
10
Principles of Pipelining

10.1 A Pipelined Processor

Let us quickly review where, we are.

Way Point 7

1. We have designed a processor with five main stages – IF, OF, EX, MA, and RW.

2. We have designed a detailed data path and control path for the hardwired implemen-
tation of our processor.

3. We introduced a microprogram based implementation of our processor in Section 9.4,
and we designed a detailed data path and control path for it.

Now, our aim is to make our processor fast and efficient. For this we focus on the hardwired
implementation of our processor. We exclude microprogrammed processors from our discussion
because we are explicitly looking for high performance, and flexibility/ reconfigurability are not
important criteria for us in this section. Let us begin by pointing out some problems with the
design of the hardwired processor as presented in Section 9.2.

10.1.1 The Notion of Pipelining

Issues with a Single-Cycle Processor

We assumed that our hardwired processor presented in Section 9.2 takes a single cycle to fetch,
execute, and write the results of an instruction to either the register file or memory. At an
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electrical level, this is achieved by signals flowing from the fetch unit to ultimately the register
writeback unit via other units. It takes time for electrical signals to propagate from one unit
to the other.

For example, it takes some time to fetch an instruction from the instruction memory. Then
it takes time to read values from the register file, and to compute the results with the ALU.
Memory access, and writing the results back to the register file, are also fairly time taking
operations. We need to wait for all of these individual sub-operations to complete, before we
can begin processing the next instruction. In other words, this means that there is a significant
amount of idleness in our circuit. When the operand fetch unit is doing its job, all other units
are idle. Likewise, when the ALUs are active, all the other units are inactive. If we assume
that each of the five stages (IF,OF,EX,MA,RW) takes the same amount of time, then at any
instant, about 80% of our circuit is idle! This represents a waste in computational power, and
idling resources is definitely not a good idea.

If we can find a method to keep all the units of a chip busy, then we can increase the rate
at which we execute instructions.

10.1.2 Overview of Pipelining

Let us try to find an analogy to the problem of idleness in a simple single-cycle processor as we
just discussed. Let us go back to our original example of the car factory. If we assume, that we
start making a car, after the previous car has been completely manufactured, then we have a
similar problem. When we are assembling the engine of a car, the paint shop is idle. Likewise,
when we are painting a car, the engine shop is idle. Clearly, car factories cannot operate this
way. They thus typically overlap the manufacturing stages of different cars. For example, when
car A is in the paint shop, car B is in the engine shop. Subsequently, these cars move to the
next stage of manufacturing and another new car enters the assembly line.

We can do something very similar here. When one instruction is in the EX stage, the next
instruction can be in the OF stage, and the subsequent instruction can be in the IF stage. In
fact, if we have 5 stages in our processor, where we simplistically assume that each stage roughly
takes the same amount of time, we can assume that we have 5 instructions simultaneously being
processed at the same time. Each instruction undergoes processing in a different unit of the
processor. Similar to a car in an assembly line, an instruction moves from stage to stage in the
processor. This strategy ensures that we do not have any idle units in our processor because
all the different units in a processor are busy at any point in time.

In this scheme, the life cycle of an instruction is as follows. It enters the IF stage in cycle n,
enters the OF stage in cycle n+ 1, EX stage in cycle n+ 2, MA stage in cycle n+ 3, and finally
it finishes its execution in the RW stage in cycle n + 4. This strategy is known as pipelining,
and a processor that implements pipelining is known as a pipelined processor. The sequence of
five stages (IF, OF, EX, MA, RW) conceptually laid out one after the other is known as the
pipeline (similar to the car assembly line). Figure 10.1 shows the organisation of a pipelined
data path.

In Figure 10.1, we have divided the data path into five stages, where each stage processes a
separate instruction. In the next cycle, each instruction passes on to the next stage as shown
in the figure.
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Figure 10.1: A pipelined data path

Definition 65
The notion of dividing a processor into a set of stages where the stages are ordered one

after the other, and simultaneously process a set of instructions by assigning an instruction
to each stage, is known as pipelining. The implicit assumption here is that it takes the same
amount of time for each stage to complete its work. After this time quanta is over, each
instruction moves to the subsequent stage.

The conceptual layout of stages where one stage is laid out after the other is known as
a pipeline, and a processor that incorporates pipelining is known as a pipelined processor.

10.1.3 Performance Benefits

Let us quantify the expected benefit in terms of performance of a pipelined processor. We shall
take a deeper look into performance issues in Section 10.9. Here, we shall look at this topic
briefly. Let us assume that it takes τ nanoseconds for an instruction to travel from the IF
to RW stage of the pipeline in the worst case. The minimum value of the clock cycle is thus
limited to τ nanoseconds for the case of a single cycle pipeline. This is because in every clock
cycle we need to ensure that an instruction executes completely. Alternatively, this mean that
every τ nanoseconds, we finish the execution of an instruction.

Now, let us consider the case of a pipelined processor. Here, we have been assuming that the
stages are balanced. This means that it takes the same amount of time to execute each stage.
Most of the time, processor designers try to achieve this goal to the maximum extent that is
possible. We can thus divide τ by 5, and conclude that it takes τ/5 nanoseconds to execute
each stage. We can thus set the cycle time to τ/5. After the end of a cycle, the instructions in
each stage of the pipeline proceed to the next stage. The instruction in the RW stage moves
out of the pipeline and finished its execution. Simultaneously, a new instructions enters the IF
stage. This is graphically shown in Figure 10.2.

In the nth cycle, we have five instructions (1-5) occupying the five stages of the pipeline. In
the (n+ 1)th cycle each instruction progresses by 1 stage, and instruction 6 enters the pipeline.
This pattern continues.

The noteworthy point is that we are finishing the execution of a new instruction, every
τ/5 nanoseconds. As compared to a single-cycle processor that finishes the execution of a new
instruction every τ nanoseconds, the instruction throughput is 5 times higher for a pipelined
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Figure 10.2: Instructions in the pipeline

processor. In a span of 1000 nanoseconds, a single cycle processor completes 1000/τ instructions,
whereas a pipelined processor completes 5000/τ instructions, and is thus 5 times more efficient.
Therefore, we observe a fivefold advantage with pipelining.

If we can obtain a fivefold advantage with a 5-stage pipeline, then by the same logic we
should be able to obtain a 100-fold advantage with a 100-stage pipeline. In fact, we can keep on
increasing the number of stages till a stage just contains one transistor. However, this is not the
case, and there are fundamental limitations to the performance of a pipelined processor, as we
shall show in the subsequent sections. It is not possible to arbitrarily increase the performance
of a processor by increasing the number of pipeline stages. In fact, after a certain point, adding
more stages is counterproductive.

10.2 Design of a Simple Pipeline

Let us now design a simple pipeline. Our main aim in this section is to split the data path
of the single-cycle processor into five stages and ensure that five instructions can be processed
concurrently (one instruction in each stage). We need to also ensure the seamless movement
of instructions between the pipeline stages. Note that the problem of designing a pipeline in
general is very complex, and we will explore some of the major nuances in the next few sections.
For this section, let us not consider any dependences between instructions, or consider any
correctness issues. We shall look at these issues in detail in Section 10.4. Let us reiterate that
at the moment, we want to design a simple pipeline that needs to have the capability to process
five instructions simultaneously, and ensure that they move to the subsequent stage every new
cycle.

10.2.1 Splitting the Data Path

We have five distinct units in our data path, and all instructions traverse the units in the same
order. These units are instruction fetch (IF), operand fetch (OF), execute (EX), memory access
(MA), and the register write (RW) units. A layout of these five units in a pipelined fashion
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has already been shown in Figure 10.1. Let us now discuss the issue of splitting a data path in
some more detail.

The reader needs to note that pipelining is a general concept, and any circuit can in principle
be split into multiple parts and pipelined. There are however some rules that need to be followed.
All the subparts of the circuit must preferably be distinct entities that have as few connections
between them as possible. This is true in the case of our data path. All our units are distinct
entities. The second is that all kinds of data must flow through the units in the same order,
and lastly the work done by each unit should roughly be the same. This minimises the idleness
in the circuit. In our case, we have tried to follow all these rules. The reader needs to note that
the div and mod operations are exceptions to this rule. They are in general, significantly slower,
than add or multiply operations. They thus increase the maximum delay of the EX stage, and
the pipeline consequently becomes unbalanced. Hence, most simple pipelined processors either
refrain from implementing these instructions, or have specialised logic to deal with them. We
shall show one solution for this problem in Section 10.6 that proposes to stall a pipeline till
a division operation completes. Let us nevertheless continue to assume that all our pipeline
stages are balanced.

10.2.2 Timing

Now, we need to design a method that ensures that instructions seamlessly proceed to the
subsequent pipeline stage. We need a global mechanism that ensures that all the instructions
proceed to the next stages simultaneously. We already have this global mechanism built in,
and is nothing else, but the clock. We can have a protocol that for example, ensures that at
the falling edge of the clock, all the instructions proceed to the subsequent stages.

Instruction
Fetch
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Operand
Fetch
(OF)

Execute

(EX)

Memory
Access
(MA)

Register
Write
(RW)

Latches

Figure 10.3: A pipelined data path with registers

Figure 10.3 shows a simple method to achieve this. We insert a register between two
consecutive pipeline stages. Since we have five pipeline stages in our data path, we insert 4
registers. The four registers are named after their locations – IF-OF, OF-EX, EX-MA, and
MA-RW. Each of these registers are called pipeline registers or pipeline latches. The reader
needs to note that in this case, a latch, is actually referring to an edge triggered register. We
shall use the terms interchangeably. All the pipeline registers are connected to a common clock,
and read-write data at the same time.
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Definition 66
A pipeline register, or a pipeline latch is a register that is added between two consecutive
pipeline stages. All the registers are connected to the common clock, and help in seamlessly
transferring instructions between pipeline stages.

Let us explain with an example. When an instruction enters the pipeline, it enters the
IF unit. At the end of the first cycle, it gets saved in the IF-OF register. At the beginning
of the second cycle, it enters the OF stage, and then again at the end of the second cycle,
it gets latched into the OF-EX register. This pattern continues till the instruction leaves the
pipeline. The pipeline registers essentially transfer their inputs to the outputs at the end of a
cycle (negative edge of the clock). Then the logic of the pipeline stage processes the instruction,
and at the end of the cycle, the instruction gets transferred to the register of the subsequent
pipeline stage. In this manner, an instruction hops between stages till it reaches the end of the
pipeline.

10.2.3 The Instruction Packet

Let us now proceed to design our data path with pipeline stages and registers in some more de-
tail. Up till now we have been maintaining that the instruction needs to be transferred between
registers. Let us elaborate on the term “instruction”. We actually mean an instruction packet
here, which contains all the details regarding the instruction, along with all of its intermediate
results, and the control signals that it may require.

We need to create such an elaborate instruction packet because there are multiple instruc-
tions in the processor at the same time. We need to ensure that there is no overlap between
the information required to process two different instructions. A clean way of designing this
is to confine all the information required to process an instruction in a packet, and transfer
the packet between pipeline registers every cycle. This mechanism also ensures that all the
intermediate state required to process an instruction is removed after it leaves the pipeline.

What should an instruction packet contain? It needs to contain at the least, the PC and
the contents of the instruction. It should also contain all the operands and control signals that
are required by subsequent stages. The amount of information that needs to be stored in the
instruction packet reduces as the instruction proceeds towards the last stage. For the sake of
uniformity, we assume that all the pipeline registers have the same size, and are sized to hold
the entire instruction packet. Some of the fields might not be used. However, this is a negligible
overhead. Let us now proceed to design the data path of the pipeline. We shall use exactly the
same design as we had used for the single-cycle processor. The only difference is that we add a
register after each pipeline stage, other than the last stage, RW. Secondly, we add connections
to transfer data in and out of the pipeline registers. Let us quickly take a look at each of the
pipeline stages in our pipelined data path.



415 c© Smruti R. Sarangi

10.3 Pipeline Stages

10.3.1 IF Stage
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Figure 10.4: The IF stage in a pipelined processor

Figure 10.4 shows the IF stage augmented with a pipeline register. We save the value of
the PC, and the contents of the instruction in the pipeline register. This is all the information
that we need to carry forward to the subsequent stages of the pipeline. Other than this small
change, we do not need to make any other change in this part of the data path.

10.3.2 OF Stage
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Figure 10.5: The OF stage in a pipelined processor

Figure 10.5 shows the design of the operand fetch stage. The only extra additions are
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the connections to the two pipeline registers IF-OF, and OF-EX. The stage starts out by
extracting the fields rd (bits 23-26), rs1 (bits 19-22), rs2 (bits 15-18), and the immediate
(bits 1-18) from the instruction. These are sent to the register file, the immediate and branch
units. Additionally, we send the contents of the instruction to the control unit that generates
all the control signals. Three of the control signals namely isRet, isImmediate, and isSt are
used immediately. The rest of the control signals are for controlling multiplexers in subsequent
stages of the pipeline. Hence, it is necessary for us to save them in the OF-EX pipeline register
such that they can traverse the pipeline along with the instruction, and control the actions of
different units accordingly. Therefore, we allocate some space within the instruction packet,
and store all the control signals generated by the control unit (refer to the field control in
Figure 10.5).

We need to carry all the intermediate results generated by the OF stage. In specific, the OF
stage generates the branchTarget, both the inputs for the ALU (A, and B), and the value to be
written to memory for a store instruction (op2). Thus, we allocate four fields in the instruction
packet, and the OF-EX pipeline register to store this information as shown in Figure 10.5.
Let us recall that the aim of designing the instruction packet was to have all the information
required to process an instruction at one place. In accordance with this philosophy we have
saved all the details of the instruction including its address, contents, intermediate results, and
control signals in our pipeline registers.

10.3.3 EX Stage
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Figure 10.6: The EX stage in a pipelined processor

Let us now take a look at the EX stage in Figure 10.6. The ALU receives its inputs(A and
B) from the OF-EX pipeline register. The results generated by this stage are the aluResult
(result of the ALU operation), the final branch target, and the branch outcome. The branch
outcome is 1, if the branch is taken, otherwise it is 0. The result of the ALU operation is
added to the instruction packet, and saved in the EX-MA register. The EX-MA register also
contains the rest of the fields of the instruction packet namely the PC, instruction (contents
of the instruction), control signals, and the second operand read from the register file (op2).

For computing the final branch target, we need to choose between the branch target com-
puted in the OF stage and the value of the return address register (possibly stored in A). The
result of the choice is the final branch target(branchPC), and this is sent to the fetch unit. The
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branch unit computes the value of the signal, isBranchTaken. If it is 1, then the instruction is
a branch, and it is taken. Otherwise, the fetch unit needs to use the default option of fetching
the next PC.

10.3.4 MA Stage

Data memory Memory
unit

mar mdr isLd

isSt

pc controlaluResult instructionop2

pc controlldResult instructionaluResult

EX-MA

MA-RW

Figure 10.7: The MA stage in a pipelined processor

The MA stage is shown in Figure 10.7. The only operand that the load instruction uses
is the result of the ALU, which contains the effective memory address. This is saved in the
aluResult field of the EX-MA register. The data to be stored resides in the rd register. This
value was read from the register file in the OF stage, and was stored in the op2 field of the
instruction packet. In this stage, the op2 field is connected to the MDR (memory data register)
register. The relevant control signals – isLd and isSt – are also a part of the instruction packet,
and they are routed to the memory unit.

The only output of this stage is the result of the load instruction. This is saved in the
ldResult field of the MA-RW register.

10.3.5 RW Stage
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Figure 10.8: The RW stage in a pipelined processor
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We need to lastly take a look at the RW stage in Figure 10.8. The inputs that it requires
from the previous stages are the values of the ALU and load operations stored in the aluResult
and ldResult fields respectively. These inputs along with the default next PC (current PC +
4) are connected to a multiplexer that chooses the value to be written back. The rest of the
circuit is the same as that of the single-cycle processor. Note that there is no pipeline register
at the end of the RW stage because it is the last stage in the pipeline.

10.3.6 Putting it All Together

Let us now summarise our discussion regarding the simple pipeline by showing our data path
with the pipeline registers in Figure 10.9. The figure is undoubtedly complex. However, the
reader has seen all the parts of this figure before and thus should not have a significant amount
of difficulty in putting the different parts together. Nonetheless, we should note that the design
of our processor has already become fairly complex, and the size of our diagrams have already
reached one page !!! We do not want to introduce more complicated diagrams. The reader
should note that up till now our aim was to introduce the entire circuit. However, we shall now
introduce some degree of abstraction such that we can introduce more complicated features
into our processor. Henceforth, we shall broadly concentrate on the logic of the pipeline, and
not talk about the implementation in detail. We shall leave the implementation of the exact
circuit as an exercise for the reader.

Figure 10.10 shows an abstraction of our pipeline data path. This figure prominently con-
tains block diagrams for the different units and shows the four pipeline registers. We shall
use this diagram as the baseline for our discussion on advanced pipelines. Recall that the first
register operand can either be the rs1 field of the instruction, or it can be the return address
register in the case of a ret instruction. A multiplexer to choose between ra and rs1 is a part
of our baseline pipeline design, and for the sake of simplicity, we do not show it in the diagram.
We assume that it is a part of the register file unit. Similarly, the multiplexer to choose the
second register operand (between rd and rs2) is also assumed to be a part of the register file
unit, and is thus not shown in the diagram. We only show the multiplexer that chooses the
second operand (register or immediate).

10.4 Pipeline Hazards

In our simple pipeline discussed in Section 10.2, we were not concerned with correctness issues in
the pipeline. We were simply concerned with designing the pipeline, and having the capability
to process five instructions at the same time. Now, we want to take a look at correctness issues.
Let us start out by introducing the pipeline diagram, which will prove to be a very useful tool
in our analyses.

10.4.1 The Pipeline Diagram

We typically use a pipeline diagram to study the behaviour of a pipeline. It shows the rela-
tionships between instructions, clock cycles, and the different stages of the pipeline. It can be
used to study the nature of dependences across different instructions, and their execution in
the pipeline.
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Figure 10.9: Pipelined data path

Figure 10.11 shows a pipeline diagram for three instructions as they proceed through the
pipeline. Each row of the diagram corresponds to each pipeline stage. The columns correspond
to clock cycles. In our sample code, we have three instructions that do not have any dependences
between each other. We name these instructions – [1], [2], and [3] respectively. The earliest
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Figure 10.10: An abstraction of the pipelined data path
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Figure 10.11: The Pipeline Diagram

instruction, [1] enters the IF stage of the pipeline in the first cycle, and leaves the pipeline in
the fifth cycle. Similarly, the second instruction, [2], enters the IF stage of the pipeline in the
second cycle, and leaves the pipeline in the sixth cycle. Each of these instructions progresses to
the subsequent stage of the pipeline in each cycle. The trace of each instruction in the pipeline
diagram is a diagonal that is oriented towards the bottom-right. Note that this scenario will
get fairly complicated after we consider dependences across instructions.

Here, are the rules to construct a pipeline diagram.

1. Construct a grid of cells, which has five rows, and N columns, where N is the total number
of clock cycles that we wish to consider. Each of the five rows corresponds to a pipeline
stage.

2. If an instruction ([k]) enters the pipeline in cycle m, then we add an entry corresponding
to [k] in the mth column of the first row.
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3. In the (m + 1)th cycle, the instruction can either stay in the same stage (because the
pipeline might be stalled, described later), or can move to the next row (OF stage). We
add a corresponding entry in the grid cell.

4. In a similar manner, the instruction moves from the IF stage to the RW stage in sequence.
It never moves backwards. However, it can stay in the same stage across consecutive
cycles.

5. We cannot have two entries in a cell.

6. We finally remove the instruction from the pipeline diagram after it leaves the RW stage.

Example 137
Build a pipeline diagram for the following code snippet. Assume that the first instruction
enters the pipeline in cycle 1.

[1]: add r1, r2, r3

[2]: sub r4, r2, r5

[3]: mul r5, r8, r9

Answer:

[1]: add r1, r2, r3

[2]: sub r4, r2, r5

[3]: mul r5, r8, r9
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10.4.2 Data Hazards

Let us consider the following code snippet.

