
12
Multiprocessor Systems

Up till now, we have discussed the design and implementation of a processor in great detail
including several methods to optimise its performance such as pipelining. We observed that
by optimising the processor, and the memory system, it is possible to significantly increase the
performance of a program. Now, the question is, “Is this enough?” Or, is it possible to do
better?

A short answer to this question is “Maybe Not.” For a long answer to this question, the
reader needs to read through this entire chapter, and possibly take a look at the references. Let
us start out by saying that processor performance has its limits. It is not possible to increase
the speed of a processor indefinitely. Even with very complicated superscalar processors (see
Chapter 10), and highly optimised memory systems, it is typically not possible to increase
the IPC by more than 50%. Secondly, because of power and temperature considerations, it
is very difficult to increase processor frequency beyond 3 GHz. The reader should note that
processor frequencies have remained more of less the same over the last ten years (2002-2012).
Consequently, CPU performance has also been increasing very slowly over the last ten years.

We illustrate these points in Figures 12.1, and 12.2. Figure 12.1 shows the peak frequency
of processors released by multiple vendors such as Intel, AMD, Sun, Qualcomm, and Fujitsu
from 2001 till 2010. We observe that the frequency has stayed more or less constant (mostly
between 1 GHz to 2.5 GHz). The trends do not indicate a gradual increase in frequency. We
expect that in the near future also, the frequency of processors will be limited to 3 GHz.

Figure 12.2 shows the average Spec Int 2006 score for the same set of processors from 2001
till 2010. We observe that CPU performance is slowly saturating over time, and it is getting
increasingly difficult to increase performance.

Even though the performance of a single processor is not expected to significantly increase
in the future, the future of computer architecture is not bleak. This is because processor
manufacturing technology is steadily getting better, and this is leading to smaller and faster
transistors. Till the late nineties processor designers were utilising the gains in transistor
technology to increase the complexity of a processor by implementing more features. However,

563

c© Smruti R. Sarangi 564

Figure 12.1: CPU frequencies (source [Danowitz et al., 2012])

Figure 12.2: CPU performance (source [Danowitz et al., 2012])

due to limitations in complexity, and power, designers resorted to using simpler processors after
2005. Instead of implementing more features in processors, vendors instead decided to put more
than one processor on a single chip. This helps us run more than one program at the same
time. Alternatively, sometimes it is possible to split a single program into multiple parts and
run all the parts in parallel.

This paradigm of using multiple computing units running in parallel is known as multipro-
cessing. The term “multiprocessing” is a rather generic term. It can either refer to multiple
processors in the same chip working in parallel, or it can refer to multiple processors across
chips working in parallel. A multiprocessor is a piece of hardware that supports multiprocess-
ing. When we have multiple processors within a chip, each processor is known as a core, and
the chip is called a multicore processor.

565 c© Smruti R. Sarangi

Definition 116
The term multiprocessing refers to multiple processors working in parallel. This is a generic

definition, and it can refer to multiple processors in the same chip, or processors across
different chips. A multicore processor is a specific type of multiprocessor that contains all
of its constituent processors in the same chip. Each such processor is known as a core.

We are now entering the era of multiprocessors, especially multicore systems. The number
of cores per chip is increasing by roughly a factor of two every two years. New applications are
being written to leverage this extra hardware. Most experts opine that the future of computing
lies in multiprocessor systems.

Before proceeding to the design of different types of multiprocessors, let us quickly take a
look at the background and history of multiprocessors.

12.1 Background

In the 60s and 70s large computers were primarily used by banks and financial institutions.
They had a growing base of consumers, and consequently they needed computers that could
perform more and more transactions per second. Typically just one processor proved to be
insufficient in providing the computing throughput that was required. Hence, early computer
designers decided to put multiple processors in a computer. The processors could share the
computing load, and thus increase the computing throughput of the entire system.

One of the earliest multiprocessors was the Burroughs 5000, which had two processors –
A and B. A was the main processor, and B was an auxiliary processor. When the load was
high, processor A gave processor B some work to do. Almost all the other major vendors at
that time also had multiprocessor offerings such as the IBM 370, PDP 11/74, VAX-11/782, and
Univac 1108-II. These computers supported a second CPU chip. This was connected to the
main processor. In all of these early machines, the second CPU was on a second chip that was
physically connected to the first with wires or cables. They came in two flavors: symmetric and
asymmetric. A symmetric multiprocessor consists of multiple processors, where each processor is
of the same type, and has access to the services offered by the operating system, and peripherals;
whereas, an asymmetric multiprocessor assigns different roles to different processors. There is
typically a distinguished processor that controls the operating system, and the peripherals.
The rest of the processors are slaves. They take work from the main processor, and return the
results.

Definition 117

Symmetric Multiprocessing This paradigm treats all the constituent processors in a
multiprocessor system as the same. Each processor has equal access to the operating
system, and the I/O peripherals. These are also known as SMP systems.

c© Smruti R. Sarangi 566

Asymmetric Multiprocessing This paradigm does not treat all the constituent proces-
sors in a multiprocessor system as the same. There is typically one master processor
that has exclusive control of the operating system and I/O devices. It assigns work to
the rest of the processors.

In the early days, the second processor was connected to the main processor using a set of
cables. It was typically housed in a different area of the main computer. Note that in those
days, computers used to be the size of a room. With increased miniaturisation, gradually both
the processors started coming closer. In the late eighties and early nineties, companies started
putting multiple processors on the same motherboard. A motherboard is a printed circuit board
that contains all the chips that a computer uses. The reader can take the lid off her laptop or
desktop. The large green board with chips and metallic lines is the motherboard. By the late
nineties, it was possible to have four or eight processors on a single motherboard. They were
connected to each other using dedicated high speed buses.

Gradually, the era of multicore processors commenced. It was now possible to have multiple
processors in the same chip. IBM was the first to announce a dual core (2 cores) multicore
processor called the Power 4 in 2001. Intel and AMD followed with similar offerings in 2005.
As of 2012, 8 core, and 10 core versions of multicore processors are available.

12.1.1 Moore’s Law

Let us now take a deeper look at what happened between 1960 and 2012 in the world of
processors. In the sixties, a computer was typically the size of a room, and today a computer
fits in the pocket. A processor in a cell phone is around 1.6 million times faster than the IBM
360 machines in the early sixties. It is also several orders of magnitude more power efficient.
The main driver for this continued evolution of computer technology is the miniaturisation of
the transistor. Transistors used to have a channel length of several millimetres in the sixties,
and now they are about 20-30 nanometers long. In 1971, a typical chip used to have 2000-3000
transistors. Nowadays, a chip has billions of transistors.

Over the last forty to fifty years, the number of transistors per chip has been roughly
doubling every 1-2 years. In fact, the co-founder of Intel, Gordon Moore, had predicted this
trend in 1965. The Moore’s law (named in the honour of Gordon Moore) predicts that the
number of transistors on a chip is expected to double every one to two years. Originally, Moore
had predicted the period of doubling to be every year. However, over time, this period has
become about 2 years. This was expected to happen because of the steady rate of advances in
manufacturing technology, new materials, and fabrication techniques.

Historical Note 3
In 1965, Gordon Moore (co-founder of Intel) conjectured that the number of transistors on
a chip will double roughly every one to two years. Initially, the number of transistors was
doubling every year. Gradually, the rate slowed down to 18 months, and now it is about two
years.

567 c© Smruti R. Sarangi

The Moore’s law has approximately held true since it was proposed in the mid sixties.
Nowadays, almost every two years, the dimensions of transistors shrink by a factor of

√
2. This

ensures that the area of a transistor shrinks by a factor of 2, and thus it is possible to fit twice
the number of transistors on a chip. Let us define the feature size as the size of the smallest
structure that can be fabricated on a chip. Table 12.1 shows the feature sizes of Intel processors
over the last 10 years. We observe that the feature size decreases by a factor of roughly

√
2

(1.41) every two years. This results in a doubling of the number of transistors.

Year Feature Size

2001 130 nm

2003 90 nm

2005 65 nm

2007 45 nm

2009 32 nm

2011 22 nm

Table 12.1: Feature sizes between 2001 and 2012

12.1.2 Implications of the Moore’s Law

Note that the Moore’s law is an empirical law. However, because of the fact that it has
predicted trends correctly for the last forty years, it is widely quoted in technical literature. It
directly predicts a miniaturisation in the transistor size. A smaller transistor is more power
efficient and faster. Designers were traditionally using these benefits to design bigger processors
with extra transistors. They were using the additional transistor budget to add complexity to
different units, increase cache sizes, increase the issue width, and the number of functional
units. Secondly, the number of pipeline stages were also steadily increasing till about 2002,
and there was an accompanying increase in the clock frequency also. However, after 2002 there
was a radical change in the world of computer architecture. Suddenly, power and temperature
became major concerns. The processor power consumption figures started to exceed 100 W,
and on chip temperatures started to exceed 100◦C. These constraints effectively put an end to
the scaling in complexity, and clock frequencies of processors.

Instead, designers started to pack more cores per chip without changing its basic design.
This ensured that the number of transistors per core remained constant, and according to
Moore’s law the number of cores doubled once every two years. This started the era of multicore
processors, and processor vendors started doubling the number of cores on chip. As of 2012,
we have processors that have 8-10 cores per chip. The number of cores per chip are expected to
reach 32 or 64 in the next 5 to 10 years (by 2020). A large multiprocessor today has multiple
cores per chip, and multiple chips per system. For example, your author is at the moment
writing this book on a 32 core server. It has 4 chips, and each chip has 8 cores.

Along with regular multicore processors, there has been another important development.
Instead of having 4 large cores per chip, there are architectures that have 64-256 very small
cores on a chip such as graphics processors. These processors also follow the Moore’s law,
and are doubling their cores every 2 years. Such processors are increasingly being used in

c© Smruti R. Sarangi 568

computer graphics, numerical and scientific computing. It is also possible to split the resources
of a processor to make it support two program counters, and run two programs at the same
time. These special kind of processors are known as multithreaded processors. It is not possible
to cover the entire design space of multiprocessors in this book. This is the topic of a book
on advanced architecture, and the reader can consult [Hwang, 2003, Hennessy and Patterson,
2012, Culler et al., 1998] for a detailed description of different kinds of multiprocessors.

In this chapter, we wish to make the reader aware of the broad trends in multiprocessor
design. We shall first look at multiprocessing from the point of view of software. Once we estab-
lish the software requirements, we shall proceed to design hardware to support multiprocessing.
We shall broadly consider multicore, multithreaded, and vector processors in this chapter.

12.2 Software for Multiprocessor Systems

12.2.1 Strong and Loosely Coupled Multiprocessing

Loosely Coupled Multiprocessing

There are two primary ways to harness the power of multiprocessors. The first method is to
run multiple unrelated programs in parallel. For example, it is possible to run a text editor
and a web browser at the same time. The text editor can run on processor 1, and the web
browser can run on processor 2. Both of them can occasionally request for OS services, and
connect to I/O devices. Users often use large multiprocessor systems containing more than
64-128 processors to run a set of jobs (processes) that are unrelated. For example, a user might
want to conduct a weather simulation with 128 different sets of parameters. Then she can start
128 separate instances of the weather simulation software on 128 different processors on a large
multiprocessor system. We thus have a speedup of 128 times as compared to a single processor
system, which is significant. This paradigm is known as loosely coupled multiprocessing. Here,
the dependences between programs is almost negligible. Note that using a multiprocessor in this
manner, is not conceptually very different from using a cluster of computers that comprises of
completely unrelated machines that communicate over a local area network. The only difference
is that the latency between machines in a multiprocessor is lower than cluster computers. A
loosely coupled multiprocessor such as a cluster of PCs is also known as a multicomputer.

Definition 118
A multicomputer consists of a set of computers typically connected over the network. It
is capable of running a set of programs in parallel, where the programs do not share their
memory space with each other.

Strongly Coupled Multiprocessing

However, the real benefit of a multiprocessor is accrued when there is a strong degree of overlap
between different programs. This paradigm is known as strongly coupled multiprocessing. Here
programs can share their memory space, file and network connections. This method of using

569 c© Smruti R. Sarangi

multiprocessors harnesses their true power, and helps us speed up a large amount of existing
software. The design and programming of strongly coupled multiprocessors is a very rich field,
and is expected to grow significantly over the coming decade.

Definition 119

Loosely Coupled Multiprocessing Running multiple unrelated programs in parallel on
a multiprocessor is known as loosely coupled multiprocessing.

Strongly Coupled Multiprocessing Running a set of programs in parallel that share
their memory space, data, code, file, and network connections is known as strongly
coupled multiprocessing.

In this book, we shall mainly look at strongly coupled multiprocessing, and primarily focus
on systems that allow a set of programs to run co-operatively by sharing a large amount of data
and code.

12.2.2 Shared Memory vs Message Passing

Let us now explain the methods of programming multiprocessors. For ease of explanation, let
us draw an analogy here. Consider a group of workers in a factory. They co-operatively perform
a task by communicating with each other orally. A supervisor often issues commands to the
group of workers, and then they perform their work. If there is a problem, a worker indicates
it by raising an alarm. Immediately, other workers rush to his assistance. In this small and
simple setting, all the workers can hear each other, and see each other’s actions. This proximity
enables them to accomplish complex tasks.

We can alternatively consider another model, where workers cannot necessarily see or hear
each other. In this case, they need to communicate with each other through a system of
messages. Messages can be passed through letters, phone calls, or emails. In this setting, if
a worker discovers a problem, he needs to send a message to his supervisor such that she can
come and rectify the problem. Workers need to be typically aware of each other’s identities, and
explicitly send messages to all or a subset of them. It is not possible any more to shout loudly,
and communicate with everybody at the same time. However, there are some advantages of
this system. We can support many more workers because they do not have to be co-located.
Secondly, since there are no constraints on the location of workers, they can be located at
different parts of the world, and be doing very different things. This system is thus far more
flexible, and scalable.

Inspired by these real life scenarios, computer architects have designed a set of protocols for
multiprocessors following different paradigms. The first paradigm is known as shared memory,
where all the individual programs see the same view of the memory system. If program A
changes the value of x to 5, then program B immediately sees the change. The second setting
is known as message passing. Here multiple programs communicate among each other by passing
messages. The shared memory paradigm is more suitable for strongly coupled multiprocessors,

c© Smruti R. Sarangi 570

and the message passing paradigm is more suitable for loosely coupled multiprocessors. Note
that it is possible to implement message passing on a strongly coupled multiprocessor. Likewise,
it is also possible to implement an abstraction of a shared memory on an otherwise loosely
coupled multiprocessor. This is known as distributed shared memory [Keleher et al., 1994].
However, this is typically not the norm.

Shared Memory

Let us try to add n numbers in parallel using a multiprocessor. The code for it is shown in
Example 149. We have written the code in C++ using the OpenMP language extension.

Example 149
Write a shared memory program to add a set of numbers in parallel.

Answer: Let us assume that all the numbers are already stored in an array called numbers.
The array numbers has SIZE entries. Assume that the number of parallel sub-programs
that can be launched is equal to N .

/* variable declaration */

int partialSums[N];

int numbers[SIZE];

int result = 0;

/* initialise arrays */

...

/* parallel section */

#pragma omp parallel {

/* get my processor id */

int myId = omp_get_thread_num();

/* add my portion of numbers */

int startIdx = myId * SIZE/N;

int endIdx = startIdx + SIZE/N;

for(int jdx = startIdx; jdx < endIdx; jdx++)

partialSums[myId] += numbers[jdx];

}

/* sequential section */

for(int idx=0; idx < N; idx++)

result += partialSums[idx];

It is easy to mistake the code for a regular sequential program, except for the directive

571 c© Smruti R. Sarangi

#pragma omp parallel. This is the only extra semantic difference that we have added in our
parallel program. It launches each iteration of this loop as a separate sub-program. Each such
sub-program is known as a thread. A thread is defined as a sub-program that shares its address
space with other threads. It communicates with them by modifying the values of memory
locations in the shared memory space. Each thread has its own set of local variables that are
not accessible to other threads.

The number of iterations, or the number of parallel threads that get launched is a system
parameter that is set in advance. It is typically equal to the number of processors. In this case,
it is equal to N. Thus, N copies of the parallel part of the code are launched in parallel. Each
copy runs on a separate processor. Note that each of these copies of the program can access all
the variables that have been declared before the invocation of the parallel section. For example,
they can access partialSums, and the numbers arrays. Each processor invokes the function
omp get thread num, which returns the id of the thread. Each thread uses the thread id to
find the range of the array that it needs to add. It adds all the entries in the relevant portion
of the array, and saves the result in its corresponding entry in the partialSums array. Once
all the threads have completed their job, the sequential section begins. This piece of sequential
code can run on any processor. This decision is made dynamically at runtime by the operating
system, or the parallel programming framework. To obtain the final result it is necessary to
add all the partial sums in the sequential section.

Definition 120
A thread is a sub-program that shares its address space with other threads. It has a dedicated
program counter, and a local stack that it can use to define its local variables. We refer to
a thread as a software thread to distinguish it from a hardware thread that we shall define
later.

A graphical representation of the computation is shown in Figure 12.3. A parent thread
spawns a set of child threads. They do their own work, and finally join when they are done.
The parent thread takes over, and aggregates the partial results.

There are several salient points to note here. The first is that each thread has its separate
stack. A thread can use its stack to declare its local variables. Once it finishes, all the local
variables in its stack are destroyed. To communicate data between the parent thread and the
child threads, it is necessary to use variables that are accessible to both the threads. These
variables need to be globally accessible by all the threads. The child threads can freely modify
these variables, and even use them to communicate amongst each other also. They are addi-
tionally free to invoke the operating system, and write to external files and network devices.
Once, all the threads have finished executing, they perform a join operation, and free their
state. The parent thread takes over, and finishes the role of aggregating the results. Here, join
is an example of a synchronisation operation between threads. There can be many other types
of synchronisation operations between threads. The reader is referred to [Culler et al., 1998] for
a detailed discussion on thread synchronisation. All that the reader needs to understand is that
there are a set of complicated constructs that threads can use to perform very complex tasks
co-operatively. Adding a set of numbers is a very simple example. Multithreaded programs can

c© Smruti R. Sarangi 572

Parent thread

Ti
m

e
Spawn child threads

Child
threads

Thread join operation

Sequential
section

Initialisation

Figure 12.3: Graphical representation of the program to add numbers in parallel

be used to perform other complicated tasks such as matrix algebra, and even solve differential
equations in parallel.

Message Passing

Let us now briefly look at message passing. Note that message passing based loosely coupled
systems are not the main focus area of this book. Hence, we shall just give the reader a flavor
of message passing programs. Note that in this case, each program is a separate entity and
does not share code, or data with other programs. It is a process, where a process is defined as
a running instance of a program. Typically, it does not share its address space with any other
process.

Definition 121
A process represents the running instance of a program. Typically, it does not share its
address space with any other process.

