[/O and Storage Devices

We have now arrived at a very interesting point in our study of processors. We have learnt
how to design a full processor and its accompanying memory system using basic transistors.
This processor can execute the entire SimpleRisc instruction set, and can run very complicated
programs ranging from chess games to weather simulations. However, there is a vital aspect
missing in our design. There is no way for us to communicate with our computer. To render
our computer usable, we need to have a method to write input data, and display the outputs.

Memory[

Computer

Printer

Figure 13.1: A typical computer system

We thus need an I/O (Input/Ouput) system in our computer. Let us look at the structure
of a typical computer in Figure The processor is the core of the computer. It is connected
to a host of I/O devices for processing user inputs, and for displaying results. These I/O
devices are known as peripherals. The most common user input devices are the keyboard and
the mouse. Likewise, the most common display devices, are the monitor, and the printer. The
computer can also communicate with a host of other devices such as cameras, scanners, mp3
players, camcorders, microphones, and speakers through a set of generic I/O ports. An I/O
port consists of: (1) a set of metallic pins that help the processor to connect with external

639

(© Smruti R. Sarangi 640

devices, and (2) a port controller that manages the connection with the peripheral device. The
computer can also communicate with the outside world through a special peripheral device
called a network card. The network card contains the circuits to communicate with other
computers via wired or wireless connections.

Definition 140

An 1/0 port consists of a set of metallic pins that are used to attach to connectors provided
by external devices. FEvery port is associated with a port controller that co-ordinates the
exchange of data on the communication link.

We give a special preference to a particular class of devices in this chapter known as storage
devices. Storage devices such as the hard disk, and flash drives help us permanently store data
even when the system is powered off. We looked at them briefly in Chapter [L1| while discussing
swap space. In this chapter, we shall study them in more detail, and look at the methods of
data storage, and retrieval. The reason we stress on storage devices in this chapter is because
they are integral to computer architecture. The nature of peripherals across computers varies.
For example, a given computer might have a microphone, whereas another computer might
not have a monitor because it is accessed remotely over the network. However, invariably all
computers from small handheld phones to large servers have some form of permanent storage.
This storage is used to save files, system configuration data, and the swap space during the
operation of a program. Hence, architects pay special attention to the design an optimisation
of storage systems, and no book in computer architecture is complete without discussing this
vital aspect of computer architecture.

13.1 I/O System — Overview

13.1.1 Overview

Let us now distance ourselves from the exact details of an I/O device. While designing a
computer system, it is not possible for designers to consider all possible types of I/O devices.
Even if they do, it is possible that a new class of devices might come up after the computer has
been sold. For example, tablet PCs such as the Apple iPad were not there in 2005. Nonetheless,
it is still possible to transfer data between an iPad and older PCs. This is possible because most
designers provide standard interfaces in their computer system. For example, a typical desktop
or laptop has a set of USB ports. Any device that is compliant with the USB specification can
be connected to the USB port, and can then communicate with the host computer. Similarly, it
is possible to attach almost any monitor or projector with any laptop computer. This is because
laptops have a generic DVI port that can be connected to any monitor. Laptop companies obey
their part of the DVI specification by implementing a DVI port that can seamlessly transfer
data between the processor and the port. On similar lines, monitor companies obey their part
of the DVI specification by ensuring that their monitors can seamlessly display all the data that
is being sent on the DVI port. Thus, we need to ensure that our computer provides support for

641 (© Smruti R. Sarangi

a finite set of interfaces with peripherals. It should then be possible to attach any peripheral
at run time.

The reader should note that just because it is possible to attach a generic I/O device by
implementing the specification of a port, it does not mean that the I/O device will work. For
example, we can always connect a printer to the USB port. However, the printer might not
be able to print a page. This is because, we need additional support at the software level to
operate the printer. This support is built into the printer device drivers in the operating system
that can efficiently transfer data from user programs to the printer.

Roles of Software and Hardware

We thus need to clearly differentiate between the roles of software and hardware. Let us first
look at software. Most operating systems define a very simple user interface for accessing 1/0
devices. For example, the Linux operating system has two system calls, read and write, with
the following specifications.

read(int file_descriptor, void *buffer, int num_bytes)
write(int file_descriptor, void *buffer, int num_bytes)

Linux treats all devices as files, and allots them a file descriptor. The file descriptor is the
first argument, and it specifies the id of the device. For example, the speaker has a certain file
descriptor, and a printer has a different file descriptor. The second argument points to an area
in memory that contains the source or destination of the data, and the last argument represents
the number of bytes that need to be transferred. From the point of view of an user, this is all
that needs to be done. It is the job of the operating system’s device drivers, and the hardware
to co-ordinate the rest of the process. This approach has proved to be an extremely versatile
method for accessing I/O devices.

Unfortunately, the operating system needs to do more work. For each I/O call it needs
to locate the appropriate device driver and pass on the request. It is possible that multiple
processes might be trying to access the same I/O device. In this case, the different requests
need to be properly scheduled.

The job of the device driver is to interface with native hardware and perform the desired
action. The device driver typically uses assembly instructions to communicate with the hard-
ware device. It first assesses its status, and if it is free, then it asks the peripheral device to
perform the desired action. The device driver initiates the process of transfer of data between
the memory system and the peripheral device.

Figure [13.2] encapsulates the discussion up till now. The upper part of the diagram shows
the software modules (application, operating system, device driver), and the lower part of the
diagram shows the hardware modules. The device driver uses I/O instructions to communicate
with the processor, and the processor then routes the commands to the appropriate I/O device.
When the I/O device has some data to send to the processor, it sends an interrupt, and then
the interrupt service routine reads the data, and passes it on to the application.

We summarised the entire 1/O process in just one paragraph. However, the reader should
note that this is an extremely complicated process, and entire books are devoted to the study
and design of device drivers. In this book, we shall limit our discussion to the hardware
part of the I/O system, and take a cursory look at the software support that is required. The

(© Smruti R. Sarangi 642

Application d Request
. = |||||’ Response
Operating
system Kernel
Software
Hardware

/O pmupl |0 (U™
device M System h

Figure 13.2: The I/O system (software and hardware)

important points of difference between the software and hardware components of the 1/O system
are enumerated in Point 211

Important Point 21
The role of software and hardware in the 1/0O system:

1. The software component of the 1/0 system consists of the application, and the operat-
ing system. The application is typically provided a very simple interface to access 1/0
devices. The role of the operating system is to collate the 1/0 requests from differ-
ent applications, appropriately schedule them, and pass them on to the corresponding
device drivers.

2. The device drivers communicate with the hardware device through special assembly
instructions. They co-ordinate the transfer of data, control, and status information
between the processor and the 1/0 devices.

3. The role of the hardware (processor, and associated circuitry) is to just act as a
messenger between the operating system, and the 1/0 devices, which are connected to
dedicated 1/0 ports. For example, if we connect a digital camera to an USB port,
then the processor is unaware of the details of the connected device. Its only role is
to ensure seamless communication between the device driver of the camera, and the
USB port that is connected to the camera.

4. It is possible for the 1/O device to initiate communication with the processor by send-
ing an interrupt. This interrupts the currently executing program, and invokes the
interrupt service routine. The interrupt service routine passes on control to the cor-
responding device driver. The device driver then processes the interrupt, and takes
appropriate action.

Let us now discuss the architecture of the hardware component of the I/O system in detail.

643

(© Smruti R. Sarangi

13.1.2 Requirements of the I/O System

Device Bus Technology Bandwidth | Typical Values
Video display via graphics card | PCI Express (version 4) High 1-10 GB/s

Hard disks ATA /SCST/SAS Medium | 150-600 MB/s
Network card (wired/wireless) | PCI Express Medium 10-100 MB/s

USB devices USB Medium 60-625 MB/s

DVD audio/video PCI Medium 1-4 MB/s
Speaker/Microphone AC’97/Intel High. Def. Audio | Low 100 KB/s to 3 MB/s
Keyboard/Mouse USB/PCI Very Low | 10-100 B/s

Table 13.1: List of I/O devices along with bandwidth requirements (as of 2012)

Let us now try to design the architecture of the I/O system. Let us start out by listing out
all the devices that we want to support, and their bandwidth requirements in Table The
component that requires the maximum amount of bandwidth is the display device (monitor,
projector, TV). It is attached to a graphics card. The graphics card contains the graphics
processor that processes image and video data.

Figure 13.3: Photograph of a network card This article uses material from the Wikipedia
article “Network Interface Controller” [nic, |, which is released under the Creative Commons
Attribution-Share-Alike License 3.0 [ccl, |

Note that we shall use the term card often in the discussion of I/O devices. A card is
a printed circuit board(PCB), which can be attached to the I/O system of a computer to

(© Smruti R. Sarangi 644

implement a specific functionality. For example, a graphics card helps us process images and
videos, a sound card helps us process high definition audio, and a network card helps us connect
to the network. The picture of a network card is shown in Figure We can see a set of chips
interconnected on a printed circuit board. There are a set of ports that are used to connect
external devices to the card.

Definition 141
A card is a printed circuit board(PCB), which can be attached to the 1/0 system of a
computer to implement a specific functionality.

Along with the graphics card, the other high bandwidth device that needs to be connected
to the CPU is the main memory. The main memory bandwidth is of the order of 10-20 GB/s.
Hence, we need to design an 1/O system that gives special treatment to the main memory and
the graphics card.

The rest of the devices have a relatively lower bandwidth. The bandwidth requirement of the
hard disk, USB devices, and the network card is limited to 500-600 MB/s. The keyboard, mouse,
CD-DVD drives, and audio peripherals have an extremely minimal bandwidth requirement
(< 3—4MB/s).

13.1.3 Design of the I/O System
I/O Buses

Let us take a look at Table again. We notice that there are different kinds of bus tech-
nologies such as USB, PCI Express, and SATA. Here, a bus is defined as a link between two
or more than two elements in the I/O system. We use different kinds of buses for connecting
different kinds of I/O devices. For example, we use the USB bus to connect USB devices such
as pen drives, and cameras. We use SATA or SCSI buses to connect to the hard disk. We need
to use so many different types of buses for several reasons. The first is that the bandwidth
requirements of different 1/O devices are very different. We need to use extremely high speed
buses for graphics cards. Whereas, for the keyboard, and mouse, we can use a significantly
simpler bus technology because the total bandwidth demand is minimal. The second reason is
historical. Historically, hard disk vendors have used the SATA or IDE buses, whereas graphics
card vendors have been using the AGP bus. After 2010, graphics card companies shifted to
using the PCI Express bus. Hence, due to a combination of factors, I/O system designers need
to support a large variety of buses.

Definition 142
A bus is a set of wires that is used to connect multiple devices in parallel. The devices can
use the bus to transmit data and control signals between each other.

645 (© Smruti R. Sarangi

Now, let us look deeper into the structure of a bus. A bus is much more than a set of copper
wires between two end points. It is actually a very complex structure and its specifications are
typically hundreds of pages long. We need to be concerned about its electrical properties, error
control, transmitter and receiver circuits, speed, power, and bandwidth. We shall have ample
opportunity to discuss high speed buses in this chapter. Every node (source or destination)
connected to a bus requires a bus controller to transmit and receive data. Although the design
of a bus is fairly complicated, we can abstract it as a logical link that seamlessly and reliably
transfers bytes from a single source to a set of destinations.

The Chipset and Motherboard

For designing the I/O system of a computer, we need to first provide external I/O ports that
consist of a set of metallic pins or sockets. These I/O ports can be used to attach external
devices. The reader can look at the side of her laptop or the back of her desktop to find the
set of ports that are supported by her computer. Each port has a dedicated port controller
that interfaces with the device, and then the port controller needs to send the data to the CPU
using one of the buses listed in Table [I3.1]

Here, the main design issue is that it is not possible to connect the CPU to each and every
I/O port through an I/O bus. There are several reasons for this.

1. If we connect the CPU to each and every 1/O port, then the CPU needs to have bus
controllers for every single bus type. This will increase the complexity, area, and power
utilisation of the CPU.

2. The number of output pins of a CPU is limited. If the CPU is connected to a host of
I/0O devices, then it requires a lot of extra pins to support all the I/O buses. Most CPUs
typically do not have enough pins to support this functionality.

3. From a commercial viewpoint, it is a good idea to separate the design of the CPU from
the design of the I/O system. It is best to keep both of them separate. This way, it is
possible to use the CPU in a large variety of computers.

Hence, most processors are connected to only a single bus, or at most 2 to 3 buses. We need
to use ancillary chips that connect the processor to a host of different I/O buses. They need to
aggregate the traffic from I/O devices, and properly route data generated by the CPU to the
correct I/O devices and vice versa. These extra chips comprise the chipset of a given processor.
The chips of the chipset are interconnected with each other on a printed circuit board known
as the motherboard.

Definition 143

Chipset These are a set of chips that are required by the main CPU to connect to main
memory, the I/0 devices, and to perform system management functions.

Motherboard All the chips in the chipset are connected to each other on a printed circuit
board, known as the motherboard.

(© Smruti R. Sarangi 646

Architecture of the Motherboard

Processor
Front side
bus
PCl express H d
Graphics bus_ [North Bridge
processor H chip
PCl express SATA
Network | ¢ bus_» [South Bridge] . bus « (e
card chip H

PCl express

Intel high
def. audio on
b
us a PCl bus

GusslusalusalussD Audio/ Mic
USB ports ports

Figure 13.4: Architecture of the I/O system

Most processors typically have two important chips in their chipset — North Bridge and
South Bridge — as shown in Figure The CPU is connected to the North Bridge chip using
the Front Side Bus (FSB). The North Bridge chip is connected to the DRAM memory modules,
the graphics card, and the South Bridge chip. In comparison, the South Bridge chip is meant to
handle much slower I/O devices. It is connected to all the USB devices including the keyboard
and mouse, audio devices, network cards, and the hard disk.

For the sake of completeness, let us mention two other common types of buses in computer
systems. The first type of bus is called a back side bus, which is used to connect the CPU to
the L2 cache. In the early days, processors used off chip L2 caches. They communicated with
them through the back side bus. Nowadays, the L2 cache has moved on chip, and consequently
the back side bus has also moved on chip. It is typically clocked at the core frequency, and is a
very fast bus. The second type of bus is known as a backplane bus. It is used in large computer
or storage systems that typically have multiple motherboards, and peripheral devices such as
hard disks. All these entities are connected in parallel to a single backplane bus. The backplane
bus itself consists of multiple parallel copper wires with a set of connectors that can be used to
attach devices.

647 (© Smruti R. Sarangi

Definition 144

Front side bus A bus that connects the CPU to the memory controller, or the North
Bridge chip in the case of Intel systems.

Back side bus A bus that connects the CPU to the L2 cache.

Backplane bus A system wide bus that is attached to multiple motherboards, storage, and
peripheral devices.

Both the North Bridge, and South Bridge chips need to have bus controllers for all the buses
that they are attached with. Each bus controller co-ordinates the access to its associated bus.
After successfully receiving a packet of data, it sends the packet to the destination (towards the
CPU, or the I/O device). Since these chips interconnect various types of buses, and temporarily
buffer data values if the destination bus is busy, they are known as bridges (bridge between
buses).

The memory controller is a part of the North Bridge chip and implements read/write re-
quests to main memory. In the last few years processor vendors have started to move the
memory controller into the main CPU chip, and also make it more complicated. Most of the
augmentations to the memory controller are focused on reducing main memory power, reducing
the number of refresh cycles, and optimising performance. Starting from the Intel Sandybridge
processor the graphics processor has also moved on chip. The reason for moving things into the
CPU chip is because (1) we have extra transistor’s available, and (2) on-chip communication
is much faster than off-chip communication. A lot of embedded processors also integrate large
parts of the South Bridge chip, and port controllers, along with the CPU in a single chip. This
helps in reducing the size of the motherboard, and allows more efficient communication between
the I/O controllers and the CPU. Such kind of systems are known as SOCs (System on Chip).

Definition 145

A system on a chip (SOC) typically packages all the relevant parts of a computing system
into one single chip. This includes the main processor, and most of the chips in the 1/0O
system.

13.1.4 Layers in the I/O System

Most complex architectures are typically divided into layers such as the architecture of the
internet. One layer is mostly independent of the other layer. Hence, we can choose to implement
it in any way we want, as long as it adheres to a standard interface. The I/O architecture of a
modern computer is also fairly complicated, and it is necessary to divide its functionality into
different layers.

(© Smruti R. Sarangi 648

We can broadly divide the functionality of the I/O system into four different layers. Note
that our classification of the functionality of an I/O system into layers is broadly inspired from
the 7 layer OSI model for classifying the functions of wide area networks into layers. We try to
conform as much as possible to the OSI model such that readers can relate our notion of layers
to concepts that they would study in a course on networking.

Physical Layer The physical layer of a bus primarily defines the electrical specifications of the
bus. It is divided into two sublayers namely the transmission sublayer and the synchro-
nisation sublayer. The transmission sublayer defines the specifications for transmitting a
bit. For example, a bus can be active high (logical 1, if the voltage is high), and another
bus can be active low (logical 1, if the voltage is zero). Today’s high speed buses use high
speed differential signalling. Here, we use two copper wires to transmit a single bit. A
logical 0 or 1 is inferred by monitoring the sign of the difference of voltages between the
two wires (similar to the concept of bit lines in SRAM cells). Modern buses extend this
idea and encode a logical bit using a combination of electrical signals. The synchronisa-
tion sublayer specifies the timing of signals, and methods to recover the data sent on the
bus by the receiver.