[1]: add r1, r2, r3

[2]: sub r3, r1, r4

Here, the add instruction is producing the value for register, r1, and the sub instruction is
using it as a source operand. Let us now construct a pipeline diagram for just these instructions
as shown in Figure 10.12.
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Figure 10.12: Pipeline diagram showing a RAW hazard

There is a problem. Instruction 1 writes the value of r1 in the fifth cycle, and instruction
2 needs to read its value in the third cycle. This is clearly not possible. We have added an
arrow between the relevant pipeline stages of both the instructions to indicate that there is
a dependency. Since the arrow is towards the left (backwards in time), we cannot execute
this code sequence in a pipeline. This is known as a data hazard. A hazard is defined as the
possibility of erroneous execution of an instruction in a pipeline. This specific case is classified as
a data hazard, where it is possible that instruction 2 might get the wrong data unless adequate
steps are taken.

Definition 67
A hazard is defined as the possibility of erroneous execution of an instruction in a pipeline.

A data hazard represents the possibility of erroneous execution because of the unavailability
of correct data.

This specific type of data hazard is known as a RAW (read after write) hazard. Here the
subtract instruction is trying to read r1, which needs to be written by the add instruction. In
this case, a read succeeds a write.

Note that this is not the only kind of data hazard. The two other types of data hazards
are WAW (write after write), and WAR (write after read) hazards. These hazards are not an
issue in our pipeline because we never change the order of instructions. A preceding instruction
is always ahead of a succeeding instruction in the pipeline. This is an example of an in-order
pipeline. In comparison, modern processors have out-of-order pipelines that execute instructions
in different orders.
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Definition 68
In an in-order pipeline (such as ours), a preceding instruction is always ahead of a succeeding
instruction in the pipeline. Modern processors use out-of-order pipelines that break this rule
and it is possible for later instructions to execute before earlier instructions.

Let us take a look at the following assembly code snippet.

[1]: add r1, r2, r3

[2]: sub r1, r4, r3

Here, instructions 1 and 2 are writing to register r1. In an in-order pipeline r1 will be
written in the correct order, and thus there is no WAW hazard. However, in an out-of-order
pipeline we run the risk of finishing instruction 2 before instruction 1, and thus r1 can end up
with the wrong value. This is an example of a WAW hazard. The reader should note that
modern processors ensure that r1 does not get the wrong value by using a technique known as
register renaming (see Section 10.11.4).

Let us give an example of a potential WAR hazard.

[1]: add r1, r2, r3

[2]: add r2, r5, r6

Here, instruction 2 is trying to write to r2, and instruction 1 has r2 as a source operand. If
instruction 2 executes first, then instruction 1 risks getting the wrong value of r2. In practice
this does not happen in modern processors because of schemes such as register renaming. The
reader needs to understand that a hazard is a theoretical risk of something wrong happening.
It is not a real risk because adequate steps are taken to ensure that programs are not executed
incorrectly.

In this book, we will mostly focus on RAW hazards, because WAW and WAR hazards are
relevant only for modern out-of-order processors. Let us outline the nature of the solution.
To avoid a RAW hazard it is necessary to ensure that the pipeline is aware of the fact that it
contains a pair of instructions, where one instruction writes to a register, and another instruction
that comes later in program order reads from the same register. It needs to ensure that the
consumer instruction correctly receives the value of the operand (in this case, register) from
the producer instruction. We shall look at solutions in both hardware and software.

10.4.3 Control Hazards

Let us now look at another type of hazards that arise when we have branch instructions in the
pipeline. Let us consider the following code snippet.

[1]: beq .foo

[2]: mov r1, 4

[3]: add r2, r4, r3

...

...
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.foo:

[100]: add r4, r1, r2

Let us show the pipeline diagram for the first three instructions in Figure 10.13.

[1]: beq .foo

[2]: mov r1, 4

[3]: add r2, r4, r3
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Figure 10.13: Pipeline diagram

Here, the outcome of the branch is decided in cycle 3, and is communicated to the fetch unit.
The fetch unit starts fetching the correct instruction from cycle 4. Now, if the branch is taken,
then instructions 2, and 3, should not be executed. Sadly, there is no way of knowing in cycles
2 and 3, about the outcome of the branch. Hence, these instructions will be fetched, and will be
a part of the pipeline. If the branch is taken, then there is a possibility that instructions 2 and
3 might corrupt the state of the program, and consequently introduce an error. Instructions 2
and 3, are known as instructions in the wrong path. This scenario is known as a control hazard.

Definition 69
Instructions that would have been executed if a branch would have had an outcome that is
different from its real outcome, are said to be on the wrong path. For example, instructions
succeeding a branch instruction in the program, are in the wrong path, if the branch is taken.

Definition 70
A control hazard represents the possibility of erroneous execution in a pipeline because
instructions in the wrong path of a branch can possibly get executed and save their results
in memory, or in the register file.

To avoid a control hazard, it is necessary to identify instructions in the wrong path, and
ensure that their results do not get committed to the register file, and memory. There should
be a way to nullify such instructions, or avoid them altogether.
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10.4.4 Structural Hazards

Definition 71
A structural hazard refers to the possibility of instructions not being able to execute because
of resource constraints. For example, they can arise when multiple instructions try to access
a functional unit in the same cycle, and due to capacity limitations, the unit cannot allow all
the interested instructions to proceed. In this case, a few of the instructions in the conflict
need to stall their execution.

Structural hazards do not arise in the SimpleRisc pipeline. However, for the sake of complete-
ness, we should still study them. They arise when different instructions try to access the same
resource, and the resource cannot allow all of them to access it in the same cycle. Let us give
an example. Let us suppose that we had an add instruction that could read one operand from
memory. It could have the following form:

add r1, r2, 10[r3]

Here, we have one register source operand, r2, and a memory source operand, 10[r3]. Let
us further assume that our pipeline reads the value of the memory operand in the OF stage.
Let us now look at a potentially conflicting situation.

[1]: st r4, 20[r5]

[2]: sub r8, r9, r10

[3]: add r1, r2, 10[r3]

Note that there are no control and data hazards here. Let us nonetheless, consider a point
in the pipeline diagram when the store instruction is in the MA stage. At this point instruction
2 is in the EX stage, and instruction 3 is in the OF stage. Note that in this cycle, both
instructions 1 and 3 need to access the memory unit. However, if we assume that the memory
unit can only service one request per cycle, then clearly there is a conflicting situation. One of
the instructions needs to stall its execution. This situation is an example of a structural hazard.

We claim that in our SimpleRisc pipeline there are no structural hazards. In other words,
we never have a situation in which multiple instructions across different pipeline stages wish
to access the same unit, and that unit does not have the capacity to service all the requests.
This statement can be proved by considering that the only units that are accessed by multiple
stages are the fetch unit, and the register file. The fetch unit is accessed by an instruction in
the IF stage, and by branch instructions in the EX stage. It is designed to handle both the
requests. Likewise, the register file is accessed by instructions in the OF stage, and RW stage.
Our register file has two read ports, and one write port. It can thus handle both the requests
in the same cycle.

Let us thus focus on trying to eliminate RAW and control hazards.
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10.5 Solutions in Software

10.5.1 RAW Hazards

Now, let us find a way of avoiding a RAW hazard. Let us look at our example again.

[1]: add r1, r2, r3

[2]: sub r3, r1, r4

Instruction 2 requires the value of r1 in the OF stage. However, at that point of time,
instruction 1 is in the EX stage, and it would not have written back the value of r1 to the
register file. Thus, instruction 2 cannot be allowed to proceed in the pipeline. Let us propose a
naive software solution to this problem. A smart compiler can analyse the code sequence and
realise that a RAW hazard exists. It can introduce nop instructions between these instructions
to remove any RAW hazards. Let us consider the following code sequence

[1]: add r1, r2, r3

[2]: nop

[3]: nop

[4]: nop

[5]: sub r3, r1, r4

Here, when the sub instruction reaches the OF stage, the add instruction would have written
its value and left the pipeline. Thus, the sub instruction will get the correct value. Note that
adding nop instructions is a costly solution, because we are essentially wasting computational
power. In this example, we have basically wasted 3 cycles by adding nop instructions. However,
if we consider a longer sequence of code, then the compiler can possibly reorder the instructions
such that we can minimise the number of nop instructions. The basic aim of any compiler
intervention needs to be that there have to be a minimum of 3 instructions between a producer
and consumer instruction. Let us consider Example 138.

Example 138
Reorder the following code snippet, and add a sufficient number of nop instructions to make
it execute correctly on a SimpleRisc pipeline.

add r1, r2, r3

add r4, r1, 3

add r8, r5, r6

add r9, r8, r5

add r10, r11, r12

add r13, r10, 2

Answer:
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add r1, r2, r3

add r8, r5, r6

add r10, r11, r12

nop

add r4, r1, 3

add r9, r8, r5

add r13, r10, 2

We need to appreciate two important points here. The first is the power of the nop in-
struction, and the next is the power of the compiler. The compiler is a vital tool in ensuring
the correctness of the program, and also improving its performance. In this case, we want to
reorder code in such a way that we introduce the minimum number of nop instructions.

10.5.2 Control Hazards

Let us now try to use the same set of techniques to solve the issue of control hazards. If we take
a look at the pipeline diagram again, then we can conclude that there need to be a minimum
of two instructions between the branch instruction and the instruction at the branch target.
This is because, we get both the branch outcome, and the branch target at the end of the EX
stage. At this point of time there are two more instructions in the pipeline. These instructions
have been fetched when the branch instruction was in the OF, and EX stages respectively.
They might potentially be on the wrong path. After the branch target, and outcome have been
determined in the EX stage, we can proceed to fetch the correct instruction in the IF stage.

Now, let us consider these two instructions that were fetched, when we were not sure of the
branch outcome. If the PC of the branch is equal to p1, then their addresses are p1 + 4, and
p1 + 8 respectively. They are not on the wrong path if the branch is not taken. However, if the
branch is taken, then these instructions need to be discarded from the pipeline since they are
on the wrong path. For doing this, let us look at a simple solution in software.

Let us consider a scheme where the hardware assumes that the two instructions immediately
after a branch instruction are not on the wrong path. The positions of these two instructions
are known as the delay slots. Trivially, we can ensure that the instructions in the delay slots do
not introduce errors, by inserting two nop instructions after a branch. However, we will not gain
any extra performance by doing this. We can instead find two instructions that execute before
the branch instruction, and move them to the two delay slots immediately after the branch.

Note that we cannot arbitrarily move instructions to the delay slots. We cannot violate
any data dependence constraints, and we need to also avoid RAW hazards. Secondly, we
cannot move any compare instructions into the delay slots. If appropriate instructions are not
available, then we can always fall back to the trivial solution and insert nop instructions. It is
also possible that we may find just one instruction that we can reorder, then we just need to
insert one nop instruction after the branch instruction. The method of delayed branches is a
very potent method in reducing the number of nop instructions that need to be added to avoid
control hazards.

The reader should convince herself that to support this simple software scheme, we do not
need to make any changes in hardware. The pipelined data path shown in Figure 10.9 already
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supports this scheme. In our simple pipelined data path, the two instructions fetched after the
branch have their PCs equal to p1 + 4, and p1 + 8 respectively (p1 is the PC of the branch
instruction). Since the compiler ensures that these instructions are always on the correct path
irrespective of the outcome of the branch, we do not commit an error by fetching them. After
the outcome of the branch has been determined, the next instruction that is fetched either has
a PC equal to p1 + 12 if the branch is not taken, or the PC is equal to the branch target if the
branch is taken. Thus, in both the cases, the correct instruction is fetched after the outcome
of the branch is determined, and we can conclude that our software solution executes programs
correctly on the pipelined version of our processor.

To summarise, the crux of our software technique is the notion of the delay slot. We need
two delay slots after a branch because we are not sure about the two subsequent instructions.
They might be on the wrong path. However, using a smart compiler we can manage to move in-
structions that get executed irrespective of the outcome of the branch to the delay slots. We can
thus avoid placing nop instructions in the delay slots, and consequently increase performance.
Such a branch instruction is known as a delayed branch instruction.

Definition 72
A branch instruction is known as a delayed branch if the processor assumes that all the

succeeding instructions that are fetched before its outcome has been determined, are on
the correct path. If the processor fetches n instructions between the time that a branch
instruction has been fetched, and its outcome has been determined, then we say that we have
n delay slots. The compiler needs to ensure that instructions on the correct path occupy the
delay slots, and no additional control or RAW hazards are introduced. The compiler can
also trivially introduce nop instructions in the delay slots.

Now, let us consider a set of examples.

Example 139
Reorder the following piece of assembly code to correctly run on a pipelined SimpleRisc
processor with delayed branches. Assume two delay slots per branch instruction.

add r1, r2, r3

add r4, r5, r6

b .foo

add r8, r9, r10

Answer:

b .foo

add r1, r2, r3

add r4, r5, r6

add r8, r9, r10
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10.6 Pipeline with Interlocks

Up till now, we have only looked at software solutions for eliminating RAW and control hazards.
However, compiler approaches, are not very generic. Programmers can always write assembly
code manually, and try to run it on the processor. In this case, the likelihood of an error is
high, because programmers might not have reordered their code properly to remove hazards.
Secondly, there is an issue of portability. A piece of assembly code written for one pipeline,
might not run on another pipeline that follows the same ISA. This is because it might have
a different number of delay slots, or different number of stages. One of our main aims of
introducing assembly programs gets defeated, if our assembly programs are not portable across
different machines that use the same ISA.

Hence, let us try to design solutions at the hardware level. The hardware should ensure that
irrespective of the assembly program, it is run correctly. The output should always match that
produced by a single cycle processor. To design such kind of a processor, we need to ensure
that an instruction never receives wrong data, and wrong path instructions are not executed.
This can be done by ensuring that the following conditions hold.

• Condition: Data-Lock : We cannot allow an instruction to leave the OF stage unless it
has received the correct data from the register file. This means that we need to effectively
stall the IF and OF stages and let the rest of the stages execute till the instruction in the
OF stage can safely read its operands. During this time, the instruction that passes from
the OF to the EX stage needs to be a nop instruction.

• Condition: Branch-Lock : We never execute instructions on the wrong path. We either
stall the processor till the outcome is known, or use techniques to ensure that instructions
on the wrong path are not able to commit their changes to the memory, or registers.

Definition 73
In a purely hardware implementation of a pipeline, it is sometimes necessary to stop a new
instruction from entering a pipeline stage, till a certain condition ceases to hold. The notion
of stopping a pipeline stage from accepting and processing new data, is known as a pipeline
stall, or a pipeline interlock. Its primary purpose is to ensure the correctness of program
execution.

If we ensure that both the Data-Lock and Branch-Lock conditions hold, then our pipeline
will execute instructions correctly. Note that both the conditions dictate that possibly some
stages of the pipeline needs to be stalled for some time. These stalls are also known as pipeline
interlocks. In other words, by keeping our pipeline idle for some time, we can avoid executing
instructions that might potentially lead to an erroneous execution. Let us now quickly compare
the pure software and hardware schemes in Table 10.1, and see what are the pros and cons of
implementing the entire logic of the pipeline in hardware. Note that in the software solution we
try to reorder code, and subsequently insert the minimum number of nop instructions to nullify
the effect of hazards. In comparison, in the hardware solution, we dynamically stall parts of the
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pipeline to avoid executing instructions in the wrong path, or with wrong values of operands.
Stalling the pipeline is tantamount to keeping some stages idle, and inserting nop instructions
in other stages as we shall see later in this section.

Attribute Software Hardware (with interlocks)
Portability Limited to a specific

processor
Programs can be run on any pro-
cessor irrespective of the nature of
the pipeline

Branches Possible to have no
performance penalty,
by using delay slots

Need to stall the pipeline for 2 cy-
cles in our design

RAW hazards Possible to eliminate
them through code
scheduling

Need to stall the pipeline

Performance Highly dependent on
the nature of the pro-
gram

The basic version of a pipeline
with interlocks is expected to be
slower than the version that relies
on software

Table 10.1: Comparison between software and hardware approaches for ensuring the correctness
of a pipeline

We observe that the efficacy of the software solution is highly dependent on the nature of
the program. It is possible to reorder the instructions in some programs to completely hide the
deleterious effects of RAW hazards and branches. However, in some programs we might not
find enough instructions that can be reordered. We would be thus compelled to insert a lot
of nop instructions, and this would reduce our performance. In comparison, a pure hardware
scheme, which obeys the Data-Lock and Branch-Lock conditions stalls the pipeline whenever
it detects an instruction that might execute erroneously. It is a generic approach, which is
slower than a pure software solution.

Now, it is possible to combine the hardware and software solutions to reorder code to make
it “pipeline friendly” as much as possible, and then run it on a pipeline with interlocks. Note
that in this approach, no guarantees of correctness are made by the compiler. It simply spaces
producer and consumer instructions as far apart as possible, and takes advantage of delayed
branches if they are supported. This reduces the number of times we need to stall the pipeline,
and ensures the best of both worlds. Before proceeding to design a pipeline with interlocks, let
us study the nature of interlocks with the help of pipeline diagrams.

10.6.1 A Conceptual Look at a Pipeline with Interlocks

Data Hazards

Let us now draw the pipeline diagram of a pipeline with interlocks. Let us consider the following
code snippet.

[1]: add r1, r2, r3

[2]: sub r4, r1, r2
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Here, instruction [1] writes to register r1 and instruction [2] reads from r1. Clearly, there
is a RAW dependence. To ensure the Data-Lock condition, we need to ensure that instruction
[2] leaves the OF stage only when it has read the value of r1 written by instruction [1]. This is
possible only in cycle 6 (refer to the pipeline diagram in Figure 10.14). However, instruction [2]
reaches the OF stage in cycle 3. If there would have been no hazard, then it would have ideally
proceeded to the EX stage in cycle 4. Since we have an interlock, instruction [2] needs to stay
in the OF stage in cycles 4,5 and 6 also. The question is, “what does the EX stage do when
it is not processing a valid instruction in cycles 4, 5 and 6?” Similarly, the MA stage does not
process any valid instruction in cycles 5, 6 and 7. We need to have a way to disable pipeline
stages, such that we do not perform redundant work. The standard approach is to insert nop
instructions into stages, if we want to effectively disable them.

[1]: add r1, r2, r3

[2]: sub r4, r1, r2
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Figure 10.14: A pipeline diagram with bubbles

Let us refer to Figure 10.14 again. At the end of cycle 3, we know that we need to introduce
an interlock. Hence, in cycle 4, instruction [2] remains in the OF stage, and we insert a nop
instruction into the EX stage. This nop instructions moves to the MA stage in cycle 5, and RW
stage in cycle 6. This nop instruction is called a pipeline bubble. A bubble is a nop instruction
that is dynamically inserted by the interlock hardware. It moves through the pipeline stages
akin to normal instructions. Similarly, in cycles 5 and 6 also, we need to insert a pipeline
bubble. Finally, in cycle 7, instruction [2] is free to proceed to the EX, and subsequent stages.
A bubble by definition does not do anything, and thus none of the control signals are turned
on when a stage encounters a bubble. The other subtle point to note here is that we cannot
read and write to the same register in the same cycle. We need to give preference to the write
because it is an earlier instruction, and the read needs to stall for one cycle.

There are two ways to implement a bubble. The first is that we can have a separate bubble
bit in the instruction packet. Whenever, the bit is 1, the instruction will be construed to be a
bubble. The second is that we can change the opcode of the instruction to that of a nop, and
replace all of its control signals by 0s. The latter approach is more invasive, but can eliminate
redundant work in the circuit completely. In the former approach, the control signals will be on,
and units that are activated by them, will remain operational. The hardware needs to ensure
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that a bubble is not able to make changes to registers or memory.

Definition 74
A pipeline bubble is a nop instruction that is inserted dynamically in a pipeline register by
the interlock hardware. A bubble propagates through the pipeline in the same way as normal
instructions.

We can thus conclude that it is possible to avoid data hazards, by dynamically inserting
bubbles in the pipeline. Let us quickly take a look at the issue of slow instructions such as the
div and mod instructions. It is highly likely that in most pipelines these instructions will take
n (n > 1) cycles to execute in the EX stage. In each of the n cycles, the ALU completes a
part of the processing of the div or mod instructions. Each such cycle is known as a T State.
Typically, one stage has 1 T State; however, the EX stage for a slow instruction has many T
states. Hence, to correctly implement slow instructions, we need to stall the IF and OF stages
for (n− 1) cycles till the operations complete.

