar is connected to the read bus. We associate the signal marin with
it. If it is 1, then the value of the data on the read bus is transferred to mar. If marin = 0, the
mar register is effectively disconnected from the read bus.

The PC has two signals associated with it: pcin and pcout. The µcontrol unit ensures that
at one point of time only one register can write to the write bus. However, it is theoretically
possible for multiple registers to read from the read bus concurrently.

9.7.2 Functional Unit Arguments

We augment the read bus to carry the arguments for the functional units (referred to as 〈args〉).
These arguments specify the nature of the operation, which the functional unit needs to perform.
For example, the two operations associated with the memory unit are 〈load〉, and 〈store〉, and
the two operations associated with the register file are 〈read〉 and 〈write〉. Each ALU operation
also has its separate code.

401 c© Smruti R. Sarangi

We propose to encode each operation in binary, and reserve the special value of 0 to indicate
that no operation needs to be performed. Each functional unit needs to be connected to the
read bus, and needs to process the value of the arguments. The 〈args〉 field can be split into
two parts: 〈unit id〉, and 〈opcode〉. The 〈unit id〉 specifies the identifier for the functional unit.
For example, we can assign 00 to the ALU, 01 to the register file, and 10 to the memory unit.
The 〈opcode〉 contains the details of the operation to be performed. This is specific to the
functional unit. We propose a 10-bit 〈args〉 bus that is a part of the read bus. We devote 3 bits
to the 〈unit id〉, and 7 bits to the 〈opcode〉. Thus, for each unit we can support 128 different
operations. Implementing the circuit to process the 〈args〉 is easy, and we leave it as an exercise
to the reader.

9.8 The Microcontrol Unit

We now arrive at the last piece of our microprogrammed processor, which is the design of
the µcontrol unit. It is a simple processor that executes microinstructions. It consists of a
µfetch unit and a µpc. Every cycle we increment the µpc by 1 (addressed by the number of
the instruction, not by bytes), or set it to the branch target. Then, we proceed to read the
microinstruction from the microprogram memory, and process it. There are two main paradigms
for designing an encoding of microinstructions, and executing them using a µcontrol unit. The
first is known as vertical microprogramming. In principle, this paradigm is similar to executing
regular program instructions using a hardwired processor. The second paradigm is known as
horizontal microprogramming. This is more common, and is also a more efficient.

9.8.1 Vertical Microprogramming

In vertical microprogramming, we encode an instruction similar to encoding a regular RISC
instruction in a hardwired processor.

type

3

src dest

5 5

immediate

12

branchTarget

10

args

10

Figure 9.24: Encoding of a microinstruction (vertical microprogramming)

Figure 9.24 shows an encoding for our scheme. Here, we devote 3 bits for encoding the type
of the microinstruction. We need 3 bits because we have a total of 8 microinstructions (see
Table 9.8). Each microinstruction embeds the 5 bit id (because we have 19 registers visible
to microprograms) of an internal source register, 5 bit id of an internal destination register, a
12-bit immediate, and a 10-bit branch target. At the end, we encode a 10-bit args value in the
microinstruction. Each instruction thus requires 45 bits.

Now, to process a vertically encoded microinstruction, we need a dedicated µdecode unit
that can generate all the control signals. These signals include all the enable signals for the
internal registers, and the signals to select the right input in the transfer multiplexer. Addi-
tionally it needs to extract some fields from the microinstruction such as the immediate, branch

c© Smruti R. Sarangi 402

target, and the args value, and subsequently extend their sign. We have already gone through a
similar exercise for extracting the fields of an instruction, and generating control signals, when
we discussed the operand fetch unit and control unit for our hardwired processors in Sections
9.2.3, and 9.3 respectively. The logic for generating the control signals, and extracting fields
from the microinstruction is exactly the same. Hence, we leave the detailed design of these
units as an exercise for the reader.