Let us now quickly define our message passing semantics. We shall primarily use two

573 c© Smruti R. Sarangi

functions, send and receive as shown in Table 12.2. The send(pid, val) function is used to send
an integer (val) to the process whose id is equal to pid. The receive(pid) is used to receive
an integer sent by a process whose id is equal to pid. If pid is equal to ANYSOURCE, then
the receive function can return with the value sent by any process. Our semantics is on the
lines of the popular parallel programming framework, MPI (Message Passing Interface) [Snir
et al., 1995]. MPI calls have many more arguments, and their syntax is much more complicated
than our simplistic framework. Let us now consider the same example of adding n numbers in
parallel in Example 150.

Function Semantics

send (pid, val) Send the integer, val, to the process with an id
equal to pid

receive (pid) (1) Receive an integer from process pid
(2) The function blocks till it gets the value
(3) If the pid is equal to ANYSOURCE, then
the receive function returns with the value sent
by any process

Table 12.2: send and receive calls

Example 150
Write a message passing based program to add a set of numbers in parallel. Make appro-
priate assumptions.

Answer: Let us assume that all the numbers are stored in the array, numbers, and this
array is available with all the N processors. Let the number of elements in the numbers
array be SIZE. For the sake of simplicity, let us assume that SIZE is divisible by N .

/* start all the parallel processes */

SpawnAllParallelProcesses();

/* For each process execute the following code */

int myId = getMyProcessId();

/* compute the partial sums */

int startIdx = myId * SIZE/N;

int endIdx = startIdx + SIZE/N;

int partialSum = 0;

for(int jdx = startIdx; jdx < endIdx; jdx++)

partialSum += numbers[jdx];

/* All the non-root nodes send their partial sums to the root */

c© Smruti R. Sarangi 574

if(myId != 0) {

/* send the partial sum to the root */

send (0, partialSum);

} else {

/* for the root */

int sum = partialSum;

for (int pid = 1; pid < N; pid++) {

sum += receive(ANYSOURCE);

}

/* shut down all the processes */

shutDownAllProcesses();

/* return the sum */

return sum;

}

12.2.3 Amdahl’s Law

We have now taken a look at examples for adding a set of n numbers in parallel using both the
paradigms namely shared memory and message passing. We divided our program into two parts
– a sequential part and a parallel part (refer to Figure 12.3). In the parallel part of the execution,
each thread completed the work assigned to it, and created a partial result. In the sequential
part, the root or master or parent thread initialised all the variables and data structures, and
spawned all the child threads. After all the child threads completed (or joined), the parent
thread aggregated the results produced by all the child threads. This process of aggregating
results is also known as reduction. The process of initialising variables, and reduction, are both
sequential.

Let us now try to derive the speedup of a parallel program vis-a-vis its sequential counter-
part. Let us consider a program that takes Tseq units of time to execute. Let fseq be the fraction
of time that it spends in its sequential part, and 1− fseq be the fraction of time that it spends
in its parallel part. The sequential part is unaffected by parallelism; however, the parallel part
gets equally divided among the processors. If we consider a system of P processors, then the
parallel part is expected to be sped up by a factor of P . Thus, the time (Tpar) that the parallel
version of the program takes is equal to:

Tpar = Tseq ×
(
fseq +

1− fseq
P

)
(12.1)

Alternatively, the speedup (S) is given by:

S =
Tseq
Tpar

=
1

fseq +
1−fseq
P

(12.2)

575 c© Smruti R. Sarangi

Equation 12.2 is known as the Amdahl’s Law. It is a theoretical estimate (or rather the
upper bound in most cases) of the speedup that we expect with additional parallelism.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200

Sp
e
e
d
u
p
(S

)

Number of processors(P)

10%
5%
2%

Figure 12.4: Speedup (S) vs number of processors (P)

Figure 12.4 plots the speedups as predicted by Amdahl’s Law for three values of fseq (10%,
5%, and 2%). We observe that with an increasing number of processors the speedup gradually
saturates and tends to the limiting value, 1/fseq. We observe diminishing returns as we increase
the number of processors beyond a certain point. For example, for fseq = 5%, there is no
appreciable difference in speedups between a system with 35 processors, and a system with 200
processors. We approach similar limits for all three values of fseq. The important point to
note here is that increasing speedups by adding additional processors has its limits. We cannot
expect to keep getting speedups indefinitely by adding more processors, because we are limited
by the length of the sequential sections in programs.

To summarise, we can draw two inferences. The first is that to speedup a program it is
necessary to have as much parallelism as possible. Hence, we need to have a very efficient
parallel programming library, and parallel hardware. However, parallelism has its limits and
it is not possible to increase the speedup appreciably beyond a certain limit. The speedup is
limited by the length of the sequential section in the program. To reduce the sequential section,
we need to adopt approaches both at the algorithmic level, and at the system level. We need
to design our algorithms in such a way that the sequential section is as short as possible. For
example, in Examples 149, and 150, we can also perform the initialisation in parallel (reduces
the length of the sequential section). Secondly, we need a fast processor that can minimise the
time it takes to execute the sequential section.

We looked at the latter requirement (designing fast processors) in Chapters 9, 10, and 11.
Now, let us look at designing fast and power efficient hardware for the parallel section.

c© Smruti R. Sarangi 576

12.3 Design Space of Multiprocessors

Michael J. Flynn proposed the famous Flynn’s classification of multiprocessors in 1966. He
started out by observing that an ensemble of different processors might either share code,
data, or both. There are four possible choices – SISD (single instruction single data), SIMD
(single instruction multiple data), MISD (multiple instruction single data), and MIMD (multiple
instruction multiple data).

Let us describe each of these types of multiprocessors in some more detail.

SISD This is a standard uniprocessor with a single pipeline as described in Chapter 9 and
Chapter 10. A SISD processor can be thought of as a special case of the set of multipro-
cessors with just a single processor.

SIMD A SIMD processor can process multiple streams of data in a single instruction. For
example, a SIMD instruction can add 4 sets of numbers with a single instruction. Modern
processors incorporate SIMD instructions in their instruction set, and have special SIMD
execution units also. Examples include x86 processors that contain the SSE set of SIMD
instruction sets. Graphics processors, and vector processors are special examples of highly
successful SIMD processors.

MISD MISD systems are very rare in practice. They are mostly used in systems that have
very high reliability requirements. For example, large commercial aircraft typically have
multiple processors running different versions of the same program. The final outcome
is decided by voting. For example, a plane might have a MIPS processor, an ARM
processor, and an x86 processor, each running different versions of the same program
such as an autopilot system. Here, we have multiple instruction streams, yet a single
source of data. A dedicated voting circuit computes a majority vote of the three outputs.
For example, it is possible that because of a bug in the program or the processor, one
of the systems can erroneously take a decision to turn left. However, both of the other
systems might take the correct decision to turn right. In this case, the voting circuit will
decide to turn right. Since MISD systems are hardly ever used in practice other than such
specialised examples, we shall not discuss them any more in this book.

MIMD MIMD systems are by far the most prevalent multiprocessor systems today. They
have multiple instruction streams and multiple data streams. Multicore processors, and
large servers are all MIMD systems. Examples 149 and 150 pertained to MIMD systems.
We need to carefully explain the meaning of multiple instruction streams. This means
that instructions come from multiple sources. Each source has its unique location, and
associated program counter. Two important branches of the MIMD paradigm have formed
over the last few years.

The first is SPMD (single program multiple data), and the second is MPMD (multiple
program multiple data). Most parallel programs are written in the SPMD style (Exam-
ple 149 and 150). Here, multiple copies of the same program run on different cores, or
separate processors. However, each individual processing unit has a separate program
counter, and thus perceives a different instruction stream. Sometimes SPMD programs
are written in such a way that they perform different actions depending on their thread

577 c© Smruti R. Sarangi

ids. We saw a method in Example 149 on how to achieve this using OpenMP functions.
The advantage of SPMD is that we do not have to write different programs for differ-
ent processors. Parts of the same program can run on all the processors, though their
behaviour might be different.

A contrasting paradigm is MPMD. Here, the programs running on different processors are
actually different. They are more useful for specialised processors that have heterogeneous
processing units. There is typically a single master program that assigns work to slave
programs. The slave programs complete the quanta of work assigned to them, and then
return the results to the master program. The nature of work of both the programs is
actually very different, and it is often not possible to seamlessly combine them into one
program.

From the above description, it is clear that the systems that we need to focus on are SIMD
and MIMD. MISD systems are very rarely used, and thus will not be discussed anymore. Let
us first discuss MIMD multiprocessing. Note that we shall only describe the SPMD variant of
MIMD multiprocessing because it is the most common approach.

12.4 MIMD Multiprocessors

Let us now take a deeper look at strongly-coupled shared memory based MIMD machines. We
shall first take a look at them from the point of view of software. After we have worked out
a broad specification of these machines from the point of view of software, we can proceed to
give a brief overview of the design of the hardware. Note that the design of parallel MIMD
machines can take an entire book to describe. For additional information, or for added clarity,
the reader can refer to the following references [Culler et al., 1998, Sorin et al., 2011].

Let us call the software interface of a shared memory MIMD machine as the “logical point
of view”, and refer to the actual physical design of the multiprocessor as the “physical point
of view”. When we describe the logical point of view, we are primarily interested in how
the multiprocessor behaves with respect to software. What guarantees does the hardware make
regarding its behaviour, and what can software expect? This includes correctness, performance,
and even resilience to failures. The physical point of view is concerned with the actual design
of the multiprocessor. This includes the physical design of the processors, the memory system,
and the interconnection network. Note that the physical point of view has to conform to the
logical point of view. The reader will recall that we are taking a similar approach here as we did
for uniprocessors. We first explained the software view (architecture) by looking at assembly
code. Then we provided an implementation for the assembly code by describing a pipelined
processor (organisation). We shall follow a similar approach here.

12.4.1 Logical Point of View

Figure 12.5 shows a logical view of a shared memory MIMD multiprocessor. Each processor
is connected to the memory system that saves both code and data. The program counter of
each processor points to the location of the instruction that it is executing. This is in the code
section of memory. This section is typically read only, and thus is not affected by the fact that
we have multiprocessors.

c© Smruti R. Sarangi 578

Proc 1

Shared memory

Proc 2 Proc n

Figure 12.5: Logical view of a multiprocessor system

The main challenge in implementing a shared memory multiprocessor is in correctly handling
data accesses. Figure 12.5 shows a scheme in which each computing processor is connected to
the memory, and it is treated as a black box. If we are considering a system of processes with
different virtual address spaces, then there is no problem. Each processor can work on its private
copy of data. Since the memory footprints are effectively disjoint, we can easily run a set of
parallel processes in this system. However, the main complexity arises when we are looking at
shared memory programs that have multiple threads, and there is data sharing across threads.
Note that we can also share memory across processes by mapping different virtual pages to the
same physical frame as described in Section 11.4.6. We shall threat this scenario as a special
case of parallel multi-threaded software.

A set of parallel threads typically share their virtual and physical address spaces. However,
threads do have private data also, which is saved in their stacks. There are two methods to
implement disjoint stacks. The first is that all the threads can have identical virtual address
spaces, and different stack pointers can start at different points in the virtual address space.
We need to further ensure that the size of the stack of a thread is not large enough to overlap
with the stack of another thread. Another approach is to map the stack portion of the virtual
address space of different threads to different memory frames. Thus, each thread can have
different entries in its page table for the stack portion, yet have common entries for the rest
of the sections of the virtual address space such as code, read-only data, constants, and heap
variables.

In any case, the main problems of complexity of parallel software are not because of code
that is read-only, or local variables that are not shared across threads. The main problem is
due to data values that are potentially shared across multiple threads. This is what gives the
power to parallel programs, and also makes them very complex. In the example that we showed
for adding a set of numbers in parallel, we can clearly see the advantage that we obtain by
sharing values and results of computation through shared memory.

However, sharing values across threads is not that simple. It is actually a rather profound
topic, and advanced texts on computer architecture devote several chapters to this topic. We
shall briefly look at two important topics in this area namely coherence, and memory consis-
tency. Coherence is also known as cache coherence, when we refer to it in the context of caches.
However, the reader needs to be aware that coherence is just not limited to caches, it is a generic
term.

579 c© Smruti R. Sarangi

12.4.2 Coherence

The term coherence in the memory system refers to the way multiple threads access the same
location. We shall see that many different behaviours are possible, when multiple threads access
the same memory location. Some of the behaviours are intuitively wrong, yet possible. Before
looking at coherence, we need to note that inside the memory system, we have many different
entities such as caches, write buffers, and different kinds of temporary buffers. Processors
typically write values to temporary buffers, and resume their operation. It is the job of the
memory system to transfer the data from these buffers to a location in the cache subsystem.
It is thus possible that internally, a given memory address might be associated with many
different physical locations at a given point of time. Secondly, the process of transferring data
from the processor to the correct location in the memory system (typically a cache block) is
not instantaneous. It sometimes takes more than tens of cycles for the memory read or write
request to reach its location. Sometimes these memory request messages can wait even longer,
if there is a lot of memory traffic. Messages can also get reordered with other messages that
were sent after them.

However, for the moment, let us assume that the memory looks like a large array of bytes to
all the processors; although, internally it is a complicated network of different components that
strive to provide a simple logical abstraction for read/write operations. The internal complexity
of a multiprocessor memory system leads to several interesting behaviours for programs that
access the same set of shared variables. Let us consider a set of examples.

In each of these examples, all shared values are initialised to 0. All the local variables start
with t such as t1, t2, and t3. Let us say that thread 1 writes to a variable x that is shared
across threads. Immediately later, thread 2 tries to read its value.

Thread 1:

x = 1

Thread 2:

t1 = x

Is thread 2 guaranteed to read 1? Or, can it get the previous value 0? What if thread
2, reads the value of x, 2 ns later, or even 10 ns later? What is the time that it takes for a
write in one thread to propagate to the other threads? This depends on the implementation
of the memory system. If a memory system has fast buses, and fast caches, then a write can
propagate very quickly to other threads. However, if the buses and caches are slow then it can
take some time for other threads to see a write to a shared variable.

Now, let us further complicate the example. Let us assume that thread 1 writes to x twice.

Example 151

Thread 1:

x = 1

x = 2

Thread 2:

t1 = x

t2 = x

c© Smruti R. Sarangi 580

Let us now look at the set of possible outcomes. (t1,t2)=(1,2) is possible. (t1,t2) = (0,1) is
also possible. This is possible when t1 was written before thread 1 started, and t2 was written
after the first statement of thread 1 completed. Likewise we can systematically enumerate
the set of all possible outcomes, which are: (0,0), (0,1), (0,2), (1,1), (1,2), (2,2). The reader is
requested to write a simple program using a parallel multithreaded framework such as OpenMP
or pthreads and look at the set of possible outcomes. The interesting question is whether the
outcome (2,1) is possible? This might be possible if somehow the first write to x got delayed
in the memory system, and the second write overtook it. The question is whether we should
allow such behaviour.

The answer is NO. If we were to allow such behaviour, then implementing a multiprocessor
memory system would undoubtedly become simpler. However, it will become very difficult to
write and reason about parallel programs. Hence, most multiprocessor systems disallow such
behaviour.

Let us now look at the issue of accesses to the same memory location by multiple threads
slightly more formally. Let us define the term, coherence, as he behaviour of memory accesses
to the same memory address such as x in our examples. We ideally want our memory system
to be coherent. This basically means that it should observe a set of rules while dealing with
different accesses to the same memory address such that it is easier to write programs.

Definition 122
The behaviour of memory accesses to the same memory address is known as coherence.

Typically, coherence has two axioms. These are as follows:

1. Completion A write must ultimately complete.

2. Order All the writes to the same memory address need to be seen by all the threads in
the same order.

Both of these axioms are fairly sublime in nature. The completion axiom says that no write
is ever lost in the memory system. For example, it is not possible that we write a value of 10
to variable x, and the write request gets dropped by the memory system. It needs to reach
the memory location corresponding to x, and then it needs to update its value. It might get
overwritten later by another write request. However, the bottom line is that the write request
needs to update the memory location at some point of time in the future.

The order axiom says that all the writes to a memory location are perceived to be in the
same order by all the threads. This means that it is not possible to read (2,1) in Example 151.
Let us now explain the reasons for this. Thread 1 is aware that 2 was written after 1 to the
memory location x. By the second axiom of coherence, all other threads need to perceive the
same order of writes to x. Their view of x cannot be different from that of thread 1. Hence,
they cannot read 2 after 1. If we think about it, the axioms of coherence make intuitive sense.
They basically mean that all writes eventually complete, as is true for uniprocessor systems.
Secondly, all the processors see the same view of a single memory location. If its value changes
from 0 to 1 to 2, then all the processors see the same order of changes (0-1-2). No processor sees

581 c© Smruti R. Sarangi

the updates in a different order. This further means that irrespective of how a memory system
is implemented internally, externally each memory location is seen as a globally accessible single
location.

12.4.3 Memory Consistency

Overview

Coherence was all about accesses to the same memory location. What about access to different
memory locations? Let us explain with a series of examples.

Example 152

Thread 1:

x = 1

y = 1

Thread 2:

t1 = y

t2 = x

Let us look at the permissible values of t1, and t2 from an intuitive standpoint. We can
always read (t1,t2)=(0,0). This can happen when thread 2 is scheduled before thread 1. We
can also read (t1, t2)=(1,1). This will happen when thread 2 is scheduled after thread 1 finishes.
Likewise it is possible to read (t1, t2)=(0,1). Figure 12.6 shows how we can get all the three
outcomes.

x = 1
y = 1
t1 = y
t2 = x

x = 1
t1 = y
t2 = x
y = 1

t1 = y
t2 = x
x = 1
y = 1

(0,1)(0,0) (1,1)

Figure 12.6: Graphical representation of all the possible outcomes

The interesting question is whether (t1,t2)=(1,0) is allowed? This will happen when the
write to x is somehow delayed by the memory system, whereas the write to y completes quickly.
In this case t1 will get the updated value of y, and t2 will get the old value of x. The question is
whether such kind of behaviour should be allowed. Clearly if such kind of behaviour is allowed
it will become hard to reason about software, and the correctness of parallel algorithms. It will
also become hard to program. However, if we allow such behaviour then our hardware design
becomes simpler because we do not have to provide strong guarantees to software.

There is clearly no right or wrong answer? It all depends on how we want to program
software, and what hardware designers want to build for software writers. But, still there is
something very profound about this example, and the special case of (t1,t2) equal to (1,0). To
find out why, let us take a look again at Figure 12.6. In this figure, we have been able to reason

c© Smruti R. Sarangi 582

about three outcomes by creating an interleaving between the instructions of the two threads.
In each of these interleavings, the order of instructions in the same thread is the same as the
way it is specified in the program. This is known as program order.