For the sake of simplicity, we shall not discuss this issue further. Instead, we shall move on
with the simplistic assumption that all our pipeline stages are balanced, and take 1 cycle to
complete their operation.

Control Hazards

Now, let us look at control hazards. Let us start out by considering the following code snippet.

[1]: beq .foo

[2]: add r1, r2, r3

[3]: sub r4, r5, r6

....

....

.foo:

[4]: add r8, r9, r10

Instead of using a delayed branch, we can insert bubbles in the pipeline if the branch is
taken. Otherwise, we do not need to do anything. Let us assume that the branch is taken. The
pipeline diagram for this case is shown in Figure 10.15.

In this case, the outcome of the branch condition of instruction [1] is decided in cycle 3.
At this point, instructions [2] and [3] are already in the pipeline (in the IF and OF stages,
respectively). Since the branch condition evaluates to taken, we need to cancel instructions
[2] and [3], otherwise they will be executed erroneously. We thus, convert them to bubbles as
shown in Figure 10.15. Instructions[2] and [3] are converted to bubbles in cycle 4. Secondly,
we fetch from the correct branch target (.foo) in cycle 4, and thus instruction [4] enters the
pipeline. Both of our bubbles proceed through all the pipeline stages, and finally leave the
pipeline in cycles 6 and 7 respectively.

We can thus ensure both the conditions (Data-Lock and Branch-Lock ) by dynamically
introducing bubbles in the pipeline. Now, let us look at these approaches in some more detail.
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[1]: beq. foo
[2]: add r1, r2, r3
[3]: sub r4, r5, r6
....
....
.foo:
[4]: add r8, r9, r10
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Figure 10.15: Pipeline diagram for a control hazard with bubbles

10.6.2 Ensuring the Data-Lock Condition

To ensure the Data-Lock condition we need to ensure that there is no conflict between the
instruction in the OF stage, and any instruction in the subsequent stages. A conflict is defined
as a situation that can cause a RAW hazard. In other words, a conflict exists if an instruction
in a subsequent stage writes to a register that is read by the instruction in the OF stage. There
are thus two pieces of hardware that we require to implement the Data-Lock condition. The
first is to check if a conflict exists, and the second is to ensure that the pipeline gets stalled.

Let us first look at the conflict detection hardware. The conflict detection hardware needs
to compare the contents of the instruction in the OF stage with the contents of each of the
instructions in the other three stages namely EX, MA, and RW. If there is a conflict with any
of these instructions, we can declare a conflict. Let us thus focus on the logic of detecting a
conflict. We leave the design of the exact circuit as an exercise for the reader. Let us outline
the brief pseudo-code of a conflict detection circuit. Let the instruction in the OF stage be [A],
and an instruction in a subsequent stage be [B]. The algorithm to detect a conflict is shown as
Algorithm 5.
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Implementing Algorithm 5 in hardware is straight forward. The reader can draw a simple
circuit and implement this algorithm. All we need is a set of logic gates and multiplexers.
Most hardware designers typically write the description of a circuit similar to Algorithm 5 in
a hardware description language such as Verilog or VHDL, and rely on smart compilers to
convert the description to an actual circuit. Hence, we shall refrain from showing detailed
implementations of circuits henceforth, and just show the pseudo code.

We need three conflict detectors (OF ↔ EX, OF ↔ MA, OF ↔ RW). If there are no
conflicts, then the instruction is free to proceed to the EX stage. However, if there is at least
one conflict, we need to stall the IF and OF stages. Once an instruction passes the OF stage,
it is guaranteed to have all of its source operands.

Stalling the Pipeline:
Let us now look at stalling the pipeline. We essentially need to ensure that till there is a conflict
no new instruction enters the IF and OF stages. This can be trivially ensured by disabling the
write functionality of the PC and the IF-OF pipeline register. They thus cannot accept new
data on a clock edge, and thus will continue to hold their previous values.

Secondly, we also need to insert bubbles in the pipeline. For example, the instruction that
passes from the OF to the EX stage needs to be an invalid instruction, or alternatively a bubble.
This can be ensured by passing a nop instruction. Hence, the circuit for ensuring the Data-Lock
condition is straight forward. We need a conflict detector that is connected to the PC, and the
IF-OF register. Till there is a conflict, these two registers are disabled, and cannot accept new
data. We force the instruction in the OF-EX register to contain a nop. The augmented circuit
diagram of the pipeline is shown in Figure 10.16.
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Figure 10.16: Data path of a pipeline with interlocks (implements the Data-Lock condition)
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Algorithm 5: Algorithm to detect conflicts between instructions

Data: Instructions: [A] and [B]
Result: Conflict exists (true), no conflict (false)

1 if [A].opcode ∈ (nop,b,beq,bgt,call) then
/* Does not read from any register */

2 return false

3 end
4 if [B].opcode ∈ (nop, cmp, st, b, beq, bgt, ret) then

/* Does not write to any register */

5 return false

6 end
/* Set the sources */

7 src1 ← [A].rs1
8 src2 ← [A].rs2
9 if [A].opcode = st then

10 src2 ← [A].rd
11 end
12 if [A].opcode = ret then
13 src1 ← ra
14 end

/* Set the destination */

15 dest ← [B].rd
16 if [B].opcode = call then
17 dest ← ra
18 end

/* Check if the first operand exists */

19 hasSrc1 ← true
20 if [A].opcode ∈ (not,mov) then
21 hasSrc1 ← false
22 end

/* Check the second operand to see if it is a register */

23 hasSrc2 ← true
24 if [A].opcode /∈ (st) then
25 if [A].I = 1 then
26 hasSrc2 ← false
27 end

28 end
/* Detect conflicts */

29 if (hasSrc1 = true) and (src1 = dest) then
30 return true
31 end
32 else if (hasSrc2 = true) and (src2 = dest) then
33 return true
34 end
35 return false
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10.6.3 Ensuring the Branch-Lock condition

Let us now assume that we have a branch instruction in the pipeline (b, beq, bgt, call, ret). If we
have delay slots, then our data path is the same as that shown in Figure 10.16. We do not need
to do any changes, because the entire complexity of execution has been offloaded to software.
However, exposing the pipeline to software has its pros and cons as discussed in Table 10.1. If
we add more stages in the pipeline, then existing executables might cease to work. To avoid
this let us design a pipeline that does not expose delay slots to software.

We have two design options here. The first is that we can assume that a branch is not
taken till the outcome is decided. We can proceed to fetch the two instructions after a branch
and process them. Once, the outcome of the branch is decided in the EX stage, we can take
an appropriate action based on the outcome. If the branch is not taken, then the instructions
fetched after the branch instruction, are on the correct path, and nothing more needs to be
done. However, if the branch is taken, then it is necessary to cancel those two instructions, and
replace them with pipeline bubbles (nop instructions).

The second option is to stall the pipeline till the outcome of the branch is decided, irrespec-
tive of the outcome. Clearly, the performance of this design is less than the first alternative
that assumes that branches are not taken. For example, if a branch is not taken 30% of the
time, then with the first design, we do useful work 30% of the time. However, with the second
option, we never do any useful work in the 2 cycles after a branch instruction is fetched. Hence,
let us go with the first design in the interest of performance. We cancel the two instructions
after the branch only if the branch is taken. We call this approach predict not taken, because
we are effectively predicting the branch to be not taken. Later on if this prediction is found to
be wrong, then can cancel the instructions in the wrong path.

Important Point 14
If the PC of a branch instruction is equal to p, then we choose to fetch the instructions
at p + 4, and p + 8 over the next two cycles. If the branch is not taken, then we resume
execution. However, if the branch is taken, then we cancel these two instructions, and
convert them to pipeline bubbles.

We do not need to make any significant changes to the data path. We need a small branch
hazard unit that takes an input from the EX stage. If the branch is taken, then in the next
cycle it converts the instructions in the IF-OF and OF-EX stages to pipeline bubbles. The
augmented data path with the branch interlock unit is shown in Figure 10.17.

10.7 Pipeline with Forwarding

10.7.1 Basic Concepts

We have now implemented a pipeline with interlocks. Interlocks ensure that a pipeline executes
correctly irrespective of the nature of dependences across instructions. For the Data-Lock

condition we proposed to add interlocks in the pipeline that do not allow an instruction to
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Figure 10.17: Data path of a pipeline with interlocks (implements both the Data-Lock and
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leave the operand fetch stage until the correct values are available in the register file. However,
we shall see in this section that we do not need to add interlocks always. In fact, in a lot of
instances, the correct data is already present in pipeline registers, albeit not in the register
file. We can design a method to properly pass data from the internal pipeline registers to the
appropriate functional unit. Let us consider a small example by considering this SimpleRisc
code snippet.

[1]: add r1, r2, r3

[2]: sub r4, r1, r2

Let us take a look at the pipeline diagram with just these two instructions in Figure 10.18.
Figure 10.18(a) shows the pipeline diagram with interlocks. Figure 10.18(b) shows a pipeline
diagram without interlocks and bubbles. Let us now try to argue that we do not need to insert
a bubble between the instructions.

Let us take a deeper look at Figure 10.18(b). Instruction 1 produces its result at the end
of the EX stage, or alternatively at the end of cycle 3, and writes to the register file in cycle
5. Instruction 2 needs the value of r1 in the register file at the beginning of cycle 3. This is
clearly not possible, and thus we had proposed to add pipeline interlocks to resolve this issue.
However, let us try an alternative solution instead. Let us allow the instructions to execute.
Then in cycle 3, [2] will get the wrong value. We allow it to proceed to the EX stage in cycle 4.
At this point of time, instruction [1] is in the MA stage, and its instruction packet contains the
correct value of r1. This value of r1 was computed in the previous cycle, and is present in the
aluResult field of the instruction packet. [1]’s instruction packet is in the EX-MA register in
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[1]: add r1, r2, r3

[2]: sub r4, r1, r2
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Figure 10.18: (a) Pipeline diagram with interlocks and bubbles (b) Pipeline diagram without
bubbles

cycle 4. Now, if we add a connection between the aluResult field of the EX-MA register and an
input of the ALU, then we can successfully transfer the correct value of r1 to the ALU. There
will be no error in our computation, because the operands to the ALU are correct, and thus
the result of the ALU operation will also be computed correctly. Figure 10.19 shows the result
of our actions in the pipeline diagram. We add a line from the MA stage of instruction [1] to
the EX stage of instruction [2]. Since the arrow does not go backwards in time, it is possible
to forward the data (value of r1) from one stage to the other.

[1]: add r1, r2, r3

[2]: sub r4, r1, r2
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Figure 10.19: Example of forwarding in a pipeline

Definition 75
Forwarding is a method to transfer values of operands between instructions in different
pipeline stages through direct connections between the stages. We do not use the register file
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for transferring the values of operands across instructions. Forwarding allows us to avoid
costly pipeline interlocks.

We have just looked at an extremely powerful technique for avoiding stalls in pipelines.
This technique is known as forwarding. Essentially, we allow the values of operands to flow
between instructions by directly transferring them across stages. We do not use the register
file to transfer values across instructions. The notion of forwarding has allowed us to execute
instructions [1] and [2] back to back (in consecutive cycles). We do not need to add any stall
cycles. Hence, it is not necessary to reorder code, or insert nops.

Before, we proceed to the implementation of forwarding, let us discuss forwarding concep-
tually using pipeline diagrams. To forward the value of r1 between instructions [1] and [2], we
added a connection between the MA stage and the EX stage. We showed this connection in
Figure 10.19 by drawing an arrow between the corresponding stages of instructions [1] and [2].
The direction of this arrow was vertically upwards. Since it did not go backwards in time, we
concluded that it is possible to forward the value. Otherwise, it would not have been possible.

Let us now try to answer a general question. Can we forward values between all pairs
of instructions. Note that these need not be consecutive instructions. Even if there is one
instruction between an producer and a consumer ALU instruction, we still need to forward
values. Let us now try to think of all possible forwarding paths between stages in a pipeline.

10.7.2 Forwarding Paths in a Pipeline

Let us discuss the basic tenets of forwarding that we shall broadly aim to follow.

1. We add a forwarding path between a later stage and an earlier stage.

2. We forward a value as late as possible in the pipeline. For example, if a given value is
not required in a given stage, and it is possible to get the value in a later stage from the
producer instruction, then we wait to get the forwarded value in the later stage.

Note that both of these basic tenets do not affect the correctness of programs. They simply
allow us to eliminate redundant forwarding paths. Let us now systematically look at all the
forwarding paths that we require in our pipeline.

RW→MA : Let us consider the MA stage. It needs a forwarding path from the RW stage.
Let us consider the code snippet shown in Figure 10.20 Here, instruction [2] needs the value of
r1 in the MA stage (cycle 5), and instruction [1] fetches the value of r1 from memory by the
end of cycle 4. Thus, it can forward its value to instruction [2] in cycle 5.
RW→ EX : The code snippet shown in Figure 10.21 shows a load instruction that fetches the
value of register r1 by the end of cycle 4, and a subsequent ALU instruction that requires the
value of r1 in cycle 5. It is possible to forward the value because we are not going backwards
in time.
MA→ EX : The code snippet shown in Figure 10.22 shows an ALU instruction that computes
the value of register r1 by the end of cycle 3, and a consecutive ALU instruction that requires
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[1]: ld    r1, 4[r2]

[2]: st  r1, 10[r3]
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Figure 10.20: RW → MA forwarding

[1]: ld    r1, 4[r2]

[2]: st  r8, 10[r3]
 
[3]: add r2, r1, r4
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Figure 10.21: RW → EX forwarding

the value of r1 in cycle 4. In this case also, it is possible to forward the data by adding an
interconnection (forwarding path) between the MA and EX stages.
RW→ OF : Typically the OF stage does not need forwarding paths because it does not
have any functional units. Hence, it does not need to use a value immediately. We can thus
forward the value later according to tenet 2. However, the only exception is forwarding from
the RW stage. We cannot forward the value later because the instruction will not be there in
the pipeline. Hence, it is necessary to add a forwarding path from the RW to the OF stage.
An example of a code snippet that requires RW → OF forwarding is shown in Figure 10.23.
Instruction [1] produces the value of r1 by reading its value from memory by the end of cycle 4.
It then writes the value of r1 to the register file in cycle 5. Meanwhile, instruction [4] tries to
read the value of r1 in the OF stage in cycle 5. Unfortunately, there is a conflict here. Hence,
we propose to resolve the conflict by adding a forwarding path between the RW and OF stages.
Thus, we prohibit instruction [4] from reading the register file for the value of r1. Instead,
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[1]: add r1, r2, r3

[2]: sub r4, r1, r2
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Figure 10.22: MA → EX forwarding

instruction [4] gets the value of r1 from instruction [1] using the RW → OF forwarding path.

[1]: ld    r1, 4[r2]
[2]: st  r4, 10[r3]
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[3]: st  r5, 10[r6]
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[4]: sub r7, r1, r2

Figure 10.23: RW → OF forwarding

Important Point 15
Forwarding from the RW to the OF stage is a very tricky operation. This is because the
instruction in the RW stage is writing to the register file, and the instruction in the OF
stage is also reading from the register file. If the value of the register is the same in these
two instructions, then it is typically not possible to perform both the operations (read and
write) in the same cycle. This is because reading and writing to the same SRAM cell can
lead to incorrect operation of the circuit, and it is hard to ensure correctness. Consequently,
it is a standard practice to allow the write from RW to go through, and cancel the register
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read operation issued by the instruction in the OF stage. Thus, this read operation does not
go to the register file. Instead, the instruction in the OF stage gets the value of the register
through the forwarding path. This strategy ensures that we do not have any remote chances
of leaving data in an inconsistent state in the register file. The instruction in the OF stage
also gets the right value of the operands.

It is not necessary to add the following forwarding paths: MA→ OF, and EX→ OF. This is
because, we can use the following forwarding paths (RW → EX), and (MA → EX) instead. In
accordance with tenet 2, we need to avoid redundant forwarding paths. Hence, we do not add
the forwarding paths to the OF stage from the MA and EX stages. We do not add forwarding
paths to the IF stage because at this stage, we have not decoded the instruction, and thus we
do not know about its operands.

10.7.3 Data Hazards with Forwarding

Question 7
Has forwarding completely eliminated data hazards?

Let us now answer this question. Let us consider ALU instructions. They produce their result
in the EX stage, and they are ready to forward in the MA stage. Any succeeding consumer
instruction will need the value of an operand produced by the preceding ALU instruction at
the earliest in its EX stage. At this point, we can effect a successful forwarding because the
value of the operand is already available in the MA stage. Any subsequent instruction can
always get the value using any of the available forwarding paths or from the register file if the
producer instructions has left the pipeline. The reader should be convinced that if the producer
instruction is an ALU instruction, then it is always possible to forward the result of the ALU
operation to a consumer instruction. To prove this fact, the reader needs to consider all possible
combinations of instructions, and find out if it is possible to forward the input operands to the
consumer instruction.

The only other instruction that produces a register value explicitly is the load instruction.
Recall that the store instruction does not write to any register. Let us look at the load instruc-
tion. The load instruction produces its value at the end of the MA stage. It is thus ready to
forward its value in the RW stage. Let us now consider a code snippet and its pipeline diagram
in Figure 10.24.

Instruction [1] is a load instruction that writes to register r1, and instruction [2] is an ALU
instruction that uses register r1 as a source operand. The load instruction is ready to forward
at the beginning of cycle 5. Sadly, the ALU instruction needs the value of r1 at the beginning
of cycle 4. We thus need to draw an arrow in the pipeline diagram that flows backwards in
time. Hence, we can conclude that in this case forwarding is not possible.
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[1]: ld    r1, 10[r2]
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[2]: sub r4, r1, r2

Figure 10.24: The load-use hazard

Definition 76
Load-Use Hazard A load-use hazard is a situation where a load instruction supplies the
loaded value to an immediately succeeding instruction that needs the value in its EX stage.
A pipeline even with forwarding needs to insert a single stall cycle after the load instruction.

This is the only case in which we need to introduce a stall cycle in our pipeline. This
situation is known as a load-use hazard, where a load instruction supplies the loaded value
to an immediately succeeding instruction that needs the value in its EX stage. The standard
method of eliminating load-use hazards is by allowing the pipeline to insert a bubble, or by
using the compiler to either reorder instructions or insert a nop instruction.

Thus, we can conclude that a pipeline with forwarding does need interlocks, albeit rarely.
The only special condition is a load-use hazard.

Note that if there is a store instruction after a load instruction that stores the loaded value,
then we do not need to insert a stall cycle. This is because the store instruction needs the value
in its MA stage. At this point of time the load instruction is in the RW stage, and it is possible
to forward the value.

10.7.4 Implementation of a Pipeline with Forwarding

Now, let us come to the most important part of our discussion. Let us design a pipeline with
forwarding. We shall first design the data path, and then briefly look at the control path.
To implement a data path that supports forwarding, we need to make minor changes to our
pipeline stages. These changes will allow the functional units to use their default input values,
as well as outputs of subsequent stages in the pipeline. The basic idea is to use a multiplexer
before every input to a functional unit. The role of this multiplexer is to select the right input.
Let us now look at each of the pipeline stages. Note that we do not need to make any changes
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to the IF stage because it does not send or receive any forwarded value.

OF Stage with Forwarding
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Figure 10.25: OF stage with forwarding

The OF stage with support for forwarding is shown in Figure 10.25. The multiplexers
in our baseline pipeline without forwarding are coloured with a lighter colour. Whereas, the
additional multiplexers added to enable forwarding are coloured with a darker colour. We shall
use this convention for the rest of our discussion on forwarding. Let us focus on the two new
multiplexers in the OF stage.