μpc Microprogram
memory

Decode
unit

Execute
unit

Data path

control
signals

1
branchTarget

Shared bus

switchμmux

o
p

c
o
d

e

Figure 9.25: The µcontrol unit (vertical microprogramming)

The design of the vertical µcontrol unit is shown in Figure 9.25. We have a microPC (µpc),
which saves the index of the currently executing microinstruction. Every cycle, we increment
the µpc by 1. This is because each row of the microprogram memory saves 1 microinstruction.
We assume that a row is wide enough to save the entire contents of the microinstructions.
We do not have the requirement of saving data at the granularity of a fixed number of bytes
here. After reading the microinstruction, we proceed to decode it. The process of decoding
a microinstruction breaks it into a set of fields (instruction type, immediate, branch target,
args, source, and destination registers). Subsequently, we generate all the control signals and
dispatch the set of control signals to the execute unit. The execute unit sets all the control
signals, and orchestrates an operation in the data path of the processor. The execute unit also
sets the control signals of the transfer multiplexer. We need some additional support to process
the mswitch instruction. We add a dedicated switch unit that takes inputs (the opcode) from
the ir register, and computes the starting address for the microcode of the currently executing
program instruction. It sends the address to the multiplexer, µfetch (see Figure 9.25). The
multiplexer chooses between three inputs – default microPC, branch target, and the address
generated by the switch unit. It is controlled by the execute unit. The rules for choosing the
input are shown in Table 9.9. In accordance with these rules, and the value of the isMBranch
signal (generated by comparing µimm, and the contents of the shared bus), the execute unit
generates the control signals for the µfetch multiplexer.

403 c© Smruti R. Sarangi

Instruction Output of the µfetch multiplexer

mloadIR next µpc

mdecode next µpc

mswitch output of the switch unit

mmov next µpc

mmovi next µpc

madd next µpc

mb branch target

mbeq branch target if isMBranch = 1, else next µpc

Table 9.9: Rules for controlling the µfetch multiplexer

9.8.2 Horizontal Microprogramming

We can further simplify the design of the µcontrol unit. We do not need three steps (fetch,
decode, execute) to execute a microinstruction. The decode step is not required. We can embed
all the control signals in the microinstruction itself. It is thus not required to have a dedicated
signal generator to generate all the control signals. By doing so, we will increase the size of the
encoding of an instruction. Since the number of microinstructions is small, and we do not have
any significant constraints on the size of the encoding of a microinstruction, adding additional
bits in the encoding is not an issue. This paradigm is known as horizontal microprogramming.
The encoding of a microinstruction is shown in Figure 9.26.

immediate

12

branchTarget

10

args

10

control signals

33

Figure 9.26: Encoding of a microinstruction (horizontal microprogramming)

We need the following fields – control signals (saved as a bit vector whose size is 33 bits),
immediate (12 bits), branch target (10 bits), and args (10 bits). The reason we require 33
control signals is as follows. We have 19 registers (see Table 9.7) visible to microcode. Out
of these register, the following 9 registers are exclusively connected to either the read bus or
the write bus: ir, flags.E, flags.GT , I, rd, rs1, rs2, branchTarget, and immx. Hence, these
registers require just one control signal. The rest of the registers have read-write functionality.
Hence, these registers require two control signals. Thus, the total number of register enabling
control signals are 29. We need 2 more signals each to control the transfer multiplexer, and
the µfetch multiplexer. We thus have a total of 33 control signals, and we require 65 bits to
encode the instruction. Recall that with vertical microprogramming, we needed 45 bits.

Now, with additional storage we can completely eliminate the signal generator in the decode
stage, and thus significantly simplify the µcontrol unit as shown in Figure 9.27

Here, we have eliminated the decode stage. All the signals are embedded in the instruction,
and they are thus used to orchestrate a computation in the data path. The execute unit

c© Smruti R. Sarangi 404

μpc Microprogram
memory

Execute
unit

Data path

control
signals

1
branchTarget

Shared bus

switch

isMBranch

opcode

μmux

M1

Figure 9.27: The µcontrol unit (horizontal microprogramming)

generates the isMBranch signal (by comparing the µimm and the value on the read bus),
which is used to choose between the next µpc, and the branch target using multiplexer, M1.
Here, we slightly complicate the µfetch multiplexer, and add a little bit of redundancy in the
interest of simplicity. We make it a 4 input structure, and choose between the value from the
switch unit, the branch target, the output of M1, and the next µpc. The 2-bit control signals
for controlling the µfetch multiplexer are embedded in the instruction in accordance with the
rules given in Table 9.9. The rest of the operation of the circuit is the same as the circuit for
vertical microprogramming as shown in Figure 9.25.