Definition 123
An order of instructions (possibly belonging to multiple threads) that is consistent with the
control-flow semantics of each constituent thread is said to be in program order. The control-
flow semantics of a thread is defined as the set of rules that determine which instructions
can execute after a given instruction. For example, the set of instructions executed by a
single cycle processor is always in program order.

Observation: It is clear that we cannot generate the outcome (t1,t2)=(1,0) by interleaving
threads in program order.

It would be nice if we can somehow exclude the output (1,0) from the set of possible
outputs. It will allow us to write parallel software, where we can predict the possible outcomes
very easily. A model of the memory system that determines the set of possible outcomes for
parallel programs is known as a memory model.

Definition 124
The model of a memory system that determines the set of likely outcomes for parallel pro-
grams is known as a memory model.

Sequential Consistency

We can have different kinds of memory models corresponding to different kinds of processors.
One of the most important memory models is known as sequential consistency(SC). Sequential
consistency states that only those outcomes are allowed that can be generated by an interleaving
of threads in program order. This means that all the outcomes shown in Figure 12.6 are
allowed because they are generated by interleaving thread 1 and 2 in all possible ways, without
violating their program order. However, the outcome (t1,t2)=(1,0) is not allowed because it
violates program order. Hence, it is not allowed in a sequentially consistent memory model.
Note that once we interleave multiple threads in program order, it is the same as saying that
we have one processor that executes an instruction of one thread in one cycle and possibly
another instruction from some other thread in the next cycle. Hence, a uniprocessor processing
multiple threads produces a SC execution. In fact, if we think about the name of the model,
the word “sequential” comes from the notion that the execution is equivalent to a uniprocessor
sequentially executing the instructions of all the threads in some order.

583 c© Smruti R. Sarangi

Definition 125
A memory model is sequentially consistent if the outcome of the execution of a set of parallel
threads is equivalent to that of a single processor executing instructions from all the threads
in some order. Alternatively, we can define sequential consistency as a memory model whose
set of possible outcomes are those that can be generated by interleaving a set of threads in
program order.

Sequential consistency is a very important concept and is widely studied in the fields of
computer architecture, and distributed systems. It reduces a parallel system to a serial system
with one processor by equating the execution on a parallel system with the execution on a
sequential system. An important point to note is that SC does not mean that the outcome of
the execution of a set of parallel programs is the same all the time. This depends on the way
that the threads are interleaved, and the time of arrival of the threads. All that it says that
certain outcomes are not allowed.

Weak Consistency (WC)*

The implementation of SC comes at a cost. It makes software simple, but it makes hardware
very slow. To support SC it is often necessary to wait for a read or write to complete, before the
next read or write can be sent to the memory system. A write request W completes when all
subsequent reads by any processor will get the value that W has written, or the value written
by a later write to the same location. A read request completes, after it reads the data, and
the write request that originally wrote the data completes.

These requirements/restrictions become a bottleneck in high performance systems. Hence,
the computer architecture community has moved to weak memory models that violate SC. A
weak memory model will allow the outcome (t1,t2)=(1,0) in the following multithreaded code
snippet.

Thread 1:

x = 1

y = 1

Thread 2:

t1 = y

t2 = x

Definition 126
A weakly consistent (WC) memory model does not obey SC. It typically allows arbitrary
memory orderings.

There are different kinds of weak memory models. Let us look at a generic variant, and
call it weak consistency (WC). Let us now try to find out why WC allows the (1,0) outcome.
Assume that thread 1 is running on core 1, and thread 2 is running on core 2. Moreover,
assume that the memory location corresponding to x is near core 2, and the memory location
corresponding to y is near core 1. Also assume that it takes tens of cycles to send a request from

c© Smruti R. Sarangi 584

the vicinity of core 1 to core 2, and the delay is variable. Let us first investigate the behaviour
of the pipeline of core 1. From the point of view of the pipeline of core 1, once a memory write
request is handed over to the memory system, the memory write instruction is deemed to have
finished. The instruction moves on to the RW stage. Hence, in this case, the processor will
hand over the write to x to the memory system in the nth cycle, and subsequently pass on the
write to y in the (n + 1)th cycle. The write to y will reach the memory location of y quickly,
while the write to x will take a long time.

In the meanwhile, core 2 will try to read the value of y. Assume that the read request
arrives at the memory location of y just after the write request (to y) reaches it. Thus, we will
get the new value of y, which is equal to 1. Subsequently, core 2 will issue a read to x. It is
possible that the read to x reaches the memory location of x just before the write to x reaches
it. In this case, it will fetch the old value of x, which is 0. Thus, the outcome (1,0) is possible
in a weak memory model.

Now, to avoid this situation, we could have waited for the write to x to complete fully, before
issuing the write request to y. It is true that in this case, this would have been the right thing
to do. However, in general when we are writing to shared memory locations, other threads are
not reading them at exactly the same point of time. We have no way of distinguishing both
the situations at run time since processors do not share their memory access patterns between
each other. Hence, in the interest of performance, it is not worthwhile to delay every memory
request till the previous memory requests complete. High performance implementations thus
prefer memory models that allow memory accesses from the same thread to be reordered by the
memory system. We shall investigate ways of avoiding the (1,0) outcome in the next subsection.

Let us summarise our discussion that we have had on weak memory models by defining
the assumptions that most processors make. Most processors assume that a memory request
completes instantaneously at some point of time after it leaves the pipeline. Furthermore, all
the threads assume that a memory request completes instantaneously at exactly the same point
of time. This property of a memory request is known as atomicity. Secondly, we need to note
that the order of completion of memory requests might differ from their program order. When
the order of completion is the same as the program order of each thread, the memory model
obeys SC. If the completion order is different from the program order, then the memory model
is a variant of WC.

Definition 127
A memory request is said to be atomic or observe atomicity, when it is perceived to execute
instantaneously by all threads at some point of time after it is issued.

Important Point 18
To be precise, for every memory request, there are three events of interest namely start,
finish, and completion. Let us consider a write request. The request starts when the in-
struction sends the request to the L1 cache in the MA stage. The request finishes, when
the instruction moves to the RW stage. In modern processors, there is no guarantee that

585 c© Smruti R. Sarangi

the write would have reached the target memory location when the memory request finishes.
The point of time at which the write request reaches the memory location, and the write
is visible to all the processors, is known as the time of completion. In simple processors,
the time of completion of a request, is in between the start and finish times. However, in
high performance processors, this is not the case. This concept is shown in the following
illustration.

time

start finish complete

What about a read request? Most readers will naively assume that the completion time
of a read is between the start and finish times, because it needs to return with the value of
the memory location. This is however not strictly true. A read might return the value of
a write that has not completed. In a memory model that requires write atomicity (illusion
of writes completing instantaneously), a read completes, only when the corresponding write
request completes. All the memory consistency models that assume write atomicity are
defined using properties of the memory access completion order.

Trivia 4
Here, is an incident from your author’s life. He had 200 US dollars in his bank account.
He had gotten a cheque for 300$ from his friend. He went to his bank’s nearest ATM, and
deposited the cheque. Three days later, he decided to pay his rent (400$). He wrote a cheque
to his landlord, and sent it to his postal address. A day later, he got an angry phone call
from his landlord informing him that his cheque had bounced. How was this possible?

Your author then enquired. It had so happened that because of a snow storm, his bank
was not able to send people to collect cheques from the ATM. Hence, when his landlord
deposited the cheque, the bank account did not have sufficient money.

This example is related with the problem of memory consistency. Your author leaving
his house to drop the cheque in the ATM is the start time. He finished the job when he
dropped the cheque in the ATM’s drop box. However, the completion time was 5 days later,
when the amount was actually credited to his account. Concurrently, another thread (his
landlord) deposited his cheque, and it bounced. This is an example of weak consistency in
real life.

There is an important point to note here. In a weak memory model, the ordering between
independent memory operations in the same thread is not respected. For example, when we
wrote to x, and then to y, thread 2 perceived them to be in the reverse order. However,

c© Smruti R. Sarangi 586

the ordering of operations of dependent memory instructions belonging to the same thread is
always respected. For example, if we set the value of a variable x to 1, and later read it in
the same thread. We will either get 1 or the value written by a later write to x. All the
other threads will perceive the memory requests to be in the same order. There is NEVER
any memory order violation between between dependent memory accesses by the same thread
(refer to Figure 12.7).

Thread 1

x = 1
y = 1
t3 = x

Thread 2

t1 = y
t2 = x

completion
time

Figure 12.7: Actual completion time of memory requests in a multithreaded program

Examples

Let us now illustrate the difficulty with using a weak memory model that does not obey any
ordering rules. Let us write our program to add numbers in parallel assuming a sequentially
consistent system. Note that here we do not use OpenMP because OpenMP does a lot behind
the scenes to ensure that programs run correctly in machines with weak memory models. Let
us define a parallel construct that runs a block of code in parallel, and a getThreadId() function
that returns the identifier of the thread. The range of the thread ids is from 0 to N − 1. The
code for the parallel add function is shown in Example 153. We assume that before the parallel
section begins, all the arrays are initialised to 0. In the parallel section, each thread adds its
portion of numbers, and writes the result to its corresponding entry in the array, partialSums.
Once, it is done, it sets its entry in the finished array to 1.

Let us now consider the thread that needs to aggregate the results. It needs to wait for
all the threads to finish the job of computing the partial sums. It does this by waiting till all
the entries of the finished array are equal to 1. Once, it establishes that all the entries in the
finished array are equal to 1, it proceeds to add all the partial sums to get the final result.
The reader can readily verify that if we assume a sequentially consistent system then this piece
of code executes correctly. She needs to note that we compute the result, only when we read
all the entries in the array finished to be 1. An entry in the finished array is equal to 1, if
the partial sum is computed, and written to the partialSums array. Since we add the elements
of the partialSums array to compute the final result, we can conclude that it is calculated

587 c© Smruti R. Sarangi

correctly. Note that this is not a formal proof (left as an exercise for the reader).

Example 153
Write a shared memory program to add a set of numbers in parallel on a sequentially
consistent machine.
Answer: Let us assume that all the numbers are already stored in an array called numbers.
The array numbers has SIZE entries. The number of parallel threads is given by N .

/* variable declaration */

int partialSums[N];

int finished[N];

int numbers[SIZE];

int result = 0;

int doneInit = 0;

/* initialise all the elements in partialSums and finished to 0 */

...

doneInit = 1;

/* parallel section */

parallel {

/* wait till initialisation */

while (!doneInit()){};

/* compute the partial sum */

int myId = getThreadId();

int startIdx = myId * SIZE/N;

int endIdx = startIdx + SIZE/N;

for(int jdx = startIdx; jdx < endIdx; jdx++)

partialSums[myId] += numbers[jdx];

/* set an entry in the finished array */

finished[myId] = 1;

}

/* wait till all the threads are done */

do {

flag = 1;

for (int i=0; i < N; i++){

if(finished[i] == 0){

flag = 0;

break;

}

}

c© Smruti R. Sarangi 588

} while (flag == 0);

/* compute the final result */

for(int idx=0; idx < N; idx++)

result += partialSums[idx];

Now, let us consider a weak memory model. We implicitly assumed in our example with
sequential consistency that when the last thread reads finished[i] to be 1, partialSums[i]
contains the value of the partial sum. However, this assumption does not hold if we assume a
weak memory model because the memory system might reorder the writes to finished[i] and
partialSums[i]. It is thus possible that the write to the finished array happens before the
write to the partialSums array in a system with a weak memory model. In this case, the fact
that finished[i] is equal to 1 does not guarantee that partialSums[i] contains the updated
value. This distinction is precisely what makes sequential consistency extremely programmer
friendly.

Important Point 19
In a weak memory model, the memory accesses issued by the same thread are always per-
ceived to be in program order by that thread. However, the order of memory accesses can
be perceived differently by other threads.

Let us come back to the problem of ensuring that our example to add numbers in parallel
runs correctly. We observe that the only way out of our quagmire is to have a mechanism to
ensure that the write to partialSums[i] is completed before another threads reads finished[i]
to be 1. We can use a generic instruction known as a fence. This instruction ensures that
all the reads and writes issued before the fence complete before any read or write after the
fence begins. Trivially, we can convert a weak memory model to a sequentially consistent one
by inserting a fence after every instruction. However, this can induce a large overhead. It is
best to introduce a minimal number of fence instructions as and when required. Let us look at
our example for adding a set of numbers in parallel for weak memory models by adding fence
instructions.

Example 154
Write a shared memory program to add a set of numbers in parallel on a machine with a
weak memory model.
Answer: Let us assume that all the numbers are already stored in an array called numbers.
The array numbers has SIZE entries. The number of parallel threads is given by N .

589 c© Smruti R. Sarangi

/* variable declaration */

int partialSums[N];

int finished[N];

int numbers[SIZE];

int result = 0;

/* initialise all the elements in partialSums and finished to 0 */

...

/* fence */

/* ensures that the parallel section can read the initialised arrays */

fence();

/* All the data is present in all the arrays at this point */

/* parallel section */

parallel {

/* get the current thread id */

int myId = getThreadId();

/* compute the partial sum */

int startIdx = myId * SIZE/N;

int endIdx = startIdx + SIZE/N;

for(int jdx = startIdx; jdx < endIdx; jdx++)

partialSums[myId] += numbers[jdx];

/* fence */

/* ensures that finished[i] is written after

partialSums[i] */

fence();

/* set the value of done */

finished[myId] = 1;

}

/* wait till all the threads are done */

do {

flag = 1;

for (int i=0; i < N; i++){

if(finished[i] == 0){

flag = 0;

break;

}

}

c© Smruti R. Sarangi 590

} while (flag == 0) ;

/* sequential section */

for(int idx=0; idx < N; idx++)

result += partialSums[idx];

Example 154 shows the code for a weak memory model. The code is more or less the same
as it was for the sequentially consistent memory model. The only difference is that we have
added two additional fence instructions. We assume a function called fence() that internally
invokes a fence instruction. We first call fence() before invoking all the parallel threads. This
ensures that all the writes for initialising data structures have completed. After that we start
the parallel threads. The parallel threads finish the process of computing and writing the partial
sum, and then we invoke the fence operation again. This ensures that before finished[myId]
is set to 1, all the partial sums have been computed and written to their respective locations in
memory. Secondly, if the the last thread reads finished[i] to be 1, then we can say for sure that
the value of partialSums[i] is up to date and correct. Hence, this program executes correctly,
in spite of a weak memory model.

We thus observe that weak memory models do not sacrifice on correctness if the program-
mer is aware of them, and inserts fences at the right places. Nonetheless, it is necessary for
programmers to be aware of weak memory models, and they need to also understand that a
lot of subtle bugs in parallel programs occur because programmers do not take the underly-
ing memory model into account. Weak memory models are currently used by most processors
because they allow us to build high performance memory systems. In comparison, sequential
consistency is very restrictive, and other than the MIPS R10000 [Yeager, 1996] no other ma-
jor vendor offers machines with sequential consistency. All our current x86 and ARM based
machines use different versions of weak memory models.

12.4.4 Physical View of Memory

Overview

We have looked at two important aspects of the logical view of a memory system for multi-
processors namely coherence, and consistency. We need to implement a memory system that
respects both of these properties. In this section, we shall study the design space of multipro-
cessor memory systems, and provide an overview of the design alternatives. We shall observe
that there are two ways of designing a cache for a multiprocessor memory system. The first
design is called a shared cache, where a single cache is shared among multiple processors. The
second design uses a set of private caches, where each processor or set of processors typically
have a private cache. All the private caches co-operate to provide the illusion of a shared cache.
This is known as cache coherence.

We shall study the design of shared caches in Section 12.4.5, and private caches in Sec-
tion 12.4.6. Subsequently, we shall briefly look at ensuring memory consistency in Section 12.4.7.
We shall conclude that an efficient implementation of a given consistency model such as se-

591 c© Smruti R. Sarangi

quential, or weak consistency is difficult, and is a subject of study in an advanced computer
architecture course. In this book, we propose a simple solution to this problem, and request
the reader to look at research papers for more information. The casual reader can skip most of
this section without any loss in continuity. Subsequently, we shall summarise the main results,
observations, and insights; it is suitable for all our readers.

Design of a Multiprocessor Memory System – Shared and Private Caches

Let us start out by considering the first level cache. We can give every processor its individual
instruction cache. Instructions represent read only data, and typically do not change during
the execution of the program. Since sharing is not an issue here, each processor can benefit
from its small private instruction cache. The main problem is with the data caches. There
are two possible ways to design a data cache. We can either have a shared cache, or a private
cache. A shared cache is a single cache that is accessible to all the processors. A private cache is
accessible to either only one processor, or a set of processors. It is possible to have a hierarchy
of shared caches, or a hierarchy of private caches as shown in Figure 12.8. We can even have
combinations of shared and private caches in the same system.

Proc 1

Shared L1 cache

Proc 2 Proc n Proc 1 Proc 2 Proc n

L1 L1 L1

Shared L2 cacheShared L2 cache

Proc 1 Proc 2 Proc n

L1 L1 L1

L2 L2 L2

(a) (b) (c)

Figure 12.8: Examples of systems with shared and private caches

Let us now evaluate the tradeoffs between a shared and private cache. A shared cache is
accessible to all the processors, and contains a single entry for a cached memory location. The
communication protocol is simple, and is like any regular cache access. The additional com-
plexity arises mainly from the fact that we need to properly schedule the requests coming from
different individual processors. However, at the cost of simplicity, a shared cache has its share of
problems. To service requests coming from all the processors, a shared cache needs to have a lot
of read and write ports for handling requests simultaneously. Unfortunately, the size of a cache
increases approximately as a square of the number of ports [Tarjan et al., 2006]. Additionally,
the shared cache needs to accommodate the working sets of all the currently running threads.
Hence, shared caches tend to become very large and slow. Because of physical constraints, it
becomes difficult to place a shared cache close to all the processors. In comparison, private
caches are typically much smaller, service requests for fewer cores, and have a lower number
of read/write ports. Hence, they can be placed close to their associated processors. A private
cache is thus much faster because it can be placed closer to a processor and is also much smaller
in size.

c© Smruti R. Sarangi 592

To solve the problems with shared caches, designers often use private caches, especially in
the higher levels of the memory hierarchy. A private cache can only be accessed by either one
processor, or a small set of processors. They are small, fast, and consume a lesser amount of
power. The major problem with private caches is that they need to provide the illusion of a
shared cache to the programmer. For example, let us consider a system with two processors,
and a private data cache associated with each processor. If one processor writes to a memory
address, x, the other processor needs to be aware of the write. However, if it only accesses its
private cache, then it will never be aware of a write to address x. This means that a write to
address x is lost, and thus the system is not coherent. Hence, there is a need to tie the private
caches of all the processors such that they look like one unified shared cache, and observe the
rules of coherence. Coherence in the context of caches, is popularly known as cache coherence.
Maintaining cache coherence represents an additional source of complexity for private caches,
and limits the scalability of this approach. It works well for small private caches. However,
for larger private caches, the overhead of maintaining coherence becomes prohibitive. For large
lower level caches, the shared cache is more appropriate. Secondly, there is typically some data
replication across multiple private caches. This wastes space.