We only show those multiplexers that are relevant to our discussion on forwarding. We need
to choose between the first operand read from the register file, and the value forwarded from
the RW stage. We thus add a multiplexer(M1) to help us choose between these two inputs.
Likewise, we need to choose between the second operand read from the register file, and the
value forwarded from the RW stage. To implement forwarding, we add a multiplexer (M2) to
make a choice between the value fetched from the register file, and the value forwarded from the
RW stage (see Figure 10.25). Multiplexer (M ′), which is a part of our baseline design chooses
between the second register operand and the immediate computed from the contents of the
instruction. Recall that the three fields in the instruction packet that save the results of the
OF stage are as follows. A saves the value of the first register operand, op2 saves the value of
the second register operand (rd register in case of a store), and B saves the value of the second
operand of the instruction (register or immediate). Recall that we had decided to read all the
values that might possibly be required by any instruction in the interest of time. For example,
the not instruction does not require the first register operand. Nevertheless, we still read it
because we do not have enough time to take a decision about whether to read or not read the
register operands.
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EX Stage with Forwarding
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Figure 10.26: EX stage with forwarding

Figure 10.26 shows the modified EX stage. The three inputs that the EX stage gets from
the OF stage are A (first ALU operand), B (second ALU operand), and op2 (second register
operand). For A and B, we add two multiplexers, M3, and M4, to choose between the values
computed in the OF stage, and the values forwarded from the MA and RW stages respectively.
For the op2 field, which possibly contains the store value, we do not need MA→ EX forwarding.
This is because the store value is required in the MA stage, and thus we can use RW → MA
forwarding. This observation allows us to reduce one forwarding path. Hence, multiplexer M5
has two inputs (default and the value forwarded from the RW stage).

MA Stage with Forwarding

Figure 10.27 shows the MA stage with additional support for forwarding. The memory address
is computed in the EX stage, and saved in the aluResult field of the instruction packet. The
memory unit directly uses this value for the address. However, in the case of a store, the value
that needs to be stored (op2) can possibly be forwarded from the RW stage. We thus add
multiplexer M6, which chooses between the op2 field in the instruction packet and the value
forwarded from the RW stage. The rest of the circuit remains the same.

RW Stage with Forwarding

Finally, Figure 10.28 shows the RW stage. Since this is the last stage, it does not use any
forwarded value. However, it sends the value that it writes to the register file to the MA, EX,
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Figure 10.29: Pipelined data path with forwarding (abridged diagram)

Figure 10.29 puts all the pieces together and shows the pipeline with support for forwarding.
To summarise, we need to add 6 multiplexers, and make some extra interconnections between
units to pass the forwarded values. We envision a dedicated forwarding unit that computes
the control signals for the multiplexers (not shown in the diagram). Other than these small
changes, no other major change needs to be done to the data path.

We have been using an abridged diagram (similar to Figure 10.29) in our discussions on
forwarding. The reader needs to note that the actual circuit has become fairly complicated now.
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Along with the augmentations to the data path, we need to also add a dedicated forwarding
unit to generate the control signals for the multiplexers. A detailed picture of the pipeline is
shown in Figure 10.30.
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Figure 10.30: Pipelined data path with forwarding

Let us now add the interlock logic to our pipeline. We need the interlock logic for both
the Data-Lock and Branch-Lock conditions. Note that now we have successfully handled all
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RAW hazards other than the load-use hazard. In the case of a load-use hazard, we need to
stall for only 1 cycle. This significantly simplifies our Data-Lock circuit. If there is a load
instruction in the EX stage, then we need to check if there is a RAW data dependence between
the load instruction, and the instruction in the OF stage. The only RAW hazard that we do
not need to consider here is a load-store dependence, where the load writes to a register that
contains the store value. We do not need need to stall because we can forward the value to
be stored from the RW to the MA stage. For all other data dependences, we need to stall
the pipeline by 1 cycle by introducing a bubble. This will take care of the load-use hazard.
The circuit for ensuring the Branch-Lock condition remains the same. Here also, we need to
inspect the instruction in the EX stage, and if it is a taken branch, we need to invalidate the
instructions in the IF and OF stages. Lastly, the reader should note that interlocks always take
precedence over forwarding.

10.7.5 Forwarding Conditions

After designing the data path for supporting forwarding, let us design the control path. The
only extra addition to the control path is the forwarding unit. This unit computes the values
of the signals to control the forwarding multiplexers. Let us now discuss the design of the
forwarding unit.
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The Forwarding Unit

As shown in Figure 10.31 the forwarding unit receives inputs from all the four pipeline registers.
They provide the contents of the instructions resident in the OF, EX, MA, and RW stages
respectively. Based on the contents of the instructions, the forwarding unit computes the
values of the control signals.

Salient Points

Let us now consider the four forwarding paths in our architecture – RW → OF , RW → EX,
MA→ EX, and RW →MA. We note that the distance between the producer and consumer
stages for these four paths are 3, 2, 1, and 1 respectively. Alternatively, we can say that
instruction number i, can get its inputs from instructions i − 1, i − 2, and i − 3. The reader
needs to note that there are two forwarding paths between adjacent stages (distance equal to
1).
Forwarding Paths with Distance Equal to 1
These forwarding paths are MA → EX, and RW → MA. We actually need both these
forwarding paths. The reason is as follows. The MA → EX path is required for forwarding
results between consecutive ALU instructions. The RW → MA path is required when the
value of the input is generated in the MA stage, and it is also required in the MA stage. The
only instruction that generates a value in the MA stage is the load instruction, and the only
instruction that requires register operands in the MA stage, is the store instruction. Thus, we
need to use the RW → MA forwarding path between a load instruction, and an immediately
succeeding store instruction, when there is a register dependence. The following code snippet
gives an example.

ld r1, 10[r2]

st r1, 20[r4]

Note that sometimes we might have a choice of forwarding paths (MA → EX, or RW →
MA). The following code snippet shows an example.

[1]: add r1, r2, r3

[2]: st r1, 20[r4]

Here, instruction [1] is ready to forward the value of r1 when it reaches the MA stage.
However, instruction [2] requires the value of r1 when instruction [1] reaches the RW stage.
We can thus use either forwarding path (MA → EX, or RW → MA). Let us choose to use
RW → MA forwarding in this case (also see Section 10.7.4). This optimisation allows us to
reduce a forwarding path between MA to EX for op2. This is also in accordance with tenet 2
mentioned in Section 10.7.2 that says that we should forward as late as possible.
Case of the mov Instruction
The other special case arises for the mov instruction. Since the EX stage does not produce its
output value, we can theoretically use RW → MA forwarding for it. Ideally, if the consumer
instruction in a load-use hazard, is a mov instruction, we should not have the necessity to stall
the pipeline. However, for the purpose of simplicity, let us choose to treat a mov instruction as
a regular ALU instruction, and choose to disregard any optimisations in this case.



c© Smruti R. Sarangi 450

Conflicts with Multiple Instructions
Let us look at our four forwarding paths: RW → OF , RW → EX, MA → EX, and RW →
MA, again. We notice that the EX stage gets forwarded inputs from two stages – MA and RW.
It is possible that the instruction in the EX stage has a conflict (RAW register dependence)
with the instructions in both the MA and RW stages for the same input. In this case, we need
to choose the input from the MA stage because it is an earlier instruction. Let us show an
example.

[1]:add r1, r2, r3

[2]:sub r1, r4, r5

[3]:mul r8, r9, r1

In this case, when instruction [3] is in the EX stage, instruction [2] is in the MA stage, and
instruction [1] is in the RW stage. The second source operand (value of register r1) needs to be
forwarded. We need to get the value from the MA stage because instruction [2] will overwrite
the value written by instruction [1]. We can design a simple circuit to give a higher priority to
the MA stage than the RW stage while forwarding results to the EX stage. We leave this as an
exercise for the interested reader.

Algorithms for Forwarding Conditions

We show the pseudo codes for the forwarding conditions. We need to first detect if a conflict
exists for the first operand, which is typically the rs1 field of the instruction packet. In the case
of a ret instruction, the first operand is the ra (return address) register. If a conflict exists,
then we can potentially forward a value. For reasons of brevity, we do not show the code that
disregards the case of forwarding if one of the instructions is a pipeline bubble.

Algorithm 6 shows the algorithm for detecting a conflict on the first operand. We first rule
out the trivial cases in which instruction [A] does not read from any register, and [B] does
not write to any register. Then, we set the first operand. It is equal to the rs1 field in the
instruction packet. The only exception is the ret instruction whose first operand is the ra
register. Similarly, the destination operand is always register rd, with the call instruction being
the only exception. Its destination operand is the return address register, ra. Then we detect
a conflict in Line 15, and we return true if a conflict (RAW dependence) exists, otherwise
we return false. We can use the output of Algorithm 6 to set the input of the forwarding
multiplexers for the first operand.

Algorithm 7 shows the pseudo code of the algorithm for detecting conflicts for the second
operand. We first rule out the trivial cases, in which [A] does not read any register and [B] does
not write to any register. Then, we need to see if the second operand of [A] is an immediate.
In this case, forwarding is not required. The second operand is typically equal to the rs2 field
of the instruction packet. However, in the case of a store instruction, it is equal to the rd field
of the instruction packet. Similarly, we find the destination register of instruction [B], and take
care of the special case of the call instruction. We finally detect a conflict in Line 20. Note
that we do not consider the load-use hazard, or Branch-Lock conditions in the forwarding
logic, because we always assume that interlocks have higher priority over forwarding. Secondly,
whenever we do not have a forwarding path, the forwarding conditions do not apply. Finally,
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Algorithm 6: Conflict on the first operand (rs1/ra)

Data: Instructions: [A] and [B] (possible forwarding: [B] → [A])
Result: Conflict exists on rs1/ra (true), no conflict (false)

1 if [A].opcode ∈ (nop,b,beq,bgt,call,not,mov) then
/* Does not read from the rs1 register */

2 return false

3 end
4 if [B].opcode ∈ (nop, cmp, st, b, beq, bgt, ret) then

/* Does not write to any register */

5 return false

6 end
/* Set the sources */

7 src1 ← [A].rs1
8 if [A].opcode = ret then
9 src1 ← ra

10 end
/* Set the destination */

11 dest ← [B].rd
12 if [B].opcode = call then
13 dest ← ra
14 end

/* Detect conflicts */

15 if src1 = dest then
16 return true

17 end
18 return false
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Algorithm 7: Conflict on the second operand (rs2/rd)

Data: Instructions: [A] and [B] (possible forwarding: [B] → [A])
Result: Conflict exists on second operand (rs2/rd) (true), no conflict (false)

1 if [A].opcode ∈ (nop,b,beq,bgt,call) then
/* Does not read from any register */

2 return false

3 end
4 if [B].opcode ∈ (nop, cmp, st, b, beq, bgt, ret) then

/* Does not write to any register */

5 return false

6 end
/* Check the second operand to see if it is a register */

7 if [A].opcode /∈ ( st) then
8 if [A].I = 1 then
9 return false

10 end

11 end
/* Set the sources */

12 src2 ← [A].rs2
13 if [A].opcode = st then
14 src2 ← [A].rd
15 end

/* Set the destination */

16 dest ← [B].rd
17 if [B].opcode = call then
18 dest ← ra
19 end

/* Detect conflicts */

20 if src2 = dest then
21 return true

22 end
23 return false
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in the case of multiple conflicting instructions, the forwarding unit needs to ensure that the
correct value is forwarded.

Special Case of Forwarding from the Call Instruction

Let us consider the following code snippet.

call .function

..

...

.function:

ret

Here, we call a function and immediately return. In this case, the call instruction will still be
in the pipeline, when the ret instruction enters the pipeline. Recall that the call instruction
writes to register ra and the ret instruction reads from register ra. Moreover, the call instruction
computes the value of ra, and writes it to the register file in the RW stage. We shall prove that
this does not cause any correctness issues.

A call instruction is a taken branch. This means that when it enters the EX stage, the
Branch-Lock circuitry will detect that it is a taken branch, and convert the instructions in the
IF and OF stages to bubbles. Any instruction that requires the value of the ra register will
at least be three stages behind the call instruction. This means that when the call instruction
will reach the RW stage, the next valid instruction in the pipeline will be in the OF stage. If
this is a ret instruction, or any other instruction that needs the value of the ra register, then
it can simply get its value through the RW → OF forwarding path. Hence, the special case of
forwarding from the call instruction is handled correctly.

10.8 Support for Interrupts/ Exceptions*

The process of building our pipelined processor is almost done. We just need to put the final
piece together. We have up till now focused on building a fast pipeline that has interlocks for
correctness and has forwarding for enhancing performance. We shall now discuss the interaction
of our processor with external devices such as I/O devices and with specialised programs such
as the operating system. The operating system is a master program that controls the behaviour
of other programs, the processor, and I/O devices. The standard mechanism for supporting
the operating system, and other I/O devices, is through a mechanism called an interrupt. We
shall have ample opportunities to discuss interrupts in Chapter 13. In this section, we discuss
the implementation of an interrupt from the point of view of a pipeline.

10.8.1 Interrupts

The main idea of an interrupt is as follows. Assume that we click a key on a keyboard. The
keyboard records the ASCII code of the clicked key, and then sends a message to the processor
with the code of the key that was clicked. This message is known as an interrupt. After the
processor receives an interrupt, it stops the execution of the currently executing program and
jumps to a dedicated program known as the interrupt handler. The interrupt handler reads
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the value sent by the I/O device (in this case, the keyboard), and sends it to the program that
handles the display device (monitor/ laptop screen). This program shows the character typed.
For example, if the user clicks the character, ’a’, then monitor ultimately shows an ’a’ on the
screen through a sequence of steps.

Definition 77
An interrupt is a signal sent by an I/O device to the processor. An interrupt is typically
used to draw the attention of the processor to new inputs, or changes in the status of an
I/O device. For example, if we click a key on a keyboard, then a new interrupt is generated
and sent to the processor. Upon receiving an interrupt, the processor stops the execution of
the currently executing program, and jumps to an interrupt handler routine. This routine
processes the interrupt, by reading the values sent by the I/O device, and performing any
other action if required.

10.8.2 Exceptions

Interrupts are not the only kind of events sent to the processor. Sometimes some actions of
the program can generate interrupts. For example, if a program accesses an illegal memory
address, then it is necessary to take corrective action. The memory system typically sends
an interrupt to the processor. The processor in turn invokes the interrupt handler routine,
which in turn calls dedicated modules in the operating system. Note that in this book, we shall
use the terms interrupt handler and exception handler interchangeably. These modules either
take some kind of corrective action, or terminate the program. Such kind of interrupts that
are generated as a result of actions of the executing program are called exceptions. Readers
familiar with languages such as Java can relate to the concept of exceptions. For example, in
Java if we access an illegal array index such as -1, an exception is generated, and the processor
jumps to a pre-specified location to take corrective action.

Definition 78
An exception is a special event that is generated when the executing program typically per-
forms an erroneous action, and it becomes necessary to take corrective action.

10.8.3 Precise Exceptions

Let us now discuss how we need to handle interrupts and exceptions. The processor needs
to clearly stop what it is currently doing, and jump to the interrupt handling routine. After
handling the interrupt, and performing the desired action, it needs to come back and start from
exactly the same point in the program, at which it had stopped. Let us now define the notion
of a precise exception. The term “precise exception” is also used in the case of interrupts. We
can think of it as a generic term for all kinds of interrupts and exceptions.
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Definition of Precise Exceptions

At any point of time, a program will typically have multiple instructions in the pipeline with
different PCs. When the processor encounters an interrupt, it needs to branch to the starting
location of the interrupt handler. To facilitate this process, it can have an interrupt handler
table. This table typically stores a list of interrupt types, and the starting PCs of their interrupt
handlers. The processor uses this table to branch to the appropriate interrupt handler. After
finishing the processing of the interrupt handler, it needs to come back to exactly the same
point in the original program. In other words, the original program should not be aware of the
fact that another program such as the interrupt handler executed in the middle. This entire
process needs to be orchestrated very carefully.

Let us elaborate. Assume that a program, P , is executing on the processor. Let us record
all its dynamic instructions that leave the pipeline after successfully completing their execution,
and number them I1, I2, . . . In. A dynamic instruction is the instance of an instruction created
by the processor. For example, if a loop has 5 instructions, and executes 100 times, then we
have 500 dynamic instructions. Furthermore, an instruction completes its execution when it
finishes its job and updates the state of the processor (registers or memory). A store instruction
completes in the MA stage, and instructions with a destination register complete in the RW
stage. All other instructions, are assumed to complete in the MA stage. The nop instruction is
excluded from this discussion. Let Ik be the last instruction in P that completes its execution
before the first instruction in the interrupt handler completes its execution. We wish to ensure
that at the time that Ik leaves the pipeline, all the instructions in P before Ik have completed
their execution and left the pipeline, and no instruction in P after Ik has completed or will
complete its execution before the program resumes. Let the set of completed instructions at
this point of time (when Ik leaves the pipeline) be C. Formally, we have:

Ij ∈ C ⇔ (j ≤ k) (10.1)

An interrupt or exception implemented in this manner is said to be precise.

Definition 79
An interrupt or exception is precise if the following conditions are met:

Condition 1: Let Ik be the last dynamic instruction in the original program, P , that com-
pletes its execution before the first instruction in the interrupt handler completes its
execution. Let Ik leave the pipeline at time, τ . At τ , all instructions Ij (j < k) have
also completed their execution.

Condition 2: No instruction after Ik in P completes its execution before all the instruc-
tions in the interrupt handler complete, and the program resumes execution.

Condition 3: After the interrupt handler finishes, we can seamlessly start executing all
the instructions starting from Ik (if it has not completed successfully) or Ik+1.

When the interrupt handler returns, it needs to start executing instruction, Ik+1. For some
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special types of interrupts/ exceptions it might be required to re-execute Ik. Secondly, the
register state (values of all the registers) needs to be restored before the original program,
P , starts executing again. We can thus ensure that a processor can seamlessly switch to an
interrupt handler and back without violating the correctness of the program.

Marking Instructions

Let us now discuss how to implement precise exceptions. Let us look at the three conditions in
Definition 79 in more detail.

When an interrupt arrives, we can at the most have 5 instructions in the pipeline. We can
designate one of these instructions as the last instruction before the interrupt handler executes
such that the three conditions outlined in Definition 79 are satisfied. Now, we cannot designate
the instruction in the RW stage as the last instruction (Ik) because the instruction in the MA
stage might be a store instruction. In the current cycle it will complete its execution, and thus
condition 2 will get violated. However, we are free to designate instructions in any of the four
other stages as the last instruction. Let us decide to mark the instruction in the MA stage as
the last instruction.

Now, let us look at exceptions. Exceptions are typically caused by the erroneous execution
of instructions. For example, in the IF stage we might fetch from an illegal address, try to
perform an illegal arithmetic operation in the EX stage, or write to a non-existent address
in the MA stage. In these situations it is necessary to take corrective action. The processor
needs to invoke a dedicated exception handler. For example, a very common type of exception
is a page fault as we shall discuss in Chapter 11. A page fault occurs when we try to read
or write a memory address in a 4 KB block of memory for the first time. In this case, the
operating system needs to read the 4 KB block from the hard disk and copy it to memory. The
faulting instruction executes again, and it succeeds the second time. In this case, we need to
re-execute the exception causing instruction Ik, and needless to say we need to implement a
precise exception. To properly take core of exceptions, the first step is to mark an instruction,
immediately after it causes an exception. For example, if we try to fetch from an uninitialised
or illegal address we mark the instruction in the IF stage.

Making a Marked Instruction Proceed to the End of the Pipeline

Now, that we have marked instructions, we need to ensure two conditions. The first is that
all the instructions before the marked instruction need to complete. The second is that all the
instructions after the marked instruction should not be allowed to write to the register file, or
the main memory. We should ideally not allow any writes to the flags register also. However,
it is difficult to implement this functionality, because we are typically aware of interrupts at the
end of the clock cycle. We shall devise an ingenious solution to handle updates to the flags
register later.

For implementing a precise exception, we need to add an exception unit to our pipeline. Its
role is to process interrupts and exceptions. Once an instruction is marked, it needs to let the
exception unit know. Secondly, we envision a small circuit that sends a code identifying the
exception/ interrupt to the exception unit. Subsequently, the exception unit needs to wait for
the marked instruction to reach the end of the pipeline such that all the instructions before it
complete their execution. Instructions fetched after the marked instruction need to be converted
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into bubbles. This needs to be done to ensure that instructions after a marked instruction do
not complete. Once, the marked instruction reaches the end of the pipeline, the exception unit
can load the PC with the starting address of the interrupt handler. The interrupt or exception
handler can then begin execution. This mechanism ensures that asynchronous events such as
interrupts and exceptions remain precise. Now, we have a mechanism to seamlessly transition
to executing interrupt handlers. Sadly, we still do not have a mechanism to come back to
exactly the same point in the original program, because we have not remembered the point at
which we had left.