Data Link Layer The data link layer is primarily designed to process logical bits that are read
by the physical layer. This layer groups sets of bits into frames, performs error checking,
controls the access to the bus, and helps implement I/O transactions. In specific, it
ensures that at any point of time, only one entity can transmit signals on the bus, and it
implements special features to leverage common message patterns.

Network Layer This layer is primarily concerned with the successful transmission of a set of
frames from the processor to an I/O device or vice versa through various chips in the chip
set. We uniquely define the address of an 1/O device, and consider approaches to embed
the addresses of I/O devices in I/O instructions. Broadly we discuss two approaches —
I/0 port based addressing, and memory mapped addressing. In the latter case, we treat
accesses to I/O devices, as regular accesses to designated memory locations.

Protocol Layer The top most layer referred to as the protocol layer is concerned with execut-
ing I/O requests end to end. This includes methods for high level communication between
the processor, and the I/O devices in terms of the message semantics. For example, I/O
devices can interrupt the processor, or the processor can explicitly request the status
of each I/O device. Secondly, for transferring data between the processor and devices,
we can either transfer data directly or delegate the responsibility of transferring data to
dedicated chips in the chipset known as DMA controllers.

Figure summaries the 4 layered 1/O architecture of a typical processor.

13.2 Physical Layer — Transmission Sublayer

The physical layer is the lower most layer of the I/O system. This layer is concerned with the
physical transmission of signals between the source and receiver. Let us divide the physical
layer into two sublayers. Let us call the first sublayer as the transmission sublayer because it

649 (© Smruti R. Sarangi

Protocol layer

Network layer

Data link layer

CTransmissiorD @ynchronisati@

Physical layer

Figure 13.5: The 4 layers of the I/O system

deals with the transmission of bits from the source to the destination. This layer is concerned
with the electrical properties of the links (voltage, resistance, capacitance), and the methods of
representing a logical bit (0 or 1) using electrical signals.

Let us refer to the second sublayer as the synchronisation sublayer. This sublayer is con-
cerned with reading an entire frame of bits from the physical link. Here, a frame is defined
as a group of bits demarcated by special markers. Since I/O channels are plagued with jitter
(unpredictable signal propagation time), it is necessary to properly synchronise the arrival of
data at the receiver, and read each frame correctly.

In this section, we shall discuss the transmission sublayer. We shall discuss the synchroni-
sation sublayer in the next section.

Note that the reason that we create multiple sublayers, instead of creating multiple layers
is because sublayers need not be independent of each other. However, in general layers should
be independent of each other. It should be theoretically possible to use any physical layer, with
any other data link layer protocol. They should ideally be completely oblivious of each other.
In this case, the transmission and synchronisation sublayers have strong linkages, and thus it
is not possible to separate them into separate layers.

I/0O Link

Transmitter Receiver

Figure 13.6: A generic view of an I/0 link

Figure[13.6]shows the generic view of an I/O link. The source (transmitter) sends a sequence
of bits to the destination (receiver). At the time of transmission, the data is always synchronised
with respect to the clock of the source. This means that if the source runs at 1 GHz, then it

(© Smruti R. Sarangi 650

sends bits at the rate of 1 GHz. Note that the frequency of the source is not necessarily equal
to the frequency of the processor, or I/O element that is sending the data. The transmission
circuitry, is typically a separate submodule, which has a clock that is derived from the clock of
the module that it is a part of. For example, the transmission circuitry of a processor might
be transmitting data at 500 MHz, whereas the processor might be running at 4 GHz. In any
case, we assume that the transmitter transmits data at its internal clock rate. This clock rate
is also known as the frequency of the bus, or bus frequency , and this frequency is in general
lower than the clock frequency of the processors, or other chips in the chipset. The receiver can
run at the same frequency, or can use a faster frequency. Unless explicitly stated, we do not
assume that the source and destination have the same frequency. Lastly, note that we shall use
the terms sender, source, and transmitter interchangeably. Likewise, we shall use the terms
destination, and receiver interchangeably.

13.2.1 Single Ended Signalling

Let us consider a naive approach, where we send a sequence of 1s and 0s, by sending a sequence
of pulses from the source to the destination. This method of signalling is known as single ended
signalling, and it is the simplest approach.

In specific, we can associate a high voltage pulse with a 1, and a low voltage pulse with a
0. This convention is known as active high. Alternatively, we can associate a low voltage pulse
with a logical 1, and a high voltage pulse with a logical 0. Conversely, this convention is known
as active low. Both of these conventions are shown in Figure

Sadly, both of these methods are extremely slow and outdated. Recall from our discussion of
SRAM cells in Section that a fast I/O bus needs to reduce the voltage difference between
a logical 0, and 1 to as low a value as possible. This is because the voltage difference is detected
after it has charged the detector that has an internal capacitance. The higher the voltage
required, the longer it takes to charge the capacitors. If the voltage difference is 1 Volt, then
it will take a long time to detect a transition from 0 to 1. This will limit the speed of the bus.
However, if the voltage difference is 30 mV, then we can detect the transition in voltage much
sooner, and we can thus increase the speed of the bus.

Hence, modern bus technologies try to minimise the voltage difference between a logical 0
and 1 to as low a value as possible. Note that we cannot arbitrarily reduce the voltage difference
between a logical 0 and 1, in the quest for increasing bus speed. For example, we cannot make
the required voltage difference 0.001 mV. This is because there is a certain amount of electrical
noise in the system that is introduced due to several factors. Readers might have noticed that
if a cell phone starts ringing when the speakers of a car or computer are on, then there is some
amount of noise in the speakers also. If we take a cell phone close to a microwave oven while it is
running, then there is a decrease in the sound quality of the cell phone. This happens because of
electromagnetic interference. Likewise there can be electromagnetic interference in processors
also, and voltage spikes can be introduced. Let us assume that the maximum amplitude of such
voltage spikes is 20 mV. Then the voltage difference between a 0 and 1, needs to be more than
20 mV. Otherwise, a voltage spike due to interference can flip the value of a signal leading to
an error. Let us take a brief look at one of the most common technologies for on-chip signalling
namely LVDS.

651 (© Smruti R. Sarangi

copnnnnnnihhhh

ODDOODO D!

(a) Active high signalling

@Hlllllllllﬂmmm
@5@ @@@@@@@@

(b) Active low signalling

Figure 13.7: Active High and Active Low Signalling Methods

13.2.2 Low Voltage Differential Signalling (LVDS)

LVDS uses two wires to transmit a single signal. The difference between the voltages of these
wires is monitored. The value transferred is inferred from the sign of the voltage difference.

The basic LVDS circuit is shown in Figure There is a fixed current source of 3.5 mA.
Depending on the value of the input A, the current flows to the destination through either line
1 or line 2. For example, if A is 1, then the current flows through line 1 since transistor T'1
starts conducting, whereas T is off. In this case, the current reaches the destination, passes
through the resistor R4, and then flows back through line 2. Typically the voltage of both
the lines when no current is flowing is maintained at 1.2 V. When current flows through them,
there is a voltage swing. The voltage swing is equal to 3.5 mA times R;. Ry is typically 100
Ohms. Hence, the total differential voltage swing is 350 mV. The role of the detector is to sense
the sign of the voltage difference. If it is positive, it can declare a logical 1. Otherwise, it can
declare a logical 0. Because of the low swing voltage (350 mV), LVDS is a very fast physical
layer protocol.

(© Smruti R. Sarangi 652

Op amp

Figure 13.8: LVDS Circuit

13.2.3 Transmission of Multiple Bits

Let us now consider the problem of transmitting multiple bits in sequence. Most I/O channels
are not busy all the time. They are busy only when data is being transmitted, and thus their
duty cycle (percentage of time that a device is in operation) tends to be highly variable, and
most of the time it is not very high. However, detectors are on almost all the time and they
keep sensing the voltage of the bus. This can have implications on both power consumption and
correctness. Power is an issue because the detectors keep sensing either a logical 1 or 0 every
cycle, and it thus becomes necessary for the higher level layers to process the data. To avoid
this, most systems typically have an additional line that indicates if the data bits are valid or
invalid. This line is traditionally known as the strobe. The sender can indicate the period of the
validity of data to the receiver by setting the value of the strobe. Again, it becomes necessary
to synchronise the data lines and the strobe. This is getting increasingly difficult for high speed
I/O buses, because it is possible that signals on the data lines, and the strobe can suffer from
different amounts of delay. Hence, there is a possibility that both the lines might move out of
synchronisation. It is thus a better idea to define three types of signals — zero, one, and idle.
Zero and one refer to the transmission of a logical 0 and 1 on the bus. However, the idle state
refers to the fact that no signal is being transmitted. This mode of signalling is also known as
ternary signalling because we are using three states.

Definition 146
Ternary signalling refers to a convention that uses three states for the transmission of signals
— one (logical one), zero (logical zero), and idle (no signal).

We can easily implement ternary signalling with LVDS. Let us refer to the wires in LVDS,

653 (© Smruti R. Sarangi

as A and B respectively. Let V4 be the voltage of line A. Likewise, let us define the term, Vp. If
| V4 — Vg |< 7, where 7 is the detection threshold, then we infer that the lines are idle, and we
are not transmitting anything. However, if V4 — Vg > 7, we conclude that we are transmitting
a logical 1. Similarly, if Vp — V4 > 7, we conclude that we are transmitting a logical 0. We
thus do not need to make any changes to our basic LVDS protocol.

Let us now describe a set of techniques that are optimised for transmitting multiple bits in
the physical layer. We present examples that use ternary signalling. Some of the protocols can
also be used with simple binary signalling (zero and one state) also.

13.2.4 Return to Zero (RZ) Protocols

In this protocol we transmit a pulse (positive or negative), and then pause for a while in a
bit period. Here, we define the bit period as the time it takes to transmit a bit. Most I/O
protocols assume that the bit period is independent of the value of the bit (0 or 1) that is
being transmitted. Typically, a 1-bit period is equal to the length of one I/O clock cycle.
The I/O clock is a dedicated clock that is used by the elements of the I/O system. We shall
interchangeably use the terms clock cycle, and bit period, where we do not wish to emphasise a
difference between the terms.

Definition 147

bit period The time it takes to transfer a single bit over a link.

I/0 clock We assume that there is a dedicated 1/O clock in our system that is typically
synchronised with the processor clock. The I/O clock is slower than the processor
clock, and is used by elements of the I/O subsystem.

In the RZ protocol, if we wish to transmit a logical 1, then we send a positive voltage pulse
on the link for a fraction of a bit period. Subsequently, we stop transmitting the pulse, and
ensure that the voltage on the link returns to the idle state. Similarly, while transmitting a
logical 0, we send a negative voltage pulse along the lines for a fraction of a cycle. Subsequently,
we wait till the line returns to the idle state. This can be done by allowing the capacitors to
discharge, or by applying a reverse voltage to bring the lines to the idle state. In any case, the
key point here is that while we are transmitting, we transmit the actual value for some part
of the bit period, and then we allow the lines to fall back to the default state, which in our
discussion we have assumed to be the idle state. We shall see that returning to the idle state
helps the receiver circuitry synchronise with the clock of the sender, and thus read the data
correctly. The implicit assumption here is that the sender sends out one bit every cycle (sender
cycle). Note that the clock period of the sender and the receiver may be different. We shall
take a look at such timing issues in Section [13.4]

Figure shows an example of the RZ protocol with ternary signalling. If we were to use
binary signalling, then we can have an alternative scheme as follows. We could transmit a short
pulse in a cycle for a logical 1, and not transmit anything for a logical 0. Here, the main issue

(© Smruti R. Sarangi 654

Figure 13.9: Return to zero (RZ) protocol (example)

is to figure out if a logical 0 is being sent or not by taking a look at the length of the pause
after transmitting a logical 1. This requires complicated circuitry at the end of the receiver.

Nevertheless, a major criticism of the RZ (return to zero) approaches is that it wastes
bandwidth. We need to introduce a short pause (period of idleness) after transmitting a logical
0 or 1. It turns out that we can design protocols that do not have this limitation.

13.2.5 Manchester Encoding

Before proceeding to discuss Manchester encoding, let us differentiate between a physical bit,
and a logical bit. Up till now we have assumed that they mean the same thing. However,
this will cease to be true from now onwards. A physical bit such as a physical one or zero, is
representative of the voltage across a link. For example, in an active high signalling method,
a high voltage indicates that we are transmitting the bit, 1, and a low voltage (physical bit 0)
indicates that we are transmitting the 0 bit. However, this ceases to be the case now because we
assume that a logical bit (logical 0 or 1) is a function of the values of physical bits. For example,
we can infer a logical 0, if the current and the previous physical bit are equal to 10. Likewise,
we can have a different rule for inferring a logical 1. It is the job of the receiver to translate
physical signals (or rather physical bits), into logical bits, and pass them to the higher layers of
the I/O system. The next layer (data link layer discussed in Section |13.4)) accepts logical bits
from the physical layer. It is oblivious to the nature of the signalling, and the connotations of
physical bits transmitted on the link.

Let us now discuss one such mechanism known as Manchester encoding. Here, we encode
logical bits as a transition of physical bits. Figure shows an example. A 0 — 1 transition
of physical bits encodes a logical 1, and conversely a 1 — 0 transition of physical bits encodes
a logical 0.

A Manchester code always has a transition to encode data. Most of the time at the middle
of a bit period, we have a transition. If there is no transition, we can conclude that no signal
is being transmitted and the link is idle. One advantage of Manchester encoding is that it is
easy to decode the information that is sent on the link. We just need to detect the nature of
the transition. Secondly, we do not need external strobe signals to synchronise the data. The

655 (© Smruti R. Sarangi

©

i
o
Q
1
1:
T_

Figure 13.10: Manchester code (example)

data is said to be self clocked. This means that we can extract the clock of the sender from the
data, and ensure that the receiver reads in data at the same speed at which it is sent by the
sender.

Definition 148

A self clocked signal allows the receiver to extract the clock of the sender by examining the
transition of the physical bits in the signal. If there are periodic transitions in the signal,
then the period of these transitions is equal to the clock period of the sender, and thus the
recetver can read in data at the speed at which it is sent.

Manchester encoding is used in the IEEE 802.3 communication protocol that forms the
basis of today’s Ethernet protocol for local area networks. Critics argue that since every logical
bit is associated with a transition, we unnecessarily end up dissipating a lot of power. Every
single transition requires us to charge/discharge a set of capacitors associated with the link,
the drivers, and associated circuitry. The associated resistive loss is dissipated as heat. Let us
thus try to reduce the number of transitions.

13.2.6 Non Return to Zero (NRZ) Protocol

Here, we take advantage of a run of 1s and 0s. For a transmitting a logical 1, we set the voltage
of the link equal to high. Similarly, for transmitting a logical 0, we set the voltage of the link
to low. Let us now consider a run of two 1 bits. For the second bit, we do not induce any
transitions in the link, and we maintain the voltage of the link as high. Similarly, if we have a
run of n 0s. Then for the last (n — 1) Os we maintain the low voltage of the link, and thus we
do not have transitions. Figure shows an example. We observe that we have minimised
the number of transitions by completely avoiding voltage transitions when the value of the
logical bit that needs to be transmitted remains the same. This protocol is fast because we are

(© Smruti R. Sarangi 656

i

Figure 13.11: Non return to zero protocol (example)

not wasting any time (such as the RZ protocols), and is power efficient because we eliminate
transitions for a run of the same bit (unlike RZ and Manchester codes).

However, the added speed and power efficiency comes at the cost of complexity. Let us
assume that we want to transmit a string of hundred 1s. In this case, we will have a transition
only for the first and last bit. Since the receiver does not have the clock of the sender, it has
no way of knowing the length of a bit period. Even if the sender and receiver share the same
clock, due to delays induced in the link, the receiver might conclude that we have a run of
99 or 101 bits with a non-zero probability. Hence, we have to send additional synchronisation
information such that the receiver can properly read all the data that is being sent on the link.

13.2.7 Non Return to Zero (NRZI) Inverted Protocol

This is a variant of the NRZ protocol. Here, we have a transition from 0 to 1, or 1 to 0, when
we wish to encode a logical 1. For logical Os, there are no transitions. Figure [13.12| shows an
example.

(Coco T UL
OODD®

@@@@@@

1
1
L
1
1
1
1
1
1
1

Figure 13.12: Non return to zero inverted protocol (example)

657 (© Smruti R. Sarangi

13.3 Physical Layer — Synchronisation Sublayer

The transmission sublayer ensures that a sequence of pulses is successfully sent from the trans-
mitter to either one receiver, or to a set of receivers. However, this is not enough. The receiver
needs to read the signal at the right time, and needs to assume the correct bit period. If it reads
the signal too early or too late, then it risks getting the wrong value of the signal. Secondly, if
it assumes the wrong values of the bit period, then the NRZ protocol might not work. Hence,
there is a need to maintain a notion of time between the source and destination. The destina-
tion needs to know exactly when to transfer the value into a latch. Let us consider solutions
for a single source and destination. Extending the methods to a set of destinations is left as an
exercise to the reader.