Definition 128
Coherence in the context of a set of private caches is known as cache coherence.

By implementing a cache coherence protocol, it is possible to convert a set of disjoint private
caches to appear as a shared cache to software. Let us now outline the major tradeoffs between
shared and private caches in Table 12.3.

Attribute Private Cache Shared Cache

Area low high

Speed fast slow

Proximity to the processor near far

Scalability in size low high

Data replication yes no

Complexity high (needs cache coherence) low

Table 12.3: Comparison of shared and private caches

From the table it is clear that the first level cache should ideally be private because we
desire low latency and high throughput. However, the lower levels need to be larger in size,
and service a significantly lesser number of requests, and thus they should comprise of shared
caches. Let us now describe the design of coherent private caches, and large shared caches.
To keep matters simple we shall only consider a single level private cache, and not consider
hierarchical private caches. They introduce additional complexity, and are best covered in an
advanced textbook on computer architecture.

Let us discuss the design of shared caches first because they are simpler. Before proceeding
further, let us review where we stand.

593 c© Smruti R. Sarangi

Way Point 11

1. We defined a set of correctness requirements for caches in Section 12.4.1. They were
termed as coherence and consistency.

2. In a nutshell, both the concepts place constraints on reordering memory requests in the
memory system. The order and semantics of requests to the same memory location is
referred to as coherence, and the semantics of requests to different memory locations
by the same thread is referred to as consistency.

3. For ensuring that a memory system is consistent with a certain model of memory,
we need to ensure that the hardware follows a set of rules with regards to reordering
memory requests issued by the same program. This can be ensured by having additional
circuitry that stalls all the memory requests, till a set of memory requests issued in the
past complete. Secondly, programmer support is also required for making guarantees
about the correctness of a program.

4. There are two approaches for designing caches – shared or private. A shared cache
has a single physical location for each memory location. Consequently, maintaining
coherence is trivial. However, it is not a scalable solution because of high contention,
and high latency.

5. Consequently, designers often use private caches at least for the L1 level. In this case,
we need to explicitly ensure cache coherence.

12.4.5 Shared Caches

In the simplest embodiment of a shared cache, we can implement it as a regular cache in a
uniprocessor. However, this will prove to be a very bad approach in practice. The reason for
this is that in a uniprocessor, only one thread accesses the cache; however, in a multiprocessor
multiple threads might access the cache, and thus we need to provide more bandwidth. If all
the threads need to access the same data and tag array, then either requests have to stall or we
have to increase the number of ports in the arrays. This will have very negative consequences
in terms of area and power. Lastly, cache sizes (especially L2 and L3) are roughly doubling as
per Moore’s law. As of 2012, on-chip caches can be as large as 4-8 MB. If we have a single tag
array for the entire cache, then it will be very large and slow. Let us define the term last level
cache (LLC) as the on chip cache that has the lowest position in the memory hierarchy (with
main memory being the lowest). For example, if a multicore processor has an on-chip L3 cache
that is connected to main memory, then the LLC is the L3 cache. We shall use the term LLC
frequently from now onwards.

To create a multi-megabyte LLC that can simultaneously support multiple threads, we need
to split it into multiple subcaches. Let us assume that we have a 4 MB LLC. In a typical design,
this will be split into 8-16 smaller subcaches. Thus each subcache will be 256-512 KB in size,

c© Smruti R. Sarangi 594

which is an acceptable size. Each such subcache is a cache in its own right, and is known as a
cache bank. Hence, we have in effect split a large cache into a set of cache banks. A cache bank
can either be direct mapped, or can be set associative.

There are two steps in accessing a multibank cache. We first calculate the bank address,
and then perform a regular cache access at the bank. Let us explain with an example. Let us
consider a 16-bank, 4 MB cache. Each bank thus contains 256 KB of data. Now 4 MB = 222

bytes. We can thus dedicate bits 19-22 for choosing the bank address. Note that bank selection
is independent of associativity in this case. After choosing a bank, we can split the remaining
28 bits between the offset within the block, set index, and tag.

There are two advantages of dividing a cache into multiple banks. The first is that we
decrease the amount of contention at each bank. If we have 4 threads, and 16 banks, then the
probability that 2 threads access the same bank is low. Secondly, since each bank is a smaller
cache, it is more power efficient, and faster. We have thus achieved our twin aims of supporting
multiple threads, and designing a fast cache. We shall look at the problem of placing processors,
and cache banks in a multicore processor in Section 12.6.

12.4.6 Coherent Private Caches

Overview of a snoopy Protocol

The aim here is to make a set of private caches behave as if it is one large shared cache. From
the point of view of software we should not be able to figure out whether a cache is private
or shared. A conceptual diagram of the system is shown in Figure 12.9. It shows a set of
processors along with their associated caches. The set of caches form a cache group. The entire
cache group needs to appear as one cache.

Proc 1

Shared L1 cache

Proc 2 Proc n Proc 1 Proc 2 Proc n

L1 L1 L1

Shared L2 cacheShared L2 cache

One logical
cache

Figure 12.9: A system with many processors and their private caches

These caches are connected via an interconnection network, which can range from a simple
shared bus type topology to more complex topologies. We shall look at the design of different
interconnection networks in Section 12.6. In this section, let us assume that all the caches are
connected to a shared bus. A shared bus allows a single writer and multiple readers at any
point of time. If one cache writes a message to the bus, then all the other caches can read it.

595 c© Smruti R. Sarangi

The topology is shown in Figure 12.10. Note that the bus gives exclusive access to only one
cache at any point of time for writing a message. Consequently, all the caches perceive the
same order of messages. A protocol that implements cache coherence with caches connected on
a shared bus is known as a snoopy protocol.

Proc 1 Proc 2 Proc n

L1 L1 L1

Shared bus

Figure 12.10: Caches connected with a shared bus

Let us now consider the operation of the snoopy protocol from the point of view of the
two axioms of coherence – writes always complete (completion axiom), and writes to the same
block are seen in the same order by all processors (order axiom). If cache i, wishes to perform
a write operation on a block, then this write needs to be ultimately visible to all the other
caches. We need to do this to satisfy the completion axiom, because we are not allowed to lose
a write request. Secondly, different writes to the same block need to arrive at all the caches
that might contain the block in the same order (order axiom). This ensures that for any given
block, all the caches perceive the same order of updates. The shared bus automatically satisfies
this requirement (the order axiom).

We present the design of two snoopy protocols – write-update and write-invalidate.

Write-Update Protocol

Let us now design a protocol, were a private cache keeps a copy of a write request, and broadcasts
the write request to all the caches. This strategy ensures that a write is never lost, and the write
messages to the same block are perceived in the same order by all the caches. This strategy
requires us to broadcast, whenever we want to write. This is a large additional overhead;
however, this strategy will work. Now, we need to incorporate reads into our protocol. A read
to a location, x, can first check the private cache to see if a copy of it is already available. If a
valid copy is available, then the value can be forwarded to the requesting processor. However,
if there is a cache miss, then it is possible that it might be present with another sister cache in
the cache group, or it might need to be fetched from the lower level. We need to first check if
the value is present with a sister cache. We follow the same process here. The cache broadcasts
a read request to all the caches. If any of the caches, has the value, then it replies, and sends
the value to the requesting cache. The requesting cache inserts the value, and forwards it to
the processor. However, if it does not get any reply from any other cache, then it initiates a
read to the lower level.

This protocol is known as the write-update protocol. Each cache block needs to maintain
three states, M , S, and I. M refers to the modified state. It means that the cache has modified

c© Smruti R. Sarangi 596

the block. S(shared) means that the cache has not modified the block, and I(invalid) denotes
the fact that the block does not contain valid data.

I S

M

Read miss/ Broadcast miss

Write
 hit

/ B
roa

dca
st w

rite

Evict/ Write back

Read hit/

Evict/

Write hit/ Broadcast write
Read hit/

Write miss/ Broadcast miss

Figure 12.11: State transition diagram in the write-update protocol

Figure 12.11 shows a finite state machine (FSM) for each cache block. This FSM is executed
by the cache controller. The format for state transitions is event / action. If the cache controller
is sent an event, then it takes a corresponding action, which may include a state transition.
Note that in some cases, the action field is blank. This means that in those cases, no action is
taken. Note that the state of a cache block is a part of its entry in the tag array. If a block is
not present in the cache, then its state is assumed to be invalid (I). Lastly, it is important to
mention that Figure 12.11 shows the transitions for events generated by the processor. It does
not show the actions for events sent over the bus by other caches in the cache group. Now, let
us discuss the protocol in detail.

All blocks, initially are in the I state. If there is a read miss then it moves to the S state.
We additionally need to broadcast the read miss to all the caches in the cache group, and either
get the value from a sister cache, or from the lower level. Note that we give first preference to
a sister cache, because it might have modified the block without writing it back to the lower
level. Similarly, if there is a write miss in the I state, then we need to read the block from
another sister cache if it is available, and move to the M state. If no other sister cache has the
block, then we need to read the block from the lower level of the memory hierarchy.

If there is a read hit in the S state, then we can seamlessly pass the data to the processor.
However, if we need to write to the block in the S state, we need to broadcast the write to all
the other caches such that they get the updated value. Once, the cache gets a copy of its write
request from the bus, it can write the value to the block, and change its state to M . To evict a
block in the S state, we need to just evict it from the cache. It is not necessary to write back
its value because the block has not been modified.

Now, let us consider the M state. If we need to read a block in the M state, then we can
read it from the cache, and send the value to the processor. There is no need to send any
message. However, if we wish to write to it, then it is necessary to send a write request on the
bus. Once, the cache sees its own write request arrive on the shared bus, it can write its value
to the memory location in its private cache. To evict a block in the M state, we need to write

597 c© Smruti R. Sarangi

it back to the lower level in the memory hierarchy, because it has been modified.

Queue of requests
Broadcast to
all the caches

Figure 12.12: The bus arbiter

Every bus has a dedicated structure called an arbiter that receives requests to use the bus
from different caches. It allots the bus to the caches in FIFO order. A schematic of the bus
arbiter is shown in Figure 12.12. It is a very simple structure. It contains a queue of requests
to transmit on the bus. Each cycle it picks a request from the queue, and gives permission to
the corresponding cache to transmit a message on the bus.

Let us now consider a sister cache. Whenever it gets a miss message from the bus, it checks
its cache to find if it has the block. If there is a cache hit, then it sends the block on the bus,
or directly to the requesting cache. If it receives the notification of a write by another cache,
then it updates the contents of the block if it is present in its cache.

Directory Protocol

Note that in the snoopy protocol we always broadcast a write, a read miss, or a write miss. This
is strictly not required. We need to send a message to only those caches that contain a copy of
the block. The directory protocol uses a dedicated structure called a directory to maintain this
information. For each block address, the directory maintains a list of sharers. A sharer is the
id of a cache that might contain the block. The list of sharers is in general a superset of caches
that might contain the given block. We can maintain the list of sharers as a bit vector (1 bit
per sharer). If a bit is 1, then a cache contains a copy, otherwise it does not.

The write-update protocol with a directory gets modified as follows. Instead of broadcasting
data on the bus, a cache sends all of its messages to the directory. For a read or write miss,
the directory fetches the block from a sister cache if it has a copy. It then forwards the block
to the requesting cache. Similarly, for a write, the directory sends the write message to only
those caches that might have a copy of the block. The list of sharers needs to be updated when
a cache inserts or evicts a block. Lastly, to maintain coherence the directory needs to ensure
that all the caches get messages in the same order, and no message is ever lost. The directory
protocol minimises the number of messages that need to be sent, and is thus more scalable.

Definition 129

snoopy Protocol In a snoopy protocol, all the caches are connected to a shared bus. A
cache broadcasts each message to the rest of the caches.

c© Smruti R. Sarangi 598

Directory Protocol In a directory protocol, we reduce the number of messages by adding
a dedicated structure known as a directory. The directory maintains the list of caches
that might potentially contain a copy of the block. It sends messages for a given block
address to only the caches in the list.

Question 8
Why is it necessary to wait for the broadcast from the bus to perform a write?
Answer: Let us assume this is not the case, and processor 1, wishes to write 1 to x, and
processor 2 wishes to write 2 to x. They will then first write 1 and 2 to their copies of x
respectively, and then broadcast the write. Thus, the writes to x will be seen in different
orders by both the processors. This violates the order axiom. However, if they wait for a
copy of their write request to arrive from the bus, then they write to x in the same order.
The bus effectively resolves the conflict between processor 1 and 2, and orders one request
after the other.

Write-Invalidate Protocol

We need to note that broadcasting a write request for every single write is an unnecessary
overhead. It is possible that most of the blocks might not be shared in the first place. Hence,
there is no need to send an extra message on every write. Let us try to reduce the number of
messages in the write update protocol by proposing the write-invalidate protocol. Here again,
we can either use the snoopy protocol, or the directory protocol. Let us show an example with
the snoopy protocol.

Let us maintain three states for each block – M , S, and I. Let us however, change the
meaning of our states. The invalid state (I) retains the same meaning. It means that the entry
is effectively not present in the cache. The shared state (S) means that a cache can read the
block, but it cannot write to it. It is possible to have multiple copies of the same block in
different caches in the shared state. Since the shared state assumes that the block is read-only,
having multiple copies of the block does not affect cache coherence. The M (modified) state
signifies the fact that the cache can write to the block. If a block is in the M state, then all the
other caches in the cache group need to have the block in the I state. No other cache is allowed
to have a valid copy of the block in the S or M states. This is where the write-invalidate
protocol differs from the write-update protocol. It allows either only one writer at a time, or
multiple readers at a time. It never allows a reader and a writer to co-exist at the same time.
By restricting the number of caches that have write access to a block at any point of time, we
can reduce the number of messages.

The basic insight is as follows. The write-update protocol did not have to send any messages
on a read hit. It sent extra messages on a write hit, which we want to eliminate. It needed to
send extra messages because multiple caches could read or write a block concurrently. For the
write-invalidate protocol, we have eliminated this behaviour. If a block is in the M state, then

599 c© Smruti R. Sarangi

no other cache contains a valid copy of the block.

I S

M

Read miss/ Broadcast read miss

Write
 hit

/ B
roa

dca
st w

rite

Evict/ Write back

Read hit/

Evict/

Write hit/
Read hit/

Write miss/ Broadcast write miss

Figure 12.13: State transition diagram of a block due to actions of the processor

I S

M

Write/

Rea
d m

iss
/ S

end
 da

ta
and

 w

rite
 ba

ck

Write miss/ Send data

Read miss/ Send data
 Write miss/ Send data

Figure 12.14: State transition diagram of a block due to messages on the bus

Figure 12.13 shows the state transition diagram because of actions of the processor. The
state transition diagram is mostly the same as the state transition diagram of the write-update
protocol. Let us look at the differences. The first is that we define three types of messages that
are put on the bus namely write, writemiss, and readmiss. When we transition from the I
to the S state, we place a read miss on the bus. If a sister cache does not reply with the data,
the cache controller reads the block from the lower level. The semantics of the S state remains
the same. To write to a block in the S state, we need to transition to the M state, after writing
a write message on the bus. Now, when a block is in the M state, we are assured of the fact

c© Smruti R. Sarangi 600

that no other cache contains a valid copy. Hence, we can freely read and write a block in the
M state. It is not necessary to send any messages on the bus. If the processor decides to evict
a block in the M state, then it needs to write its data to the lower level.

Figure 12.14 shows the state transitions due to messages received on the bus. In the S state,
if we get a readmiss, then it means that another cache wants read access to the block. Any
of the caches that contains the block sends it the contents of the block. This process can be
orchestrated as follows. All the caches that have a copy of the block try to get access to the
bus. The first cache that gets access to the bus sends a copy of the block to the requesting
cache. The rest of the caches immediately get to know that the contents of the block have been
transferred. They subsequently stop trying. If we get a write or write miss message in the S
state, then the block transitions to the I state.

Let us now consider the M state. If some other cache sends a writemiss message then
the cache controller of the cache that contains the block, sends the contents of the block to
it, and transitions to the I state. However, if it gets a readmiss, then it needs to perform a
sequence of steps. We assume that we can seamlessly evict a block in the S state. Hence, it is
necessary to write the data to the lower level before moving to the S state. Subsequently, the
cache that originally has the block also sends the contents of the block to the requesting cache,
and transitions the state of the block to the S state.

Write-Invalidate Protocol with a Directory

Implementing the write-invalidate protocol with a directory is fairly trivial. The state transition
diagrams remain almost the same. Instead of broadcasting a message, we send it to the directory.
The directory sends the message to the sharers of the block.

The life cycle of a block is as follows. Whenever, a block is brought in from the lower level,
a directory entry is initialised. At this point it has only one sharer, which is the cache that
brought it from the lower level. Now, if there are read misses to the block, then the directory
keeps adding sharers. However, if there is a write miss, or a processor decides to write to the
block, then it sends a write or writemiss message to the directory. The directory cleans the
sharers list, and keeps only one sharer, which is the processor that is performing the write
access. When a block is evicted, its cache informs the directory, and the directory deletes a
sharer. When the set of sharers becomes empty, the directory entry can be removed.

It is possible to make improvements to the write-invalidate and update protocols by adding
an additional state known as the exclusive (E) state. The E state can be the initial state for
every cache block fetched from the lower level of the memory hierarchy. This state stores the
fact that a block exclusively belongs to a cache. However, the cache has read-only access to
it, and does not have write access to it. For an E to M transition, we do not have to send a
writemiss or write message on the bus, because the block is owned exclusively by one cache.
We can seamlessly evict data from the E state if required. Implementing the MESI protocol is
left as an exercise for the reader.

12.4.7 Implementing a Memory Consistency Model*

A typical memory consistency model specifies the types of re-orderings that are allowed between
memory operations issued by the same thread. For example, in sequential consistency all
read/write accesses are completed in program order, and all other threads also perceive the

601 c© Smruti R. Sarangi

memory accesses of any thread in its program order. Let us give a simple solution to the
problem of implementing sequential consistency first.

Overview of an Implementation of Sequential Consistency*

Let us build a memory system that is coherent, and provides certain guarantees. Let us assume
that all the write operations are associated with a time of completion, and appear to execute
instantaneously at the time of completion. It is not possible for any read operation to get the
value of a write before it completes. After a write completes, all the read operations to the
same address either get the value written by the write operation or a newer write operation.
Since we assume a coherent memory, all the write operations to the same memory address are
seen in the same order by all the processors. Secondly, each read operation returns the value
written by the latest completed write to that address. Let us now consider the case in which
processor 1 issues a write to address x, and at the same time processor 2 issues a read request
to the same address, x. In this case, we have a concurrent read and write. The behaviour is not
defined. The read can either get the value set by the concurrent write operation, or it can get
the previous value. However, if the read operation gets the value set by the concurrent write
operation, then all subsequent reads issued by any processor, need to get that value or a newer
value. We can say that a read operation completes, once it has finished reading the value of the
memory location, and the write that generated its data also completes.