10.8.4 Saving and Restoring Program State

Let us define the term program state as the state of all the registers and memory elements
associated with the program. In specific, the program state, comprises of the contents of the
register file, PC, flags register, and main memory.

Definition 80
The term program state is defined as the state of all the registers and memory elements
associated with the program. In specific, the program state, comprises of the contents of the
register file, PC, flags register, and main memory.

We need to find effective means of saving and restoring the state of the executing program.
Let us start by stating that we do not need a method to save and restore the state of main
memory because the assumption is that the interrupt handler uses a different region of main
memory. We shall discuss methods to enforce a separation of memory regions between programs
in Chapter 11. Nonetheless, the bottom line is that there is no unintended overlap of the
memory regions of the executing program and the interrupt handler. In the case of exceptions,
the interrupt handler might access some parts of the memory space of the program such that it
can add some data that the program requires. One such example of exceptions is a page fault.
We will have ample opportunities to discuss page faults in Chapter 11.

Hence, we need to explicitly take care of the PC, the flags register, and the set of registers.
The state of all of these entities is known as the context of a program. Hence, our problem is
to successfully save and retrieve the context of a program upon an interrupt.

Definition 81
The context of a program refers to the values of the PC, the flags register, and the values
contained in all the registers.

The oldPC Register

Let us add an NPC field for the next PC in the instruction packet. By default, it is equal to
PC + 4. However, for branch instructions that are taken, the NPC field contains the branch
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target. We envision a small circuit in the EX stage that adds the branch target, or PC + 4
to the NPC field of the instruction packet. Recall that the instruction packet gets passed
from one stage to the next in a pipeline. Once a marked instruction reaches the RW stage,
the exception unit looks up a small internal table indexed by the interrupt/ exception code.
For some types of interrupts such as I/O events, we need to return to the next PC (PC + 4
or the branch target). This value is stored in the NPC field of the MA-RW pipeline register.
However, for some types of exceptions such as page faults, it is necessary to re-execute the
faulting instruction once again. A page fault happens because a certain memory location is not
loaded with its data. The interrupt handler (for a page fault) needs to load the data of the
memory location by fetching values from the hard disk, and then re-execute the instruction. In
this case, we need to return to the PC of the marked instruction. In either case, the exception
unit transfers the correct return address to an internal oldPC register, and then starts fetching
instructions for the interrupt handler.

Spilling General Purpose Registers

We need a mechanism to save and restore registers akin to spilling and restoring registers as
in the case of function calls. However, there is an important difference in the case of interrupt
handlers. Interrupt handlers have their own stacks that are resident in their private memory
regions. To use the stack pointer of an interrupt handler, we need to load its value into sp. This
step will overwrite the previous value, which is the value of the stack pointer of the program.
Hence, to avoid losing the value of the stack pointer of the program, we add another register
called oldSP . The interrupt handler first transfers the contents of sp to oldSP . Subsequently,
it loads sp with the value of its stack pointer and then spills all the registers excluding sp to its
stack. At the end of this sequence of steps, it transfers the contents of oldSP to the stack.

The oldF lags Register

The only part of the program state that we have not saved up till now is the flags register.
Let us assume that the flags register is a 32-bit register. Its lower 2 bits contain the values,
flags.E and flags.GT respectively. Moreover, let us add a flags field to the instruction packet.
Instructions other than the cmp instruction write the contents of the flags register to the flags
field in the instruction packet, in the EX stage. The cmp instruction writes the updated value
of the flags register to the flags field in the EX stage and moves to the subsequent stages.
When a marked instruction reaches the RW stage, the exception unit extracts the contents of
the flags field in the instruction packet, and saves it in the oldF lags register. The oldF lags
register is a special register that is visible to the ISA, and helps store the last value of the flags
register that a valid instruction in the program had seen.

Saving and Restoring Program State

For saving the program state, the interrupt handler contains assembly routines to save the
general purpose registers (excluding sp) and the oldSP , oldF lags, and oldPC registers. We
save all of these values in the stack of the interrupt handler. Likewise, we can restore program
state in almost the reverse order. We restore the value of oldPC, the flags register, the general
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purpose registers, and the stack pointer. As the last step, we need to transfer the contents of
oldPC to PC such that we can resume executing the original program.

Privileged Instructions

We have added the following special registers namely oldPC, oldSP , oldF lags and flags. Note
that we had the flags register before also. However, it was not accessible as a register. Next,
we add a special category of instructions called privileged instructions that are only accessible
to specialised programs such as operating systems, and interrupt handlers. The first privileged
instruction that we introduce is movz. It transfers values between regular registers and the
special registers (oldPC, oldSP , oldF lags, and flags).

The other privileged instruction that we introduce in this section is retz. It reads the value
of oldPC, and transfers its contents to PC. In other words, we jump to the location contained
in oldPC. We do not allow instructions to directly transfer the values of special registers to and
from memory, because we have to create privileged versions of both load and store instructions.
We wish to avoid creating two additional instructions.

Definition 82
A privileged instruction is a special instruction that has access to the internals of the pro-
cessor. It is typically meant to be used only by operating system programs such as the kernel
(core of the operating system), device drivers (programs to interact with I/O devices), and
interrupt handlers.

To implement the movz instruction, we add a new instruction opcode. Recall that we
introduced only 21 instructions in the SimpleRisc instruction set. We can afford to have 11
more instructions in the ISA. movz uses the same register format based encoding as the mov
instruction. However, it sees a different view of registers. The registers visible to privileged
instructions, and their identifiers are shown in Table 10.2.

Register Encoding

r0 0000

oldPC 0001

oldSP 0010

flags 0011

oldF lags 0100

sp 1110

Table 10.2: View of registers for privileged instructions

Privileged instructions use a different register encoding. They can only see the four special
registers, r0, and sp. We need to make a small modification to the OF and RW stages to
implement the movz instruction. The first is that we need to have a circuit in the OF stage
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to quickly find out if the opcode of an instruction is movz. We can use a fast circuit similar
to the one that we use to find out if an instruction is a store. Then, we can choose the right
set of register inputs from either the normal register file, or from one of the privileged registers
using multiplexers. Similarly, in the RW stage, we can choose to either write the value in
the normal register file, or in one of the special registers, again, with the help of additional
multiplexers. For the sake of brevity, we do not show the circuit. We leave implementing movz
as an exercise for the reader. We can implement retz in a similar way as the ret instruction.
The only difference is that instead of getting the return value from the ra register, we get it
from the oldPC register. Note that we will also require forwarding and interlock logic that
takes special registers into account. The pseudocode of the forwarding and interlock logic needs
to be updated.

Let us summarise the discussion in terms of two new concepts that we have learnt. The
first is the notion of privileged instructions. These instructions are typically used by interrupt
handlers, and other modules of the operating systems. They have more visibility into the
internals of the processor. Since they are very powerful, it is not a good idea to give programmers
the ability to invoke them. They might corrupt system state, and introduce viruses. Hence,
most systems typically disallow the usage of privileged instructions by normal programs. Most
processors have a register that contains the current privilege level (CPL). It is typically 1 for user
programs, and 0 for operating system programs such as interrupt handlers. There is a privilege
level change, when we switch to processing an interrupt handler (1 to 0), and when we execute
the retz instruction to return to a user program (0 to 1). Whenever, we execute a privileged
instruction, the processor checks the CPL register, and if the program is not allowed to execute
the instruction, then an exception is flagged. The operating system typically terminates the
program, since it may be a virus.

Definition 83
Most processors have a register that contains the current privilege level (CPL). It is typically
1 for user programs, and 0 for operating system programs such as interrupt handlers. We
are allowed to execute privileged instructions, only when the CPL is equal to 0.

The second important concept is the notion of different register views for different instruc-
tions, or different pieces of code. This concept is known as a register window, and was pioneered
by the Sun Ultrasparc processors. The Sun processors used different register windows for dif-
ferent functions. This allowed the compiler to avoid costly register spills. Here, we use register
windows to separate the set of registers that can be accessed by user programs and the interrupt
handlers. The interrupt handlers can see all the special registers and two regular registers (r0
and sp).

Definition 84
A register window is defined as the set of registers that a particular instruction or function
can access. For example, in our case, privileged instructions can access only six registers,
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out of which four are special registers. In comparison regular instructions have a register
window that contains all the 16 general purpose registers, but no special register.

10.8.5 SimpleRisc Assembly Code of an Interrupt Handler

Let us now quickly conclude our discussion by showing the assembly code of an interrupt
handler. The code for saving the context is shown in Figure 10.32, and the code for restoring
the context and returning to the user program is shown in Figure 10.33. We assume that the
stack pointer for the interrupt handler starts at : 0x FF FF FF FC.

10.8.6 Processor with Support for Exceptions

Figure 10.34 shows an abridged diagram of the data path with support for exceptions. We
have added an exception unit that takes inputs from all the pipeline registers. Whenever, an
instruction detects an exception, or an interrupt is detected, the exception unit is notified. The
exception unit proceeds to mark an instruction as the last instruction. It waits till the marked
instruction leaves the pipeline, and concurrently converts all the instructions fetched after the
marked instruction to bubbles. Finally, when the marked instruction reaches the RW stage,
the exception unit stores the PC, or NPC (next PC) value in the oldPC register. It also saves
the flags field in the instruction packet to the oldF lags register. We add four registers namely
oldPC, oldSP , oldF lags, and flags. The ALU immediately updates the flags register if it
processes a cmp instruction. The RW stage can also write to the flags register. These four
registers are bundled with the regular register file. We call the new structure as the register
unit (shown in Figure 10.34). We do not show the multiplexers to choose between the inputs
from the register file, and the special registers. We assume that the multiplexers are embedded
inside the register unit.

10.9 Performance Metrics

10.9.1 The Performance Equation

Let us now discuss the performance of our pipelined processor. We need to first define the
meaning of “performance” in the context of processors. Most of the time, when we lookup the
specifications of a laptop or smart phone, we are inundated with a lot of terms such as the
clock frequency, RAM, and hard disk size. Sadly, none of these terms are directly indicative of
the performance of a processor. The reason that the performance is never explicitly mentioned
on the label of a computer, is because the term “performance” is rather vague. The term
performance of a processor is always with respect to a given program or set of programs. This
is because processors perform differently with respect to different programs.

Given a program, P , let us try to quantify the performance of a given processor. We say
that processor A performs better than processor B, if it takes less time for P to execute P on A
than on B. Thus, quantifying performance with respect to a given program is very simple. We
measure the time it takes to run the program, and then compute its reciprocal. This number
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Saving the context
/* save the stack pointer */

movz oldSP, sp

mov sp, 0x FF FC

/* spill all the registers other than sp*/

st r0, -4[sp]

st r1, -8[sp]

st r2, -12[sp]

st r3, -16[sp]

st r4, -20[sp]

st r5, -24[sp]

st r6, -28[sp]

st r7, -32[sp]

st r8, -36[sp]

st r9, -40[sp]

st r10, -44[sp]

st r11, -48[sp]

st r12, -52[sp]

st r13, -56[sp]

st r15, -60[sp]

/* save the stack pointer */

movz r0, oldSP

st r0, -64[sp]

/* save the flags register */

movz r0, oldFlags

st r0, -68[sp]

/* save the oldPC */

movz r0, oldPC

st r0, -72[sp]

/* update the stack pointer */

sub sp, sp, 72

/* code of the interrupt handler */

....

....

....

Figure 10.32: SimpleRisc assembly code for saving the context
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Restoring the context
/* update the stack pointer */

add sp, sp, 72

/* restore the oldPC register */

ld r0, -72[sp]

movz oldPC, r0

/* restore the flags register */

ld r0, -68[sp]

movz flags, r0

/* restore all the registers other than sp*/

ld r0, -4[sp]

ld r1, -8[sp]

ld r2, -12[sp]

ld r3, -16[sp]

ld r4, -20[sp]

ld r5, -24[sp]

ld r6, -28[sp]

ld r7, -32[sp]

ld r8, -36[sp]

ld r9, -40[sp]

ld r10, -44[sp]

ld r11, -48[sp]

ld r12, -52[sp]

ld r13, -56[sp]

ld r15, -60[sp]

/* restore the stack pointer */

ld sp, -64[sp]

/* return to the program */

retz

Figure 10.33: SimpleRisc assembly code for restoring the context

can be interpreted to be proportional to the performance of the processor with respect to the
program.

Let us first compute the time(τ) it takes to run program P .
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Figure 10.34: Pipelined data path with support for exceptions
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=
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=
#seconds
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1/f

× #cycles

#instructions︸ ︷︷ ︸
CPI

×(#instructions)

=
CPI ×#insts

f

(10.2)

The number of cycles per second is the processor’s clock frequency (f). The average number
of cycles per instruction is known as the CPI, and its inverse (number of instructions per cycle)
is known as the IPC. The last term is the number of instructions (abbreviated to #insts). Note
that this is the number of dynamic instructions, or, alternatively, the number of instructions
that the processor actually executes. Note that it is NOT the number of instructions in the
program’s executable file.
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Definition 85

Static Instruction The binary or executable of a program contains a list of instructions.
Each such instruction is a static instruction.

Dynamic Instruction A dynamic instruction is the instance of a static instruction, which
is created by the processor when an instruction enters the pipeline.

Definition 86

CPI Cycles per instruction

IPC Instructions per cycle

We can now define the performance P as a quantity that is inversely proportional to the
time, τ . Equation 10.3 is known as the Performance Equation.

P ∝ IPC × f
#insts

(10.3)

We can thus quickly conclude that the performance of a processor with respect to a pro-
gram is proportional to the IPC, and frequency, and inversely proportional to the number of
instructions.

Let us now look at the performance of a single cycle processor. Its CPI is equal to 1 for
all instructions. The performance is thus proportional to f/#insts. This is a rather trivial
result. It says that as we increase the frequency, a single cycle processor keeps getting faster
proportionally. Likewise, if we are able to reduce the number of instructions in our program
by a factor of X, then the performance also increases by a factor of X. Let us consider the
performance of a pipelined processor. The analysis is more complicated, and the insights are
very profound.

10.9.2 Performance of an Ideal Pipelined Processor

Let us look at the three terms in the performance equation (Equation 10.3), and consider them
one by one. Let us first consider the number of instructions.

Number of Instructions

The number of instructions in a program is dependent on the intelligence of the compiler. A
really smart compiler can reduce instructions by choosing the right set of instructions from the
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ISA, and by using smart code transformations. For example, programmers typically have some
code, which can be categorised as dead code. This code has no effect on the final output. A
smart compiler can remove all the dead code that it can find. Another source of additional
instructions is the code to spill and restore registers. Compilers often perform function inlining
for very small functions. This optimisation dynamically removes such functions and pastes their
code in the code of the calling function. For small functions, this is a very useful optimisation
since we are getting the rid of the code to spill and restore registers. There are many more
compiler optimisations that help in reducing code size. The reader is referred to [Aho et al.,
2006, Muchnick, 1997] for a detailed discussion on compiler design. For the rest of this section,
we shall assume that the number of instructions is a constant. Let us exclusively focus on the
hardware aspect.

Computing the Total Number of Cycles

Let us assume an ideal pipeline that does not need to insert any bubbles, or stalls. It will be
able to complete one instruction every cycle, and thus will have a CPI of 1. Let us assume a
program containing n instructions, and let the pipeline have k stages. Let us compute the total
number of cycles it will take for all the n instructions to leave the pipeline.

Let the first instruction enter the pipeline in cycle 1. It leaves the pipeline in cycle k.
Henceforth, one instruction will leave the pipeline every cycle. Thus, after (n − 1) cycles, all
the instructions would have left the pipeline. The total number of cycles is therefore, n+k− 1.
The CPI is equal to:

CPI =
n+ k − 1

n
(10.4)

Note that the CPI tends to 1, as n tends to ∞.

Relationship with the Frequency

Let the maximum amount of time that an instruction takes to finish its execution on a single
cycle processor be tmax. This is also known as the total amount of algorithmic work. We are
ignoring the delays of pipeline registers while computing tmax. Now, let us divide the data path
into k pipeline stages. We need to add k − 1 pipeline registers. Let the delay of a pipeline
register be l. If we assume that all the pipeline stages are balanced (do the same amount of
work, and take the same amount of time), then the time that the slowest instruction will take
to finish its work in a stage is equal to tmax

k . The total time per stage is equal to the circuit
delay and the delay of a pipeline register.

tstage =
tmax
k

+ l (10.5)

Now, the minimum clock cycle time has to be equal to the delay of a pipeline stage. This
is because, the assumption while designing a pipeline is that each stage takes exactly one clock
cycle. We thus have the minimum clock cycle time (tclk), or the maximum frequency (f) equal
to:

tclk =
1

f
=
tmax
k

+ l (10.6)
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Performance of a Pipeline

Let us now compute the performance of this pipeline, and make a simplistic assumption that
performance is equal to (f / CPI) because the number of instructions is a constant(n).

P =
f

CPI

=

1
tmax
k

+l

n+k−1
n

=
n

(tmax/k + l)× (n+ k − 1)

=
n

((n− 1)tmax/k + (tmax + ln− l) + lk

(10.7)

Let us try to maximise performance by choosing the right value of k. We have:

∂ ((n− 1)tmax/k + (tmax + ln− l) + lk)

∂k
= 0

⇒− (n− 1)tmax
k2

+ l = 0

⇒k =

√
(n− 1)tmax

l

(10.8)

Equation 10.8 provides a theoretical estimate of the optimal number of pipeline stages as a
function of the latch delay (l), the total algorithmic work (tmax), and the number of instructions
(n). Let us gauge the trends predicted by this equation. The first is that as we increase the
number of instructions, we can afford more pipeline stages. This is because the startup delay of
k cycles, gets nullified when there are more instructions. Secondly, as we increase the amount
of algorithmic work (tmax), we need a deeper pipeline. More are the number of pipeline stages,
less is the amount of work we need to do per stage. We can thus have a higher frequency, and
thus have a higher instruction throughput. Lastly, the optimal number of stages is inversely
proportional to

√
l. As we increase the latch delay, we start wasting more time inserting and

removing data from latches. Hence, it is necessary to adjust the number of pipeline stages with
the latch delay. If the latches are very slow, we need to reduce the number of pipeline stages
also such that we do not waste a lot of time in adding, and removing data from pipeline latches.

Sadly, an ideal pipeline does not exist in practice. This means that they do not have a CPI
equal to (n+k−1)/n. Almost all programs have dependences between instructions, and thus it
becomes necessary to insert bubbles in the pipeline. Inserting bubbles increases the CPI from
the ideal CPI computed in Equation 10.4. Equation 10.8 provides us with interesting insights.
However, the reader needs to note that it is hypothetical. It predicts that the optimal number
of stages approaches infinity, for very large programs. This is unfortunately not the case in
practical scenarios.
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10.9.3 Performance of a Non-Ideal Pipeline

Mathematical Characterisation

We need to incorporate the effect of stalls in the CPI equation. Let us assume that the number
of instructions (n) is very very large. Let the ideal CPI be CPIideal. In our case, CPIideal = 1.
We have:

CPI = CPIideal + stall rate× stall penalty (10.9)

Example 140
Assume that the ideal CPI is 1. Assume that 10% of the instructions suffer a load-use
hazard, and 20% of the instructions are taken branches. Find the CPI of the program.
Answer: We need to insert 1 bubble for a load-use hazard, and 2 bubbles for a taken
branch. Thus, the average number of bubbles that we need to insert per instruction is equal
to: 0.1 * 1 + 0.2 * 2 = 0.5. Thus,

CPInew = CPIideal + 0.5 = 1 + 0.5 = 1.5

Example 141
Compare the performance of two programs, P1 and P2. Assume that the ideal CPI for
both of them is 1. For P1, 10% of the instructions have a load-use hazard, and 15% of its
instructions are taken branches. For P2, 20% of the instructions have a load-use hazard,
and 5% of its instructions are taken branches.
Answer:

CPIP1 = 1 + 0.1 ∗ 1 + 0.15 ∗ 2 = 1.4

CPIP2 = 1 + 0.2 ∗ 1 + 0.05 ∗ 2 = 1.3

The CPI of P2 is less than the CPI of P1. Hence, P2 is faster.