To summarise, the synchronisation sublayer receives a sequence of logical bits from the
transmission sublayer without any timing guarantees. It needs to figure out the values of the
bit periods, and read in an entire frame (a fixed size chunk) of data sent by the sender, and
send it to the data link layer. Note that the actual job of finding out the frame boundaries,
and putting sets of bits in a frame is done by data link layer.

13.3.1 Synchronous Buses
Simple Synchronous Bus

Let us first consider the case of a synchronous system where the sender and the receiver share
the same clock, and it takes a fraction of a cycle to transfer the data from the sender to the
receiver. Moreover, let us assume that the sender is transmitting all the time. Let us call this
system a simple synchronous bus.

In this case, the task of synchronising between the sender and receiver is fairly easy. We
know that data is sent at the negative edge of a clock, and in less than a cycle it reaches the
receiver. The most important issue that we need to avoid is metastability (see Section [7.3.8).
A flip flop enters a metastable state when the data makes a transition within a small window
of time around the negative edge of the clock. In specific, we want the data to be stable for
an interval known as the setup time before the clock edge, and the data needs to be stable for
another interval known as the hold time after the clock edge. The interval comprising of the
setup and hold intervals, is known as the keep-out region of the clock as defined in Section
and |Dally and Poulton, 1998].

In this case, we assume that the data reaches the receiver in less than t.; — tserup units of
time. Thus, there are no metastability issues, and we can read the data into a flip-flop at the
receiver. Since digital circuits typically process data in larger chunks (bytes or words), we use
a serial in — parallel out register at the receiver. We serially read in n bits, and read out an
n-bit chunk in one go. Since the sender and the receiver clocks are the same, there is no rate
mismatch. The circuit for the receiver is shown in Figure

Mesochronous Bus

In a mesochronous system, the phase difference between the signal and the clock is a constant.
The phase difference can be induced in the signal because of the propagation delay in the link,
and because there might be a phase difference in the clocks of the sender and the receiver. In

(© Smruti R. Sarangi 658

1/0 link

Ny !

Figure 13.13: The receiver of a simple synchronous bus

this case, it is possible that we might have a metastability issue because the data might arrive
in the crucial keep-out region of the receiver clock.

Hence, we need to add a delay element that can delay the signal by a fixed amount of time
such that there are no transitions in the keep-out region of the receiver clock. The rest of the
circuit remains the same as that used for the simple synchronous bus. The design of the circuit

is shown in Figure [13.14]

I/O Link¢ >D O

Tunable delay
element

iy !

Figure 13.14: The receiver of a mesochronous bus

A delay element can be constructed by using a delay locked loop (DLL). DLLs can have
different designs and some of them can be fairly complex. A simple DLL consists of a chain of
inverters. Note that we need to have an even number of inverters to ensure that the output is
equal to the input. To create a tunable delay element, we can tap the signals after every pair of
inverters. These signals are logically equivalent to the input, but have a progressive phase delay
due to the propagation delay of the inverters. We can then choose the signal with a specific
amount of phase delay by using a multiplexer.

Plesiochronous Bus*

Let us now consider a more realistic scenario. In this case the clocks of the sender and receiver
might not exactly be the same. We might have a small amount of clock drift. We can assume
that over a period of tens or hundreds of cycles it is minimal. However, we can have a couple
cycles of drift over millions of cycles. Secondly, let us assume that the sender does not transmit
data all the time. There are idle periods in the bus. Such kind of buses are found in server
computers where we have multiple motherboards that theoretically run at the same frequency,
but do not share a common clock. There is some amount of clock drift (around 200 ppm [Dally

659 (© Smruti R. Sarangi

and Poulton, 1998]) between the processors when we consider timescales of the order of millions
of cycles.

Let us now make some simplistic assumptions. Typically a given frame of data contains
100s or possibly 1000s of bits. We need not worry about clock drift when we are transmitting
a few bits (< 100). However, for more bits (> 100), we need to periodically resynchronise the
clocks such that we do not miss data. Secondly, ensuring that there are no transitions in the
keep-out region of the receiver’s clock is a non-trivial problem.

To solve this problem, we use an additional signal known as the strobe that is synchronised
with the sender’s clock. We toggle a strobe pulse at the beginning of the transmission of a
frame (or possibly a few cycles before sending the first data bit). We then periodically toggle
the strobe pulse once every n cycles. In this case, the receiver uses a tunable delay element.
It tunes its delay based on the interval between the time at which it receives the strobe pulse,
and the clock transition. After sending the strobe pulse for a few cycles, we start transmitting
data. Since the clocks can drift, we need to readjust or retune the delay element. Hence, it is
necessary to periodically send strobe pulses to the receiver. We show a timing diagram for the
data and the strobe in Figure

cognnnnihahhhl

(Strobe) _i/

T

Figure 13.15: The timing diagram of a plesiochronous bus

Similar to the case of the mesochronous bus, every n cycles the receiver can read out all the
n bits in parallel using a serial in — parallel out register. The circuit for the receiver is shown
in Figure [I3.16] We have a delay calculator circuit that takes the strobe and the receiver clock
(rclk) as input. Based on the phase delay, it tunes the delay element such that data from the
source arrives at the middle of the receiver’s clock cycle. This needs to be done because of the
following reason. Since the sender and receiver clock periods are not exactly the same, there
can be an issue of rate mismatch. It is possible that we might get two valid data bits in one
receiver clock cycle, or get no bits at all. This will happen, when a bit arrives towards the
beginning or end of a clock cycle. Hence, we want to ensure that bits arrive at the middle of a
clock cycle. Additionally, there are also metastability avoidance issues.

Sadly, the phase can gradually change and bits might start arriving at the receiver at the
beginning of a clock cycle. It can then become possible to receive two bits in the same cycle.
In this case, dedicated circuitry needs to predict this event, and a priori send a message to the
sender to pause sending bits. Meanwhile, the delay element should be retuned to ensure that

(© Smruti R. Sarangi 660

bits arrive at the middle of a cycle.

1/O link

Tunable delay
Strobe fement /\

k| Delaycalculator| rclk 4

_ to sender

Figure 13.16: The receiver of a plesiochronous bus

13.3.2 Source Synchronous Bus*

Sadly, even plesiochronous buses are hard to manufacture. We often have large and unpre-
dictable delays while transmitting signals, and even ensuring tight clock synchronisation is
difficult. For example, the AMD hypertransport [Consortium et al., 2006] protocol that is used
to provide a fast I/O path between different processors on the same motherboard does not as-
sume synchronised or plesiosynchronised clocks. Secondly, the protocol assumes an additional
jitter (unpredictability in the signal propagation time) of up to 1 cycle.

In such cases, we need to use a more complicated strobe signal. In a source synchronous
bus, we typically send the sender clock as the strobe signal. The main insight is that if delays
are introduced in the signal propagation time, then the signal and the strobe will be equally
affected. This is a very realistic assumption, and thus most high performance I/O buses use
source synchronous buses as of 2013. The circuit for a source synchronous bus is again not
very complicated. We clock in data to the serial in — parallel out register using the clock of the
sender (sent as the strobe). It is referred to as zclk. We read the data out using the clock of the
receiver as shown in Figure As a rule whenever a signal travels across clock boundaries
we need a tunable delay element to keep transitions out of the keep-out region. We thus have
a delay calculator circuit that computes the parameters of the delay element depending upon

the phase difference between the sender clock received as a strobe (xzclk), and the receiver clock
(rclk).

Note that it is possible to have multiple parallel data links such that a set of bits can be
sent simultaneously. All the data lines can share the strobe that carries the synchronising clock
signal.

661 (© Smruti R. Sarangi

Y

1/0 link
/O lin >D Q
xclk

/\

rclk !

Tunable delay
— > Delay calculator —»& element
to receiver

rclk /;r\

Figure 13.17: The receiver of a source synchronous bus

13.3.3 Asynchronous Buses

Clock Detection and Recovery*

Now, let us consider the most general class of buses known as asynchronous buses. Here, we
do not make any guarantees regarding the synchronisation of the clocks of the sender and the
receiver. Nor, do we send the clock of the sender along with the signal. It is the job of the
receiver, to extract the clock of the sender from the signal, and read the data in correctly. Let
us take a look at the circuit for reading in the data as shown in Figure

I/0 Link D Q

Clock recovery

CirCUit Tunable delay
Delay calculator element
.
relk to recelver

D Qf—

rclk /¢\

Figure 13.18: The receiver circuit in an asynchronous bus

For the sake of explanation, let us assume that we use the NRZ method of encoding bits.
Extending the design to other kinds of encodings is fairly easy, and we leave it as an exercise for
the reader. The logical bit stream passed on by the transmission sublayer is sent to the first D

(© Smruti R. Sarangi 662

flip-flop, and simultaneously to the clock detector and recovery circuit. These circuits examine
the transitions in the I/O signal and try to guess the clock of the sender. Specifically, the clock
recovery circuit contains a PLL (phase locked loop). A PLL is an oscillator that generates a
clock signal, and tries to adjust its phase and frequency such that it is as close as possible to
the sequence of transitions in the input signal. Note that this is a rather involved operation.

In the case of the RZ or Manchester encodings, we have periodic transitions. Hence, it
is easier to synchronise the PLL circuits at the receiver. However, for the NRZ encoding, we
do not have periodic transitions. Hence, it is possible that the PLL circuits at the receiver
might fall out of synchrony. A lot of protocols that use the NRZ encoding (notably the USB
protocol) insert periodic transitions or dummy bits in the signal to resynchronise the PLLs at
the receiver. Secondly, the PLL in the clock recovery circuit also needs to deal with the issue of
long periods of inactivity in the bus. During this time, it can fall out of synchronisation. There
are advanced schemes to ensure that we can correctly recover the clock from an asynchronous
signal. These topics are taught in advanced courses in communication, and digital systems. We
shall only take a cursory look in this chapter, and assume that the clock recovery circuit does
its job correctly.

We connect the output of the clock detection and recovery circuit to the clock input of the
first D flip-flop. We thus clock in data according to the sender’s clock. To avoid metastability
issues we introduce delay elements between the two D flip-flops. The second D flip-flop is in
the receiver’s clock domain. This part of the circuit is similar to that of source synchronous
buses.

Note that in the case of ternary signalling, it is easy to find out when a bus is active (when
we see a physical 0 or 1 on the bus). However, in the case of binary signalling, we do not know
when the bus is active, because in principle we have a 0 or 1 bit being transmitted all the time.
Hence, it is necessary to use an additional strobe signal to indicate the availability of data. Let
us now look at protocols that use a strobe signal to indicate the availability of data on the
bus. The strobe signals can also be optionally used by ternary buses to indicate the beginning
and end of an I/O request. In any case, the reader needs to note that both the methods that
we present using strobe signals are rather basic, and have been superseded by more advanced
methods.

Asynchronous Communication with Strobe Signals

Let us assume that the source wishes to send data to the destination. It first places data on
the bus, and after a small delay sets (sets to 1) the strobe as shown in the timing diagram
in Figure This is done to ensure that the data is stable on the bus before the receiver
perceives the strobe to be set. The receiver immediately starts to read data values. Till the
strobe is on, the receiver continues to read data, places it in a register, and transfers chunks of
data to higher layers. When the source decides to stop sending data, it resets (sets to 0) the
strobe. Note that timing is important here. We typically reset the strobe just before we cease
sending data. This needs to be done because we want the receiver to treat the contents of the
bus after the strobe is reset as the last bit. In general, we want the data signal to hold its value
for some time after we have read it (for metastability constraints).

663 (© Smruti R. Sarangi

(Pate)—)
/ -

Figure 13.19: Timing diagram of a strobe based asynchronous communication system

Asynchronous Communication with Handshaking (4 Phase)

Note that in simple asynchronous communication with strobe signals the source has no way of
knowing if the receiver has read the data. We thus introduce a handshaking protocol where the
source is explicitly made aware of the fact that the receiver has read all its data. The associated
timing diagram is shown in Figure

(Data)——()—H)~

\ \
YagVa

Figure 13.20: Timing diagram of a strobe based asynchronous communication system with
handshaking

At the outset, the sender places data on the bus, and then sets the strobe. The receiver
begins to read data off the bus, as soon as it observes the strobe to be set. After it has read
the data, it sets the ack line to 1. After the transmitter observes the ack line set to 1, it can be
sure of the fact that the receiver has read the data. Hence, the transmitter resets the strobe,
and stops sending data. When the receiver observes that the strobe has been reset, it resets
the ack line. Subsequently, the transmitter is ready to transmit again using the same sequence
of steps.

This sequence of steps ensures that the transmitter is aware of the fact that the receiver
has read the data. Note that this diagram makes sense when the receiver can ascertain that
it has read all the data that the transmitter wished to transmit. Consequently, designers
mostly use this protocol for transmitting single bits. In this case, after the receiver has read
the bit, it can assert the ack line. Secondly, this approach is also more relevant for the RZ
and Manchester coding approaches because the transmitter needs to return to the default state
before transmitting a new bit. After it receives the acknowledgement, the transmitter can begin
the process of returning to the default state, as shown in Figure

To transmit multiple bits in parallel, we need to have a strobe for each data line. We can

(© Smruti R. Sarangi 664

however, have a common acknowledgement line. We need to set the ack signal when all the
receivers have read their bits, and we need to reset the ack line, when all the strobe lines have
been reset. Lastly, let us note that there are four separate events in this protocol (as shown in
the diagram). Hence, this protocol is known as a 4-phase handshake protocol.

Asynchronous Communication with Handshaking (2 Phase)

If we are using the NRZ protocols, then we do not need to return to the default state. We can
immediately start transmitting the next bit after receiving the acknowledgement. However, in
this case, we need to slightly change the semantics of the strobe and acknowledgement signals.
Figure shows the timing diagram.

() — (D
W

Figure 13.21: Timing diagram of a strobe based asynchronous communication system with
2-phase handshaking

In this case, after placing the data on the bus, the transmitter toggles the value of the
strobe. Subsequently, after reading the data, the receiver toggles the value of the ack line.
After the transmitter detects that the ack line has been toggled, it starts transmitting the next
bit. After a short duration, it toggles the value of the strobe to indicate the presence of data.
Again, after reading the bit, the receiver toggles the ack line, and the protocol thus continues.
Note that in this case, instead of setting and resetting the ack and strobe lines, we toggle them
instead. This reduces the number of events that we need to track on the bus. However, this
requires us to keep some additional state at the side of the sender and the receiver. This a
negligible overhead. Our 4-phase protocol thus gets significantly simplified. The NRZ protocols
are more amenable to this approach because they have continuous data transmission, without
any intervening pause periods.

Definition 149

Simple Synchronous Bus A simple synchronous bus that assumes that the transmitter
and the receiver share the same clock, and there is no skew (deviation) between the
clocks.

Mesochronous Bus Here, the transmitter and receiver have the same clock frequency, but
there can be a phase delay between the clocks.

665 (© Smruti R. Sarangi

Plesiochronous Bus In a plesiochronous bus, there is a small amount of mismatch be-
tween the frequencies of the clocks of the transmitter and receiver.

Source Synchronous Bus In a source synchronous bus, there is no relationship between
the clocks of the transmitter and receiver. Consequently, we send the clock of the
transmitter to the receiver along with the message, such that it can use it to sample
the bits in the message.

Asynchronous Bus An asynchronous bus does not assume any relationship between the
clocks of the transmitter and receiver. It typically has sophisticated circuitry to recover
the clock of the transmitter by analysing the voltage transitions in the message.

13.4 Data Link Layer

Now, we are ready to discuss the data link layer. The data link layer gets sequences of logical
bits from the physical layer. If the width of the serial in — parallel out register is n bits,
then we are guaranteed to get n bits at one go. The job of the data link layer is to break
the data into frames, and buffer frames for transmission on other outgoing links. Secondly, it
performs rudimentary error checking and correction. It is possible that due to electromagnetic
interference, errors might be induced in the signal. For example, a logical 1 might flip to a
logical 0, and vice versa. It is possible to correct such single bit errors in the data link layer.
If there are a lot of errors, and it is not possible to correct the errors, then at this stage, the
receiver can send a message to the transmitter requesting for a retransmission. After error
checking the frame is ready to be forwarded on another link if required.

It is possible that multiple senders might be trying to access a bus at the same time. In
this case, we need to arbitrate between the requests, and ensure that only one sender can send
data at any single point of time. This process is known as arbitration, and is also typically
performed in the data link layer. Lastly, the arbitration logic needs to have special support for
handling requests that are part of a transaction. For example, the bus to the memory units
might contain a load request as a part of a memory transaction. In response, the memory unit
sends a response message containing the contents of the memory locations. We need a little bit
of additional support at the level of the bus controller to support such message patterns.

To summarise the data link layer breaks data received from the physical layer into frames,
performs error checking, manages the bus by allowing a single transmitter at a single time, and
optimises communication for common message patterns.