9.8.3 Tradeoffs between Horizontal and Vertical Microprogramming

The tradeoffs between horizontal and vertical microprogramming are the following:

1. Horizontal microprogramming requires more storage. However, this is not an issue in a
microprogrammed processor. The additional storage is minimal.

2. Horizontal microprogramming eliminates the need for dedicated signal generation logic in
the µcontrol unit.

3. To program a horizontally microprogrammed processor, it is necessary to expose the con-
trol signals to the programmer and the microassembler. This makes the microassembler
very specific to a given processor. However, in vertical microprogramming, as long as the
internal register set remains the same, we do not need different microassemblers.

To summarise, microprogramming is a very potent method to implement an instruction
set. We can design very expressive instruction sets using this method. However, this is not

405 c© Smruti R. Sarangi

a preferable approach for implementing all the instructions (especially the common ones) in a
high performance processor.

9.9 Summary and Further Reading

9.9.1 Summary

Summary 9

1. We design a processor by dividing it into multiple stages, where the stages are mostly
independent of each other. We divide our basic SimpleRisc processor into five stages:
instruction fetch(IF), operand fetch(OF), execute (EX), memory access (MA), and
register writeback (RW).

2. The roles of these stages are as follows:

(a) The IF stage computes the next PC, and fetches the contents of the instruction,
whose address is stored in the PC.

(b) In the OF stage, we decode the instruction, and read its operands from the reg-
ister file. Specifically, we compute the branch target, and expand the embedded
immediate in the instruction according to the modifiers.

(c) In the EX stage, we compute the branch outcome, branch target, and perform
the ALU operations.

(d) In the MA stage, we perform loads and stores.

(e) Lastly, in the RW stage, we write back the values computed by ALU or load
instructions, and the return address for a call instruction to the register file.

3. The data path consists of all the elements for storing, retrieving, and processing infor-
mation such as the registers, memory elements, and the ALU. In contrast, the control
path generates all the signals for controlling the movement of instructions and data.

4. We can use a hardwired control unit that generates all the signals for the control path.

5. For additional flexibility, and portability, we presented the design of a micropro-
grammed processor. This processor replaces every program instruction by a sequence
of microinstructions.

6. We defined 8 microinstructions, and created a microprogrammed data path that con-
nected all the units on a shared bus. Each unit in a microprogrammed data path
exposes its input and output ports through registers. We use 19 registers in our de-
sign.

7. We subsequently showed implementations in microcode for all the instructions in the
SimpleRisc ISA.

c© Smruti R. Sarangi 406

8. We designed a shared bus for such processors by interconnecting two physical buses
(write bus, and read bus) with a multiplexer. The multiplexer (known as the transfer
multiplexer) chooses between the output of the write bus, the output of the µadder,
and the micro immediate.

9. We showed the design of a µcontrol unit for both vertical and horizontal micropro-
gramming. Vertical microprogramming requires a decode stage for generating all the
control signals. In comparison, horizontal microprogramming requires all the control
signals to be embedded in the microinstruction.

9.9.2 Further Reading

Processor design is very heavily studied in courses on computer architecture. Readers should
first start with Chapter 10 that discusses pipelining. Chapter 10 is a sequel to the current
chapter. The reader can then take a look at the “Further Reading” section (Section 10.12.2)
in Chapter 10. In general, for basic processor design, the reader can also consult other books
on computer architecture [Mano, 2007, Stallings, 2010, Henessey and Patterson, 2010] to get a
different perspective. The books by Morris Mano [Mano, 2007], and Carl Hamacher [Hamacher
et al., 2001] consider different flavours of microprogramming, and define their own semantics.
If the reader is interested in the history of microprogramming per se, then she can consult
books dedicated to the design and history of microprogramming [Carter, 1995, Husson, 1970].
The PTLSim [Yourst, 2007] simulator translates x86 instructions into micro-instructions, and
simulates these microinstructions on a data path similar to that of commercial processors.
Readers can take a look at the code of this simulator, and appreciate the nuances of processing
and executing microinstructions.