The final CPI is equal to the sum of the ideal CPI and number of mean stall cycles per
instruction. The mean stall cycles per instruction is equal to the product of the average stall
rate per instruction multiplied by the average number of bubbles that we need to insert per stall
(stall penalty). The stall rate term is typically a function of the nature of dependences across
instructions in a program. The stall penalty term is also typically dependent on the design of
the pipeline, and its forwarding paths. In our case, we need to stall for at most one cycle for
RAW hazards, and for 2 cycles for taken branches. However, pipelines with more stages might
have different behaviours. Let us now try to model this pipeline mathematically.

We assume that the stall rate is only dependent on the program, and the stall penalty is
proportional to the number of stages in a pipeline. This assumption is again not completely
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correct. However, it is good enough for developing a coarse mathematical model. The reason,
we assume that stall penalty is proportional to the number of stages is because, we assume
that we create deeper pipelines by essentially splitting the stages of our simple pipeline further.
For example, we can pipeline the functional units. Let us assume that we divide each stage,
into two sub-stages. Then, we need to stall for 2 cycles on a load-use hazard, and stall for 4
cycles for a taken branch.

Let us thus assume that CPI = (n + k − 1)/n + rck, where r and c are constants, and k
is the number of pipeline stages. r is equal to the average number of stalls per instruction
(stall rate). We assume that the stall penalty ∝ k, or alternatively, stall penalty = ck, where
c is the constant of proportionality.

We thus have:

P =
f

CPI

=

1
tmax/k+l

(n+ k − 1)/n+ rck

=
n

((n− 1)tmax/k + (rcntmax + tmax + ln− l) + lk(1 + rcn)

(10.10)

To maximise performance, we need to minimise the denominator. We get:

∂ ((n− 1)tmax/k + (rcntmax + tmax + ln− l) + lk(1 + rcn))

∂k
= 0

⇒− (n− 1)tmax
k2

+ l(1 + rcn) = 0

⇒k =

√
(n− 1)tmax
l(1 + rcn)

≈
√
tmax
lrc

(as n→∞)

(10.11)

Equation 10.11 is more realistic than Equation 10.8. It is independent of the number of
instructions. The implicit assumption is that the number of instructions tends to infinity,
because in most programs, we execute billions of instructions. Akin to Equation 10.8, the
optimal number of pipeline stages is proportional to

√
tmax, and inversely proportional to

√
l.

Additionally, k ∝ 1/
√
rc. This means that as the penalty for a stall increases, or the number

of stall events per instruction increase, we need to use less pipeline stages.

Let us now find the performance for the optimal number of pipeline stages. In Equa-
tion 10.10, we assume that n→∞. Thus (n+ k − 1)/n→ 1. Hence, we have:



c© Smruti R. Sarangi 470

Pideal =
1

(tmax/k + l)× (1 + rck)

=
1

tmax/k + l + rctmax + lrck

=
1

tmax ×
√(

lrc
tmax

)
+ l + rctmax + lrc×

√(
tmax
lrc

)
=

1

rctmax + 2
√
lrctmax + l

=
1(√

rctmax +
√
l
)2

(10.12)

Implications of Equation 10.11 and Equation 10.12

Let us now study the different implications of the result regarding the optimal number of
pipeline stages.

Implication 1
The crucial implication of these results is that for programs with a lot of dependences, we should
use processors with a lesser number of pipeline stages. Inversely, for programs that have high
IPC (less dependences across instructions), we should use processors that have deeper pipelines.

Implication 2
Let us compare two versions of our pipeline. One version uses interlocks for all dependences, and
the other uses forwarding. For the pipeline with forwarding, the stall penalty is much lower.
Consequently, the value of the constant, c, is smaller in the case of the pipeline with forwarding
turned on. This means that a pipeline with forwarding ideally requires more pipeline stages
for optimal performance. As a general rule, we can conclude that as we increase the amount of
forwarding in a pipeline, we should make it deeper.

Implication 3
The optimal number of pipeline stages is directly proportional to

√
(tmax/l). If we have faster

latches, we can support deeper pipelines. Secondly, with the progress of technology, tmax/l is
not changing significantly [ITRS, 2011], because both logic gates, and latches are getting faster
(roughly equally). Hence, the optimal number of pipeline stages for a processor has remained
almost the same for at least the last 5 years.

Implication 4
As we increase l, r, c, and tmax the ideal performance goes down as per Equation 10.12. The
latch delay can be a very sensitive parameter, especially, for processors that are designed to
run workloads with few dependences. In this case, r, and c, will have relatively small values,
and Equation 10.12 will be dominated by the value of the latch delay.
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Example 142
Find the optimal number of pipeline stages for the following configuration. tmax/l = 20, r
= 0.2, c = 0.6.
Answer: We have:

k =

√
tmax
lrc

=
√

20/(0.2 ∗ 0.6) = 12.9 ≈ 13

Example 143
Consider two programs that have the following characteristics.

Program 1 Program 2

Instruction Type Fraction Instruction Type Fraction

loads 0.4 loads 0.3

branches 0.2 branches 0.1

ratio(taken branches) 0.5 ratio(taken branches) 0.4

The ideal CPI is 1 for both the programs. Let 50% of the load instructions suffer from
a load-use hazard. Assume that the frequency of P1 is 1, and the frequency of P2 is 1.5.
Here, the units of the frequency are not relevant. Compare the performance of P1 and P2.
Answer:

CPInew =CPIideal + 0.5× (ratio(loads))× 1

+ ratio(branches)× ratio(taken branches)× 2
(10.13)

We thus have:

CPIP1 = 1 + 0.5× 0.4 + 0.2× 0.5× 2 = 1 + 0.2 + 0.2 = 1.4

CPIP2 = 1 + 0.5× 0.3 + 0.1× 0.4× 2 = 1 + 0.15 + 0.08 = 1.23

The performance of P1 can be expressed as f/CPI = 1 / 1.4 = 0.71 (arbitrary units).
Similarly, the performance of P2 is equal to f/CPI = 1.5/1.23 = 1.22 (arbitrary units).
Hence, P2 is faster than P1. We shall often use the term, arbitrary units, a.u., when the
choice of units is irrelevant.

10.9.4 Performance of a Suite of Programs

Most of the time, we do not measure the performance of a processor with respect to one
program. We consider a set of known benchmark programs and measure the performance of
our processor with respect to all the programs to get a consolidated figure. Most processor
vendors typically summarise the performance of their processor with respect to the SPEC
(http://www.spec.org) benchmarks. SPEC stands for “Standard Performance Evaluation

http://www.spec.org
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Corporation”. They distribute suites of benchmarks for measuring, summarising, and reporting
the performance of processors, and software systems.

Computer architectures typically use the SPEC CPU benchmark suite to measure the per-
formance of a processor. The SPEC CPU 2006 benchmarks have two types of programs –
integer arithmetic benchmarks (SPECint), and floating point benchmarks (SPECfp). There
are 12 SPECint benchmarks that are written in C/C++. The benchmarks contain parts of
C compilers, gene sequencers, AI engines, discrete event simulators, and XML processors. On
similar lines, the SPECfp suite contains 17 programs. These programs solve different problems
in the domains of physics, chemistry, and biology.

Most processor vendors typically compute a SPEC score, which is representative of the
performance of the processor. The recommended procedure is to take the ratio of the time
taken by a benchmark on a reference processor, and the time taken by the benchmark on the
given processor. The SPEC score is equal to the geometric mean of all the ratios. In computer
architecture, when we report the mean relative performance (as in the case of SPEC scores),
we typically use the geometric mean. For just reporting the average time of execution (absolute
time), we can use the arithmetic mean.

Sometimes, instead of reporting SPEC scores, we report the average number of instructions
that we execute per second, and in the case of scientific programs, the average number of floating
point operations per second. These metrics give us an indication of the speed of a processor,
or a system of processors. We typically use the following terms:

KIPS Kilo(103) instructions per second

MIPS Million(106) instructions per second

MFLOPS Million(106) floating point operations per second

GFLOPS Giga(109) floating point operations per second

TFLOPS Tera(1012) floating point operations per second

PFLOPS Peta(1015) floating point operations per second

10.9.5 Inter-Relationship between Performance, the Compiler, Architecture,
and Technology

Let us now summarise our discussion by looking at the relationships between performance,
compiler design, processor architecture, and manufacturing technology. Let us consider the
performance equation again (see Equation 10.14) (let us assume arbitrary units for performance
and replace the proportional sign by an equality).

P =
f × IPC
#insts

(10.14)

If our final aim is to maximise performance, then we need to maximise the frequency (f), and
the IPC. Simultaneously, we need to minimise the number of dynamic instructions (#insts).
There are three knobs that are under our control namely the processor architecture, manufac-
turing technology, and the compiler. Note that we loosely use the term “architecture” here.
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We wish to use the term “architecture” to refer to the actual organisation and design of the
processor. However, in literature, it is common to use the term “architecture” to refer to both
the ISA, and the design of a processor. Hence, we use the same terminology here. Let us look
at each of our knobs in detail.

The Compiler

By using smart compiler technology we can reduce the number of dynamic instructions, and
also reduce the number of stalls. This will improve the IPC. Let us consider two examples:
Examples 144 and 145. Here, we remove one stall cycle by reordering the add and ld instructions.
On similar lines, compilers typically analyse hundreds of instructions, and optimally reorder
them to reduce stalls as much as possible.

Example 144
Reorder the following piece of code without violating the correctness of the program to reduce
stalls.

add r1, r2, r3

ld r4, 10[r5]

sub r1, r4, r2

Answer: We have a load-use hazard here, between the ld and sub instructions. We can
reorder the code as follows.

ld r4, 10[r5]

add r1, r2, r3

sub r1, r4, r2

Now, we do not have any load-use hazards, and the logic of the program remains the
same.

Example 145
Reorder the following piece of code without violating the correctness of the program to reduce
stalls. Assume delayed branches with 2 delay slots

add r1, r2, r3

ld r4, 10[r5]

sub r1, r4, r2

add r8, r9, r10

b .foo

Answer:
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add r1, r2, r3

ld r4, 10[r5]

b .foo

sub r1, r4, r2

add r8, r9, r10

We eliminate the load-use hazard, and optimally used the delay slots.

The Architecture

We have designed an advanced architecture in this chapter by using pipelining. Note that
pipelining by itself, does not increase performance. In fact because of stalls, pipelining reduces
the IPC of a program as compared to a single cycle processor. The main benefit of pipelining is
that it allows us to run the processor at a higher frequency. The minimum cycle time reduces
from tmax for a single cycle pipeline to tmax/k + l for a k-stage pipelined machine. Since we
complete the execution of a new instruction every cycle unless there are stalls, we can execute
a set of instructions much faster on a pipelined machine. The instruction execution throughput
is much higher.

Important Point 16
The main benefit of pipelining is that it allows us to run the processor at a higher frequency.
By running the processor at a higher frequency, we can ensure a higher instruction through-
put (more instructions complete their execution per second). Pipelining by itself, reduces
the IPC of a program as compared to a single cycle processor, and it also increases the time
it takes to process any single instruction.

Techniques such as delayed branches, and forwarding help increase the IPC of a pipelined
machine. We need to focus on increasing the performance of complex pipelines through a variety
of techniques. The important point to note here is that architectural techniques affect both
the frequency (via the number of pipeline stages), and the IPC (via the optimisations such as
forwarding and delayed branches).

Manufacturing Technology

Manufacturing technology affects the speed of transistors, and in turn the speed of combina-
tional logic blocks, and latches. Transistors are steadily getting smaller and faster. Conse-
quently, the total algorithmic work (tmax) and the latch delay (l), are also steadily reducing.
Hence, it is possible to run processors at higher frequencies leading to improvements in perfor-
mance (also see Equation 10.12). Manufacturing technology exclusively affects the frequency
at which we can run a processor. It does not have any effect on the IPC, or the number of
instructions.
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Figure 10.35: Relationship between performance, the compiler, architecture and technology

We can thus summarise our discussion in Figure 10.35.

Note that the overall picture is not as simple as we describe in this section. We need to
consider power and complexity issues also. Typically, implementing a pipeline beyond 20 stages
is very difficult because of the increase in complexity. Secondly, most modern processors have
severe power and temperature constraints. This problem is also known as the power wall. It
is often not possible to ramp up the frequency, because we cannot afford the increase in power
consumption. As a thumb rule, power increases as the cube of frequency. Hence, increasing the
frequency by 10% increases the power consumption by more than 30%, which is prohibitively
large. Designers are thus increasingly avoiding deeply pipelined designs that run at very high
frequencies.

10.10 Power and Temperature Issues

10.10.1 Overview

Let us now briefly look at power and temperature issues. These issues have increasingly become
more important over the last decade. High performance processor chips typically dissipate 60-
120W of power during normal operation. If we have four chips in a server class computer,
then we shall roughly dissipate 400W of power. As a general rule of thumb the rest of the
components in a computer such as the main memory, hard disk, peripherals, and fans, also
dissipate a similar amount of power. The total power consumption is roughly 800W. If we add
additional overheads such as the non-ideal efficiency of the power supply, the display hardware,
the power requirement goes up to about 1KW. Now, a typical server farm that has 100 servers
will require 100 kW of power for running the computers. Additionally, it will require extra
power for the cooling units such as air conditioners. Typically, to remove 1 W of heat, we
require 0.5W of cooling power. Thus the total power dissipation of our server farm is about 150
kW. In comparison, a typical home has a rated power of 6-8 kW. This means that the power
dissipated by one server farm is equivalent the power used by 20-25 homes, which is significant.
Note that a server farm containing 100 machines is a relatively small setup, and in practice we
have much larger server farms containing thousands of machines. They require megawatts of
power, which is enough for the needs of a small town.

Let us now consider really small devices such as the processors in cell phones. Here, also
power consumption is an important issue because of the limited amount of battery life. All of
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us would love devices that have very long battery lifes especially feature rich smart phones. Let
us now consider even smaller devices such as small processors embedded inside the body for
medical applications. We typically use small microchips in devices such as pacemakers. In such
cases, we do not want to inconvenience the patient by forcing him or her to also carry heavy
batteries, or recharge the batteries often. To prolong battery life, it is important to dissipate
as little power as possible.

Heat sink

Heat spreader

Processor socket
Silicon die

Thermal interface material (TIM)

TIM

Heat flow

Figure 10.36: Diagram of a chip’s package

Now, let us consider temperature, which is a very closely related concept. Let us take a look
at the diagram of the typical package of a chip in Figure 10.36. We typically have a 200-400
mm2 silicon die. The die refers to a rectangular block of silicon that contains the circuit of the
chip. Since this small piece of silicon dissipates 60-100 W of power (equivalent to 6-10 CFL
light bulbs), its temperature can rise to 200◦C unless we take additional measures to cool the
silicon die. We first add a 5cm × 5cm nickel plated copper plate on the silicon die. This is
known as the spreader . The spreader helps in creating a homogeneous temperature profile on
the die by spreading the heat, and thus eliminating hot spots. We need a spreader because all
the parts of a chip do not dissipate the same amount of heat. The ALUs typically dissipate a
lot of heat. However, the memory elements, are relatively cooler. Secondly, the heat dissipation
depends on the nature of the program. For integer benchmarks, the floating point ALU is idle,
and thus it will be much cooler. To ensure that heat properly flows from the silicon die to the
spreader we typically add a thermally conducting gel known as the thermal interface material
(TIM).

Most chips have a structure known as the heat sink on top of the spreader. It is a copper
based structure that has an array of fins as shown in Figure 10.36. We add an array of fins to
increase its surface area. This ensures that most of the heat generated by the processors can
get dissipated to the surrounding air. In chips that are used in desktops, laptops, and servers,
we have a fan mounted on the heat sink, or in the chassis of the computer that blows air over
the heat sink. This ensures that hot air is dissipated away, and colder air from outside flows
over the heat sink. The assembly of the spreader, heat sink, and fan help in dissipating most
of the heat generated by the processor.
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In spite of advanced cooling technology, processors still heat up to 60-100◦C . While playing
highly interactive computer games, or while running heavy number crunching applications like
weather simulation, on-chip temperatures can go up to 120◦C . Such temperatures are high
enough to boil water, cook vegetables, and even warm a small room in winter. Instead of buying
heaters, we can just run a computer!!! Note that temperature has a lot of deleterious effects.
In particular, the reliability of on-chip copper wires, and transistors decreases exponentially
with increasing temperature [Srinivasan et al., 2004]. Secondly, chips tend to age over time
due to an effect known as NBTI (Negative Bias Temperature Instability). Ageing effectively
slows down transistors. Hence, it becomes necessary to reduce the frequency of processors over
time to ensure correct operation. Secondly, some power dissipation mechanisms such as leakage
power are dependent on temperature. This means that as the temperature goes up the leakage
component of the total power also goes up, and this further increases temperature.

Let us thus conclude that it is very important to reduce on chip power and temperature in
the interest of lower electricity bills, reduced cooling costs, longer battery life, higher reliability,
and slower ageing.

Let us now quickly review the main power dissipation mechanisms. We shall primarily focus
on two mechanisms namely dynamic and leakage power. Leakage power is also known as static
power.

10.10.2 Dynamic Power

Let us consider a chip’s package as a closed black box. We have electrical energy flowing in, and
heat coming out. Over a sufficiently long period of time, the amount of electrical energy flowing
in to the chip is exactly equal to the amount of energy dissipated as heat according to the law
of conservation of energy. Note that we disregard the energy spent in sending electrical signals
along I/O links. In any case, this energy is negligible as compared to the power dissipation of
the entire chip.

Any circuit consisting of transistors, and copper wires can be modelled as an equivalent
circuit with resistors, capacitors, and inductors. Capacitors and inductors do not dissipate
heat. However, resistors convert a part of the electrical energy that flows through them to
heat. This is the only mechanism through which electrical energy can get converted to thermal
energy in our equivalent circuit.

Let us now consider a small circuit that has a single resistor and a single capacitor as shown
in Figure 10.37. The resistor represents the resistance of the wires in the circuit. The capacitor
represents the equivalent capacitance of transistors in the circuit. We need to note that different
parts of a circuit such as the gates of transistors have a certain potential at a given point in time.
This means that the gate of a transistor is functioning as a capacitor, and hence storing charge.
Similarly, the drain and source of a transistor have an equivalent drain and source capacitance.
We typically do not consider equivalent inductance in a simplistic analysis, because most wires
are typically short, and they do not function as inductors.

If we analyse this simple circuit, then we can conclude that the total energy required to
charge the capacitor is CV 2. 1

2CV
2 is dissipated by the resistor while charging the capacitor,

and the remaining energy is stored in the capacitor. Now, if the capacitor gets discharged, then
the remaining 1

2CV
2 gets dissipated via the resistor.

Now, let us generalise this result. In a large circuit with billions of transistors, we essentially
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Figure 10.37: A circuit with a resistance and capacitance

have billions of subcircuits with resistive and capacitive elements. Each cycle, we can either
have a transition in a bit (0 → 1 or 1 → 0), or we might have no transitions at all. If there
is a transition in the value of a bit, then either a capacitor gets charged or gets discharged.
However, if there are no transitions, then there is no current flow, and thus there is no heat
dissipation.

Let us assume that we have n subcircuits. Let, αi be known as the activity factor. It is 1 if
there is a transition, and 0 if there is no transition in subcircuit i. Let E1 . . . En be the energy
dissipated by all the n subcircuits. We thus have:

E1 =
1

2
α1C1V

2 (10.15)

E2 =
1

2
α2C2V

2 (10.16)

. . .

En =
1

2
αnCnV

2 (10.17)

The total energy dissipated is equal to
∑n

i=1Ei. Let us now group the small subcircuits
into functional units, and assume that the capacitance values across all the subcircuits in a
functional unit are roughly similar. Thus, for a given functional unit j, we can say that:

Ej ∝ αjCjV 2 (10.18)

Here, Cj is a representative value of capacitance for the entire functional unit, and αj is the
activity factor for the entire functional unit. 0 represents no activity, and 1 represents 100%
activity. 0 ≤ αj ≤ 1. Note that we have also replaced the equality by a proportional sign
because we are interested in the nature of power dissipation rather than the exact values.