13.4.1 Framing and Buffering

The processing in the data link layer begins by reading sets of bits from the physical layer.
We can either have one serial link, or multiple serial links that transmit bits simultaneously.
A set of multiple serial links is known as a parallel link. In both cases, we read in data, save
them in serial in — parallel out shift registers, and send chunks of bits to the data link layer.
The role of the data link layer is to create frames of bits from the values that it gets from the

(© Smruti R. Sarangi 666

physical layer. A frame might be one byte for links that transfer data from the keyboard and
mouse, and might be as high as 128 bytes for links that transfer data between the processor
and the main memory, or the main memory and the graphics card. In any case, the data link
layer for each bus controller is aware of the frame size. The main problem is to demarcate the
boundaries of a frame.

Demarcation by Inserting Long Pauses Between two consecutive frames, the bus con-
troller can insert long pauses. By examining, the duration of these pauses, the receiver
can infer frame boundaries. However, because of jitter in the I/O channel, the duration
of these pauses can change, and new pauses can be introduced. This is not a very reliable
method and it also wastes valuable bandwidth.

Bit Count We can fix the number of bits in a frame a priori. We can simply count the number
of bits that are sent, and declare a frame to be over once the required number of bits have
reached the receiver. However, the main issue is that sometimes pulses can get deleted
because of signal distortion, and it is very easy to go out of synchronisation.

Bit/Byte Stuffing This is the most flexible approach and is used in most commercial imple-
mentations of I/O buses. Here, we use a pre-specified sequence of bits to designate the
start and end of a frame. For example, we can use the pattern 0OxDEADBEEF to indicate
the start of a frame, and 0x12345678 to indicate the end of a frame. The probability that
any 32-bit sequence in the frame will match the special sequences at the start and end
is very small. The probability is equal to 2732, or 2.5e — 10. Sadly, the probability is
still non zero. Hence, we can adopt a simple solution to solve this problem. If the se-
quence, 0xDEADBEEF appears in the content of the frame, then we add 32 more dummy
bits and repeat this pattern. For example, the bit pattern 0OxDEADBEEF gets replaced
with OxDEADBEEFDEADBEEF. The link layer of the receiver can find out that the
pattern repeats an even number of times. Half of the bits in the pattern are a part of
the frame, and the rest are dummy bits. The receiver can then proceed to remove the
dummy bits. This method is flexible because it can be made very resilient to jitter and
reliability problems. These sequences are also known as commas.

Once, the data link layer creates a frame, it sends it to the error checking module, and also
buffers it.

13.4.2 Error Detection and Correction

Errors can get introduced in signal transmission for a variety of reasons. We can have external
electromagnetic interference due to other electronic gadgets operating nearby. Readers would
have noticed a loss in the voice quality of a mobile phone after they switch on an electronic
gadget such as a microwave oven. This happens because electromagnetic waves get coupled to
the copper wires of the I/O channel and introduce current pulses. We can also have additional
interference from nearby wires (known as crosstalk), and changes in the transmission delay of a
wire due to temperature. Cumulatively, interference can induce jitter (introduce variabilities in
the propagation time of the signal), and introduce distortion (change the shape of the pulses).
We can thus wrongly interpret a 0 as a 1, and vice versa. It is thus necessary to add redundant
information, such that the correct value can be recovered.

667 (© Smruti R. Sarangi

The reader needs to note that the probability of an error is very low in practice. It is
typically less than 1 in every million transfers for interconnects on motherboards. However,
this is not a very small number either. If we have a million I/O operations per second, which
is plausible, then we will typically have 1 error per second. This is actually a very high error
rate. Hence, we need to add extra information to bits such that we can detect and recover from
errors. This approach is known as forward error correction. In comparison, in backward error
correction, we detect an error, discard the message, and request the sender to retransmit. Let
us now discuss the prevalent error detection and recovery schemes.

Definition 150

Forward Error Correction In this method, we add additional bits to a frame. These
additional bits contain enough information to detect and recover from single or double
bit errors if required.

Backward Error Correction In this method also, we add additional bits to a frame,
and these bits help us detect single or double bit errors. However, they do not allow
us to correct errors. We can discard the message, and ask the transmitter for a
retransmission.

Single Error Detection

Since single bit errors are fairly improbable, it is extremely unlikely that we shall have two
errors in the same frame. Let us thus focus on detecting a single error, and also assume that
only one bit flips its state due to an error.

Let us simplify our problem. Let us assume that a frame contains 8 bits, and we wish to
detect if there is a single bit error. Let us number the bits in the frame as D1, Do, ..., Dg
respectively. Let us now add an additional bit known as the parity bit. The parity bit, P is
equal to:

P=D1®Dy&...P5Dg (13.1)

Here, the & operation is the XOR operator. In simple terms, the parity bit represents the
XOR of all the data bits (Dp...Dg). For every 8 bits, we send an additional bit, which is
the parity bit. Thus, we convert a 8-bit message to an equivalent 9 bit message. In this case,
we are effectively adding a 12.5% overhead in terms of available bandwidth, at the price of
higher reliability. Figure shows the structure of a frame or message using our 8-bit parity
scheme. Note that we can support larger frame sizes also by associating a separate parity bit
with each sequence of 8 data bits.

When the receiver receives the message, it computes the parity by computing the XOR of
the 8 data bits. If this value matches the parity bit, then we can conclude that there is no error.
However, if the parity bit in the message does not match the value of the computed parity bit,
then we can conclude that there is a single bit error. The error can be in any of the data bits

(© Smruti R. Sarangi 668

\ / $

V
Data bits Parity bit

Figure 13.22: An 8-bit message with a parity bit

in the message, or can even be in the parity bit. In this case, we have no way of knowing. All
that we can detect is that there is a single bit error. Let us now try to correct the error also.

Single Error Correction

To correct a single bit error, we need to know the index of the bit that has been flipped if there
is an error. Let us now count the set of possible outcomes. For an n-bit block, we need to
know the index of the bit that has an error. We can have n possible indices in this case. We
also need to account for the case, in which we do not have an error. Thus for a single error
correction (SEC) circuit there are a total of n + 1 possible outcomes (n outcomes with errors,
and one outcome with no error). Thus, from a theoretical point of view, we need [log(n + 1)]
additional bits. For example, for an 8-bit frame, we need [log(8 + 1)] = 4 bits. Let us design
a (8,4) code that has four additional bits for every 8-bit data word.

Let us start out by extending the parity scheme. Let us assume that each of the four
additional bits are parity bits. However, they are not the parity functions of the entire set of
data bits. Instead, each bit is the parity of a subset of data bits. Let us name the four parity
bits Py, P>, P53, and Py. Moreover, let us arrange the 8 data bits, and the 4 parity bits as shown

in Figure [13:23]

BB |D;|R |D,|Ds| Dsf B Ds|De|D7 |Ds

Figure 13.23: Arrangement of data and parity bits

We keep the parity bits, P, P>, P3, and P, in positions 1, 2, 4 and 8 respectively. We
arrange the data bits, D; ... Dg, in positions 3, 5, 6, 7, 9, 10, 11, and 12 respectively. The
next step is to assign a set of data bits to each parity bit. Let us represent the position of each
data bit in binary. In this case, we need 4 binary bits because the largest number that we need
to represent is 12. Now, let us associate the first parity bit, P, with all the data bits whose
positions (represented in binary) have 1 as their LSB. In this case, the data bits with 1 as their
LSB are D; (3), D2 (5), D4 (7), D5 (9), and D7 (11). We thus compute the parity bit P; as:

P1 = D1 D D2) D4 D D5 D D7 (132)

Similarly, we associate the second parity bit, P», with all the data bits that have a 1 in their
274 position (assumption is that the LSB is in the first position). We use similar definitions for

669 (© Smruti R. Sarangi

the 374, and 4" parity bits.

Data Bits
Parity Bits | D; D, Ds Dy Ds Dg D+, Dg
0011 | 0101 | 0110 | 0111 | 1001 | 1010 | 1011 | 1100
P X X X X X
Py X X X X X
P3 X X X X
Py X X X X

Table 13.2: Relationship between data and parity bits

Table shows the association between data and parity bits. An “X” indicates that a
given parity bit is a function of the data bit. Based, on this table, we arrive at the following
equations for computing the parity bits.

P =Dy ®Dy®Dy® Ds @ Dy (13.3)
Py =D1®Ds® Dy ® Dg ® Dy (13.4)
Py =Dy ® D3 & Dy ® Dg (13.5)
Py = D5 ® D¢ © D7 & Dg (13.6)

The algorithm for message transmission is as follows. We compute the parity bits according
to Equations - Then, we insert the parity bits in the positions 1, 2, 4, and 8
respectively, and form a message according to Figure by adding the data bits. Once the
data link layer of the receiver gets the message it first extracts the parity bits, and forms a
number of the form P = PyP;P, P, that is composed of the four parity bits. For example, if
P =0,P,=0,P3=1,and Py =1, then P = 1100. Subsequently, the error detection circuit at
the receiver computes a new set of parity bits (P], Py, Ps, Pj) from the received data bits, and
forms another number of the form P’ = P;P;P)P|. Ideally P should be equal to P’. However,
if there is an error in the data or parity bits, then this will not be the case. Let us compute
P @ P'. This value is also known as the syndrome.

Let us now try to correlate the value of the syndrome with the position of the erroneous bit.
Let us first assume that there is an error in a parity bit. In this case, the first four entries in
Table [13.3]show the position of the erroneous bit in the message, and the value of the syndrome.
The value of the syndrome is equal to the position of the erroneous bit in the message. This
should come as no surprise to the reader, because we designed our message to explicitly ensure
this. The parity bits are at positions 1, 2, 4, and 8 respectively. Consequently, if any parity
bit has an error, its corresponding bit in the syndrome gets set to 1, and the rest of the bits
remain 0. Consequently, the syndrome matches the position of the erroneous bit.

Let us now consider the case of single bit errors in data bits. Again from Table we
can conclude that the syndrome matches the position of the data bit. This is because once a
data bit has an error, all its associated parity bits get flipped. For example, if D5 has an error
then the parity bits, P; and Py, get flipped. Recall that the reason we associate P; and P, with

(© Smruti R. Sarangi 670

Bit | Position | Syndrome || Bit | Position | Syndrome
P |1 0001 D3 | 6 0110
P |2 0010 Dy | 7 0111
Py | 4 0100 D5 | 9 1001
Py |8 1000 Dg | 10 1010
D; |3 0011 D; | 11 1011
Dy | 5 0101 Dg | 12 1100

Table 13.3: Relationship between the position of an error and the syndrome

Ds is because D5 is bit number 9 (1001), and the two 1s in the binary representation of 9 are
in positions 1 and 4 respectively. Subsequently, when there is an error in Ds, the syndrome is
equal to 1001, which is also the index of the bit in the message. Similarly, there is a unique
syndrome for every data and parity bit (refer to Table [13.2).

Thus, we can conclude that if there is an error, then the syndrome points to the index of
the erroneous bit (data or parity). Now, if there is no error, then the syndrome is equal to 0.
We thus have a method to detect and correct a single error. This method of encoding messages
with additional parity bits is known as the SEC (single error correction) code.

Single Error Correction, Double Error Detection (SECDED)

Let us now try to use the SEC code to additionally detect double errors (errors in two bits).
Let us show a counterexample, and prove that our method based on syndromes will not work.
Let us assume that there are errors in bits Ds, and D3. The syndrome will be equal to 0111.
However, if there is an error in Dy, the syndrome will also be equal to 0111. There is thus no
way of knowing whether we have a single bit error (Dy), or a double bit error (D2 and Ds).

Let us slightly augment our algorithm to detect double errors also. Let us add an additional
parity bit, Ps, that computes the parity of all the data bits (D; ... Dg), and the four parity bits
(P; ... Py) used in the SEC code, and then let us add Ps to the message. Let us save it in the
13" position in our message, and exclude it from the process of calculation of the syndrome.
The new algorithm is as follows. We first calculate the syndrome using the same process as
used for the SEC (single error correction) code. If the syndrome is 0, then there can be no error
(single or double). The proof for the case of a single error can be readily verified by taking a
look at Table For a double error, let us assume that two parity bits have gotten flipped.
In this case, the syndrome will have two 1s. Similarly, if two data bits have been flipped, then
the syndrome will have at least one 1 bit, because no two data bits have identical columns in
Table Now, if a data and a parity bit have been flipped, then also the syndrome will be
non-zero, because a data bit is associated with multiple parity bits. The correct parity bits will
indicate that there is an error.

Hence, if the syndrome is non-zero, we suspect an error; otherwise, we assume that there are
no errors. If there is an error, we take a look at the bit P5 in the message, and also recompute
it at the receiver. Let us designate the recomputed parity bit as Pf. Now, if Ps = PZ, then we
can conclude that there is a double bit error. Two single bit errors are essentially cancelling
each other while computing the final parity. Conversely, if P5 # P{, then it means that we have

671 (© Smruti R. Sarangi

a single bit error. We can thus use this check to detect if we have errors in two bits or one bit.
If we have a single bit error, then we can also correct it. However, for a double bit error, we
can just detect it, and possible ask the source for retransmission. This code is popularly known
as the SECDED code .

Hamming Codes

All of the codes described up till now are known as Hamming codes. This is because they
implicitly rely on the Hamming distance. The Hamming distance is the number of corresponding
bits that are different between two sequences of binary bits. For example, the Hamming distance
between 0011 and 1010 is 2 (MSB and LSB are different).

Let us now consider a 4-bit parity code. If a message is 0001, then the parity bit is equal
to 1, and the transmitted message with the parity bit in the MSB position is 10001. Let us
refer to the transmitted message as the code word. Note that 00001 is not a valid code word,
and the receiver will rely on this fact to adjudge if there is an error or not. In fact, there is no
other valid code word within a Hamming distance of 1 of a valid code word. The reader needs
to prove this fact. Likewise for a SEC code, the minimum Hamming distance between code
words is 2, and for a SECDED code it is 3. Let us now consider a different class of codes that
are also very popular.

Cyclic Redundancy Check (CRC) Codes

CRC codes are mostly used for detecting errors, even though they can be used to correct single
bit errors in most cases. To motivate the use of CRC codes let us take a look at the patterns of
errors in practical I/O systems. Typically in I/O channels, we have interference for a duration
of time that is longer than a bit period. For example, if there is some external electro-magnetic
interference, then it might last for several cycles, and it is possible that several bits might get
flipped. This pattern of errors is known as a burst error. For example, a 32-bit CRC code can
detect burst errors as long as 32 bits. It typically can detect most 2-bit errors, and all single
bit errors.

The mathematics behind CRC codes is complicated, and interested readers are referred to
texts on coding theory [Neubauer et al., 2007]. Let us show a small example in this section.

Let us assume, that we wish to compute a 4-bit CRC code, for an 8-bit message. Let the
message be equal to 101100115 in binary. The first step is to pad the message by 4 bits, which
is the length of the CRC code. Thus, the new message is equal to 101100110000 (a space has
been added for improving readability). The CRC code requires another 5 bit number, which is
known as the generator polynomial or the divisor. In principle, we need to divide the number
represented by the message with the number represented by the divisor. The remainder is the
CRC code. However, this division is different from regular division. It is known as modulo-2
division. In this case, let us assume that the divisor is 11001,. Note that for an n-bit CRC
code, the length of the divisor is n + 1 bits.

Let us now show the algorithm. We start out by aligning the MSB of the divisor with
the MSB of the message. If the MSB of the message is equal to 1, then we compute a XOR
of the first n + 1 (5 in this case) bits, and the divisor, and replace the corresponding bits in
the message with the result. Otherwise, if the MSB is 0, we do not do anything. In the next
step, we shift the divisor one step to the right, treat the bit in the message aligned with the

(© Smruti R. Sarangi 672

MSB of the divisor as the MSB of the message, and repeat the same process. We continue this
sequence of steps till the LSB of the divisor is aligned with the LSB of the message. We show
the sequence of steps in Example At the end, the least significant n (4 bits) contain the
CRC code. For sending a message, we append the CRC code with the message. The receiver
recomputes the CRC code, and matches it with the code that is appended with the message.

Example 156

Show the steps for computing a 4-bit CRC code, where the message is equal to 101100114,
and the divisor is equal to 110015.

Answer:

(10110011)
| Iy
(101100110000

(011110110000

(000111110000

(000001100000

@1001)

(000000000100

| ——
CRC code

In this figure, we ignore the steps in which the MSB of the relevant part of the message is
0, because in these cases nothing needs to be done.

13.4.3 Arbitration

Let us now consider the problem of bus arbitration. The word “arbitration” literally means
“resolution of disputes.” Let us consider a multidrop bus, where we can potentially have multiple
transmitters. Now, if multiple transmitters are interested in sending a value over the bus, we
need to ensure that only one transmitter can send a value on the bus at any point of time.
Thus, we need an arbitration policy to choose a device that can send data over the bus. If we
have point-to-point buses, where we have one sender and one receiver, then arbitration is not
required. If we have messages of different types waiting to be transmitted, then we need to

673 (© Smruti R. Sarangi

schedule the transmission of messages on the link with respect to some optimality criteria.

Definition 151

We need to ensure that only one transmitter sends values on the bus at any point of time.
Secondly, we meed to ensure that there is fairness, and a transmitter does not need to
wait for an indefinite amount of time for getting access to the bus. Furthermore, different
devices connected to a bus, typically have different priorities. It is necessary to respect
these priorities also. For example, the graphics card, should have more priority than the
hard disk. If we delay the messages to the graphics card, the user will perceive jitter on her
screen, and this will lead to a bad user experience. We thus need a bus allocation policy that
is fair to all the transmitters, and is responsive to the needs of the computer system. This
bus allocation policy is popularly known as the arbitration policy.