Now, let us design a multiprocessor where each processor issues a memory request after
all the previous memory requests that it had issued have completed. This means that after
issuing a memory request (read/write), a processor waits for it to complete before issuing the
next memory request. We claim that a multiprocessor with such processors is sequentially
consistent. Let us now outline a brief informal proof.

Let us first introduce a theoretical tool called an access graph.

Access Graph*

Figure 12.15 shows the execution of two threads and their associated sequence of memory
accesses. For each read or write access, we create a circle or node in the access graph (see
Figure 12.15(c)). In this case, we add an arrow (or edge) between two nodes if one access
follows the other in program order, or if there is a read-write dependence across two accesses
from different threads. For example, if we set x to 5 in thread 1, and the read operation in
thread 2, reads this value of x, there is a dependence between this read and write of x, and thus
we add an arrow in the access graph. The arrow signifies that the destination request must
complete after the source request.

Let us now define a happens-before relationship between nodes a and b, if there is a path
from a to b in the access graph.

Definition 130
Let us define a happens-before relationship between nodes a and b, if there is a path from
a to b in the access graph. A happens-before relationship signifies that b must complete its
execution after a completes.

c© Smruti R. Sarangi 602

1B: y = 7
2B: t3 = x
3B: t4 = z
4B: t5 = 3

1A: x = 5
2A: t1 = y
3A: z = 4
4A: t2 = z

1A

2A

3A

4A

1B

2B

3B

4B

1A 1B 2A 2B 3A 3B 4A 4B

Sequential order

Thread 1 Thread 2
Access
graph

(a) (b)
(c)

(d)

Figure 12.15: Graphical representation of memory accesses

The access graph is a general tool and is used to reason about concurrent systems. It
consists of a set of nodes, where each node is a dynamic instance of an instruction (most often
a memory instruction). There are edges between nodes. An edge of the from A → B means
that B needs to complete its execution after A. In our simple example in Figure 12.15 we have
added two kinds of edges namely program order edges, and causality edges. Program order
edges indicate the order of completion of memory requests in the same thread. In our system,
where we wait for an instruction to complete, before executing the next instruction, there are
edges between consecutive instructions of the same thread.

Causality edges are between load and store instructions across threads. For example, if a
given instruction writes a value, and another instruction reads it in another thread, we add an
edge from the store to the load.

To prove sequential consistency, we need to add additional edges to the access graph as
follows (see [Arvind and Maessen, 2006]). Let us first assume that we have an oracle(a hypo-
thetical entity that knows everything) with us. Now, since we assume coherent memory, all the
stores to the same memory location are sequentially ordered. Furthermore, there is an order
between loads and stores to the same memory location. For example, if we set x to 1, then
set x to 3, then read t1 = x, and then set x to 5, there is a store-store-load-store order for the
location, x. The oracle knows about such orderings between loads and stores for each memory
location. Let us assume that the oracle adds the corresponding happens-before edges to our
access graph. In this case the edge between the store and the load is a causality edge, and the
store-store, and load-store edges are examples of coherence edges.

Next, let us describe how to use an access graph for proving properties of systems. First, we
need to construct an access graph of a program for a given memory consistency model,M, based
on a given run of the program. We add coherence, and causality edges based on the memory
access behaviour. Second, we add program order edges between instructions in the same thread
based on the consistency model. For SC, we add edges between consecutive instructions, and

603 c© Smruti R. Sarangi

for WC, we add edges between dependent instructions, and between regular instructions, and
fences. It is very important to understand that the access graph is a theoretical tool, and it
is most often not a practical tool. We shall reason about the properties of an access graph
without actually building one for a given program, or system.

Now, if the access graph does not contain cycles, then we can arrange the nodes
in a sequential order. Let us prove this fact. In the access graph, if there is a path from a
to b, then let a be known as b’s ancestor. We can generate a sequential order by following an
iterative process. We first find a node, which does not have an ancestor. There has to be such a
node because some operation must have been the first to complete (otherwise there is a cycle).
We remove it from our access graph, and proceed to find another node that does not have any
ancestors. We add each such node in our sequential order as shown in Figure 12.15(d). In each
step the number of nodes in the access graph decreases by 1, till we are finally left with just
one node, which becomes the last node in our sequential order. Now, let us consider the case
when we do not find any node in the access graph that does not have an ancestor. This is only
possible if there is a cycle in the access graph, and thus it is not possible.

Arranging the nodes in a sequential order is equivalent to proving that the access
graph obeys the memory model that it is designed for. The fact that we can list the
nodes in a sequential order without violating any happens-before relationships, means that
the execution is equivalent to a uniprocessor executing each node in the sequential order one
after the other. This is precisely the definition of a consistency model. Any consistency model
consists of the ordering constraints between memory instructions, along with assumptions of
coherence. The definition further implies that it should be possible for a uniprocessor to execute
instructions in a sequential order without violating any of the happens-before relationships. This
is precisely what we have achieved by converting the access graph to an equivalent sequential
list of nodes. Now, the fact that program order, causality, and coherence edges are enough to
specify a consistency model is more profound. For a detailed discussion, the reader is referred
to the paper by Arvind and Maessen [Arvind and Maessen, 2006].

Hence, if an access graph (for memory model, M) does not contain cycles, we
can conclude that a given execution followsM. If we can prove that all the possible
access graphs that can be generated by a system are acyclic, then we can conclude
that the entire system follows M.

Proof of Sequential Consistency*

Let us thus prove that all possible access graphs (assuming SC) that can be generated by our
simple system that waits for memory requests to complete before issuing subsequent memory
requests are acyclic. Let us consider any access graph, G. We have to prove that it is possible
to write all the memory accesses in G in a sequential order such that if node b is placed after
node a, then there is no path from b to a in G. In other words, our sequential order respects
the order of accesses as shown in the access graph.

Let us assume that the access graph has a cycle, and it contains a set of nodes, S, belonging
to the same thread, t1. Let a be the earliest node in program order in S, and b be the latest node
in program order in S. Clearly, a happens before b because we execute memory instructions in
program order, and we wait for a request to complete before starting the next request in the
same thread. For a cycle to form due to a causality edge, b needs to write to a value that is

c© Smruti R. Sarangi 604

read by another memory read request (node), c, belonging to another thread. Alternatively,
there can be a coherence edge between b and a node c belonging to another thread. Now, for
a cycle to exist, c needs to happen before a. Let us assume that there are a chain of nodes
between c and a and the last node in the chain of nodes is d. By definition, d /∈ t1. This means
that either d writes to a memory location, and node a reads from it, or there is a coherence
edge from d to a. Because there is a path from node b to node a (through c and d), it must be
the case that the request associated with node b happens before the request of node a. This
is not possible since we cannot execute the memory request associated with node b till node
a’s request completes. Thus, we have a contradiction, and a cycle is not possible in the access
graph. Hence, the execution is in SC.

Now, let us clarify the notion of an oracle. The reader needs to understand that the problem
here is not to generate a sequential order, it is to rather prove that a sequential order exists.
Since we are solving the latter problem, we can always presume that a hypothetical entity adds
additional edges to our access graph. The resulting sequential order respects program orders
for each thread, causality and coherence-based happens-before relationships. It is thus a valid
ordering.

Consequently, we can conclude that it is always possible to find a sequential order for
threads in our system. Therefore, our multiprocessor is in SC. Now that we have proved that
our system is sequentially consistent, let us describe a method to implement a multiprocessor
with the assumptions that we have made. We can implement a system as shown in Figure 12.16.

Design of a Simple (yet impractical) Sequentially Consistent Machine*

Proc 1

Shared L1 cache

Proc 2 Proc n

Figure 12.16: A simple sequentially consistent system

Figure 12.16 shows a design that has a large shared L1 cache across all the processors of
a multiprocessor. There is only one copy of each memory location that can support only one
read or write access at any single time. This ensures coherence. Secondly, a write completes,
when it changes the value of its memory location in the L1 cache. Likewise, a read completes
when it reads the value of the memory address in the L1 cache. We need to modify the simple
in-order RISC pipeline described in Chapter 10 such that an instructions leaves the memory
access (MA) stage only after it completes its read/write access. If there is a cache miss, then
the instruction waits till the block comes to the L1 cache, and the access completes. This simple
system ensures that memory requests from the same thread complete in program order, and is
thus sequentially consistent.

Note that the system described in Figure 12.16 makes some unrealistic assumptions and is
thus impractical. If we have 16 processors, and if the frequency of memory instructions is 1 in 3,

605 c© Smruti R. Sarangi

then every cycle, 5-6 instructions will need to access the L1 cache. Hence, the L1 cache requires
at least 6 read/write ports, which will make the structure too large and too slow. Additionally,
the L1 cache needs to be large enough to contain the working sets of all the threads, which
further makes the case for a very large and slow L1 cache. Consequently, a multiprocessor
system with such a cache will be very slow in practice. Hence, modern processors opt for more
high performance implementations with more complicated memory systems that have a lot of
smaller caches. These caches co-operate among each other to provide the illusion of a larger
cache (see Section 12.4.6).

It is fairly difficult to prove that a complex system follows sequential consistency(SC). Hence,
designers opt to design systems with weak memory models. In this case, we need to prove that
a fence instruction works correctly. If we take all the subtle corner cases that are possible with
complicated designs, this also turns out to be a fairly challenging problem. Interested readers
can take a look at pointers mentioned at the end of this chapter for research work in this area.

Implementing a Weak Consistency Model*

Let us consider the access graph for a weakly consistent system. We do not have edges to signify
program order for nodes in the same thread. Instead, for nodes in the same thread, we have
edges between regular read/write nodes and fence operations. We need to add causality and
coherence edges to the access graph as we did for the case of SC.

An implementation of a weakly consistent machine needs to ensure that this access graph
does not have cycles. We can prove that the following implementation does not introduce cycles
to the access graph.

Let us ensure that a fence instruction starts after all the previous instructions in program
order complete for a given thread. The fence instruction is a dummy instruction that simply
needs to reach the end of the pipeline. It is used for timing purposes only. We stall the
fence instruction in the MA stage till all the previous instructions complete. This strategy also
ensures that no subsequent instruction reaches the MA stage. Once, all the previous instructions
complete, the fence instruction proceeds to the RW stage, and subsequent instructions can issue
requests to memory.

Summary of the Discussion on Implementing a Memory Consistency Model

Let us summarise the previous section on implementing memory consistency models for readers
who decided to skip it. Implementing a memory consistency model such as sequential or weak
consistency is possible by modifying the pipeline of a processor, and ensuring that the memory
system sends an acknowledgement to the processor once it is done processing a memory request.
Many subtle corner cases, are possible in high performance implementations and ensuring that
they implement a given consistency model is fairly complicated.

12.4.8 Multithreaded Processors

Let us now look at a different method for designing multiprocessors. Up till now we have
maintained that we need to have physically separate pipelines for creating multiprocessors. We
have looked at designs that assign a separate program counter to each pipeline. However, let
us look at a different approach that runs a set of threads on the same pipeline. This approach

c© Smruti R. Sarangi 606

is known as multithreading. Instead of running separate threads on separate pipelines, we run
them on the same pipeline. Let us illustrate this concept by discussing the simplest variant of
multi-threading known as coarse-grained multithreading.

Definition 131
Multithreading is a design paradigm that proposes to run multiple threads on the same
pipeline. A processor that implements multithreading is known as a multithreaded processor.

Coarse-Grained Multithreading

Let us assume that we wish to run four threads on a single pipeline. Recall that multiple
threads belonging to the same process have their separate program counters, stacks, registers;
yet, they have a common view of memory. All these four threads have their separate instruction
streams, and it is necessary to provide an illusion that these four threads are running separately.
Software should be oblivious of the fact that threads are running on a multithreaded processor.
It should perceive that each thread has its dedicated CPU. Along with the traditional guarantees
of coherence and consistency, we now need to provide an additional guarantee, which is that
software should be oblivious to multithreading.

Let us consider a simple scheme, as shown in Figure 12.17.

1

3

24

Figure 12.17: Conceptual view of coarse grain multithreading

Here, we run thread 1 for n cycles, then we switch to thread 2 and run it for n cycles, then
we switch to thread 3, and so on. After executing thread 4 for n cycles, we start executing
thread 1 again. To execute a thread we need to load its state or context. Recall that we had a
similar discussion with respect to loading and unloading the state of a program in Section 10.8.
We had observed that the context of the program comprises of the flags register, the program
counter, and the set of registers. We had observed that it is not necessary to keep track of main

607 c© Smruti R. Sarangi

memory because the memory regions of different processes do not overlap, and in the case of
multiple threads, we explicitly want all the threads to share the same memory space.

Instead of explicitly loading and unloading the context of a thread, we can adopt a simpler
approach. We can save the context of a thread in the pipeline. For example, if we wish to
support coarse-grained multithreading then we can have four separate flags registers, four
program counters, and four separate register files (one per each thread). Additionally, we can
have a dedicated register that contains the id of the currently running thread. For example, if
we are running thread 2, then we use the context of thread 2, and if we are running thread 3, we
use the context of thread 3. In this manner it is not possible for multiple threads to overwrite
each other’s state.

Let us now look at some subtle issues. It is possible that we can have instructions belonging
to multiple threads at the same point of time in the pipeline. This can happen when we are
switching from one thread to the next. Let us add a thread id field to the instruction packet, and
further ensure that the forwarding and interlock logic takes the id of the thread into account.
We never forward values across threads. In this manner it is possible to execute four separate
threads on a pipeline with a negligible overhead of switching between threads. We do not
need to engage the exception handler to save and restore the context of threads, or invoke the
operating system to schedule the execution of threads.

Let us now look at coarse-grained multithreading in entirety. We execute n threads in
quick succession, and in round robin order. Furthermore, we have a mechanism to quickly
switch between threads, and threads do not corrupt each other’s state. However, we still do
not execute four threads simultaneously. Then, what is the advantage of this scheme?

Let us consider the case of memory intensive threads that have a lot of irregular accesses
to memory. They will thus frequently have misses in the L2 cache, and their pipelines need
to be stalled for 100-300 cycles till the values come back from memory. Out-of-order pipelines
can hide some of this latency by executing some other instructions that are not dependent on
the memory value. Nonetheless, it will also stall for a long time. However, at this point, if we
can switch to another thread, then it might have some useful work to do. If that thread suffers
from misses in the L2 cache also, then we can switch to another thread and finish some of its
work. In this way, we can maximise the throughput of the entire system as a whole. We can
envision two possible schemes. We can either switch periodically every n cycles, or switch to
another thread upon an event such as an L2 cache miss. Secondly, we need not switch to a
thread if it is waiting on a high latency event such as an L2 cache miss. We need to switch to a
thread that has a pool of ready-to-execute instructions. It is possible to design a large number
of heuristics for optimising the performance of a coarse-grained multithreaded machine.

Important Point 20
Let us differentiate between software threads and hardware threads. A software thread

is a subprogram that shares a part of its address space with other software threads. The
threads can communicate with each other to co-operatively to achieve a common objective.
In comparison, a hardware thread is defined as the instance of a software thread or a single
threaded program running on a pipeline along with its execution state. A multithreaded
processor supports multiple hardware threads on the same processor by splitting its resources

c© Smruti R. Sarangi 608

across the threads. A software thread might physically be mapped to a separate processor, or
to a hardware thread. It is agnostic to the entity that is used to execute it. The important
point to be noted here is that a software thread is a programming language concept, whereas
a hardware thread is physically associated with resources in a pipeline. We shall use the
word “thread” for both software and hardware threads. The correct usage needs to be inferred
from the context.

Fine-Grained Multithreading

Fine-grained multithreading is a special case of coarse-grained multithreading where the switch-
ing interval, n, is a very small value. It is typically 1 or 2 cycles. This means that we quickly
switch between threads. We can leverage grained multithreading to execute threads that are
memory intensive. However, fine-grained multithreading is also useful for executing a set of
threads that for example have long arithmetic operations such as division. In a typical proces-
sor, division operations and other specialised operations such as trigonometric or transcendental
operations are slow (3-10 cycles). During this period when the original thread is waiting for
the operation to finish, we can switch to another thread and execute some of its instructions
in the pipeline stages that are otherwise unused. We can thus leverage the ability to switch
between threads very quickly for reducing the idle time in scientific programs that have a lot
of mathematical operations.

We can thus visualise fine-grained multithreading to be a more flexible form of coarse-
grained multithreading where we can quickly switch between threads and utilise idle stages to
perform useful work. Note that this concept is not as simple as it sounds. The devil is in the
details. We need elaborate support for multithreading in all the structures in a regular in-order
or out-of-order pipeline. We need to manage the context of each thread very carefully, and
ensure that we do not omit instructions, and errors are not introduced. A thorough discussion
on the implementation of multithreading is beyond the scope of this book.

The reader needs to appreciate that the logic for switching between threads is non-trivial.
Most of the time the logic to switch between threads is a combination of time based criteria
(number of cycles), and event based criteria (high latency event such as L2 cache miss or page
fault). The heuristics have to be finely adjusted to ensure that the multithreaded processor
performs well for a host of benchmarks.

Simultaneous Multithreading

For a single issue pipeline, if we can ensure that every stage is kept busy by using sophisticated
logic for switching between threads, then we can achieve high efficiency. Recall that any stage in
a single issue pipeline can process only one instruction per cycle. In comparison, a multiple issue
pipeline can process multiple instructions per cycle. We had looked at multiple issue pipelines
(both in-order and out-of-order) in Section 10.11. Moreover, we had defined the number of
issue slots to be equal to the number of instructions that can be processed by the pipeline every
cycle. For example, a 3 issue processor, can at the most fetch, decode, and finally execute 3
instructions per cycle.

609 c© Smruti R. Sarangi

For implementing multithreading in multiple issue pipelines, we need to consider the nature
of dependences between instructions in a thread also. It is possible that fine and coarse-grained
schemes do not perform well because a thread cannot issue instructions to the functional units
for all the issue slots. Such threads are said to have low instruction level parallelism. If we use
a 4 issue pipeline, and the maximum IPC for each of our threads is 1 because of dependences
in the program, then 3 of our issue slots will remain idle in each cycle. Thus the overall IPC of
our system of 4 threads will be 1, and the benefits of multithreading will be limited.