We can thus express the total energy consumption of a circuit having n′ functional units as:

E ∝
n′∑
i=1

αiCiV
2 (10.19)

This equation represents the energy consumed per cycle. Power is equal to energy divide
by time. In this case the time is equal to the clock cycle time, or the reciprocal of the chip’s
frequency (f). Thus the total power (P) is equal to:
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P ∝
n′∑
i=1

αiCiV
2f (10.20)

The power dissipated is thus proportional to the frequency, and the square of the supply
voltage. Note that this power dissipation represents the resistive loss due to the transitions in
the inputs and outputs. Hence, it is known as the dynamic power, Pdyn. Thus, we have:

Pdyn ∝
n′∑
i=1

αiCiV
2f (10.21)

Definition 87
Dynamic power is the cumulative power dissipated due the transitions of inputs and outputs
across all the transistors in a circuit.

10.10.3 Leakage Power

Note that dynamic power is not the only power dissipation mechanism in processors. Static or
leakage power is a major component of the power dissipation of high performance processors.
It accounts for roughly 20-40% of the total processor power budget.

The main insight is as follows. We have up till now been assuming that a transistor does
not allow any current to flow through it when it is in the off state. There is absolutely no
current flow across the terminals of a capacitor, or between the gate and the source of an
NMOS transistors. All of these assumptions are not strictly correct. No structure is a perfect
insulator in practice. There is a small amount of current flow across its terminals, even in the
off state. We can have many other sources of leakage power across other interfaces that are
ideally not supposed to pass current. Such sources of current are together referred to as leakage
current, and the associated power dissipation is known as the leakage power.

Definition 88
Leakage current is the minimal amount of current that flows across two terminals of a

circuit element that are ideally supposed to be completely electrically isolated from each
other. For example, we do not expect any current flow between the drain and the source
of an NMOS transistor in the off state. However, a small amount of current does flow,
and this is known as the sub-threshold leakage current. When leakage current flows across
a resistive element, it dissipates leakage power. Leakage power is static in nature and is
dissipated all the time irrespective of the level of activity in a circuit.

There are different mechanisms for leakage power dissipation such as sub-threshold leak-
age, and gate induced drain leakage. Researchers typically use the following equation from
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the BSIM3 model [Cheng and Hu, 1999] for leakage power (primarily captures sub-threshold
leakage):

Pleak = A× ν2T × e
VGS−Vth−Voff

n×νT

(
1− e

−VDS
νT

)
(10.22)

Variable Definition (SI units)

A Area dependent constant of proportionality

νT Thermal voltage (kT/q)

k Boltzmann’s constant (1.38× 10−23) (SI units)

q 1.6× 10−19

T Temperature (in Kelvins)

VGS Voltage between the gate and source

Vth Threshold voltage. It is also dependent on temperature.
∂Vth
∂T = −2.5mV/K

Voff Offset voltage

n Sub-threshold swing coefficient

VDS Voltage between the drain and source

Table 10.3: Definition of variables in Equation 10.22

Table 10.3 defines the variables used in Equation 10.22. Note that the leakage power is
dependent on temperature via the variable νT = kT/q. To show the temperature dependence,
we can simplify Equation 10.22 to obtain Equation 10.23.

Pleak ∝ T 2 × eA/T ×
(

1− eB/T
)

(10.23)

In Equation 10.23, A and B are constants, and can be derived from Equation 10.22. Around
10 years ago (as of 2002), when the transistor threshold voltages used to be higher (around 500
mV), leakage power was exponentially dependent on temperature. Hence, a small increase in
temperature would translate to a large increase in leakage power. However, nowadays, the
threshold voltages are between 100-150 mV. Consequently, the relationship between tempera-
ture and leakage has become approximately linear [Sarangi et al., 2014].

The important point to note here is that leakage power is dissipated all the time by all
the transistors in a circuit. The amount of leakage current might be very small; but when we
consider the cumulative effect of billions of transistors, the total amount of leakage power dis-
sipation is sizeable, and can even become a large fraction of the dynamic power. Consequently,
designers try to control temperature to keep leakage power under control.

Hence, the total power, Ptot, is given by:

Ptot = Pdyn + Pleak (10.24)

10.10.4 Modeling Temperature*

Modeling the temperature on a chip is a fairly complex problem, and requires a fair amount of
background in thermodynamics and heat transfer. Let us state a basic result here, and move
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on.

Let us divide the area of a silicon die into a grid. Let us number the grid points 1 . . .m.
Let the power vector Ptot represent the total power dissipated by each grid point. Similarly, let
the temperature of each grid point be represented by the vector T . Power and temperature are
typically related by the following linear equation for a large number of grid points.

T − Tamb = ∆T = A× Ptot (10.25)

Tamb is known as the ambient temperature, and it is the temperature of the surrounding
air. A is an m × m matrix, and is also known as the thermal resistance matrix. According
to Equation 10.25 the change in temperature (∆T ), and the power consumption are linearly
related to each other.

Note that Ptot = Pdyn + Pleak, and Pleak is a function of temperature. Hence, Equa-
tions 10.24, and 10.25 form a feedback loop. We thus need to assume an initial value of
temperature, compute the leakage power, estimate the new temperature, compute the leakage
power, and keep iterating till the values converge.

10.10.5 The ED2 Metric

Now, let us try to integrate performance, and energy into one model. The performance of a
program is given by the performance equation (Equation 10.3). Let us simplistically assume
that the time a program takes, or its delay (D) is inversely proportional to the frequency.
Again, this is not strictly correct because the IPC is dependent on the frequency. We cannot
appreciate the relationship between IPC and frequency right now, because we do not have
adequate background. However, we shall touch this topic in Section 11.3, and see that there
are components to the IPC that are frequency dependent such as the latency of main memory.
In any case, let us move ahead with the approximation that D ∝ 1/f .

Let us compare two processor designs for the same program. One design dissipates E1

Joules for the execution of the entire program, and it takes D1 units of time. The second design
dissipates E2 Joules, and takes D2 units of time. How do we say, which design is better? It is
possible that the second design is slightly faster but dissipates 3 times more energy per cycle.
There has to be a common metric.

To derive a common metric, we need to either make the performance the same (D1 = D2),
and then compare the energy, or make the energy the same (E1 = E2), and compare the
performance. To ensure that D1 = D2 we need to either speed up one design or slowdown the
other one. To achieve this, we can use a standard technique called dynamic voltage-frequency
scaling (DVFS).

According to the DVFS technique, to scale up the frequency by a factor of κ1, we scale
the voltage by a factor of κ2. Typically, we assume that κ1 = κ2. For example, to double the
frequency, we double the voltage also. Note that with a higher frequency and consequent lower
clock cycle time, we need to ensure that signals can rise and fall quickly. To ensure quicker
signal transition, we increase the voltage such that it takes a lesser amount of time for a signal
to rise and fall by ∆V volts. This fact can be proved by considering the basic capacitor charging
and discharging equations. From our point of view, we need to appreciate the fact that the
voltage and frequency need to be scaled together.
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Definition 89
DVFS is a technique that is used to adjust the voltage and frequency of a processor at run
time. If we scale the frequency by a factor of κ1, then we need to scale the voltage by a
factor of κ2. In most cases, we assume that κ1 = κ2.

Now, let us try to equalise the execution time of designs 1 and 2, and compare the energy.
We have made the following assumptions: D ∝ 1/f , and f ∝ V . Thus, D ∝ 1/V . To make the
delays equal we need to scale the delay of design 2 by D1/D2, or alternatively we need to scale
its voltage and frequency by D2/D1. After equalising the delay, let the energy dissipation of
design 2 be E′2. Since E ∝ αV 2, we have:

E′2 = E2 ×
V 2
1

V 2
2

= E2 ×
f21
f22

= E2 ×
D2

2

D2
1

(10.26)

Now, let us compare E1 and E′2.

E′2 <=> E1

⇔E2 ×
D2

2

D2
1

<=> E1

⇔E2D
2
2 <=> E1D

2
1

(10.27)

In this case, we observe that comparing E′2 and E1 is tantamount to comparing E2D
2
2,

and E1D
2
1. Since E ∝ V 2(∝ 1/D2), ED2 = κ. Here, κ is a constant that arises out of the

different constants of proportionality. It is thus a property that is independent of the voltage
and frequency of the system. It is related to the activity factor, and the capacitance of the
circuits, and is inherent to the design. Consequently, the ED2 metric is used as an effective
baseline metric to compare two designs.

Designers aim to reduce the ED2 metric of a design as much as possible. This ensures that
irrespective of the DVFS settings, a design with a lower value of ED2 is a much better design
than other designs that have a higher ED2 metric. Note that a lot of performance enhancing
schemes do not prove to be effective because they do not show any benefit with regards to the
ED2 metric. They do increase performance, but also disproportionately increase the energy
dissipation. Likewise a lot of power reduction schemes are impractical because they increase
the delay, and the ED2 metric increases. Consequently, whenever we need to jointly optimise
energy/power and performance we use the ED2 metric to evaluate candidate designs.
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10.11 Advanced Techniques*

Way Point 8

• We designed a complete single cycle processor for the SimpleRisc instruction set in
Section 9.1. This processor had a hardwired control unit.

• We designed a more flexible variant of our SimpleRisc processor using a micro-
programmed control unit. This required a bus based data path along with a new set of
microinstructions, and microassembly based code snippets for each program instruc-
tion.

• We observed that our processors could be significantly sped up by pipelining. However,
a pipelined processor suffers from hazards that can be significantly eliminated by a
combination of software techniques, pipeline interlocks, and forwarding.

In this section, we shall take a brief look at advanced techniques for implementing processors.
Note that this section is by no means self contained, and its primary purpose is to give the reader
pointers for additional study. We shall cover a few of the broad paradigms for substantially
increasing performance. These techniques are adopted by state of the art processors.

Modern processors typically execute multiple instructions in the same cycle using very deep
pipelines (12-20 stages), and employ advanced techniques to eliminate hazards in the pipeline.
Let us look at some of the common approaches.

10.11.1 Branch Prediction

Let us start with the IF stage, and see how we can make it better. If we have a taken branch
in the pipeline then the IF stage in particular needs to stall for 2 cycles in our pipeline, and
then needs to start fetching from the branch target. As we add more pipeline stages, the
branch penalty increases from 2 cycles to more than 20 cycles. This makes branch instructions
extremely expensive, and they are known to severely limit performance. Hence, it is necessary
to avoid pipeline stalls even for taken branches.

What if, it is possible to predict the direction of branches, and also predict the branch
target? In this case, the fetch unit can immediately start fetching from the predicted branch
target. If the prediction is found to be wrong at a later point of time, then all the instructions
after the mispredicted branch instruction need to be cancelled, and discarded from the pipeline.
Such instructions are also known as speculative instructions.

Definition 90
Modern processors typically execute large sets of instructions on the basis of predictions. For



c© Smruti R. Sarangi 484

example, they predict the direction of branches, and accordingly fetch instructions starting
from the predicted branch target. The prediction is verified later when the branch instruction
is executed. If the prediction is found to be wrong, then all the instructions that were incor-
rectly fetched or executed are discarded from the pipeline. These instructions are known as
speculative instructions. Conversely, instructions that were fetched and executed correctly,
or whose predictions have been verified are called non-speculative instructions.

Note that it is extremely essential to prohibit speculative instructions from making changes
to the register file or writing to the memory system. Thus, we need to wait for instructions to
become non-speculative before we allow them to make permanent changes. Second, we also do
not allow them to leave the pipeline before they become non-speculative. However, if there is
a need to discard speculative instructions, then modern pipelines adopt a simpler mechanism.
Instead of selectively converting speculative instructions into pipeline bubbles as we have done
in our simple pipeline, modern processors typically remove all the instructions that were fetched
after the mispredicted branch instruction. This is a simple mechanism that works very well in
practice. It is known as a pipeline flush.

Definition 91
Modern processors typically adopt a simple approach of discarding all speculative instruc-
tions from a pipeline. They completely finish the execution of all instructions till the mis-
predicted instruction, and then clean up the entire pipeline, effectively removing all the
instructions that were fetched after the mispredicted instruction. This mechanism is known
as a pipeline flush.

Main Challenges

Let us now outline the main challenges in branch prediction.

1. We need to first find out in the fetch stage if an instruction is a branch, and if it is a
branch, we need to find the address of the branch target.

2. Next, we need to predict the expected direction of the branch.

3. It is necessary to monitor the result of a predicted instruction. If there is a misprediction,
then we need to perform a pipeline flush at a later point of time such that we can effectively
remove all the speculative instructions.

Detecting a misprediction in the case of a branch is fairly straight forward. We add the
prediction to the instruction packet, and verify the prediction with the actual outcome. If they
are different, then we schedule a pipeline flush. The main challenge is to predict the target of
a branch instruction, and its outcome.
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Branch Target Buffer

Modern processors use a simple hardware structure called a branch target buffer (BTB). It is
a simple memory array that saves the program counter of the last N branch instructions, and
their targets (N typically varies from 128 to 8192). There is a high likelihood of finding a
match, because programs typically exhibit some degree of locality. This means that they tend
to execute the same piece of code repeatedly over a period of time such as loops. Hence, entries
in the BTB tend to get repeatedly reused in a small window of time. If there is a match, then
we can also automatically infer that the instruction is a branch.

2-bit Saturating Counter based Branch Predictor

It is much more difficult to effectively predict the direction of a branch. However, we can exploit
a pattern here. Most branches in a program typically are found in loops, or in if statements
where both the directions are not equally likely. In fact, one direction is far more likely that
the other. For example, branches in loops are most of the time taken. Sometimes, we have if
statements that are only evaluated if a certain exceptional condition is true. Most of the time,
the branches associated with these if statements are not taken. Similarly, for most programs,
designers have observed that almost all the branch instructions follow certain patterns. They
either have a strong bias towards one direction, or can be predicted on the basis of past history,
or can be predicted on the basis of the behaviour of other branches. There is of course no
theoretical proof of this statement. This is just an observation made by processor designers,
and they consequently design predictors to take advantage of such patterns in programs.

We shall discuss a simple 2-bit branch predictor in this book. Let us assume that we have
a branch prediction table that assigns a 2-bit value to each branch in the table, as shown in
Figure 10.38. If this value is 00, or 01, then we predict that the branch is not taken. If it is
equal to 10, or 11, then we predict that the branch is taken. Moreover, every time the branch
is taken, we increment the associated counter by 1, and every time, the branch is not taken we
decrement the counter by 1. To avoid overflows, we do not increment 11 by 1 to produce 00,
and we do not decrement 00 to produce 11. We follow the rules of saturating arithmetic that
state that (in binary): (11 + 1 = 11), and (00 - 1 = 00). This 2-bit value is known as a 2-bit
saturating counter. The state diagram for the 2-bit counter is shown in Figure 10.39.

There are two basic operations for predicting a branch – prediction, and training. To predict
a branch, we look up the value of its program counter in the branch prediction table. In specific,
we use the last n bits of the address of the pc to access a 2n entry branch predictor table. We
read the value of the 2-bit saturating counter, and predict the branch on the basis of its value.
When, we have the real outcome of the branch available, we train our predictor by incrementing
or decrementing the value of our counter using saturating arithmetic (as per Table 10.39).

Let us now see why this predictor works. Let us consider a simple piece of C code, and its
equivalent SimpleRisc code.
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Figure 10.38: A branch prediction table
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Figure 10.39: 2-bit saturating counter

C
void main(){

foo();

...

foo();

}

int foo() {

int i, sum = 0

for(i=0; i < 10; i++) {

sum = sum + i;

}

return sum;

}

SimpleRisc
1 .main:

2 call .foo

3 ...

4 call .foo

5

6 .foo:

7 mov r0, 0 /* sum = 0 */

8 mov r1, 0 /* i = 0 */

9 .loop:

10 add r0, r0, r1 /* sum = sum + i */

11 add r1, r1, 1 /* i = i + 1 */

12 cmp r1, 10 /* compare i with 10 */
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13 bgt .loop /* if(r1 > 10) jump to .loop */

14 ret

Let us take a look at the branch in the loop statement (Line 13). For all the iterations
other than the last one, the branch is taken. If we start our predictor in the state 10, then
the first time, the branch is predicted correctly (taken). The counter gets incremented and
becomes equal to 11. For each of the subsequent iterations, the branch is predicted correctly
(taken). However, in the last iteration, it needs to be predicted as not taken. Here, there is a
misprediction. The 2-bit counter thus gets decremented, and gets set to 10. Let us now consider
the case when we invoke the function foo again. The value of the 2-bit counter is 10, and the
branch (Line 13) is correctly predicted as taken.

We thus observe that our 2-bit counter scheme, adds a little bit of hysteresis (or past
history) to the prediction scheme. If a branch has historically been taking one direction, then
one anomaly, does not change the prediction. This pattern is very useful for loops, as we have
seen in this simple example. The direction of the branch instruction in the last iteration of
a loop is always different. However, the next time we enter a loop, the branch is predicted
correctly, as we have seen in this example. Note that this is only one pattern. There are many
more types of patterns that modern branch predictors exploit.

10.11.2 Multiple Issue In-Order Pipeline

In our simple pipeline, we executed only one instruction per cycle. However, this is not a strict
necessity. We can design a processor such as the original Intel Pentium that had two parallel
pipelines. This processor could execute two instructions simultaneously in one cycle. These
pipeline have extra functional units such that instructions in both the pipelines can be executed
without any significant structural hazards. This strategy increases the IPC. However, it also
makes the processor more complex. Such a processor is said to contain a multiple issue in-order
pipeline, because we can issue multiple instructions to the execution units in the same cycle.
A processor, which can execute multiple instructions per cycle is also known as a superscalar
processor.

Secondly, this processor is known as an in-order processor, because it executes instructions in
program order. The program order is the order of execution of dynamic instances of instructions
as they appear in the program. For example, a single cycle processor, or our pipelined processor,
executes instructions in program order.

Definition 92
A processor that can execute multiple instructions per cycle is known as a superscalar

processor.

Definition 93
An in-order processor executes instructions in program order. The program order is defined
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as the order of dynamic instances of instructions that is the same as that is perceived if we
execute each instruction of the program sequentially.

Now, we need to look for dependences and potential hazards across both the pipelines.
Secondly, the forwarding logic is also far more complex, because results can be forwarded from
either pipeline. The original Pentium processor released by Intel had two pipelines namely the
U pipe and the V pipe. The U pipe could execute any instruction, whereas the V pipe was
limited to only simple instructions. Instructions were fetched as 2-instruction bundles. The
earlier instruction in the bundle was sent to the U pipe, and the later instruction was sent to
the V pipe. This strategy allowed the parallel execution of those instructions.

Let us try to conceptually design a simple processor on the lines of the original Pentium
processor with two pipelines – U and V . We envisage a combined instruction and operand fetch
unit that forms 2-instruction bundles, and dispatches them to both the pipelines for execution
simultaneously. However, if the instructions do not satisfy some constraints, then this unit
forms a 1-instruction bundle, and sends it to the U pipeline. Whenever, we form such bundles,
we can broadly adhere to some generic rules. We should avoid having two instructions that
have a RAW dependence. In this case, the pipeline will stall.

Secondly, we need to be particularly careful about memory instructions because dependences
across them cannot be discovered till the end of the EX stage. Let us assume that the first
instruction in a bundle is a store instruction, and the second instruction is a load instruction,
and they happen to access the same memory address. We need to detect this case, at the end
of the EX stage, and forward the value from the store to the load. For the reverse case, when
the first instruction is a load instruction, and the second is a store to the same address, we need
to stall the store instruction till the load completes. If both the instructions in a bundle store
to the same address, then the earlier instruction is redundant, and can be converted into a nop.
We thus need to design a processor that adheres to these rules, and has a complex interlock
and forwarding logic.

Let us show a simple example.

Example 146
Draw a pipeline diagram for the following SimpleRisc assembly code assuming a 2 issue
in-order pipeline.

[1]: add r1, r2, r3

[2]: add r4, r5, r6

[3]: add r9, r8, r8

[4]: add r10, r9, r8

[5]: add r3, r1, r2

[6]: ld r6, 10[r1]

[7]: st r6, 10[r1]
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Answer: Here, the pipeline diagram contains two entries for each stage, because two
instructions can be in a stage at the same time. We start out by observing that we can
execute instructions [1] and [2] in parallel. However, we cannot execute instructions [3]
and [4] in parallel. This is because instruction [3] writes to r9, and instruction [4] has r9
as a source operand. We cannot execute both the instructions in the same cycle, because
the value of r9 is produced in the EX stage, and is also required in the EX stage. We thus
insert a bubble. We proceed to execute [4], and [5] in parallel. We can use forwarding to
get the value of r9 in the case of instruction [4]. Lastly, we observe that we cannot execute
instructions [6] and [7] in parallel. They access the same memory address. The load needs
to complete before the store starts. We thus insert another bubble.
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10.11.3 EPIC and VLIW Processors

Now, instead of preparing bundles in hardware, we can prepare them in software. The com-
piler has far more visibility into the code, and can perform extensive analyses to create multi-
instruction bundles. The Itanium R© processor designed by Intel and HP was a very iconic
processor, which was based on similar principles.