We envision a dedicated structure known as an arbiter, which performs the job of bus
arbitration. All the devices are connected to the bus, and to the arbiter. They indicate their
willingness to transmit data by sending a message to the arbiter. The arbiter chooses one of
the devices. There are two topologies for connecting devices to an arbiter. We can either use
a star like topology, or we can use a daisy chain topology. Let us discuss both the schemes in
the subsequent sections.

Star Topology

In this centralised protocol, we have a single central entity called the arbiter. It is a dedicated
piece of circuitry that accepts bus request requests from all the devices that are desirous of
transmitting on the bus. It enforces priorities and fairness policies, and grants the right to
individual devices to send data on the bus. Specifically, after a request finishes, the arbiter
takes a look at all the current requests, and then asserts the bus grant signal for the device that
is selected to send data. The selected device subsequently becomes the bus master and gets
exclusive control of the bus. It can then configure the bus appropriately, and transmit data.
An overview the system is shown in Figure

We can follow two kinds of approaches to find out when a current request has finished. The
first approach is that every device connected to the bus transmits for a given number of cycles,
n. In this case, after n cycles have elapsed, the arbiter can automatically presume that the bus
is free, and it can schedule another request. However, this might not always be the case. We
might have different speeds of transmission, and different message sizes. In this case, it is the
responsibility of each transmitting device to let the arbiter know that it is done. We envision
an additional signal bus release. Every device has a dedicated line to the arbiter that is used to
send the bus release signal. Once it is done with the process of transmitting, it asserts this line
(sets it equal to 1). Subsequently, the arbiter allocates the bus to another device. It typically
follows standard policies such as round-robin or FIFO.

(© Smruti R. Sarangi 674

Device 4
A
|
Fio|Z
213|3
D i —
[Y
Request Request
Device 1k SrM_ i | _Grant -
G L g Release Arblter _ Release 7] DeVICG 3
A1
F3 !c,') &
glsle
817
v
Device 2

Figure 13.24: Centralised arbiter-based architecture

Bus request

Bus release

Y

[Arbiter% Device 1 H Device2 [* ¢ ‘-D(Device n

Figure 13.25: Daisy chain architecture

Daisy Chain Based Arbitration

If we have multiple devices connected to a single bus, the arbiter needs to be aware of all of
them, and their relative priorities. Moreover, as we increase the number of devices connected
to the bus, we start having high contention at the arbiter, and it becomes slow. Hence, we wish
to have a scheme, where we can easily enforce priorities, guarantee some degree of fairness, and
not incur slowdowns in making bus allocation decisions as we increase the number of connected
devices. The daisy chain bus was proposed with all of these requirements in mind.

Figure shows the topology of a daisy chain based bus. The topology resembles a linear
chain, with the arbiter at one end. Each device other than the last one has two connections.
The protocol starts as follows. A device starts out by asserting its bus request lines. The bus

675 (© Smruti R. Sarangi

request lines of all the devices are connected in a wired OR fashion. The request line that goes
to the arbiter essentially computes a logical OR of all the bus request lines. Subsequently, the
arbiter passes a token to the device connected to it if it has the token. Otherwise, we need to
wait till the arbiter gets the release signal. Once a device gets the token, it becomes the bus
master. It can transmit data on the bus if required. After transmitting messages, each device
passes the token to the next device on the chain. This device also follows the same protocol.
It transmits data if it needs to, otherwise, it just passes the token. Finally, the token reaches
the end of the chain. The last device on the chain asserts the bus release signal, and destroys
the token. The release signal is a logical OR of all the bus release signals. Once, the arbiter
observes the release signal to be asserted, it creates a token. It re-inserts this token into the
daisy chain after it sees the request line set to 1.

There are several subtle advantages to this scheme. The first is that we have an implicit
notion of priority. The device that is connected to the arbiter has the highest priority. Gradually,
as we move away form the arbiter the priority decreases. Secondly, the protocol has a degree
of fairness because after a high priority device has relinquished the token, it cannot get it back
again, until all the low priority devices have gotten the token. Thus, it is not possible for
a device to wait indefinitely. Secondly, it is easy to plug in and remove devices to the bus.
We never maintain any individual state of a device. All the communication to the arbiter is
aggregated, and we only compute OR functions for the bus request, and bus release lines. The
only state that a device has to maintain is the information regarding its relative position in the
daisy chain, and the address of its immediate neighbour.

We can also have purely distributed schemes that avoid a centralised arbiter completely.
In such schemes, all the nodes take decisions independently. However, such schemes are rarely
used, and thus we shall refrain from discussing them.

13.4.4 Transaction-Oriented Buses

Up till now, we have been only focussing on unidirectional communication, where only one node
can transmit to the other nodes at any single point of time. Let us now consider more realistic
buses. In reality, most high performance I/O buses are not multidrop buses. Multidrop buses
potentially allow multiple transmitters, albeit not at the same point of time. Modern I/O buses
are instead point-to-point buses, which typically have two end points. Secondly, an I/O bus
typically consists of two physical buses such that we can have bidirectional communication. For
example, if we have an I/O bus connecting nodes A and B. Then it is possible for them to send
messages to each other simultaneously.

Some early systems had a bus that connected the processor directly to the memory. In this
case, the processor was designated as the master, because it could only initiate the transfer of
a bus message. The memory was referred to as the slave, which could only respond to requests.
Nowadays, the notion of a master and a slave has become diluted. However, the notion of
concurrent bidirectional communication is still common. A bidirectional bus is known as a
duplex bus or full duplex bus. In comparison, we can have a half duplex bus, which only allows
one side to transmit at any point of time.

(© Smruti R. Sarangi 676

Definition 152

Full Duplex Bus It is a bus that allows both of the nodes connected at its endpoints to
transmit data at the same time.

Half Duplex Bus It only allows one of its endpoints to transmit at any point of time.

codo) [T LU LT

Address —:@

Command

Data ready

Data

Q
n

Figure 13.26: DRAM read timing

Let us look at a typical scenario of duplex communication between the memory controller
chip, and the DRAM module in Figure Figure shows the sequence and timing of
messages for a memory read operation. In practice, we have two buses. The first bus connects
the memory controller to the DRAM module. It consists of address lines (lines to carry the
memory address), and lines to carry dedicated control signals. The control signals indicate the
timing of operations, and the nature of operation that needs to be performed on the DRAM
arrays. The second bus connects the DRAM module to the memory controller. This contains
data lines (lines to carry the data read from the DRAM), and timing lines (lines to convey
timing information).

The protocol is as follows. The memory controller starts out by asserting the RAS (row
address strobe) signal. The RAS signal activates the decoder that sets the values of the word
lines. Simultaneously, the memory controller places the address of the row on the address
lines. It has an estimate of the time (t,4,) it takes for the DRAM module to buffer the row
address. After t,,, units of time, it asserts the CAS signal (column address strobe), and

677 (© Smruti R. Sarangi

places the address of the columns in the DRAM array on the bus. It also enables the read
signal indicating to the DRAM module that it needs to perform a read access. Subsequently,
the DRAM module reads the contents of the memory locations and transfers it to its output
buffers. It then asserts the ready signal, and places the data on the bus. However, at this point
of time, the memory controller is not idle. It begins to place the row address of the next request
on the bus. Note that the timing of a DRAM access is very intricate. Often the processing of
consecutive messages is overlapped. For example, we can proceed to decode the row address of
the (n + 1)th request, when the n'” request is transferring its data. This reduces the DRAM
latency. However, to support this functionality, we need a duplex bus, and a complex sequence
of messages.

Let us note a salient feature of the basic DRAM access protocol that we showed in Fig-
ure Here, the request and response are very strongly coupled with each other. The source
(memory controller) is aware of the intricacies of the destination (DRAM module), and there
is a strong interrelationship between the nature and timing of the messages sent by both the
source and destination. Secondly, the I/O link between the memory controller and the DRAM
module is locked for the duration of the request. We cannot service any intervening request
between the original request and response. Such a sequence of messages is referred to as a bus
transaction.

Definition 153

A bus transaction is defined as a sequence of messages on a duplex or multidrop bus by
more than one node, where there is a strong relationship between the messages in terms of
timing and semantics. It is in general not possible to send another unrelated sequence of
messages in the middle, and then resume sending the original sequence of messages. The
bus is locked for the entire duration.

There are pros and cons of transaction oriented buses. The first is complexity. They make
a lot of assumptions regarding the timing of the receiver. Hence, the message transfer protocol
becomes very specific to each type of receiver. This is detrimental to portability. It becomes
very difficult to plug in a device that has different message semantics. Moreover, it is possible
that the bus might get locked for a long duration, with idle periods. This wastes bandwidth.
However, in some scenarios such as the example that we showed, transaction-oriented buses
perform very well and are preferred over other types of buses.

13.4.5 Split Transaction Buses

Let us now look at split transaction buses that try to rectify the shortcomings of transaction
oriented buses. Here, we do not assume a strict sequence of messages between different nodes.
For example, for the DRAM and memory controller example, we break the message transfer into
two smaller transactions. First, the memory controller sends the memory request to the DRAM.
The DRAM module buffers the message, and proceeds with the memory access. Subsequently,
it sends a separate message to the memory controller with the data from memory. The interval
between both the message sequences can be arbitrarily large. Such a bus is known as a split

(© Smruti R. Sarangi 678

transaction bus, which breaks a larger transaction into smaller and shorter individual message
sequences.

The advantage here is simplicity and portability. All our transfers are essentially unidirec-
tional. We send a message, and then we do not wait for its reply by locking the bus. The sender
proceeds with other messages. Whenever, the receiver is ready with the response, it sends a
separate message. Along with simplicity, this method also allows us to connect a variety of re-
ceivers to the bus. We just need to define a simple message semantics, and any receiver circuit
that conforms with the semantics can be connected to the bus. We cannot use this bus to do
complicated operations such as overlapping multiple requests, and responses, and fine grained
timing control. For such requirements, we can always use a bus that supports transactions.

13.5 Network Layer

In Sections [13.2]13.3] and [13.4] we studied how to design a full duplex bus. In specific, we
looked at signalling, signal encoding, timing, framing, error checking, and transaction related
issues. Now, we have arrived at a point, where we can assume I/0 buses that correctly transfer
messages between end points, and ensure timely and correct delivery. Let us now look at the
entire chipset, which is essentially a large network of 1/O buses.

The problems that we intend to solve in this section, are related to I/O addressing. For
example, if the processor wishes to send a message to an USB port, then it needs to have a
way of uniquely addressing the USB port. Subsequently, the chipset needs to ensure that it
properly routes the message to the appropriate I/O device. Similarly, if a device such as the
keyboard, needs to send the ASCII code (see Section of the key pressed to the processor,
it needs to have a method of addressing the processor. We shall looking at routing messages in
the chipset in this section.

13.5.1 I/O Port Addressing
Software Interface of an I/O Port

In Definition we defined a hardware I/O port as a connection endpoint for an externally
attached device. Let us now consider a software port, which we define to be an abstract entity
that is visible to software as a single register, or a set of registers. For example, the USB
port physically contains a set of metallic pins, and a port controller to run the USB protocol.
However, the “software version of the USB port”, is an addressable set of registers. If we wish
to write to the USB device, then we write to the set of registers exposed by the USB port to
software. The USB port controller implements the software abstraction, by physically writing
the data sent by the processor to the connected 1/O device. Likewise, for reading the value sent
by an I/O device through the USB port, the processor issues a read instruction to the software
interface of the USB port. The corresponding port controller forwards the output of the 1/O
device to the processor.

Let us graphically illustrate this concept in Figure We have a physical hardware
port that has a set of metallic pins, and associated electrical circuitry that implements the
physical and data link layers. The port controller implements the network layer by fulfilling
requests sent by the processor. It also exposes a set of 8 to 32-bit registers. These registers

679 (© Smruti R. Sarangi

Software interface

Reg |/s\ters

Input Output N
r - \/ \

Port controller

Port connector

Figure 13.27: Software interface of an 1/O port

can be either read-only, write-only, or read-write. For example, the port for the display device
such as the monitor contains write-only registers, because we do not get any inputs from it.
Similarly, the port controller of a mouse, contains read-only registers, and the port controller
of a scanner contains read-write registers. This is because we typically send configuration data
and commands to the scanner, and read the image of the document from the scanner.

For example, Intel processors define 64K (2'¢) 8-bit I/O ports. It is possible to fuse 4
consecutive ports to have a 32-bit port. These ports are equivalent to registers that are accessible
to assembly code. Secondly, a given physical port such as the Ethernet port or the USB port
can have multiple such software ports assigned to them. For example, if we wish to write a
large piece of data to the Ethernet in one go, then we might use hundreds of ports. Each port in
the Intel processor is addressed using a 16-bit number that varies from 0 to OxFFFF. Similarly,
other architectures define a set of I/O ports that act as software interfaces for actual hardware
ports.

Let us define the term I/O address space as the set of all the I/O port addresses that are
accessible to the operating system and user programs. Each location in the I/O address space
corresponds to an I/O port, which is the software interface to a physical I/O port controller.

Definition 154

The 1/0 address space is defined as the set of all the 1/0 port addresses that are accessible to
the operating system and user programs. Each location in the I/0 address space corresponds
to an 1/0 port, which is the software interface to a physical 1/O port controller.

(© Smruti R. Sarangi 680

ISA Support for I/O Ports

Most instruction set architectures have two instructions: in and out. The semantics of the
instructions are as follows.

Instruction Semantics
in rl, (I/O port) | rl < contents of (I/O port)
out rl, (I/O port) | contents of (I/O port) < rl

Table 13.4: Semantics of the in and out instructions

The in instruction transfers data from an I/O port to a register. Conversely, the out
instruction transfers data from a register to an I/O port. This is a very generic and versatile
mechanism for programming I/O devices. For example, if we want to print a page, then we
can transfer the contents of the entire page to the I/O ports of the printer. Finally, we write
the print command to the I/O port that accepts commands for the printer. Subsequently, the
printer can start printing.

Routing Messages to I/O Ports

Let us now implement the in and out instructions. The first task is to ensure that a message
reaches the appropriate port controller, and the second task is to route the response back to
the processor in the case of an out instruction.

Let us again take a look at the architecture of the motherboard in Figure The CPU is
connected to the North Bridge chip via the front side bus. The DRAM memory modules, and
the graphics card are also connected to the North Bridge chip. Additionally, the North Bridge
chip is connected to the South Bridge chip that handles slower devices. The South Bridge chip
is connected to the USB ports, the PCI Express Bus (and all the devices connected to it), the
hard disk, the mouse, keyboard, speakers and the network card. Each of these devices has a
set of associated I/O ports, and I/O port numbers.

Typically the motherboard designers have a scheme for allocating I/O ports. Let us try
to construct one such scheme. Let us suppose that we have 64K 8-bit I/O ports like the Intel
processors. The addresses of the I/O ports thus range from 0 to OxFFFF. Let us first allocate
I/0 ports to high-bandwidth devices that are connected to the North Bridge chip. Let us give
them port addresses in the range of 0 to Ox00FF. Let us partition the rest of the addresses for
the devices connected to the South Bridge chip. Let us assume that the hard disk has a range
of ports from 0x0100 to 0x0800. Let the USB ports have a range from 0x0801 to OxOFFF. Let
us assign the network card the following range: 0x1000 to 0x4000. Let us assign a few of the
remaining ports to the rest of the devices, and keep a part of the range empty for any new
devices that we might want to attach later.

Now, when the processor issues an I/O instruction (in or out), the processor recognises that
it is an I/O instruction, sends the I/O port address, and the instruction type to the North
Bridge chip through the FSB (front side bus). The North Bridge chip maintains a table of
ranges for each 1/O port type, and their locations. Once it sees the message from the processor,
it accesses this table and finds out the relative location of the destination. If the destination is a

681 (© Smruti R. Sarangi

device that is directly connected to it, then the North Bridge chip forwards the message to the
destination. Otherwise, it forwards the request to the South Bridge chip. The South Bridge
chip maintains a similar table of 1/O port ranges, and device locations. After performing a
lookup in this table, it forwards the received message to the appropriate device. These tables
are called I/O routing tables. I/O routing tables are conceptually similar to network routing
tables used by large networks and the internet.

For the reverse path, the response is typically sent to the processor. We assign a unique
identifier to the processor, and the messages gets routed appropriately by the North Bridge and
South Bridge chips. Sometimes it is necessary to route the message to the memory modules
(see Section [13.6.3)). We use a similar addressing scheme.

This scheme essentially maps the set of physical 1/O ports to locations in the I/O address
space, and the dedicated I/O instructions use the port addresses to communicate with them.
This method of accessing and addressing I/O devices is commonly known as I/O mapped 1/0.

Definition 155 I/0 mapped 1/0 is a scheme for addressing and accessing I1/0 devices by
assigning each physical 1/0 port a unique address in the 1/0 space, and by using dedicated
I/0 instructions to transfer data to/from locations in the I/0 address space.