Hence, it is necessary to utilise additional issue slots such that we can increase the IPC of
the system as a whole. A naive approach is to dedicate one issue slot to each thread. Secondly,
to avoid structural hazards, we can have four ALUs and allot one ALU to each thread. However,
this is a suboptimal utilisation of the pipeline because a thread might not have an instruction to
issue every cycle. It is best to have a more flexible scheme, where we dynamically partition the
issue slots among the threads. This scheme is known as simultaneous multithreading (popularly
known as SMT). For example, in a given cycle we might find 2 instructions from thread 2, and
1 instruction each from threads 3, and 4. This situation might reverse in the next cycle. Let us
graphically illustrate this concept in Figure 12.18, and simultaneously also compare the SMT
approach with fine and coarse-grained multithreading.

The columns in Figure 12.18 represent the issue slots for a multiple issue machine, and the
rows represent the cycles. Instructions belonging to different threads have different colours.
Figure 12.18(a) shows the execution of instructions in a coarse-grained machine, where each
thread executes for two consecutive cycles. We observe that a lot of issue slots are empty because
we do not find sufficient number of instructions that can execute. Fine-grained multithreading
(shown in Figure 12.18(b)) also has the same problem. However, in an SMT processor, we
are typically able to keep most of the issue slots busy, because we always find instructions
from the set of available threads that are ready to execute. If one thread is stalled for some
reason, other threads compensate by executing more instructions. In practice, all the threads
do not have low ILP1 phases simultaneously. Hence, the SMT approach has proven to be a very
versatile and effective method for leveraging the power of multiple issue processors. Since the
Pentium 4 (released in the late nineties), most of the Intel processors support different variants
of simultaneous multithreading. In Intel’s terminology SMT is known as hyperthreading . The
latest (as of 2012) IBM Power 7 processor has 8 cores, where each core is a 4-way SMT (can
run 4 threads per each core).

Note that the problem of selecting the right set of instructions to issue is very crucial to
the performance of an SMT processor. Secondly, the memory bandwidth requirement of an
n-way SMT processor is higher than that of an equivalent uniprocessor. The fetch logic is also
far more complicated, because now we need to fetch from four separate program counters in
the same cycle. Lastly, the issues of maintaining coherence, and consistency further complicate
the picture. The reader can refer to the research papers mentioned in the “Further Reading”
section at the end of this chapter.

1ILP (instruction level parallelism, defined as the number of instructions that are ready to execute in parallel
each cycle)

c© Smruti R. Sarangi 610

Ti
m

e

(a) (b) (c)

Coarse-grained
multithreading

Fine-grained
multithreading

Simultaneous
multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Figure 12.18: Instruction execution in multithreaded processors

12.5 SIMD Multiprocessors

Let us now discuss SIMD multiprocessors. SIMD processors are typically used for scientific
applications, high intensity gaming, and graphics. They do not have a significant amount of
general purpose utility. However, for a limited class of applications, SIMD processors tend to
outperform their MIMD counterparts.

SIMD processors have a rich history. In the good old days we had processors arranged
as arrays. Data typically entered through the first row, and first column of processors. Each
processor acted on input messages, generated an output message, and sent the message to its
neighbours. Such processors were known as systolic arrays. Systolic arrays were used for matrix
multiplication, and other linear algebra operations. Subsequently, several vendors notably, Cray,
incorporated SIMD instructions in their processors to design faster and more power efficient
supercomputers. Nowadays, most of these early efforts have subsided. However, some aspects
of classical SIMD computers where a single instruction operates on several streams of data,
have crept into the design of modern processors.

We shall discuss an important development in the area of modern processor design, which is
the incorporation of SIMD functional units, and instructions, in high-performance processors.

12.5.1 SIMD – Vector Processors

Background

Let us consider the problem of adding two n element arrays. In a single threaded implemen-
tation, we need to load the operands from memory, add the operands, and store the result in
memory. Consequently, for computing each element of the destination array, we require two
load instructions, one add instruction, and one store instruction. Traditional processors try to
attain speedups by exploiting the fact that we can compute (c[i] = a[i] + b[i]), in parallel with
(c[j] = a[j] + b[j]) because these two operations do not have any dependences between them.

611 c© Smruti R. Sarangi

Hence, it is possible to increase IPC by executing many such operations in parallel.

Let us now consider superscalar processors. If they can issue 4 instructions per cycle,
then their IPC can at the most be 4 times that of a single cycle processor. In practice, the
peak speedup over a single cycle processor that we can achieve with such inherently parallel
array processing operations is around 3 to 3.5 times for a 4 issue processor. Secondly, this
method of increasing IPC by having wide issue widths is not scalable. We do not have 8 or
10 issue processors in practice because the logic of the pipeline gets very complicated, and the
area/power overheads become prohibitive.

Hence, designers decided to have special support for vector operations that operate on large
vectors (arrays) of data. Such processors were known as vector processors. The main idea here
is to process an entire array of data at once. Normal processors use regular scalar data types
such as integers and floating point numbers; whereas, vector processors use vector data types,
which are essentially arrays of scalar data types.

Definition 132
A vector processor considers a vector of primitive data types (integer or floating point num-
bers) as its basic unit of information. It can load, store, and perform arithmetic operations
on entire vectors at once. Such instructions that operate on vectors of data, are known as
vector instructions.

One of the most iconic products that predominantly used vector processors was the Cray
1 Supercomputer. Such supercomputers were primarily used for scientific applications that
mainly consisted of linear algebra operations. Such operations work on vectors of data and
matrices, and are thus well suited to be run on vector processors. Sadly, beyond the realm of
high intensity scientific computing, vector processors did not find a general purpose market till
the late nineties.

In the late nineties, personal computers started to be used for research, and for running
scientific applications. Secondly, instead of designing custom processors for supercomputers,
designers started to use regular commodity processors for building supercomputers. Since then,
the trend continued till the evolution of graphics processors. Most supercomputers between
1995 and 2010, consisted of thousands of commodity processors. Another important reason to
have vector instructions in a regular processor was to support high intensity gaming. Gaming
requires a massive amount of graphics processing. For example, modern games render complex
scenes with multiple characters, and thousands of visual effects. Most of these visual effects
such as illumination, shadows, animation, depth, and colour processing, are at its core basic
linear algebra operations on matrices containing points or pixels. Due to these factors regular
processors started to incorporate a limited amount of vector support. Specifically, the Intel
processors provided the MMX, SSE 1-4 vector instruction sets, AMD processors provided the
3DNow! vector extensions, and ARM processors provide the ARM R© NeonTMvector ISA. There
are a lot of commonalities between these ISAs, and hence let us not focus on any specific
ISA. Let us instead the discuss the broad principles behind the design and operation of vector
processors.

c© Smruti R. Sarangi 612

12.5.2 Software Interface

Let us first consider the model of the machine. We need a set of vector registers. For example,
the x86 SSE (Streaming SIMD Extensions) instruction set defines sixteen 128-bit registers
(XMM0 . . . XMM15). Each such register can contain four integers, or four floating point values.
Alternatively, it can also contain eight 2-byte short integers, or sixteen 1-byte characters. On
the same lines, every vector ISA defines additional vector registers that are wider than normal
registers. Typically, each register can contain multiple floating point values. Hence, in our
SimpleRisc ISA, let us define eight 128-bit vector registers: vr0 . . . vr7.

Now, we need instructions to load, store, and operate on vector registers. For loading,
vector registers, there are two options. We can either load values from contiguous memory
locations, or from non-contiguous memory locations. The former case is more specific, and is
typically suitable for array based applications, where all the array elements are anyway stored
in contiguous memory locations. Most vector extensions to ISAs support this variant of the
load instruction because of its simplicity, and regularity. Let us try to design such a vector load
instruction v.ld for our SimpleRisc ISA. Let us consider the semantics shown in Table 12.4.
Here, the v.ld instruction reads in the contents of the memory locations ([r1+12], [r1+16],
[r1+20], [r1+ 24]) into the vector register vr1. In the table below note that 〈vreg〉 is a vector
register.

Example Semantics Explanation

v.ld vr1, 12[r1] v.ld 〈vreg〉, 〈mem〉 vr1 ← ([r1+12], [r1+16], [r1+20], [r1+ 24])

Table 12.4: Semantics of the contiguous variant of the vector load instruction

Now, let us consider the case of matrices. Let us consider a 10,000 element matrix,
A[100][100], and assume that data is stored in row major order (see Section 3.2.2). Assume
that we want to operate on two columns of the matrix. In this case, we have a problem because
the elements in a column are not saved in contiguous locations. Hence, a vector load instruc-
tion that relies on the assumption that the input operands are saved in contiguous memory
locations, will cease to work. We need to have dedicated support to fetch all the data for the
locations in a column and save them in a vector register. Such kind of an operation, is known
as a scatter-gather operation. This is because, the input operands are essentially scattered in
main memory. We need to gather, and put them in one place, which is the vector register. Let
us consider a scatter-gather variant of the vector load instruction, and call it v.sg.ld. Instead
of making assumptions about the locations of the array elements, the processor reads another
vector register that contains the addresses of the elements (semantics shown in Table 12.5). In
this case, a dedicated vector load unit reads the memory addresses stored in vr2, fetches the
corresponding values from memory, and writes them in sequence to the vector register, vr1.

Example Semantics Explanation

v.sg.ld vr1, vr2 v.sg.ld 〈vreg〉, 〈vreg〉 vr1 ← ([vr2[0]], [vr2[1]], [vr2[2]], [vr2[3]])

Table 12.5: Semantics of the non-contiguous variant of the vector load instruction

613 c© Smruti R. Sarangi

Once, we have data loaded in vector registers, we can operate on two such registers directly.
For example, if we consider 128-bit vector registers, vr1, and vr2. Then, the assembly statement
v.add vr3, vr1, vr2, adds each pair of corresponding 4-byte floating point numbers stored in the
input vector registers (vr1 and vr2), and stores the results in the relevant positions in the
output vector register (vr3). Note that we use the vector add instruction (v.add) here. We
show an example of a vector add instruction in Figure 12.19.

vr1

vr2

vr3

Figure 12.19: Example of a vector addition

Vector ISAs define similar operations for vector multiplication, division, and logical opera-
tions. Note that it is not necessary for a vector instruction to always have two input operands,
which are vectors. We can multiply, a vector with a scalar, or we can have an instruction
that operates on just one vector operand. For example, the SSE instruction set has dedicated
instructions for computing trigonometric functions such as sin, and cos, for a set of floating
point numbers packed in a vector register. If a vector instruction can simultaneously perform
operations on n operands, then we say that we have n data lanes, and the vector instruction
simultaneously performs an operation on all the n data lanes.

Definition 133
If a vector instruction can simultaneously perform operations on n operands, then we say
that we have n data lanes, and the vector instruction simultaneously performs an operation
on all the n data lanes.

The last step is to store the vector register in memory. Here again, there are two options. We
can either store to contiguous memory locations, which is simpler, or save to non-contiguous
locations. We can design two variants of the vector store instruction (contiguous and non-
contiguous) on the lines of the two variants of vector load instructions (v.ld and v.sg.ld).
Sometimes it is necessary to introduce instructions that transfer data between scalar and vector
registers. We shall not describe such instructions for the sake of brevity. We leave designing
such instructions as an exercise for the reader.

12.5.3 A Practical Example using SSE Instructions

Let us now consider a practical example using the x86 based SSE instruction set. We shall not
use actual assembly instructions. We shall instead use functions provided by the gcc compiler
that act as wrappers for the assembly instructions. These functions are called gcc intrinsics.

c© Smruti R. Sarangi 614

Let us now solve the problem of adding two arrays of floating point numbers. In this case,
we wish to compute c[i] = a[i] + b[i], for all values of i.

The SSE instruction set contains 128-bit registers. Each register can be used to store four
32-bit floating point numbers. Hence, if we have an array of N numbers, we need to have dN/4e
iterations, because we can add at the most 4 pairs of numbers in each cycle. In each iteration,
we need to load vector registers, add them, and store the result in memory. This process of
breaking up a vector computation into a sequence of loop iterations based on the sizes of vector
registers is known as strip mining.

Definition 134
The process of breaking up a vector computation into a sequence of loop iterations based on
the sizes of vector registers is known as strip mining. For example, if a vector register can
hold 16 integers, and we wish to operate on 1024 integer vectors, then we need a loop with
64 iterations.

Example 155
Write a function in C/C++ to add the elements in the arrays a and b pairwise, and save
the results in the array, c, using the SSE extensions to the x86 ISA. Assume that the number
of entries in a and b are the same, and are a multiple of 4.
Answer:

vector addition
1 void sseAdd (const float a[], const float b[], float c[], int N)

2 {
3 /* strip mining */

4 int numIters = N / 4;

5

6 /* iteration */

7 for (int i = 0; i < numIters; i++) {
8 /* load the values */

9 __m128 val1 = _mm_load_ps (a);

10 __m128 val2 = _mm_load_ps (b);

11

12 /* perform the vector addition */

13 __m128 res = _mm_add_ps(val1, val2);

14

15 /* store the result */

16 _mm_store_ps(c, res);

17

18 /* increment the pointers */

19 a += 4 ; b += 4; c+= 4;

615 c© Smruti R. Sarangi

20 }
21 }

Let us consider the C code snippet in Example 155. We first calculate the number of
iterations in Line 4. In each iteration, we consider a block of 4 array elements. In Line 9,
we load a set of four floating point numbers into the 128-bit vector variable, val1. val1 is
mapped to a vector register by the compiler. We use the function mm load ps to load a set
of 4 contiguous floating point values from memory. For example, the function mm load ps(a)
loads four floating point values in the locations, a, a+4, a+8, and a+12 into a vector register.
Similarly, we load the second vector register, val2, with four floating point values starting from
the memory address, b. In Line 13, we perform the vector addition, and save the result in a 128-
bit vector register associated with the variable res. We use the intrinsic function, mm add ps,
for this purpose. In Line 16, we store the variable, res, in the memory locations namely c, c+4,
c+ 8, and c+ 12.

Before proceeding to the next iteration, we need to update the pointers a, b, and c. Since
we process 4 contiguous array elements every cycle, we update each of the pointer by 4 (4 array
elements) in Line 19.

We can quickly conclude that vector instructions facilitate bulk computations such as bulk
loads/stores and adding a set of numbers pairwise, in one go. We compared the performance
of this function, with a version of the function that does not use vector instructions on a
quad core Intel Core i7 machine. The code with SSE instructions ran 2-3 times faster for
million element arrays. If we would have had wider SSE registers, then we could have gained
more speedups. The latest AVX vector ISA on x86 processors supports 256 and 512-bit vector
registers. Interested readers can implement the function shown in Example 155 using the AVX
vector ISA, and compare the performance.

12.5.4 Predicated Instructions

We have up till now considered vector load, store, and ALU operations. What about branches?
Typically, branches have a different connotation in the context of vector processors. For exam-
ple, let us consider a processor with vector registers that are wide enough to hold 32 integers,
and we have a program which requires us to pair-wise add only 18 integers, and then store them
in memory. In this case, we cannot store the entire vector register to memory because we risk
overwriting valid data.

Let us consider another example. Assume that we want to apply the function inc10(x) on
all elements of an array. In this case, we wish to add 10 to the input operand, x, if it is less
than 10. Such patterns are very common in programs that run on vector processors, and thus
we need additional support in vector ISAs to support them.

function inc10(x):

if (x < 10)

x = x + 10;

c© Smruti R. Sarangi 616

Let us add a new variant of a regular instruction, and call it a predicated instruction (similar
to conditional instructions in ARM). For example, we can create predicated variants of regular
load, store, and ALU instructions. A predicated instruction executes if a certain condition is
true, otherwise it does not execute at all. If the condition is false, a predicated instruction is
equivalent to a nop.

Definition 135
A predicated instruction is a variant of a normal load, store, or ALU instruction. It
executes normally, if a certain condition is true. However, if the associated condition is
false, then it gets converted to a nop. For example, the addeq instruction in the ARM ISA,
executes like a normal add instruction if the last comparison has resulted in an equality.
However, if this is not the case, then the add instruction does not execute at all.

Let us now add support for predication in the SimpleRisc ISA. Let us first create a vector
form of the cmp instruction, and call it v.cmp. It compares two vectors pair-wise, and saves the
results of the comparison in the v.flags register, which is a vector form of the flags register.
Each component of the v.flags register contains an E and GT field, similar to the flags register
in a regular processor.

v.cmp vr1, vr2

This example compares vr1, and vr2, and saves the results in the v.flags register. We can
have an alternate form of this instruction that compares a vector with a scalar.

v.cmp vr1, 10

Now, let us define the predicated form of the vector add instruction. This instruction adds
the ith elements of two vectors, and updates the ith element of the destination vector register,
if the v.flags[i] (ith element of v.flags) register satisfies certain properties. Otherwise, it does
not update the ith element of the destination register. Let the generic form of the predicated
vector add instruction be: v.p.add. Here, p is the predicate condition. Table 12.6 lists the
different values that p can take.

Predicate Condition Meaning

lt less than

gt greater than

le less than or equal

ge greater than or equal

eq equal

ne not equal

Table 12.6: List of conditions for predicated vector instructions in SimpleRisc

Now, let us consider the following code snippet.

617 c© Smruti R. Sarangi

v.lt.add vr3, vr1, vr2

Here, the value of the vector register vr3 is the sum of the vectors represented by vr1 and
vr2. The predication condition is less than (lt). This means that if both the E and GT flags
are false for element i in the v.flags register, then only we perform the addition for the ith

element, and set its value in the vr3 register. The elements in the vr3 register that are not set
by the add instruction maintain their previous value. Thus, the code to implement the function
inc10(x) is as follows. We assume that vr1 contains the values of the input array.

v.cmp vr1, 10

v.lt.add vr1, vr1, 10

Likewise, we can define predicated versions of the load/store instructions, and other ALU
instructions.

12.5.5 Design of a Vector Processor

Let us now briefly consider the design of vector processors. We need to add a vector pipeline
similar to the scalar pipeline. In specific, the OF stage reads the vector register file for vector
operands, and the scalar register file for scalar operands. Subsequently, it buffers the values
of operands in the pipeline registers. The EX stage sends scalar operands to the scalar ALU,
and sends vector operands to the vector ALU. Similarly, we need to augment the MA stage
with vector load and store units. For most processors, the size of a cache block is an integral
multiple of the size of a vector register. Consequently, vector load and store units that operate
on contiguous data do not need to access multiple cache blocks. Hence, a vector load and store
access is almost as fast as a scalar load and store access because the atomic unit of storage in a
cache is a block. In both cases (scalar and vector), we read the value of a block and choose the
relevant bytes using the column muxes. We need to change the structure of the L1 cache to
read in more data at a time. Lastly, the writeback stage writes back scalar data to the scalar
register file and vector data to the vector register file.

In a pipelined implementation of a vector processor, the interlock and forwarding logic is
complicated. We need to take into account the conflicts between scalar instructions, between
vector instructions, and between a scalar and vector instruction. The forwarding logic needs
to forward values between different functional unit types, and thus ensure correct execution.
Note that vector instructions need not always be as fast as their scalar counterparts. Espe-
cially, scatter-gather based vector load store instructions are slower. Since modern out-of-order
pipelines already have dedicated support for processing variable latency instructions, vector
instructions can seamlessly plug into this framework.