Let us first start out by defining the terms – EPIC and VLIW.

Definition 94
VLIW → Very Long Instruction Word: Compilers create bundles of instructions that

do not have dependences between them. The hardware executes the instructions in each
bundle in parallel. The complete onus of correctness is on the compiler. EPIC → Explicitly
Parallel Instruction Computing: This paradigm extends VLIW computing. However, in
this case the hardware ensures that the execution is correct regardless of the code generated
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by the compiler.

EPIC/VLIW processors require very smart compilers to analyse programs and create bun-
dles of instructions. For example, if a processor has 4 pipelines, then each bundle contains 4
instructions. The compilers create bundles such that there are no dependences across instruc-
tions in a bundle. The broader aim of designing EPIC/VLIW processors is to move all the
complexity to software. Compilers arrange the bundles in a way such that we can minimise the
amount of interlock, forwarding, and instruction handling logic required in the processor.

However, in hindsight, such processors failed to deliver on their promise because the hard-
ware could not be made as simple as the designers had originally planned for. A high per-
formance processor still needed a fair amount of complexity in hardware, and required some
sophisticated architectural features. These features increased the complexity and power con-
sumption of hardware.

10.11.4 Out-of-Order Pipelines

We have up till now been considering primarily in-order pipelines. These pipelines execute
instructions in the order that they appear in the program. This is not strictly necessary. Let
us consider the following code snippet.

[1]: add r1, r2, r3

[2]: add r4, r1, r1

[3]: add r5, r4, r2

[4]: mul r6, r5, r2

[5]: div r8, r9, r10

[6]: sub r11, r12, r13

Here, we are constrained to execute instructions 1 to 4 in sequence because of data de-
pendences. However, we can execute instructions, 5 and 6 in parallel, because they are not
dependent on instructions 1-4. We will not be sacrificing on correctness if we execute instruc-
tions 5 and 6 out-of-order. For example, if we can issue two instructions in one cycle, then
we can issue (1,5) together, then (2,6), and finally, instructions 3, and 4. In this case, we can
execute the sequence of 6 instructions in 4 cycles by executing 2 instructions for the first two
cycles. Recall that such a processor that can potentially execute multiple instructions per cycle
is known as a superscalar processor (see Definition 92).

Definition 95
A processor that can execute instructions in an order that is not consistent with their pro-
gram order is known as an out-of-order(OOO) processor.
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An out-of-order(OOO) processor fetches instructions in-order. After the fetch stage, it
proceeds to decode the instructions. Most real world instructions require more than one cycle
for decoding. These instructions are simultaneously added to a queue called the reorder buffer
(ROB) in program order. After decoding the instruction, we need to perform a step called
register renaming. The broad idea is as follows. Since we are executing instructions out of
order, we can have WAR and WAW hazards. Let us consider the following code snippet.

[1]: add r1, r2, r3

[2]: sub r4, r1, r2

[3]: add r1, r5, r6

[4]: add r9, r1, r7

If we execute instructions [3] and [4] before instruction [1], then we have a potential WAW
hazard. This is because instruction [1] might overwrite the value of r1 written by instruction
[3]. This will lead to an incorrect execution. Thus, we try to rename the registers such that
these hazards can be removed. Most modern processors define a set of architectural registers,
which are the same as the registers exposed to software (assembly programs). Additionally, they
have a set of physical registers that are only visible internally. The renaming stage converts
architectural register names to physical register names. This is done to remove WAR and WAW
hazards. The only hazards that remain at this stage are RAW hazards, which indicate a genuine
data dependency. The code snippet will thus look as follows after renaming. Let us assume
that the physical registers range from p1 . . . p128.

[1]: add p1, p2, p3 /* p1 contains r1 */

[2]: sub p4, p1, p2

[3]: add p100, p5, p6 /* r1 is now begin saved in p100 */

[4]: add p9, p100, p7

We have removed the WAW hazard by mapping r1 in instruction 3, to p100. The only
dependences that exist are RAW dependences between instructions [1] → [2], and [3] → [4].
The instructions after renaming enter an instruction window. Note that up till now instructions
have been proceeding in-order.

The instruction window or instruction queue typically contains 64-128 entries (refer to
Figure 10.40). For each instruction, it monitors its source operands. Whenever all the source
operands of an instruction are ready, the instruction is ready to be issued to its corresponding
functional unit. It is not necessary for instructions to access the physical register file all the
time. They can also get values from forwarding paths. After the instructions finish their
execution, they broadcast the value of their result to the waiting instructions in the instruction
window. Instructions waiting for the result, mark their corresponding source operand as ready.
This process is known as instruction wakeup. Now, it is possible that multiple instructions are
ready in the same cycle. To avoid structural hazards, an instruction select unit chooses a set
of instructions for execution.

We need another structure for load and store instructions known as the load-store queue. It
saves the list of loads and stores in program order. It allows loads to get their values through
an internal forwarding mechanism if there is an earlier store to the same address.
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Figure 10.40: An out-of-order pipeline

After an instruction finishes its execution, we mark its entry in the reorder buffer. Instruc-
tions leave the reorder buffer in program order. If an instruction does not finish quickly for
some reason, then all the instructions after it in the reorder buffer need to stall. Recall that
instruction entries in the reorder buffer are ordered in program order. Instructions need to leave
the reorder buffer in program order such that we can ensure precise exceptions.

To summarise, the main advantage of an out-of-order processor(OOO) is that it can execute
instructions that do not have any RAW dependences between them, in parallel. Most programs
typically have such sets of instructions at most points of time. This property is known as
instruction level parallelism (abbreviated as ILP). Modern OOO processors are designed to
exploit as much of ILP as possible.

Definition 96
Typically, most programs have multiple instructions in a pipeline that can be executed in
parallel. This is because they do not have any RAW dependences between them. Modern
superscalar processors exploit this fact to increase their IPC by executing multiple instruc-
tions in the same cycle. This property of a program is known as instruction level parallelism
(abbreviated as ILP).
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10.12 Summary and Further Reading

10.12.1 Summary

Summary 10

1. We observe that large parts of our basic SimpleRisc processor are idle while processing
an instruction. For example, the IF stage is idle, when the instruction is in the MA
stage.

2. We thus propose the notion of “pipelining”. Here, we execute 5 instructions simul-
taneously (1 in each stage). At the negative edge of the clock, all the instructions
proceed to the next stages simultaneously, the instruction in the RW stage completes
its execution, and a new instruction enters the IF stage.

3. To design a pipeline we split the data path into five parts (1 stage per part), and add
pipeline registers between subsequent stages. A pipeline register stores the instruc-
tion packet (instruction contents, control signals, source operands and intermediate
results).

4. Each pipeline stage reads operands for its functional units from its corresponding
pipeline register at the beginning of a clock cycle. It processes them, and writes the
results to the pipeline register between the given stage and its adjacent stage, before
the end of the clock cycle.

5. We can have RAW hazards, and control hazards in our pipeline because we cannot
ascertain data dependences and branch outcomes before fetching subsequent instruc-
tions.

6. We can avoid RAW, and control hazards using pure software solutions. We can intro-
duce nop instructions between producer and consumer instructions, and after branch
instructions. Alternatively, we can reorder instructions to minimise the addition of
nop instructions, and use delayed branching.

7. In the absence of software solutions, we can use pipeline interlocks to avoid hazards
by stalling and cancelling instructions.

8. An efficient method of minimising stall cycles is forwarding.

(a) If a later stage contains the value of an operand, then we can forward the value
from the producer stage to the consumer stage. We can thus bypass the register
file.

(b) This allows us to avoid hazards because a consumer instruction can quickly get
its operands from other pipeline stages.
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(c) To detect dependences, and implement forwarding we propose a dedicated for-
warding unit. Furthermore, it is necessary to augment, every functional unit
with multiplexers to choose between the default inputs, and forwarded inputs.
Forwarding eliminates all the data hazards, other than the load-use hazard.

9. Modern processors have interrupts and exceptions that require us to save the state
of a program, and branch to an interrupt handler. We need to implement precise
exceptions such that we can return to the exact same point at which we had stopped
the execution of our original program.

10. Performance of a processor with respect to a program is defined to be proportional to
the inverse of the time required to execute the program.

11. The performance equation is as follows:

P ∝ IPC × f
#insts

IPC (instructions per cycle), f(frequency), #insts (number of dynamic instructions)

12. The performance of a processor is dependent on the manufacturing technology, ar-
chitecture, and compiler optimisations. In specific, a pipelined processor has higher
performance as compared to a single cycle processor, because it allows us to increase
the frequency roughly as many times as the number of stages. There is a consequent
loss in IPC, and wastage of time due to the latch delay. Hence, it is necessary to
choose an optimal pipelining strategy.

13. The clock frequency is limited by power and temperature constraints.

(a) There are two power dissipation mechanisms in modern processors namely dy-
namic power and leakage power. Dynamic power is dissipated due to the switch-
ing activity in circuits. It is proportional to αCV 2f , where α is the activity
factor, C is the lumped circuit capacitance, V is the supply voltage, and f is the
frequency.

(b) Leakage power or static power is dissipated due to the flow of current through
the terminals of a transistor, when it is in the off state. Leakage power is a
superlinear function of the current temperature.

(c) Power and temperature for different points on a chip are typically related by a
set of linear equations.

(d) Dynamic voltage-frequency scaling is a technique to dynamically modify the volt-
age and frequency of a processor. We typically assume that the frequency is
proportional to voltage.

(e) We use the ED2 metric to simultaneously compare the power and performance
of competing processor designs.

14. Some advanced techniques for speeding up a processor are branch prediction, super-
scalar execution, EPIC/VLIW processors, and out-of-order pipelines.



495 c© Smruti R. Sarangi

10.12.2 Further Reading

The design of high performance pipelines is a prime focus of computer architecture researchers.
Researchers mostly look at optimising performance of pipelines and simultaneously reducing
power consumption. The reader can start out with textbooks on advanced computer architec-
ture [Hennessy and Patterson, 2012, Hwang, 2003, Baer, 2010, Sima et al., 1997, Culler et al.,
1998]. After getting a basic understanding of the techniques underlying advanced processors
such as out-of-order and superscalar execution, the reader should be able to graduate to reading
research papers. The first step in this journey should be the book titled, “Readings in Computer
Architecture” [Hill et al., 1999]. This book comprises of a set of foundational research papers
in different areas of computer architecture. Subsequently, the reader can move on to reading
research papers for getting a deeper understanding of state of the art techniques in processor
design.

The reader may start with some of the basic papers in the design of out-of-order proces-
sors [Brown et al., 2001, Smith and Sohi, 1995, Hwu and Patt, 1987]. After getting a basic
understanding, she can move on to read papers that propose important optimisations such as
[Brown et al., 2001, Petric et al., 2005, Akkary et al., 2003]. For a thorough understanding of
branch prediction schemes and fetch optimisation, the reader should definitely look at the work
of Yeh and Patt [Yeh and Patt, 1991, Yeh and Patt, 1992, Yeh and Patt, 1993], and the patent
on Pentium 4 trace caches [Krick et al., 2000].

Simultaneously, the reader can also look at papers describing the complete architecture of
processors such as the Intel Pentium 4 [Boggs et al., 2004], Intel ATOM [Halfhill, 2008], Intel
Sandybridge [Gwennap, 2010], AMD Opteron [Keltcher et al., 2003], and IBM Power 7 [Ware
et al., 2010]. Finally, readers can find descriptions of state of the art processors in the periodical,
“Microprocessor Report”, along with emerging trends in the processor industry.

Exercises

Pipeline Stages

Ex. 1 — Show the design of the IF, OF, EX, MA, and RW pipeline stages. Explain their
functionality in detail.

Ex. 2 — Why do we need to store the op2 field in the instruction packet? Where is it used?

Ex. 3 — Why is it necessary to have the control field in the instruction packet?

Ex. 4 — Why do we require latches in a pipeline? Why are edge sensitive latches preferred?

Ex. 5 — Why is it necessary to split the work in a data path evenly across the pipeline stages?

* Ex. 6 — We know that in an edge sensitive latch, the input signal has to be stable for
thold units of time after the negative edge. Let us consider a pipeline stage between latches L1

and L2. Suppose the output of L1 is ready immediately after the negative edge, and almost
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instantaneously reaches the input of L2. In this case, we violate the hold time constraint at L2.
How can this situation be avoided?

Pipeline Design

Ex. 7 — Enumerate the rules for constructing a pipeline diagram.

Ex. 8 — Describe the different types of hazards in a pipeline.

Ex. 9 — In the SimpleRisc pipeline, why don’t we have structural hazards?

Ex. 10 — Why does a branch have two delay slots in the SimpleRisc pipeline?

Ex. 11 — What are the Data-Lock and Branch-Lock conditions?

Ex. 12 — Write pseudo-code for detecting and handling the Branch-Lock condition? (with-
out delayed branches)

Ex. 13 — What is delayed branching?

* Ex. 14 — Let us consider two designs: D1 and D2. D1 uses a software-based approach for
hazards, and assumes delayed branching. D2 uses interlocks, and assumes that a branch is not
taken till the outcome is decided. Intuitively, which design is faster?

Ex. 15 — Assume that 20% of the dynamic instructions executed on a computer are branch
instructions. We use delayed branching with one delay slot. Estimate the CPI, if the compiler
is able to fill 85% of the delay slots. Assume that the base CPI is 1.5. In the base case, we do
not use any delay slot. Instead, we stall the pipeline for the total number of delay slots.

Ex. 16 — Describe the role of the forwarding multiplexers in each stage of the pipeline.

Ex. 17 — Why do we not require a forwarding path from MA to EX for the op2 field?

Ex. 18 — Answer the following questions.

i) What are the six possible forwarding paths in our SimpleRisc processor?

ii) Which four forwarding paths, are required, and why? (Give examples to support your
answer).

Ex. 19 — Assume that we have an instruction immediately after a call instruction that reads
ra. We claim that this instruction will get the correct value of ra in a pipeline with forwarding.
Is this true? Prove your answer.

Ex. 20 — Reorder the following code snippet to minimise the execution time for the following
configurations:

1.We use software techniques, and have 2 delay slots.

2.We use interlocks, and predict not taken.

3.We use forwarding, and predict not taken.
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add r1, r2, r3

sub r4, r1, r1

mul r8, r9, r10

cmp r8, r9

beq .foo

Ex. 21 — Reorder the following code snippet to minimise execution time for the following
configurations:

1.We use software techniques, and have 2 delay slots.

2.We use interlocks, and predict not taken.

3.We use forwarding, and predict not taken.

add r4, r3, r3

st r3, 10[r4]

ld r2, 10[r4]

mul r8, r9, r10

div r8, r9, r10

add r4, r2, r6

Ex. 22 — Answer the following:
add r1, r2, r3

sub r4, r1, r6

ld r5, 10[r4]

add r6, r5, r5

sub r8, r8, r9

mul r10, r10, r11

cmp r8, r10

beq .label

add r5, r6, r8

st r3, 20[r5]

ld r6, 20[r5]

ld r7, 20[r6]

lsl r7, r7, r10

i) Assuming a traditional SimpleRisc pipeline, how many cycles will this code take to execute
in a pipeline with just interlocks? Assume that time starts when the first instruction
reaches the RW stage. This means that if we had just one instruction, then it would have
taken exactly 1 cycle to execute (Not 5). Moreover, assume that the branch is not taken.
[Assumptions: No forwarding, No delayed branches, No reordering]

ii) Now, compute the number of cycles with forwarding (no delayed branches, no reordering).

iii) Compute the minimum number of cycles when we have forwarding, and we allow instruc-
tion reordering. We do not have delayed branches, and in the reordered code, the branch
instruction cannot be one of the last three instructions.

iv) Compute the minimum number of cycles when we have forwarding, allow instruction re-
ordering, and have delayed branches. Here, again, we are not allowed to have the branch
instruction as one of the last three instructions in the reordered code.
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** Ex. 23 — We have assumed up till now that each memory access requires one cycle. Now,
let us assume that each memory access takes two cycles. How will you modify the data path
and the control path of the SimpleRisc processor in this case.

** Ex. 24 — Assume you have a pipeline that contains a value predictor for memory. If there
is a miss in the L2 cache, then we try to predict the value and supply it to the processor. Later
this value is compared with the value obtained from memory. If the value matches, then we are
fine, else we need to initiate a process of recovery in the processor and discard all the wrong
computation. Design a scheme to do this effectively.

Performance and Power Modelling

Ex. 25 — If we increase the average CPI (Cycles per Instruction) by 5%, decrease the in-
struction count by 20% and double the clock rate, what is the expected speedup, if any, and
why?

Ex. 26 — What should be the ideal number of pipeline stages (x) for a processor with CPI =
(1 + 0.2x) and clock cycle time tclk = (1 + 50/x)?

Ex. 27 — What is the relationship between dependences in a program, and the optimal
number of pipeline stages it requires?

Ex. 28 — Is a 4 GHz machine faster than a 2 GHz machine? Justify your answer.

Ex. 29 — How do the manufacturing technology, compiler, and architecture determine the
performance of a processor?

Ex. 30 — Define dynamic power and leakage power.

* Ex. 31 — We claim that if we increase the frequency, the leakage power increases. Justify
this statement.

Ex. 32 — What is the justification of the ED2 metric?

* Ex. 33 — How do power and temperature considerations limit the number of pipeline
stages? Explain your answer in detail. Consider all the relationships between power, tem-
perature, activity, IPC, and frequency that we have introduced in this chapter.

* Ex. 34 — Define the term DVFS.

** Ex. 35 — Assume that we wish to estimate the temperature at different points of a proces-
sor. We know the dynamic power of different components, and the leakage power as a function
of temperature. Furthermore, we divide the surface of the die into a grid as explained in Sec-
tion 10.10.4. How do we use this information to arrive at a steady state value of temperature
for all the grid points?
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Interrupts and Exceptions

Ex. 36 — What are precise exceptions? How does hardware ensure that every exception is a
precise exception?

Ex. 37 — Why do we need the movz and retz instructions?

Ex. 38 — List the additional registers that we add to a pipeline to support interrupts and
exceptions.

Ex. 39 — What is the role of the CPL register? How do we set and reset it?

Ex. 40 — How do we locate the correct interrupt handler? What is the structure and role of
an interrupt handler?

Ex. 41 — Why do we need the registers oldPC, and oldSP?

Ex. 42 — Why do we need to add a flags field to the instruction packet? How do we use
the oldF lags register?

* Ex. 43 — Consider a hypothetical situation where a write back to a register may generate
an exception (register-fault exception). Propose a mechanism to handle this exception precisely.

* Ex. 44 — Define the concept of register windows. How can we use register windows to
speedup the implementation of functions?

Advanced Topics

Ex. 45 — Can you intuitively say why most of the branches in programs are predictable.

Ex. 46 — Is the following code sequence amenable to branch prediction. Why or why not?

int status=flip_random_unbiased_coin();

if (status==Head)

print(\head");

else

print(\tail");

Ex. 47 — We need to design a 2-issue inorder pipeline that accepts a bundle of two instruc-
tions every cycle. These bundles are created by the compiler.

(a) Given the different instruction types, design an algorithm that tells the compiler the
different constraints in designing a bundle. For example, you might decide that you don’t
want to have two instructions in a bundle if they are of certain types, or have certain
operands.

(b) To implement a two issue pipeline, what kind of additional functionality will you need in
the MEM stage?
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Ex. 48 — Describe the main insight behind out-of-order pipelines? What are their major
structures?

Design Problems

Ex. 49 — Implement a basic pipelined processor with interlocks using Logisim (refer to the
design problems in Chapter 9).

Ex. 50 — Implement a basic pipelined processor in a hardware description language such as
Verilog or VHDL. Try to add forwarding paths and interrupt processing logic.

Ex. 51 — Learn the language SystemC. It is used to model hardware at a high level. Imple-
ment the SimpleRisc pipeline in SystemC.