13.5.2 Memory Mapped Addressing

Let us now take a look at the in and out I/0O instructions again. The executing program needs
to be aware of the naming schemes for I/O ports. It is possible that different chipsets and
motherboards use different addresses for the I/O ports. For example, one motherboard might
assign the USB ports the I/O port address range, 0xFF80 to 0OxFFCO0, and another motherboard
might assign the range, OxFEAO to OxFFB0. Consequently, a program that runs on the first
motherboard might not work on the second motherboard.

To solve this issue, we need to add an additional layer between the I/O ports and software.
Let us propose a solution similar to virtual memory. In fact, virtualisation is a standard
technique for solving various problems in computer architecture. Let us proceed to design a
virtual layer between user programs and the I/O address space.

Let us assume that we have a dedicated device driver in the operating system that is specific
to the chipset and motherboard. It needs to be aware of the semantics of the I/O ports, and
their mappings to actual devices. Now, let us consider a program (user program or OS) that
wishes to access the USB ports. At the outset, it is not aware about the I/O port addresses
of the USB ports. Hence, it needs to first request the relevant module in the operating system
to map a memory region in its virtual address space to the relevant portion of the I/O address
space. For example, if the I/O ports for the USB devices are between 0xF000 to OxFFFF, then
this 4 KB region in the I/O address space can be mapped to a page in the program’s virtual
address space. We need to add a special bit in the TLB and page table entries to indicate that
this page actually maps to I/O ports. Secondly, instead of storing the address of the physical
frame, we need to store the I/O port addresses. It is the role of the motherboard driver that is a
a part of the operating system to create this mapping. After the operating system has mapped
the I/O address space to a process’s virtual address space, the process can proceed with the

(© Smruti R. Sarangi 682

I/O access. Note that before creating the mapping, we need to ensure that the program has
sufficient privileges to access the I/O device.

After the mapping has been created, the program is free to access the I/O ports. Instead
of using I/O instructions such as in, and out, it uses regular load and store instructions to
write to locations in its virtual address space. After such instructions reach the memory access
(M A) stage of the pipeline, the effective address is sent to the TLB for translation. If there is a
TLB hit, then the pipeline also becomes aware of the fact that the virtual address maps to the
I/O address space rather than the physical address space. Secondly, the TLB also translates
the virtual address to an I/O port address. Note that at this stage it is not necessary to use
the TLB, we can use another dedicated module to translate the address. In any case, the
processor receives the equivalent I/O port address in the M A stage. Subsequently, it creates an
I/O request and dispatches the request to the I/O port. This part of the processing is exactly
similar to the case of I/O mapped 1/0.

Definition 156 Memory mapped 1/0 is a scheme for addressing and accessing 1/0 devices
by assigning each address in the 1/O address space to a unique address in the process’s
virtual address space. For accessing an I/O port, the process uses regular load and store
nstructions.

This scheme is known as memory mapped I/0. Its main advantage is that it uses regular load
and store instructions to access I/O devices instead of dedicated I/O instructions. Secondly,
the programmer need not be aware of the actual addresses of the I/O ports in the I/O address
space. Since dedicated modules in the operating system, and the memory system, set up a
mapping between the 1/O address space and the process’s virtual address space, the program
can be completely oblivious of the semantics of addressing the I/O ports.

13.6 Protocol Layer

Let us now discuss the last layer in the I/O system. The first three layers ensure that a message
is correctly delivered from one device to another in the I/O system. Let us now look at the
level of a complete I/O request such as printing an entire page, scanning an entire document,
or reading a large block of data from the hard disk. Let us consider the example of printing a
document.

Assume that the printer is connected to an USB port. The printer device driver starts out
by instructing the processor to send the contents of the document to the buffers associated with
the USB port. Let us assume that each such buffer is assigned a unique port address, and the
entire document fits within the set of buffers. Moreover, let us assume that the device driver
is aware that the buffers are empty. To send the contents of the document, the device driver
can use a sequence of out instructions, or can use memory mapped I/O. After transferring
the contents of the document, the last step is to write the PRINT command to a pre-specified
I/O port. The USB controller manages all the I/O ports associated with it, and ensures that
messages sent to these ports are sent to the attached printer. The printer starts the job of
printing after receiving the PRINT command from the USB controller.

683 (© Smruti R. Sarangi

Let us now assume that the user clicks the print button for another document. Before
sending the new document to the printer, the driver needs to ensure that the printer has
finished printing the previous document. The assumption here is that we have a simple printer
that can only handle one document at a time. There should thus be a method for the driver to
know if the printer is free.

Before looking at different mechanisms for the printer to communicate with its driver, let
us consider an analogy. Let us consider a scenario in which Sofia is waiting for a letter to be
delivered to her. If the letter is being sent through one of Sofia’s friends, then Sofia can keep
calling her friend to find out when she will be back in town. Once she is back, Sofia can go to
her house, and collect the letter. Alternatively, the sender can send the letter through a courier
service. In this case, Sofia simply needs to wait for the courier delivery boy to come and deliver
the letter. The former mechanism of receiving messages is known as polling, and the latter is
known as interrupts. Let us now elaborate.

13.6.1 Polling

Let us assume that there is a dedicated register called the status register in the printer that
maintains the status of the printer. Whenever there is a change in the status of the printer, it
updates the value of the status register. Let us assume that the status register can contain two
values namely 0 (free) and 1 (busy). When the printer is printing a document, the value of the
status register is 1 (busy). Subsequently, when the printer completes printing the document, it
sets the value of the status register to 0 (free).

Now, let us assume that the printer driver wishes to read the value of the status register
of the printer. It sends a message to the printer asking it for the value of the status register.
The first step in sending a message is to send a sequence of bytes to the relevant I/O ports of
the USB port controller. The port controller in turn sends the bytes to the printer. If it uses a
split transaction bus, then it waits for the response to arrive. Meanwhile, the printer interprets
the message, and sends the value of the status register as the response, which the USB port
controller forwards to the processor through the I/O system.

If the printer is free, then the device driver can proceed to print the next document. Oth-
erwise, it needs to wait for the printer to finish. It can keep on requesting the printer for its
status till it is free. This method of repeatedly querying a device for its state till its state has
a certain value is called polling.

Definition 157
Polling is a method for waiting till an 1/0 device reaches a given state. It is implemented
by repeatedly querying the device for its state in a loop.

Let us show a snippet of SimpleRisc code that implements polling in a hypothetical system.
We assume that the message for getting the status of the printer is 0OxDEADBEEF. We need to
first send the message to the I/O port 0xFF00, and then subsequently read the response from
the I/O port 0xFF04.

(© Smruti R. Sarangi 684

Assembly Code for Polling

/* load DEADBEEF in r0 */
movh rO, OxDEAD
addu r0O, r0O, OxBEEF

/* polling loop */
.loop:
out r0, OxFFO0O0
in rl1, OxFF04
cmp rl, 1
beq .loop /* keep looping till status = 1 */

13.6.2 Interrupts

There are several shortcomings of the polling based approach. It keeps the processor busy,
wastes power, and increases I/O traffic. We can use interrupts instead. Here, the idea is to
send a message to the printer to notify the processor when it becomes free. After the printer
becomes free, or if it is already free, the printer sends an interrupt to the processor. The I/0O
system typically treats the interrupt as a regular message. It then delivers the interrupt to
the processor, or a dedicated interrupt controller. These entities realise that an interrupt has
come from the I/O system. Subsequently, the processor stops executing the current program
as described in Section and jumps to the interrupt handler.

Note that every interrupt needs to identify itself, or the device that has generated it. Every
device that is on the motherboard typically has a unique code. This code is a part of the
interrupt. In some cases, when we connect devices to generic ports such as the USB port, the
interrupt code contains two parts. One part is the address of the port on the motherboard that
is connected to the external device. The other part is an id that is assigned to the device by
the I/O port on the motherboard. Such interrupts that contain a unique code are known as
vectored interrupts

In some systems such as x86 machines, the first stage of interrupt processing is done by a pro-
grammable interrupt controller (PIC). These interrupt controllers are called APICs (advanced
programmable interrupt controllers) in x86 processors. The role of these interrupt controllers
is to buffer interrupt messages, and send them to the processor according to a set of rules.

Let us take a look at the set of rules that PICs follow. Most processors disable interrupt
processing during some critical stages of computation. For example, when an interrupt handler
is saving the state of the original program, we cannot allow the processor to get interrupted.
After the state is successfully saved, interrupt handlers might re-enable interrupts. In some
systems, interrupts are completely disabled whenever an interrupt handler is running. A closely
related concept is interrupt masking that selectively enables some interrupts, and disables some
other interrupts. For example, we might allow high priority interrupts from the temperature
controller during the processing of an interrupt handler, and choose to temporarily ignore low
priority interrupts from the hard disk. The PIC typically has a vector that has one entry per
interrupt type. It is known as the interrupt mask vector. For an interrupt, if the corresponding
bit in the interrupt mask vector is 1, then the interrupt is enabled, otherwise it is disabled.

Lastly, PICs need to respect the priority of interrupts if we have multiple interrupts arriving

685 (© Smruti R. Sarangi

in the same window of time. For example, interrupts from a device with real time constraints
such as an attached high speed communication device have a high priority, whereas keyboard
and mouse interrupts have lower priority. The PIC orders interrupts using heuristics that take
into account their priority and time of arrival, and presents them to the processor in that
order. Subsequently, the processor processes the interrupt according to the methods explained

in Section [10.8]

Definition 158

Vectored Interrupt An interrupt that contains the id of the device that generated it, or
the 1/0 port address that is connected to the external device.

Programmable Interrupt Controller(PIC) A dedicated module called the pro-
grammable interrupt controller (PIC) buffers, filters, and manages the interrupts sent
to a processor.

Interrupt Masking The user, or operating system can choose to selectively disable a set of
interrupts at some critical phases of programs such as while running device drivers and
interrupt handlers. This mechanism is known as interrupt masking. The interrupt
mask vector in the PIC is typically a bit vector (one bit per each interrupt type). If a
bit is set to 1, then the interrupt is enabled, otherwise it is disabled, and the interrupt
will either be ignored, or buffered in the PIC and processed later.

13.6.3 DMA

For accessing 1/O devices, we can use both polling and interrupts. In any case, for each 1/0O
instruction we transfer typically 4 bytes at a time. This means that if we need to transfer a
4KB block to an I/O device, we need to issue 1024 out instructions. Similarly, if we wish to
read in 4 KB of data, we need to issue 1024 in instructions. Each I/O instruction typically
takes more than ten cycles, because it reaches an I/O port after several levels of indirection.
Secondly, the frequency of I/O buses is typically a third to a quarter of the processor frequency.
Thus, I/O for large blocks of data is a fairly slow process, and it can keep the processor busy
for a long time. Our objective is to keep sensitive code such as device drivers and interrupt
handlers as short as possible.

Hence, let us try to devise a solution that can offload some of the work of the processor.
Let us consider an analogy. Let us assume that a professor is teaching a class of more than 100
students. After an exam, she needs to grade more than 100 scripts. This will keep her busy for
at least a week, and the process of grading scripts is a very tiring and time consuming process.
Hence, she can offload the work of grading exam scripts to teaching assistants. This will ensure
that the professor has free time, and she can focus on solving state of the art research problems.
We can take cues from this example, and design a similar scheme for processors.

Let us envision a dedicated unit called a DMA (direct memory access) engine that can do
some work on behalf of the processor. In specific, if the processor wishes to transfer a large

(© Smruti R. Sarangi 686

amount of data in memory to an I/O device, or vice versa, then instead of issuing a large
number of I/O instructions, the DMA engine can take over the responsibility. The procedure
for using a DMA engine is as follows. At the outset, the device driver program, determines
that there is a necessity to transfer a large amount of data between memory and an I/O device.
Subsequently, it sends the details of the memory region (range of bytes), and the details of
the I/O device (I/O port addresses) to the DMA engine. It further specifies, whether the data
transfer is from memory to I/O or in the reverse direction. Subsequently, the device driver
program suspends itself, and the processor is free to run other programs. Meanwhile, the DMA
engine or the DMA controller begins the process of transferring data between the main memory
and I/0O devices. Depending on the direction of the transfer, it reads the data, temporarily
buffers it, and sends it to the destination. Once the transfer is over, it sends an interrupt to
the processor indicating that the transfer is over. Subsequently, the device driver of the I/O
device is ready to resume operation and complete any remaining steps.

The DMA based approach is typically used by modern processors to transfer a large amount
of data between main memory, and the hard disk, or the network card. The transfer of data is
done in the background, and the processor is mostly oblivious of this process. Secondly, most
operating systems have libraries to program the DMA engine to perform data transfers.

There are two subtle points that need to be discussed in the context of DMA engines. The
first is that the DMA controller needs to occasionally become the bus master. In most designs,
the DMA engine is typically a part of the North Bridge chip. The DMA engine needs to become
the bus master of the bus to memory, and the bus to the South Bridge chip, when required. It
can either transfer all the data in one go (also known as a burst), or it can wait for idle periods
in the bus, and use these cycles to schedule its own transfers. The former approach is known
as the burst mode, and the latter approach is known as the cycle stealing mode.

The second subtle point is that there might be correctness issues if we are not careful. For
example, it is possible that we have a given location in the cache, and simultaneously, the
DMA engine is writing to the location in main memory. In this case, the value in the cache
will become stale, and sadly, the processor will have no way of knowing this fact. Hence, it is
important to ensure that locations accessed by DMA controllers are not present in the cache.
This is typically achieved through a dedicated piece of logic called a DMA snoop circuit that
dynamically evicts locations present in the cache, if they are written to by the DMA engine.

13.7 Case Studies — I/0O Protocols

In this section, we shall describe the operation of several state of the art I/O protocols. We
shall provide a brief overview of each of these protocols in this book. For a detailed study, or
wherever there is a doubt, the reader should take a look at their formal specifications posted
on the web. The formal specifications are typically released by a consortium of companies
that support the I/O protocol. Most of the material that we present is sourced from these
specifications.

687 (© Smruti R. Sarangi

13.7.1 PCI Express®
Overview

Most motherboards require local buses that can be used to attach devices such as dedicated
sound cards, network cards, and graphics cards to the North Bridge or South Bridge chips.
In response to this requirement, a consortium of companies created the PCI (Peripheral Com-
ponent Interconnect) bus specification in 1993. In 1996, Intel created the AGP (Accelerated
Graphics Port) bus for connecting graphics cards. In the late nineties, many new bus types were
being proposed for connecting a variety of hardware devices to the North Bridge and South
Bridge chips. Designers quickly realised that having many different bus protocols hampers
standardisation efforts, and compels device vendors to support multiple bus protocols. Hence,
a consortium of companies started a standardisation effort, and created the PCI Express bus
standard in 2004. This technology superseded most of the earlier technologies, and till date it
is the most popular bus on the motherboard.

The basic idea of the PCI express bus is that it is a high speed point to point serial (single
bit) interconnect. A point to point interconnect has only two end points. To connect multiple
devices to the South Bridge chip, we create a tree of PCI express devices. The internal nodes
of the tree are PCI express switches that can multiplex traffic from multiple devices. Secondly,
as compared to older protocols, each PCI Express bus sends bits serially on a single bit line.
Typically high speed buses avoid transmitting multiple bits in parallel using several copper
wires, because different links experience different degrees of jitter and signal distortion. It
becomes very hard to keep all the signals in the different wires in synchrony with each other.
Hence, modern buses are mostly serial.

A single PCI Express bus is actually composed of many individual serial buses known as
lanes. Each lane has its separate physical layer. A PCI Express packet is striped across the lanes.
Striping means dividing a block of data (packet) into smaller blocks of data and distributing
them across the lanes. For example, in a bus with 8 lanes, and a 8-bit packet, we can send
each bit of the packet on a separate lane. The reader needs to note that sending multiple bits
in parallel across different lanes is not the same as a parallel bus that has multiple wires to
send data. This is because a parallel bus has one physical layer circuit for all the copper wires,
whereas in this case, each lane has its separate synchronisation, and timing. The data link layer
does the job of framing by aggregating the subparts of each packet collected from the different
lanes.

Definition 159
The process of striping refers to dividing a block of data into smaller blocks of data and
distributing them across a set of entities.

A lane consists of two LVDS based wires for full duplex signalling. One wire is used to send
a message from the first end point to the second, and the second wire is to send a signal in the
reverse direction. A set of lanes are grouped together to form an I/O link that is assumed to
transfer a full packet (or frame) of data. The physical layer then transfers a packet to the data
link layer that performs error correction, flow control, and implements transactions. The PCI

(© Smruti R. Sarangi 688

Express protocol is a layered protocol, where the functionality of each layer is roughly similar
to the I/O layers that we have defined. Instead of considering transactions to be a part of the
data link layer, it has a separate transaction layer. We shall however use the terminology that
we have defined in this chapter for explaining all the I/O protocols unless mentioned otherwise.