12.6 Interconnection Networks

12.6.1 Overview

Let us now consider the problem of interconnecting different processing and memory elements.
Typically multicore processors use a checkerboard design. Here, we divide the set of processors
into tiles. A tile typically consists of a set of 2-4 processors. A tile has its private caches (L1

c© Smruti R. Sarangi 618

and possibly L2). It also contains a part of the shared last level cache (L2 or L3). The part of
the shared last level cache that is a part of a given tile is known as a slice . Typically, a slice
consists of 2-4 banks (see Section 12.4.5). Additionally, a tile, or a group of tiles might share a
memory controller in modern processors. The role of the memory controller is to co-ordinate
the transfer of data between the on-chip caches, and the main memory. Figure 12.20 shows a
representative layout of a 32 core multiprocessor. The cores have a darker colour as compared
to the cache banks. We use a tile size of 2 (2 processors and 2 cache banks), and assume that
the shared L2 cache has 32 cache banks evenly distributed across the tiles. Moreover, each tile
has a dedicated memory controller, and a structure called a router.

A router is a specialised unit, and is defined in Definition 136.

Definition 136

1. A router sends messages originating from processors or caches in its tile to other tiles
through the on chip network.

2. The routers are interconnected with each other via an on-chip network.

3. A message travels from the source router to the destination router (of a remote tile)
via a series of routers. Each router on the way forwards the message to another
router, which is closer to the destination.

4. Finally the router associated with the destination tile forwards the message to a pro-
cessor or cache in the remote tile.

5. Adjacent routers are connected via a link. A link is a set of passive copper wires that
are used to transmit messages (more details in Chapter 13).

6. A router typically has many incoming links, and many outgoing links. One set of
incoming and outgoing links connect it to processors and caches in its tile. Each link
has a unique identifier.

7. A router has a fairly complicated structure, and typically consists of a 3 to 5-stage
pipeline. Most designs typically dedicate pipeline stages to buffering a message, com-
puting the id of the outgoing link, arbitrating for the link, and sending the message
over the outgoing link.

8. The arrangement of routers and links is referred to as the on chip network, or network
on chip. It is abbreviated as the NOC.

9. Let us refer to each router connected to the NOC as a node. Nodes communicate with
each other by sending messages.

During the course of the execution of a program, it sends billions of messages over the NOC.
The NOC carries coherence messages, LLC (last level cache) request/response messages, and

619 c© Smruti R. Sarangi

Cache bank

Core

Memory
controller
Router

Tile

Figure 12.20: The layout of a multicore processor

messages between caches, and memory controllers. The operating system also uses the NOC to
send messages to cores for loading and unloading threads. Due to the high volume of messages,
large parts of the NOC often experience a sizeable amount of congestion. Hence, it is essential
to design NOCs that reduce congestion to the maximum extent possible, are easy to design
and manufacture, and ensure that messages quickly reach their destination. Let us define two
important properties of an NOC namely bisection bandwidth and diameter.

12.6.2 Bisection Bandwidth and Network Diameter

Bisection Bandwidth

Let us consider a network topology where the vertices are the nodes, and the edges between
the vertices are the links. Suppose there is a link failure, or for some other reason such as
congestion, a link is unavailable, then it should be possible to route messages through alternate
paths. For example, let us consider a network arranged as a ring. If one link fails, then we can
always send a message through the other side of the ring. If we were sending the message in a
clockwise fashion, we can send it in an anti-clockwise fashion. However, if there are two link
failures, it is possible that the network can get disconnected into two equal parts. We would
thus like to maximise the number of link failures that are required to completely disconnect the
network into sizeably large parts (possibly equal). Let us refer to the number of such failures as
the bisection bandwidth. The bisection bandwidth is a measure of the reliability of the network.
It is precisely defined as the minimum number of links that need to fail to partition the network
into two equal parts.

There can be an alternative interpretation of the bisection bandwidth. Let us assume that
nodes in one half of the network are trying to send messages to nodes in the other half of the

c© Smruti R. Sarangi 620

network. Then the number of messages that can be simultaneously sent is at least equal to the
bisection bandwidth. Thus, the bisection bandwidth is also a measure of the bandwidth of a
network.

Definition 137
The bisection bandwidth is defined as the minimum number of link failures that are required
to partition a network into two equal parts.

Network Diameter

We have discussed reliability, and bandwidth. Now, let us focus on latency. Let us consider
pairs of nodes in the network. Let us subsequently consider the shortest path between each pair
of nodes. Out of all of these shortest paths, let us consider the path that has the maximum
length. The length of this path is an upper bound on the proximity of nodes in the network,
and is known as the diameter of the network. Alternatively, we can interpret the diameter of a
network as an estimate of the worst case latency between any pair of nodes.

Definition 138
Let us consider all pairs of nodes, and compute the shortest path between each pair. The
length of the longest such path is known as the network diameter. It is a measure of the
worst case latency of the network.

12.6.3 Network Topologies

Let us review some of the most common network topologies in this section. Some of these
topologies are used in multicore processors. However, most of the complex topologies are used
in loosely coupled multiprocessors that use regular Ethernet links to connect processors. For
each topology, let us assume that it has N nodes. For computing the bisection bandwidth, we
can further make the simplistic assumption that N is divisible by 2. Note that measures like the
bisection bandwidth, and the diameter are approximate measures, and are merely indicative
of broad trends. Hence, we have the leeway to make simplistic assumptions. Let us start out
with considering simpler topologies that are suitable for multicores. We need to aim for a high
bisection bandwidth, and low network diameter.

Chain and Ring

Figure 12.21 shows a chain of nodes. Its bisection bandwidth is 1, and the network diameter is
N − 1. This is our worst configuration. We can improve both the metrics by considering a ring
of nodes (Figure 12.22). The bisection bandwidth is now 2, and the network diameter is N/2.
Both of these topologies are fairly simple, and have been superseded by other topologies. Let us

621 c© Smruti R. Sarangi

Figure 12.21: Chain

Figure 12.22: Ring

now consider a topology known as a fat tree, which is commonly used in cluster computers. A
cluster computer refers to a loosely coupled multiprocessor that consists of multiple processors
connected over the local area network.

Definition 139
A cluster computer refers to a loosely coupled computer that consists of multiple processors
connected over the local area network.

Fat Tree

Figure 12.23 shows a fat tree. In a fat tree, all the nodes are at the leaves, and all the internal
nodes of the tree are routers dedicated to routing messages. Let us refer to these internal
nodes as switches. A message from node a to node b first travels to the closest node that is a
common ancestor of both a and b. Then it travels downwards towards b. Note that the density
of messages is the highest near the root. Hence, to avoid contention, and bottlenecks, we
gradually increase the number of links connecting a node and its children, as we move towards
the root. This strategy reduces the message congestion at the root node.

In our example, two subtrees are connected to the root node. Each subtree has 4 nodes. At
the most the root can receive 4 messages from each subtree. Secondly, at the most, it needs
to send 4 messages to each subtree. Assuming a duplex link, the root needs to have 4 links
connecting it to each of its children. Likewise, the next level of nodes need 2 links between
them and each of their child nodes. The leaves need 1 link each. We can thus visualise the tree
growing fatter, as we proceeds towards the root, and hence it is referred to as a fat tree.

The network diameter is equal to 2log(N). The bisection bandwidth is equal to the minimum
number of links that connect the root node to each of its children. If we assume that the tree

c© Smruti R. Sarangi 622

Figure 12.23: Fat Tree

is designed to ensure that there is absolutely no contention for links at the root, then we need
to connect the root with N/2 links to each subtree. Thus, the bisection bandwidth in this case
is N/2. Note that we do not allot N/2 links between the root and its children in most practical
scenarios. This is because the probability of all the nodes in a subree transmitting messages at
the same time is low. Hence, in practice we reduce the number of links at each level.

Mesh and Torus

Figure 12.24: Mesh Figure 12.25: Torus

623 c© Smruti R. Sarangi

Let us now look at topologies that are more suitable for multicores. One of the most common
topologies is a mesh where all the nodes are connected in a matrix like fashion (see Figure 12.24).
Nodes at the corner have two neighbours, nodes on the rim have three neighbours, and the rest
of the nodes have four neighbours. Let us now compute the diameter and bisection bandwidth
of a mesh. The longest path is between two corner nodes. The diameter is thus equal to (2

√
N

- 2). To divide the network into two equal halves we need to either split the mesh in the
middle (horizontally or vertically). Since we have

√
N nodes in a row, or column, the bisection

bandwidth is equal to
√
N . The mesh is better than a chain and a ring in terms of these

parameters.

Unfortunately, the mesh topology is asymmetric in nature. Nodes that are at the rim of
the mesh are far away from each other. Consequently, we can augment a mesh with cross links
between the extremities of each row and column. The resulting structure is known as a torus,
and is shown in Figure 12.25. Let us now look at the properties of tori (plural of torus). In
this case, nodes on opposite sides of the rim of the network, are only one hop apart. The
longest path is thus between any of the corner nodes and a node at the center of the torus.
The diameter is thus again equal to (ignoring small additive constants)

√
N/2 +

√
N/2 =

√
N .

Recall that the length of each side of the torus is equal to
√
N .

Now, to divide the network into two equal parts let us split it horizontally. We need to thus
snap

√
N vertical links, and

√
N cross links (links between the ends of each column). Hence,

the bisection bandwidth is equal to 2
√
N .

Figure 12.26: Folded Torus

c© Smruti R. Sarangi 624

By adding 2
√
N cross links (

√
N for rows, and

√
N for columns), we have halved the

diameter, and doubled the bisection bandwidth of a torus. However, this scheme still has some
problems. Let us elaborate.

While defining the diameter, we made an implicit assumption that the length of every link
is almost the same, or alternatively the time a message takes to traverse a link is almost the
same for all the links in the network. Hence, we defined the diameter in terms of the number of
links that a message traverses. This assumption is not very unrealistic because in general the
propagation time through a link is small as compared to the latencies of routers along the way.
Nevertheless, there are limits to the latency of a link. If a link is very long, then our definition
of the diameter needs to be revised. In the case of tori, we have such a situation. The cross
links are physically

√
N times longer than regular links between adjacent nodes. Hence, as

compared to a mesh, we have not significantly reduced the diameter in practice because nodes
at the ends of a row are still far apart.

We can fortunately solve this problem by using a slightly modified structure called a folded
torus as shown in Figure 12.26. Here, the topology of each row and column is like a ring. One
half of the ring consists of regular links that were originally a part of the mesh topology, and
the other half comprises of the cross links that were added to convert a mesh into a torus. We
alternately place nodes on the regular links and on the cross links. This strategy ensures that
the distance between adjacent nodes in a folded torus is twice the distance between adjacent
nodes in a regular torus. However, we avoid the long cross links (

√
N hops long) between the

two ends of a row or column.

The bisection bandwidth and the diameter of the network remain the same as that of the
torus. In this case, there are several paths that can qualify as the longest path. However, the
path between a corner to the center is not the longest. One of the longest paths is between op-
posite corners. The folded torus is typically the preferred configuration in multicore processors
because it avoids long cross links.

Hypercube

Let us now consider a network that has O(log(N)) diameter. These networks use a lot of
links; hence, they are not suitable for multicores. However, they are used often in larger cluster
computers. This network is known as a hypercube. A hypercube is actually a family of networks,
where each network has an order. A hypercube of order k is referred to as Hk.

Figure 12.27(a) shows a hypercube of order 0 (H0). It is a single point. To create a hypercube
of order 1, we take two copies of a hypercube of order 0, and connect the corresponding points
with lines. In this case, H0 has a single point. Therefore, H1 is a simple line segment (see
Figure 12.27(b)). Now, let us follow the same procedure to create a hypercube of order 2.
We place two copies of H1 close to each other and connect corresponding points with lines.
Hence, H2 is a rectangle (see Figure 12.27(c)). Let us follow the same procedure to create
a hypercube of order 3 in Figure 12.27(d). This network is equivalent to a normal cube (the
“cube” in hypercube). Finally, Figure 12.27(e), shows the topology of H4, where we connect the
corresponding points of two cubes. We can proceed in a similar manner to create hypercubes
of order k.

Let us now investigate the properties of a hypercube. The number of nodes in Hk is equal
to twice the number of nodes in Hk−1. This is because, we form Hk by joining two copies of

625 c© Smruti R. Sarangi

H0 H1 H2 H3

H4

0 0 1

00 01

10 11

000 001

010 011

110 111

101100

(a) (b)
(d)

(c)

(e)

Figure 12.27: Hypercube

Hk−1. Since H1 has 1 node, we can conclude that Hk has 2k nodes. Let us propose a method
to label the nodes of a hypercube as shown in Figure 12.27. We label the single node in H0 as
0. When we join two copies of a hypercube of order, k − 1, we maintain the same labelling of
nodes for (k − 1) least significant digits. However, for nodes in one copy, we set the MSB as 1,
and for nodes in the other copy, we set the MSB to be 0.

Let us consider, H2 (Figure 12.27(c)). The nodes are labelled 00, 01, 10, and 11. We
have created a similar 3-bit labelling for H3 (Figure 12.27(d)). In our labelling scheme, a
node is connected to all other nodes that have a label differing in only one bit. For example,
the neighbours of the node 101, are 001, 111, and 100. A similar labelling for Hk requires
k = log(N)) bits per node.

This insight will help us compute the diameter of a hypercube. Let us explain through an
example. Consider the 8 node hypercube, H3. Assume that we want a message to travel from
node A (000) to node B (110). Let us scan the labels of both the nodes from the MSB to the
LSB. The first bit (MSB) does not match. Hence, to make the first bit match, let us route the
message to node A1 (100). Let us now scan the next bit. Here, again there is a mismatch.
Hence, let us route the message to node A2 (110). Now, we take a look at the third bit (LSB),
and find it to match. The message has thus reached its destination. We can follow the same
approach for an N -bit hypercube. Since each node has a log(N) bit label, and in each step we
flip at most one bit in the label of the current node, we require a maximum of log(N) routing
steps. Thus the network diameter is log(N).

Let us now compute the bisection bandwidth. We shall state the result without proof be-
cause the computation of the bisection bandwidth of a hypercube requires a thorough theoretical
treatment of hypercubes. This is beyond the scope of this book. The bisection bandwidth of
an N -node hypercube is equal to N/2.

c© Smruti R. Sarangi 626

Butterfly

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

00

01

10

11

00

01

10

11

00

01

10

11

Figure 12.28: Butterfly

Let us now look at our last network called the butterfly that also has O(log(N)) diameter,
yet, is suitable for multicores. Figure 12.28 shows a butterfly network for 8 nodes. Each node
is represented by a circle. Along with the nodes, we have a set of switches or internal nodes
(shown with rectangles) that route messages between nodes. The messages start at the left
side, pass through the switches, and reach the right side of the diagram. Note that the nodes
on the leftmost and rightmost sides of the figure are actually the same set of nodes. We did
not want to add left to right cross links to avoid complicating the diagram; hence, we show the
set of nodes in duplicate.

Let us start from the left side of the diagram. For N nodes (assuming N is a power of 2),
we have N/2 switches in the first column. Two nodes are connected to each switch. In our
example in Figure 12.28, we have labelled the nodes 1 . . . 8. Each node is connected to a switch.
Once a message enters a switch, it gets routed to the correct switch in the rightmost column
through the network of switches. For 8 nodes, we have 4 switches in each column. For each
column, we have labelled them 00 . . . 11 in binary.

Let us consider an example. Assume that we want to send a message from node 4 to node 7.
In this case, the message enters switch 01 in the first column. It needs to reach switch 11 in the
third column. We start out by comparing the MSBs of the source switch, and the destination
switch. If they are equal, then the message proceeds horizontally rightwards to a switch in
the adjacent column and same row. However, if the MSBs are unequal (as is the case in our
example), then we need to use the second output link to send it to a switch in a different row

627 c© Smruti R. Sarangi

in the next column. The label of the new switch differs from the label of the original switch
by just 1 bit, which is the MSB bit in this case. Similarly, to proceed from the second to the
third column, we compare the second bit position (from the MSB). If they are equal, then the
message proceeds horizontally, otherwise it is routed to a switch such that the first two bits
match. In this case, the label of the switch that we choose in the second column is 11. The
first two bits match the label of the switch in the third column. Hence, the message proceeds
horizontally, and is finally routed to node 7.

We can extend this method for a butterfly consisting of k columns. In the first column, we
compare the MSB. Similarly, in the ith column, we compare the ith bit (MSB is the 1st bit).
Note that the first k − i bits of the label of the switch that handles the message in the ith

column are equal to the first k− i bits of the destination switch. This strategy ensure that the
message gets routed to ultimately the correct switch in the kth column.

Now, let us investigate the properties of the network. Let us assume that we have N
nodes, where N is a power of 2. We require log(N) columns, where each column contains N/2
switches. Thus, we require an additional Nlog(N)/2 switches. An astute reader would have
already concluded that routing a message in a butterfly network is almost the same as routing
in a message in a hypercube. In every step we increase the size of the matching prefix between
the labels of the source and destination switches by 1. We thus require log(N) + 1 steps (1
additional step for sending the message to the destination node from the last switch) for sending
a message between a pair of nodes. We can thus approximate the diameter of the network to
log(N).

Let us now compute the bisection bandwidth. Let us consider our example with 8 nodes
first. Here, we can split the network horizontally. We thus need to snap 4 links, and hence the
bisection bandwidth of the network shown in Figure 12.28 is 4. Let us now consider N > 8
nodes. In this case, also the best solution is to split the network horizontally. This is because
if we draw an imaginary horizontal line between the (N/4)th and (N/4 + 1)th row of switches
then it will only intersect the links between the first and second columns. The outgoing links
of the rest of the columns will not intersect with our imaginary line. They will either be below
it or above it. Since each switch in the first column has only one outgoing link that intersects
the imaginary line, a total of N/2 links intersect the imaginary line. All of these links need to
be disconnected to divide the network into two equal parts. Hence, the bisection bandwidth is
equal to N/2.

Comparison of Topologies

Let us now compare the topologies with respect to four parameters – number of internal nodes
(or switches), number of links, diameter, and bisection bandwidth in Table 12.7. In all the
cases, we assume that the networks have N nodes that can send and receive messages, and N
is a power of 2.

c© Smruti R. Sarangi 628

Topology # Switches # Links Diameter Bisection Bandwidth

Chain 0 N-1 N-1 1

Ring 0 N N/2 2

Fat Tree N - 1 N log(N)‡ 2 log(N) N/2†

Mesh 0 2N − 2
√
N 2

√
N − 2

√
N

Torus 0 2N
√
N 2

√
N

Folded Torus 0 2N
√
N 2

√
N

Hypercube 0 Nlog(N)/2 log(N) N/2

Butterfly Nlog(N)/2 N +Nlog(N) log(N) + 1 N/2
‡ Assume that the size of each link is equal to the size of the subtree under it.