Exercises

Hardwired Processor Design

Ex. 1 — We have divided a SimpleRisc processor into 5 distinct units. List them, and de-
scribe their functions.

Ex. 2 — Explain the terms – data path and control path?

Ex. 3 — How does having a lesser number of instruction formats help in the process of de-
coding an instruction?

Ex. 4 — Draw the circuit for calculating the value of the 32-bit immediate, from the first 18
bits of the instruction. Take the modifiers into account.

Ex. 5 — Why is it necessary for the register file in our SimpleRisc processor to have 2 read
ports, and 1 write port?

407 c© Smruti R. Sarangi

Ex. 6 — Why do we need 2 multiplexers in the OF stage of the processor? What are their
functions?

Ex. 7 — Let us propose to compute the branch outcome and target in the OF stage. Describe
the design of the OF stage with this functionality.

* Ex. 8 — For the ALU we use a multiplexer with a large number of inputs. How can we
implement this multiplexer with transmission gates? (show a circuit diagram, and explain why
your idea will work)

Ex. 9 — Draw a circuit for implementing the cmp instruction. It should show the circuit for
subtraction, and the logic for updating the flags.

Ex. 10 — How do we implement the call instruction in our processor?

Ex. 11 — Draw the circuit diagram for computing the isWb signal.

Ex. 12 — Why do we use the isAdd control signal for the load, and store instructions also?

Microprogramming

Ex. 13 — Compare a hardwired control unit and a microprogrammed control unit.

Ex. 14 — Draw the block diagram of a microprogrammed processor.

Ex. 15 — Why do we need the mswitch instruction.

Ex. 16 — Describe the microcode implementation of the load and store instructions.

Ex. 17 — Write a program in microassembly to check if a number in register r2 is a perfect
square. Save the Boolean result in register, r0.

Ex. 18 — Write a program in microassembly to check if the value in register r2 is a palin-
drome. A palindrome reads the same from both sides. For example, the 8 bit number, 11011011
is a palindrome. Save the Boolean result in register, r0.

* Ex. 19 — Write a program in microassembly to check if the value in register r2 can be
expressed as a sum of two cubes in two different ways. For example, 1729, is one such number.
1729 = 123 + 13 = 103 + 93. Save the Boolean result in register, r0.

Ex. 20 — Outline the design of the shared bus, and microprogrammed data path. Explain
the functionalities of each of its components.

Ex. 21 — Draw a detailed diagram of the µcontrol unit along with the transfer multiplexer
in a vertically microprogrammed processor.

Ex. 22 — Draw a detailed diagram of the µcontrol unit along with the transfer multiplexer
in a horizontally microprogrammed processor.

c© Smruti R. Sarangi 408

Ex. 23 — Compare the tradeoffs between horizontal and vertical microprogramming.

Design Problems

Ex. 24 — Implement the hardwired SimpleRisc processor using Logisim, which is an ed-
ucational tool for designing and simulating digital circuits. It is freely available at http:

//ozark.hendrix.edu/~burch/logisim. Try to support all the instructions, and the modi-
fiers.

Ex. 25 — Now, try to implement a horizontally microprogrammed processor using Logisim.
This project has two parts.

a)Write a microassembler that can translate microassembly instructions to their machine
encodings. Use this microassembler to generate the microcode for all the instructions in
the SimpleRisc ISA.

b)Create a data path and control path in Logisim for a horizontally microprogrammed pro-
cessor. This processor should be able to directly execute the code generated by the mi-
croassembler.

c)Run regular SimpleRisc programs on this processor.

d)Implement custom SimpleRisc instructions such as multiply-add (a ← b ∗ c + d), or in-
structions to find the square of a number on this processor.

Ex. 26 — Implement the basic hardwired processor in a high-level description language such
as VHDL. You can use the freely available open source tool GNU HDL (http://gna.org/
projects/ghdl/) to implement and simulate your circuit.

http://ozark.hendrix.edu/~burch/logisim
http://ozark.hendrix.edu/~burch/logisim
http://gna.org/projects/ghdl/
http://gna.org/projects/ghdl/