Summary
H PCI Express (Peripheral Component Interconnect Express) H
Usage As a motherboard bus
Specification [pci, |
Topology
Connection Point to point with multiple lanes
Lane A single bit full duplex channel with data striping

Number of Lanes | 1 — 32

Physical Layer

Signalling LVDS based differential signalling
Encoding 8 bit/ 10 bit
Timing Source synchronous
Data Link Layer
Frame Size 1 byte
Error Correction | 32-bit CRC
Transactions Split transaction bus
Bandwidth 250 MB/s per lane

Network Layer
Routing Nodes \ Switches

Table 13.5: The PCI Express I/O Protocol

A summary of the specifications of the PCI Express protocol is shown in Table We
can have 1-32 lanes. Here, each lane is an asynchronous bus, which uses a sophisticated version
of data encoding called the 8bit/10bit encoding. The 8bit/10bit encoding can be conceptually
thought of as an extension of the NRZ protocol. It maps a sequence of 8 logical bits to a sequence
of 10 physical bits. It ensures that we do not have more than five 1s or Os consecutively such
that we can efficiently recover the clock. Recall that the receiver recovers the sender’s clock
by analysing transitions in the data. Secondly, the encoding ensures that we have almost the
same number of physical 1s and Os in the transmitted signal. In the data link layer the PCI
Express protocol implements a split transaction bus with a 1-128 byte frame, and 32-bit CRC
based error correction.

The PCI Express bus is normally used to connect generic I/O devices. Sometimes some
slots are left unused such that users can later connect cards for their specific applications. For
example, if a user is interested in working with specialised medical devices, then she can attach
an I/O card that can connect with medical devices externally, and to the PCI Express bus
internally. Such free PCI Express slots are known as ezpansion slots.

689 (© Smruti R. Sarangi

13.7.2 SATA
Overview

Let us now take a look at a bus, which was primarily developed for connecting storage devices
such as hard disks, and optical drives. Since the mid eighties, designers, and storage vendors,
began designing such buses. Several such buses developed over time such as the IDE (Integrated
Drive Electronics) and PATA (Parallel Advanced Technology Attachment) buses. These buses
were predominantly parallel buses, and their constituent communication links suffered from
different amounts of jitter and distortion. Thus, these technologies got replaced by a serial
standard known as SATA (Serial ATA), that is a point to point link like PCI Express.

The SATA protocol for accessing storage devices is now used in an overwhelming majority
of laptop and desktop processors. It has become the de facto standard. The SATA protocol
has three layers — physical, data link, and transport. We map the transport layer of the SATA
protocol to our protocol layer. Each SATA link contains a pair of single-bit links that use LVDS
signalling. Unlike PCI Express, it is not possible for an end point in the SATA protocol to read
and write data at the same time. Only one of the actions can be performed at any point of
time. It is thus a half duplex bus. It uses 8b/10b encoding, and it is an asynchronous bus. The
data link layer does the job of framing. Let us now discuss the network layer. Since SATA is
a point to point protocol, a set of SATA devices can be connected in a tree structure. Each
internal node of the tree is know as a multiplier. It routes requests from the parent to one of
its children, of from one of its children to its parent. Finally, the protocol layer acts on the
frames and ensures that they are transmitted in the correct sequence, and implements SATA
commands. In specific, it implements DMA requests, accesses the storage devices, buffers data,
and sends it to the processor in a predefined order.

Summary

Table shows the specification of the SATA protocol. We need to note that the SATA
protocol has a very rich protocol layer. It defines a wide variety of commands for storage based
devices. For example, it has dedicated commands to perform DMA accesses, perform direct
hard disk accesses, encode and encrypt data, and control the internals of storage devices. The
SATA bus is a split transaction bus, and the data link layer differentiates between commands
and their responses. The protocol layer implements the semantics of all the commands.

13.7.3 SCSI and SAS
Overview of SCSI

Let us now discuss another I/O protocol also meant for peripheral devices known as the SCSI
protocol (pronounced as “scuzzy”). SCSI was originally meant to be a competitor of PCIL.
However, over time the SCSI protocol metamorphosed to a protocol for connecting storage
devices.

The original SCSI bus was a multidrop parallel bus that could have 8 to 16 connections.
The SCSI protocol differentiates between a host and a peripheral device. For example, the
South Bridge chip is a host, whereas the controller of a CD drive is a peripheral. Any pair of
nodes (host or peripheral) can communicate between each other. The original SCSI bus was

(© Smruti R. Sarangi 690

I SATA (Serial ATA) |

Usage Used to connect storage devices such as hard disks
Source [sat, |
Topology
Connection Point to point, half duplex
Topology Tree based, internal nodes known as multipliers
Physical Layer
Signalling LVDS based differential signalling
Number of parallel links | 4
Encoding 8 bit/ 10 bit
Timing Asynchronous (clock recovery + comma symbols)
Data Link Layer
Frame Size variable
Error Correction CRC
Transactions Split transaction bus, command driven
Bandwidth 150-600 MB/s
Network Layer
Routing Nodes ‘ Multipliers

Protocol Layer
Each SATA node has dedicated support for processing commands, and their
responses. Examples of commands can be DMA reads, or I/O transfers

Table 13.6: The SATA Protocol

synchronous and ran at a relatively low frequency as compared to today’s high speed buses.
SCSI has still survived till date and state of the art SCSI buses use a 80-160 MHz clock to
transmit 16 bits in parallel. They thus have a theoretical maximum bandwidth of 320-640
MB/s. Note that serial buses can go up till 1 GHz, are more versatile, and can support larger
bandwidths.

Given the fact that there are issues with multidrop parallel buses, designers started retarget-
ting the SCSI protocol for point to point serial buses. Recall that PCI Express and SATA buses
were also created for the same reason. Consequently, designers proposed a host of buses that
extended the original SCSI protocols, but were essentially point to point serial buses. Two such
important technologies are the SAS (Serially Attached SCSI), and FC (fibre channel) buses.
FC buses are mainly used for very high end systems such as supercomputers. The SAS bus is
more commonly used for enterprise and scientific applications.

Let us thus primarily focus on the SAS protocol, because it is the most popular variant of the
SCSI protocol in use today. SAS is a serial point to point technology that is also compatible with
previous versions of SATA based devices, and its specification is very close to the specification
of SATA.

691 (© Smruti R. Sarangi

Overview of SAS

SAS was designed to be backward compatible with SATA. Hence, both the protocols are not
very different in the physical and data link layers. However, there are still some differences. The
biggest difference is that SAS allows full duplex transmission, whereas SATA allows only half
duplex transmission. Secondly, SAS can in general support larger frame sizes, and it supports
a larger cable length between the end points as compared to SATA (8m for SAS, as compared
to 1m for SATA).

The network layer is different from SATA. Instead of using a multiplier (used in SATA),
SAS uses a much more sophisticated structure known as an ezxpander for connecting to multiple
SAS targets. Traditionally, the bus master of a SAS bus is known as the initiator, and the
other node is known as the target. There are two kinds of expanders — edge expander, and
fanout expander. An edge expander can be used to connect up to 255 SAS devices, and a fanout
expander can be used to connect up to 255 edge expanders. We can add a large number of
devices in a tree based topology using a root node, and a set of expanders. Each device at
boot up time is assigned a unique SCSI id. A device might further be subdivided into several
logical partitions. For example, your author at this moment is working on a storage system
that is split into two logical partitions. Each partition has a logical unit number (LUN). The
routing algorithm is as follows. The initiator sends a command to either a device directly if
there is a direct connection or to an expander. The expander has a detailed routing table that
maintains the location of the device as a function of its SCSI id. It looks up this routing table
and forwards the packet to either the device, or to an edge expander. This edge expander has
another routing table, which it uses to forward the command to the appropriate SCSI device.
The SCSI device then forwards the command to the corresponding LUN. For sending a message
to another SCSI device, or to the processor, a request follows the reverse path.

Lastly, the protocol layer is very flexible for SAS buses. It supports three kinds of protocols.
We can either use SATA commands, SCSI commands, or SMP (SAS Management Protocol)
commands. SMP commands are specialised commands for configuring and maintaining the
network of SAS devices. The SCSI command set is very extensive, and is designed to control
a host of devices (mostly storage devices). Note that a device has to be compatible with the
SCSI protocol layer before we can send SCSI commands to it. If a device does not understand
a certain command, then there is a possibility that something catastrophic might happen. For
example, if we wish to read a CD, and the CD driver does not understand the command, then
it might eject the CD. Even worse, it is possible that it might never eject the CD because
it does not understand the eject command. The same argument holds true for the case of
SATA also. We need to have SATA compatible devices such as SATA compatible hard drives
and SATA compatible optical drives, if we wish to use SATA commands. SAS buses are by
design compatible with both SATA devices and SAS/SCSI devices because of the flexibility of
the protocol layer. For the protocol layer, SAS initiators send SCSI commands to SAS/SCSI
devices, and SATA commands to SATA devices.

Nearline SAS (NL-SAS) drives are essentially SATA drives, but have a SCSI interface that
translates SCSI commands to SATA commands. NL-SAS drives can thus be seamlessly used on
SAS buses. Since the SCSI command set is more expressive and more efficient, NL-SAS drives
are 10-20% faster than pure SATA drives.

Let us now very briefly describe the SCSI command set in exactly 4 sentences. The initiator

(© Smruti R. Sarangi 692

begins by sending a command to the target. Each command has a 1-byte header, and it has
a variable length payload. The target then sends a reply with the execution status of the
command. The SCSI specifications defines at least 60 different commands for device control,
and transferring data. For additional information, the readers can look up the SCSI specification
at [scs, |.

13.7.4 USB
Overview

Let us now consider the USB protocol, which was primarily designed for connecting external
devices to a laptop or desktop computer such as keyboards, mice, speakers, web cameras, and
printers. In the mid nineties vendors realised that there are many kinds of I/O bus protocols
and connectors. Consequently, motherboard designers, and device driver writers were finding
it hard to support a large range of devices. There was thus a need for standardisation. Hence,
a consortium of companies (DEC, IBM, Intel, Nortel, NEC, and Microsoft) conceived the USB
protocol (Universal Serial Bus).

The main aim of the USB protocol was to define a standard interface for all kinds of devices.
The designers started out by classifying devices into three types namely low speed (keyboards,
mice), full speed (high definition audio), and high speed (scanners, and video cameras). Three
versions of the USB protocol have been proposed till 2012 namely versions 1.0, 2.0, and 3.0.
The basic USB protocol is more or less the same. The protocols are backward compatible. This
means that a modern computer that has a USB 3.0 port supports USB 1.0 devices. Unlike the
SAS or SATA protocols that are designed for a specific set of hardware, and can thus make a lot
of assumptions regarding the behaviour of the target device, the USB protocol was designed to
be very generic. Consequently, designers needed to provide extensive support for the operating
system to discover the type of the device, its requirements, and configure it appropriately.
Secondly, a lot of USB devices do not have their power source such as keyboards and mice. It
is thus necessary to include a power line for running connected devices in the USB cable. The
designers of the USB protocol kept all of these requirements in mind.

From the outset, the designers wanted USB to be a fast protocol that could support high
speed devices such as high definition video in the future. They thus decided to use a point to
point serial bus (similar to PCI Express, SATA, and SAS). Every laptop, desktop, and midsized
server, has an array of USB ports on the front or back panels. Each USB port, is considered a
host that can connect with a set of USB devices. Since we are using serial links, we can create
a tree of USB devices similar to trees of PCI Express and SAS devices. Most of the time we
connect only one device to a USB port. However, this is not the only configuration. We can
alternatively connect a USB hub, which acts like an internal node of the tree. An USB hub is
in principle similar to a SATA multiplier and SAS expander.

A USB hub is most of the time a passive device, and typically has four ports to connect
to other devices and hubs downstream. The most common configuration for a hub consists of
one upstream port (connection to the parent), and four downstream ports. We can in this
manner create a tree of USB hubs, and connect multiple devices to a single USB host on the
motherboard. The USB protocol supports 127 devices per host, and we can at the most connect
5 hubs serially. Hubs can either be powered by the host, or be self powered. If a hub is self
powered it can connect more devices. This is because, the USB protocol has a limit on the

693 (© Smruti R. Sarangi

amount of current that it can deliver to any single device. At the moment, it is limited to 500
mA, and power is allocated in blocks of 100 mA. Hence, a hub that is powered by the host can
have at the most 4 ports because it can give each device 100 mA, and keep 100 mA for itself.
Occasionally, a hub needs to become an active device. Whenever, a USB device is disconnected
from a hub, the hub detects this event, and sends a message to the processor.

Layers of the USB Protocol

Physical Layer

Let us now discuss the protocol in some more detail, and start with the physical layer. The
standard USB connector has 4 pins. The first pin is a power line that provides a fixed 5V DC
voltage. It is typically referred to as V. of Vp,s. We shall use V... There are two pins namely
DT and D~ for differential signalling. Their default voltage is set to 3.3V. The fourth pin is
the ground pin (GN D). The mini and micro USB connectors have an additional pin called ID
that helps differentiate between a connection to the host, and to a device.

The USB protocol uses differential signalling. It uses a variant of the NRZI protocol. For
encoding logical bits, it assumes that a logical 0 is represented by a transition in physical bits,
whereas a logical 1 is represented by no transitions (reverse of the traditional NRZI protocol).
A USB bus is an asynchronous bus that recovers the clock. To aid in clock recovery, the syn-
chronisation sublayer introduces dummy transitions if there are no transitions in the data. For
example, if we have a continuous run of 1s, then there will be no transitions in the transmitted
signal. In this case, the USB protocol introduces a 0 bit after every run of six 1s. This strategy
ensures that we have some guaranteed transitions in the signal, and the receiver can recover the
clock of the transmitter without falling out of synchrony. The USB connectors only have one
pair of wires for differential signalling. Hence, full duplex signalling is not possible. Instead,
USB links use half duplex signalling.

Data Link Layer

For the data link layer, the USB protocol uses CRC based error checking, and variable frame
lengths. It uses bit stuffing (dedicated frame begin and end symbols) to demarcate frame
boundaries. Arbitration is a rather complex issue in USB hubs. This is because, we have many
kinds of traffic and many kinds of devices. The USB protocol defines four kinds of traffic.

Control Control messages that are used to configure devices.
Interrupt A small amount of data that needs to be sent to a device urgently.

Bulk A large amount of data without any guarantees of latency and bandwidth. E.g., image
data in scanners.

Isochronous A fixed rate data transfer with latency and bandwidth guarantees. E.g., au-
dio/video in web cameras.

Along with the different kinds of traffic, we have different categories of USB devices namely
low speed devices (192 KB/s), full speed devices (1.5 MB/s), and high speed devices (60 MB/s).
The latest USB 3.0 protocol has also introduced super speed devices that require up to 384

(© Smruti R. Sarangi 694

MB/s. However, this category is still not very popular (as of 2012); hence, we shall refrain from
discussing it.

Now, it is possible to have a high-speed and a low-speed device connected to the same hub.
Let us assume that the high speed device is doing a bulk transfer, and the low speed device is
sending an interrupt. In this case, we need to prioritise the access to the upstream link of the
hub. Arbitration is difficult because we need to conform to the specifications of each class of
traffic and each class of devices. We have a dilemma between performing the bulk transfer, and
sending the interrupt. We would ideally like to strike a balance between conflicting requirements
by having different heuristics for traffic prioritisation. A detailed explanation of the arbitration
mechanisms can be found in the USB specification [usb, |.

Let us now consider the issue of transactions. Let us assume that a high speed hub is
connected to the host. The high speed hub is also connected to full and low speed devices
downstream. In this case, if the host starts a transaction to a low speed device through the
high speed hub, then it will have to wait to get the reply from the device. This is because the
link between the high speed hub and the device is slow. There is no reason to lock up the bus
between the host, and the hub in this case. We can instead implement a split transaction. The
first part of the split transaction sends the command to the low speed device. The second part
of the split transaction consists of a message from the low speed device to the host. In the
interval between the split transactions, the host can communicate with other devices. A USB
bus implements similar split transactions for many other kinds of scenarios (refer to the USB
Specification [usb, |).

Network Layer

Let us now consider the network layer. Each USB device including the hubs is assigned a
unique ID by the host. Since we can support up to 127 devices per host, we need a 7-bit device
id. Secondly, each device has multiple I/O ports. Each such I/O port is known as an end point.
We can either have data end points (interrupt, bulk, or isochronous), or control end points.
Additionally, we can classify end points as IN or OUT. The IN end point represents an 1/0O
port that can only send data to the processor, and the OUT end point accepts data from the
processor. Every USB device can have at the most 16 IN end points, and 16 OUT end points.
Any USB request clearly specifies the type of end point that it needs to access (IN or OUT).
Given that the type of the end point is fixed by the request, we need only 4 bits to specify the
address of the end point.

All USB devices have a default set of IN and OUT end points whose id is equal to 0.
These end points are used for activating the device, and establishing communication with it.
Subsequently, each device defines its custom set of end points. Simple devices such as a mouse
or keyboard that typically send data to the processor define just one IN end point. However,
more complicated devices such as web cameras define multiple end points. One end point is
for the video feed, one end point is for the audio feed, and there can be multiple end points for
exchanging control and status data.

The responsibility of routing messages to the correct USB device lies with the hubs. The
hubs maintain routing tables that associate USB devices with local port ids. Once a message
reaches the device, it routes it to the correct end point.

Protocol Layer

695 (© Smruti R. Sarangi

The USB protocol layer is fairly elaborate. It starts out by defining two kinds of connections

between end points known as pipes. It defines a stream pipe to be a stream of data without
any specific message structure. In comparison, message pipes are more structured and define
a message sequence that the sender and receiver must both follow. A typical message in the
message pipe consists of three kinds of packets. The communication starts with a token packet
that contains the device id, id of the end point, nature of communication, and additional
information regarding the connection. The hubs on the path route the token packet to the
destination, and a connection is thus set up. Then depending upon the direction of the transfer
(host to device or device to host), the host or the device sends a sequence of data packets.
Finally, at the end of the sequence of data packets, the receiver of the packets sends a handshake
packet to indicate the successful completion of the I/O request.