† Assume that the capacity of each link is equal to the number of leaves in its subtree

Table 12.7: Comparison of topologies

12.7 Summary and Further Reading

12.7.1 Summary

Summary 12

1. Processor frequency and performance is beginning to saturate.

2. Concomitantly, the number of transistors per chip is roughly doubling very two years
as per the original predictions of Gordon Moore. This empirical law is known as the
Moore’s Law.

3. The additional transistors are not being utilised to make a processor larger, or more
complicated. They are instead being used to add more processors on chip. Each such
processor is known as a core, and a chip with multiple cores is known as a multicore
processor.

4. We can have multiprocessor systems where the processors are connected over the net-
work. In this case the processors do not share any resources between them, and such
multiprocessors are known as loosely coupled multiprocessors. In comparison, multi-
core processors, and most small sized server processors that have multiple processors
on the same motherboard, share resources such as the I/O devices, and the main
memory. Programs running on multiple processors in these systems might also share
a part of their virtual address space. These systems are thus referred to as strongly
coupled multiprocessors.

5. Multiprocessor systems can be used to run multiple sequential programs simultaneously,
or can be used to run parallel programs. A parallel program contains many sub-
programs that run concurrently. The sub-programs co-operate among themselves to

629 c© Smruti R. Sarangi

achieve a bigger task. When sub-programs share their virtual memory space, they are
known as threads.

6. Parallel programs running on strongly coupled multiprocessors typically communicate
values between themselves by writing to a shared memory space. In comparison, pro-
grams running on loosely coupled multiprocessors communicate by passing messages
between each other.

7. Most parallel programs have a sequential section, and a parallel section. The parallel
section can be divided into smaller units and distributed among the processors of a
multiprocessor system. If we have N processors, then we ideally expect the parallel
section to be sped up by a factor of N . An equation describing this relationship is
known as the Amdahl’s Law. The speedup, S is given by:

S =
Tseq
Tpar

=
1

fseq +
1−fseq
P

8. The Flynn’s taxonomy classifies computing systems into four types : SISD (single
instruction, single data), SIMD (single instruction, multiple data), MISD (multiple
instruction, single data), and MIMD (multiple instruction, multiple data).

9. The memory system in modern shared memory MIMD processors is in reality very
complex. Coherence and consistency are two important aspects of the behaviour of the
memory system.

10. Coherence refers to the rules that need to be followed for accessing the same memory
location. Coherence dictates that a write is never lost, and all writes to the same
location are seen in the same order by all the processors.

11. Consistency refers to the behaviour of the memory system with respect to different
memory locations. If memory accesses from the same thread get reordered by the
memory system (as is the case with modern processors), many counter intuitive be-
haviours as possible. Hence, most of the time we reason in terms of the sequentially
consistent memory model that prohibits reordering of messages to the memory system
from the same thread. In practice, multiprocessors follow a weak consistency model
that allows arbitrary reorderings. We can still write correct programs because such
models define synchronisation instructions (example: fence) that try to enforce an
ordering between memory accesses when required.

12. We can either have a large shared cache, or multiple private caches (one for each core
or set of cores). Shared caches can be made more performance and power efficient
by dividing it into a set of subcaches known as banks. For a set of private caches to
logically function as one large shared cache, we need to implement cache coherence.

(a) The snoopy cache coherence protocol connects all the processors to a shared bus.

(b) The MSI write-update protocol works by broadcasting every write to all the cores.

c© Smruti R. Sarangi 630

(c) The MSI write-invalidate protocol guarantees coherence by ensuring that only
one cache can write to a block at any single point of time.

13. To further improve performance, we can implement a multithreaded processor that
shares a pipeline across many threads. We can either quickly switch between threads
(fine and coarse-grained multithreading), or execute instructions from multiple threads
in the same cycle using a multi-issue processor (simultaneous multithreading).

14. SIMD processors follow a different approach. They operate on arrays of data at once.
Vector processors have a SIMD instruction set. Even though, they are obsolete now,
most modern processors have vector instructions in their ISA.

(a) Vector arithmetic/logical instructions fetch their operands from the vector regis-
ter file, and operate on large vectors of data at once.

(b) Vector load-store operations can either assume that data is stored in contiguous
memory regions, or assume that data is scattered in memory.

(c) Instructions on a branch path are implemented as predicated instructions in vec-
tor ISAs.

15. Processors and memory elements are connected through an interconnection network.
The basic properties of an interconnection network are the diameter (worst case end
to end delay), and the bisection bandwidth (number of links that need to be snapped to
partition the network equally). We discussed several topologies: chain, ring, fat tree,
mesh, torus, folded torus, hypercube, and butterfly.

12.7.2 Further Reading

The reader should start by reading the relevant sections in advanced textbooks on computer
architecture [Culler et al., 1998, Hwang, 2003, Baer, 2010, Jacob, 2009]. For parallel pro-
gramming, the reader can start with Michael Quinn’s book on parallel programming with
OpenMP and MPI [Quinn, 2003]. The formal MPI specifications are available at http:

//www.mpi-forum.org. For an advanced study of cache coherence the reader can start with
the survey on coherence protocols by Stenstrom [Stenstrom, 1990], and then look at one of
the earliest practical implementations [Borrill, 1987]. The most popular reference for memory
consistency models is a tutorial by Adve and Gharachorloo [Adve and Gharachorloo, 1996], and
a paper published by the same authors [Gharachorloo et al., 1992]. For a different perspective
on memory consistency models in terms of ordering, and atomicity, readers can refer to [Arvind
and Maessen, 2006]. [Guiady et al., 1999] looks at memory models from the point of view
of performance. [Peterson et al., 1991] and [russell, 1978] describe two fully functional SIMD
machines. For interconnection networks the reader can refer to [Jerger and Peh, 2009].

http://www.mpi-forum.org
http://www.mpi-forum.org

631 c© Smruti R. Sarangi

Exercises

Overview of Multiprocessor Systems

Ex. 1 — Differentiate between strongly coupled, and loosely coupled multiprocessors.

Ex. 2 — Differentiate between shared memory, and message passing based multiprocessors.

Ex. 3 — Why is the evolution of multicore processors a direct consequence of Moore’s Law?

Ex. 4 — The fraction of the potentially parallel section in a program is 0.6. What is the
maximum speedup that we can achieve over a single core processor, if we run the program on
a quad-core processor?

Ex. 5 — You need to run a program, 60% of which is strictly sequential, while the rest 40%
can be fully parallelised over a maximum of 4 cores. You have 2 machines:

(a) A single core machine running at 3.2 GHz

(b) A 4-core machine running at 2.4 GHz

Which machine is better if you have to minimise the total time taken to run the program?
Assume that the two machines have the same IPC per thread and only differ in the clock
frequency and the number of cores.

* Ex. 6 — Consider a program, which has a sequential and a parallel portion. The sequential
portion is 40% and the parallel portion is 60%. Using Amdahl’s law, we can compute the
speedup with n processors, as S(n). However, increasing the number of cores increases the cost
of the entire system. Hence, we define a utility function, g(n), of the form:

g(n) = e−n/3(2n2 + 7n+ 6)

The buyer wishes to maximise S(n)× g(n). What is the optimal number of processors, n?

Ex. 7 — Define the terms: SISD, SIMD, MISD, and MIMD. Give an example of each type
of machine.

Ex. 8 — What are the two classes of MIMD machines introduced in this book?

Coherence and Consistency

Ex. 9 — What are the axioms of cache coherence?

Ex. 10 — Define sequential and weak consistency.

Ex. 11 — Is the outcome (t1,t2) = (2,1) allowed in a system with coherent memory?

c© Smruti R. Sarangi 632

Thread 1:

x = 1;

x = 2;

Thread 2:

t1 = x;

t2 = x;

Ex. 12 — Assume that all the global variables are initialised to 0, and all variables local to
a thread start with ‘t’. What are the possible values of t1 for a sequentially consistent system,
and a weakly consistent system? (source [Adve and Gharachorloo, 1996])

Thread 1:

x = 1;

y = 1;

Thread 2:

while(y == 0){}

t1 = x;

Ex. 13 — Is the outcome (t1,t2) = (1,1) possible in a sequentially consistent system?

Thread 1:

x = 1;

if(y == 0)

t1 = 1;

Thread 1:

y = 1;

if(x == 0)

t2 = 1;

Ex. 14 — Is the outcome t1 6= t2 possible in a sequentially consistent system? (source [Adve
and Gharachorloo, 1996])

Thread 1:

z = 1;

x = 1;

Thread 2:

z = 2;

y = 1;

Thread 3:

while (x != 1) {}

while (y != 1) {}

t1 = z;

Thread 4:

while (x != 1) {}

while (y != 1) {}

t2 = z;

* Ex. 15 — Is the outcome (t1 = 0) allowed in a system with coherent memory and atomic
writes? Consider both sequential and weak consistency?

Thread 1:

x = 1;

Thread 2:

while(x != 1) {}

y = 1;

Thread 3:

while (y != 1) {}

t1 = x;

* Ex. 16 — Consider the following code snippet for implementing a critical section. A critical
section is a region of code that can only be executed by one thread at any single point of time.
Assume that we have two threads with ids 0 and 1 respectively. The function getT id() returns
the id of the current thread.

void enterCriticalSection() {

tid = getTid();

otherTid = 1 - tid;

interested[tid] = true;

flag = tid;

while ((flag == tid) && (interested[otherTid] == 1)) {}

633 c© Smruti R. Sarangi

}

void leaveCriticalSection{

tid = getTid();

interested[tid] = false;

}

Is it possible for two threads to be in the critical section at the same point of time?

Ex. 17 — In the snoopy protocol, why do we write back data to the main memory upon a
M to S transition?

Ex. 18 — Assume that two nodes desire to transition from the S state to the M state at
exactly the same point of time. How will the snoopy protocol ensure that only one of these
nodes enters the M state, and finishes its write operation? What happens to the other node?

Ex. 19 — The snoopy protocol clearly has an issue with scalability. If we have 64 cores with
a private cache per core, then it will take a long time to broadcast a message to all the caches.
Can you propose solutions to circumvent this problem?

Ex. 20 — Let us assume a cache coherent multiprocessor system. The L1 cache is private
and the coherent L2 cache is shared across the processors. Let us assume that the system issues
a lot of I/O requests. Most of the I/O requests perform DMA (Direct Memory Access) from
main memory. It is possible that the I/O requests might overwrite some data that is already
present in the caches. In this case we need to extend the cache coherence protocol that also
takes I/O accesses into account. Propose one such protocol.

Ex. 21 — Let us define a new state in the traditional MSI states based snoopy protocol.
The new E state refers to the “exclusive” state, in which a processor is sure that no other cache
contains the block in a valid state. Secondly, in the E state, the processor hasn’t modified the
block yet. What is the advantage of having the E state? How are evictions handled in the E
state?

Ex. 22 — Show the state transition diagrams for a MSI protocol with a directory. You need
to show the following:

1.Structure of the directory

2.State transition diagram for events received from the host processor.

3.State transition diagram for events received from the directory.

4.State transition diagram for an entry in the directory (if required).

Ex. 23 — Assume that we have a system with private L1 and L2 caches. The L1 layer is
not coherent. However, the L2 layer maintains cache coherence. How do we modify our MSI
snoopy protocol to support cache coherence for the entire system?

Ex. 24 — In the snoopy write-invalidate protocol, when should a processor actually perform
the write operation? Should it perform the write as soon as possible, or should it wait for the
write-invalidate message to reach all the caches? Explain your answer.

c© Smruti R. Sarangi 634

* Ex. 25 — Assume that a processor wants to perform an atomic exchange operation between
two memory locations a and b. a and b cannot be allocated to registers. How will you modify
the MSI coherence protocol to support this operation? Before proceeding with the answer
think about what are the things that can go wrong. An exchange is essentially equivalent to
the following sequence of operations: (1) temp = a; (2) a = b; (3) b = temp. If a read arrives
between operations (2) and (3) it might get the wrong value of b. We need to prevent this
situation.

** Ex. 26 — Assume that we want to implement an instruction called MCAS. The MCAS
instruction takes k (known and bounded) memory locations as arguments, a set of k old values,
and a set of k new values. Its pseudo-code is shown below. We assume here that mem is a
hypothetical array representing the entire memory space.

/* multiple compare and set */

boolean MCAS(int memLocs[], int oldValues[], int newValues[]){

/* compare */

for(i=0; i < k; i++) {

if(mem[memLocs[i]] != oldValues[i]) {

return false;

}

}

/* set */

for(i=0; i < k; i++) {

mem[memLocs[i]] = newValues[i];

}

return true;

}

The challenge is to implement this instruction such that it appears to execute instantaneously.
Let us look at some subtle cases. Assume that we want to write (4,5,6) to three memory
locations if their previous contents are (1,2,3). It is possible that after writing 4, and 5, there is
a small delay. During this time another thread reads the three memory locations, and concludes
that their values are 4,5, and 3 respectively. This result is incorrect because it violates our
assumption that MCAS executes instantaneously. We should either read (1,2,3) or (4,5,6).

Now, let us look at the case of reading the three memory locations. Let us say that their initial
values are 1,2, and 0. Our MCAS instruction reads the first two locations and since they are
equal to the old values, proceeds to the third location. Before reading it, a store operation from
another thread changes the values of the three locations as follows. (1,2,0)→ (5,2,0)→ (5,2,3).
Subsequently, the MCAS instruction takes a look at the third memory location and finds it to
be 3. Note that the three memory locations were never equal to (1,2,3). We thus arrive at a
wrong conclusion.

How should we fix these problems? We want to implement a MCAS instruction purely in
hardware, which provides an illusion of instantaneous execution. It should be free of deadlocks,
and should complete in a finite amount of time. How can we extend our coherence protocols to
implement it?

635 c© Smruti R. Sarangi

*** Ex. 27 — Assume a processor that has a sequentially consistent(SC) memory. We im-
plement SC by making each thread wait for a memory request to complete before issuing the
next request. Now, assume that we modify the architecture by allowing a processor to read a
value that the immediately preceding instruction has written without waiting for it to complete.
Prove that the memory system still follows SC.

*** Ex. 28 — Assume a processor with a weak consistency model. Let us run a “properly
labelled” program on it. A properly labelled(PL) program does not allow conflicting accesses
(read-write, write-read, or write-write) to a shared variable at the same time. For example, the
following code sequence is not properly labelled because it allows x to be modified concurrently.
Thread 1:

x = 0

Thread 2:

x = 1
In reality, the coherence protocol orders one write access before the other. Nevertheless, both
the threads try to modify x concurrently at the programmer’s level. This is precisely the
behaviour that we wish to avoid.

In a PL program, two threads do not try to modify x at the same time. This is achieved by
having two magic instructions known as lock and unlock. Only one thread can lock a memory
location at any point of time. If another thread tries to lock the location before it is unlocked,
then it stalls till the lock is free. If multiple threads are waiting on the same lock, only one
of them is given the lock after an unlock instruction. Secondly, both the lock and unlock
instructions have a built in fence operation, and all the lock and unlock instructions execute
in program order. The PL version of our program is as follows:

Thread 1:

lock(x)

x = 0

unlock(x)

Thread 2:

lock(x)

x = 1

unlock(x)
We can thus think of a lock-unlock block as a sequential block that can only be executed by one
thread at a given time. Moreover, assume that a lock-unlock block can only have one memory
instruction inside it.

Now, prove that all PL programs running on a weakly consistent machine have a sequentially
consistent execution. In other words we can interleave the memory accesses of all the threads
such that they appear to be executed by a single cycle processor that switches among the
threads. [HINT: Construct access graphs for your system, and prove that they are acyclic.]

Multithreading

Ex. 29 — What is the difference between a fine grained and coarse grained multithreaded
machine?

Ex. 30 — Describe a simultaneous multithreaded (SMT) processor in detail.

Ex. 31 — Describes the steps that we need to take to ensure that a SMT processor executes
correctly.

Ex. 32 — Assume a mix of workloads in a 4-way SMT processor. 2 threads are computa-

c© Smruti R. Sarangi 636

tionally intensive, 1 thread is I/O intensive, and the last thread sleeps for a long time. Design
an efficient instruction selection scheme.

Interconnection Networks

Ex. 33 — What is the bisection bandwidth and diameter of a 2D n× n mesh?

Ex. 34 — What is the bisection bandwidth and diameter of a 3D n× n× n mesh?

Ex. 35 — What is the diameter of a ring containing n nodes? Give a precise answer that
holds for even and odd n.

Ex. 36 — What is the bisection bandwidth and diameter of a hypercube of order n.

Ex. 37 — What is the bisection bandwidth and diameter of a n× n× n, 3D torus?

Ex. 38 — What is the bisection bandwidth and diameter of a clique of n nodes (n is even)?
In a clique, all pairs of nodes are connected.

** Ex. 39 — Assume we have a n × n mesh. There are n2 routers, and each processor is
connected to one router. Note that at any point of time, a router can only store 1 message. It
will discard a message only if the message gets stored in another router. In our previous example,
router (i, j) will keep the message until it has been delivered and stored at a neighbouring
router such as (i+ 1, j). Now, an interesting deadlock situation can develop. Let us assume the
following scenario.

•(1,1) wants to send a message to (1,2).

•(1,2) wants to send a message to (2,2).

•(2,2) wants to send a message to (2,1).

•(2,1) wants to send a message to (1,1).

In this case all the four nodes have 1 message each. They are not able to forward the packet
to the next node, because the next node already stores a packet, and is thus busy. Since there
is a cyclic wait, we have a deadlock. Design a message routing protocol between a source and
destination node that is provably deadlock free.

Vector Processors

Ex. 40 — What is the advantage of vector processors over scalar processors?

Ex. 41 — Why are vector load-store instructions easy to implement in systems that have
caches with large block sizes?

Ex. 42 — How can we efficiently implement a scatter-gather based load-store unit?

Ex. 43 — What is a predicated instruction, and how does it help speed up a vector processor?

* Ex. 44 — Assume that we have a processor with a 32 entry vector register file. We wish
to add two arrays that have 17 entries each. How can we implement this operation, with the

637 c© Smruti R. Sarangi

SimpleRisc vector instructions introduced in the chapter? Feel free to introduce new vector
instructions if required.

* Ex. 45 — Design a dedicated SIMD hardware unit to sort n integers in roughly n time
steps by using the bubble sort algorithm. You have a linear array of n processors connected
end to end. Each processor is capable of storing two integers, and has some logic inside it.
Design the logic for each processor and explain the overall working of the system.

Design Problems

Ex. 46 — Write a program to sort a billion integers using OpenMP and MPI.

Ex. 47 — Implement a distributed shared memory system on a cluster of computers con-
nected via an Ethernet LAN.