Summary

Table summarises our discussion on USB up till now. The reader can refer to the specifi-
cations of the USB protocol [usb, | for additional information.

13.7.5 FireWire Protocol
Overview

FireWire started out with being a high speed serial bus in Apple computers. However, nowadays
it is being perceived as a competitor to USB. Even though it is not as popular as USB, it is still
commonly used. Most laptops have FireWire ports. The FireWire ports are primarily used for
connecting video cameras, and high speed optical drives. FireWire is now an IEEE standard
(IEEE 1394), and its specifications are thus open and standardised. Let us take a brief look at
the FireWire protocol.

Like all the buses that we have studied, FireWire is a high speed serial bus. For the same
generation, FireWire is typically faster than USB. For example, FireWire (S800) by default has
a bandwidth of 100 MB/s, as compared to 60 MB/s for high speed USB devices. Secondly,
the FireWire bus was designed to be a hybrid of a peripheral bus and a computer network. A
single FireWire bus can support up to 63 devices. It is possible to construct a tree of devices
by interconnecting multiple FireWire buses using FireWire bridges.

The most interesting thing about the FireWire protocol is that it does not presume a
connection to a computer. Peripherals can communicate among themselves. For example, a
printer can talk to a scanner without going through the computer. It implements a real network
in the true sense. Consequently, whenever a FireWire network boots up, all the nodes co-operate
and elect a leader. The leader node, or the root node is the root of a tree. Subsequently, the
root node sends out messages, and each node is aware of its position in the tree.

The physical layer of the FireWire protocol consists of two LVDS links (one for transmitting
data, and one for transmitting the strobe). The channel is thus half duplex. Note that latest
versions of the Firewall protocol that have bandwidths greater than 100 MB/s also support full
duplex transmission. They however, have a different connector that requires more pins. For
encoding logical bits, most FireWire buses use a method of encoding known as data strobe (DS)
encoding. The DS encoding has two lines. One line contains the data (NRZ encoding), and the
other line contains the strobe. The strobe is equal to the data XORed with the clock. Let the

(© Smruti R. Sarangi

696

USB (Universal Serial Bus)

H

Usage Connecting peripheral devices such as key-
boards, mice, web cameras, and pen drives
Source [usb, |
Topology

Connection Point to point, serial
Width Single bit, half duplex

Physical Layer
Signalling LVDS based differential signalling.
Encoding NRZI (transition represents a logical 0)
Timing Asynchronous (a 0 added after six continuous 1s

for clock recovery)

Data Link Layer

Frame Size

46 — 1058 bits

Error Correction

CRC

Transactions Split transaction bus
Bandwidth 192 KB/s (low speed), 1.5 MB/s (full speed), 60
MB/s (high speed)
Network Layer
Address 7-bit device id, 4-bit end point id
Routing Using a tree of hubs
Hub Has one upstream port, and up to 4 downstream

ports

USB network

Can support a maximum of 127 devices

Protocol Layer

Connections

Message pipe (structured), and stream pipe (un-
structured)

Types of traffic

Control, Interrupt, Bulk, Isochronous

Table 13.7: The USB Protocol

data signal be D (sequence of Os and 1s), the strobe signal be S, and the clock of the sender
be C. We have:

S=DaC

(13.7)
=DoS=C

At the side of the receiver, it can recover the clock of the sender by computing D &S (XOR
of the data and the strobe). Thus, we can think of the DS encoding as a variant of source
synchronous transmission, where instead of sending the clock of the sender, we send the strobe.

The link layer of the FireWire protocol implements CRC based error checking, and split
transactions. FireWire protocols have a unique way of performing arbitration. We divide time

697 (© Smruti R. Sarangi

into 125 us cycles. The root node broadcasts a start packet to all the nodes. Nodes that wish
to transmit isochronous data (data at a constant bandwidth) send their requests along with
bandwidth requirements to the root node. The root node typically uses FIFO scheduling. It
gives one device permission to use the bus and transmit data for a portion of the 125 us cycle.
Once the request is over, it gives permission to the next isochronous request and so on. Note
that in a given cycle, we can only allot 80% of the time for isochronous transmission. Once, all
the requests are over, or we complete 80% of the cycle, all isochronous transactions stop. The
root subsequently considers asynchronous requests (single message transfers).

Devices that wish to send asynchronous data send their requests to the root through internal
nodes in the tree (other FireWire devices). If an internal node represented by a FireWire device
wishes to send an asynchronous packet in the current cycle, it denies the request to all the
requesters that are in its subtree. Omnce a request reaches the root node, it sends a packet
back to the requester to grant it permission to transmit a packet. The receiver is supposed
to acknowledge the receipt of the packet. After a packet transmission has finished, the root
node schedules the next request. The aspect of denying requests made by downstream nodes
is similar to the concept of a daisy chain (see Section .

For the network layer, each FireWire device also defines its internal set of I/O ports. All
the devices export a large I/0O space to the processor. Each I/O port contains a device address
and a port address within the device. The tree of devices first routes a request to the right
device, and then the device routes the request to the correct internal port. Typically, the entire
FireWire I/O address space is mapped to memory, and most of the time we use memory mapped
I/0O for FireWire devices.

Summary

Table [13.8] summarises our discussion on the FireWire protocol.

13.8 Storage

Out of all the peripheral devices that are typically attached to a processor, storage devices have
a special place. This is primarily because they are integral to the functioning of the computer
system.

The storage devices maintain persistent state. Persistent state refers to all the data that
is stored in the computer system even when it is powered off. Notably, the storage systems
store the operating system, all the programs, and their associated data. This includes all
our documents, songs, images, and videos. From the point of view of a computer architect,
the storage system plays an active role in the boot process, saving files and data, and virtual
memory. Let us discuss each of these roles one by one.

When a processor starts (process is known as booting), it needs to load the code of the
operating system. Typically, the code of the operating system is available at the beginning of
the address space of the primary hard disk. The processor then loads the code of the operating
system into main memory, and starts executing it. After the boot process, the operating system
is available to users, who can use it to run programs, and access data. Programs are saved as
regular files in the storage system, and data is also saved in files. Files are essentially blocks

(© Smruti R. Sarangi 698

[FireWire (IEEE 1394) |

Usage Connection to video cameras and optical drives
Source [fir, |
Topology
Connection Point to Point, serial, daisy chain based tree
Width Single bit, half duplex (till FireWire 400, full duplex beyond
that)
Physical Layer
Signalling LVDS based differential signalling.
Encoding Data Strobe Encoding (FireWire 800 and above also support
8bit/10 bit encoding)
Timing Source Synchronous (sends a data strobe rather than a
clock)
Data Link Layer
Frame Size 12.5 KB (FireWire 800 protocol)
Error Correction | CRC
Transactions Split Transaction Bus
Arbitration (1) Elect a leader, or root node.

(2) Each 125 us cycle, the root sends a start packet, and
each device willing to transmit sends its requirements to the
root.

(3) The root allots 100 us for isochronous traffic, and the
rest for asynchronous traffic

Bandwidth 100 MB/s (FireWire 800)

Network Layer

Address Space The tree of FireWire devices export a large I/O address
space.

Routing Using a tree of bridges

Table 13.8: The FireWire Protocol

of data in the hard disk, or similar storage devices. These blocks of data need to be read into
main memory such that they are accessible by the processor.

Lastly storage devices play a very important role in implementing virtual memory. They
store the swap space (see Section. Recall that the swap space contains all the frames that
cannot be contained in main memory. It effectively helps to extend the physical address space
to match the size of the virtual address space. A part of the frames are stored in main memory,
and the remaining frames are stored in the swap space. They are brought into (swapped in),
when there is a page fault.

Almost all types of computers have attached storage devices. There, however can be some
exceptions. Some machines especially, in a lab setting, might access a hard disk over the
network. They typically use a network boot protocol to boot from a remote hard disk, and

699 (© Smruti R. Sarangi

access all the files including the swap space over the network. Conceptually, they still have an
attached storage device. It is just not physically attached to the motherboard. It is nonetheless,
accessible over the network.

Now, let us take a look at the main storage technologies. Traditionally, magnetic storage
has been the dominant technology. This storage technology records the values of bits in tiny
areas of a large ferro-magnetic disk. Depending on the state of magnetisation, we can either
infer a logical 0 or 1. Instead of magnetic disk technology, we can use optical technology such
as CD/DVD/Blu-ray drives. A CD/DVD/Blu-ray disk contains a sequence of pits (aberrations
on the surface) that encodes a sequence of binary values. The optical disk drive uses a laser to
read the values stored on the disk. Most of the operations of a computer typically access the
hard disk, whereas optical disks are mainly used to archive videos and music. However, it is
not uncommon to boot from the optical drives.

A fast emerging alternative to magnetic disks, and optical drives is solid state drives. Unlike
magnetic, and optical drives that have moving parts, solid state drives are made of semiconduc-
tors. The most common technology used in solid state drives is flash. A flash memory device
uses charge stored in a semiconductor to signify a logical 0 or 1. They are much faster than
traditional hard drives. However, they can store far less data, and as of 2012, are 5-6 times
more expensive. Hence, high end servers opt for hybrid solutions. They have a fast SSD drive
that acts as a cache for a much larger hard drive.

Let us now take a look at each of these technologies. Note that in this book, our aim is to
give the reader an understanding of the basic storage technologies such that she can optimise
the computer architecture. For a deeper understanding of storage technologies the reader can
take a look at |[Brewer and Gill, 2008, [Micheloni et al., 2010].

13.8.1 Hard Disks

A hard disk is an integral part of most computer systems starting from laptops to servers. It is
a storage device made of ferromagnetic material and mechanical components that can provide
a large amount of storage capacity at low cost. Consequently, for the last three decades hard
disks have been exclusively used to save persistent state in personal computers, servers, and
enterprise class systems.

Surprisingly, the basic physics of data storage is very simple. We save Os and 1s in a series
of magnets. Let us quickly review the basic physics of data storage in hard disks.

Physics of Data Storage in Hard Disks

Let us consider a typical magnet. It has a north pole, and a south pole. Like poles repel each
other, and opposite poles attract each other. Along with mechanical properties, magnets have
electrical properties also. For example, when the magnetic field passing through a coil of wire
changes due to the relative motion between the magnet and the coil, an EMF (voltage) is
induced across the two ends of the wire according to Faraday’s law. Hard disks use Faraday’s
law as the basis of their operation.

The basic element of a hard disk is a small magnet. Magnets used in hard disks are
typically made of iron oxides and exhibit permanent magnetism. This means that their magnetic
properties hold all the time. They are called permanent magnets or Ferromagnets (because of
iron oxides). In comparison, we can have electromagnets that consist of coils of current carrying

(© Smruti R. Sarangi 700

wires wrapped around iron bars. Electromagnets lose their magnetism after the current is
switched off.

®» OO O O OO &
0 1 0 1

Figure 13.28: A sequence of tiny magnets on the surface of a hard disk

Now, let us consider a set of magnets in series as shown in Figure [I3.28] There are two
options for their relative orientation namely N-S (north-south), or S-N (south-north). Let
us now move a small coil of wire over the arrangement of magnets. Whenever, it crosses the
boundary of two magnets that have opposite orientations, there is a change in the magnetic
field. Hence, as a direct consequence of Faraday’s law, an EMF is induced across the two ends
of the coil. However, when there is no change in the orientation of the magnetic field, the EMF
induced across the ends of the coil is negligible. The transition in the orientation of the tiny
magnets corresponds to a logical 1 bit, and no transition represents a logical 0 bit. Thus, the
magnets in Figure represent the bit pattern 0101. In principle, this is similar to the NRZI
encoding for I/O channels.

Since we encode data in transitions, we need to save blocks of data. Consequently, hard
disks save a block of data in a sector. A sector has traditionally between 512 bytes for hard
disks. It is treated as an atomic block, and an entire sector is typically read or written in one
go. The structure that contains the small coil, and passes over the magnets is known as the
read head.

Let us now look at writing data to the hard disk. In this case, the task is to set the
orientation of the magnets. We have another structure called the write head that contains a
tiny electromagnet. An electromagnet can induce magnetisation of a permanent magnet if it
passes over it. Secondly, the direction of magnetisation is dependent on the direction of the
current. If we reverse the direction of the current, the direction of magnetisation changes.

For the sake of brevity, we shall refer to the combined assembly of the read head, and write
head, as the head.

Structure of the Platter

A hard disk typically consists of a set of platters. A platter is a circular disk with a hole in
the middle. A spindle is attached to the platter through the circular hole in the middle. The
platter is divided into a set of concentric rings called tracks. A track is further divided into
fixed length sectors as shown in Figure

Definition 160
A hard disk consists of multiple platters. A platter is a circular disk that is attached to a

701 (© Smruti R. Sarangi

Sector

Track

Figure 13.29: The structure of a platter

spindle. A platter further consists of a set of concentric rings called tracks, and each track
consists of a set of sectors. A sector typically contains a fized number of bytes irrespective
of the track.

Now, let us outline the basic operation of a hard disk. The platters are attached to a spindle.
During the operation of a hard disk, the spindle, and its attached platters are constantly in
rotation. Let us for the sake of simplicity assume a single platter disk. Now, the first step is
to position the head on the track that contains the desired data. Next, the head needs to wait
at this position till the desired sector arrives under the head. Since the platter is rotating at a
constant speed, we can calculate the amount of time that we need to wait based on the current
position of the head. Once the desired sector, arrives under the head, we can proceed to read
or write the data.

There is an important question that needs to be considered here. Do we have the same
number of sectors per track, or do we have a different number of sectors per track? Note that
there are technological limitations on the number of bits that can be saved per track. Hence, if
we have the same number of sectors per track, then we are effectively wasting storage capacity
in the tracks towards the periphery. This is because we are limited by the number of bits that
we can store in the track that is closest to the center. Consequently, modern hard disks avoid
this approach.

Let us try to store a variable number of sectors per track. Tracks towards the center contain
fewer sectors, and tracks towards the periphery contain more sectors. This scheme also has its
share of problems. Let us compare the innermost and outermost tracks, and let us assume that

(© Smruti R. Sarangi 702

the innermost track contains N sectors, and the outermost track contains 2N sectors. If we
assume that the number of rotations per minute is constant, then we need to read data twice
as fast on the outermost track as compared to the innermost track. In fact for every track, the
rate of data retrieval is different. This will complicate the electronic circuitry in the disk. We
can explore another option, which is to rotate the disk at different speeds for each track, such
that the rate of data transfer is constant. In this case, the electronic circuitry is simpler, but the
sophistication required to run the spindle motor at a variety of different speeds is prohibitive.
Hence, both the solutions are impractical.

How about, combining two impractical solutions to make it practical !!! We have been
following similar approaches throughout this book. Let us divide the set of tracks into a set of
zones. Each zone consists of a consecutive set of m tracks. If we have n tracks in the platter,
then we have n/m zones. In each zone, the number of sectors per track is the same. The
platter rotates with a constant angular velocity for all the tracks in a zone. In a zone, data is
more densely packed for tracks that are closer to the center as compared to tracks towards the
periphery of the platter. In other words, sectors have physically different sizes for tracks in a
zone. This is not a problem since the disk drive assumes that it takes the same amount of time
to pass over each sector in a zone, and rotation at a constant angular velocity ensures this.

Figure shows a conceptual breakup of the platter into zones. Note that the number of
sectors per track varies across zones. This method is known as Zoned-Bit Recording(ZBR). The
two impractical designs that we refrained from considering, are special cases of ZBR. The first
design assumes that we have one zone, and the second design assumes that each track belongs
to a different zone.

Figure 13.30: Zoned-Bit Recording

Let us now try to see why this scheme works. Since we have multiple zones, the storage
space wasted is not as high as the design with just a single zone. Secondly, since the number of

703 (© Smruti R. Sarangi

zones is typically not very large, the motor of the spindle does not need to readjust its speed
frequently. In fact because of spatial locality, the chances of staying within the same zone are
fairly high.

Structure of the Hard Disk

:

Figure 13.31: The structure of a hard disk (source [har, |)

Let us now put all the parts together and take a look at the structure of the hard disk
in Figure and Figure [[3.32] We have a set of platters connected to a single rotating
spindle, and a set of disk arms (one for each side of the platter) that contain a head at the
end. Typically, all the arms move together, and all the heads are vertically aligned on the same
cylinder. Here, a cylinder is defined as a set of tracks from multiple platters, which have the
same radius. In most hard disks only one head is activated at a point of time. It performs a
read or write access on a given sector. In the case of a read access, the data is transmitted
back to the drive electronics for post processing (framing, error correction), and then sent on
the bus to the processor through the bus interface.

Let us now consider some subtle points in the design of a hard disk (refer to Figure [13.32).
It shows two platters connected to a spindle, and each platter has two recording surfaces. The
spindle is connected to a motor (known as the spindle motor), which adjusts its speed depending
on the zone that we wish to access. The set of all the arms move together, and are connected
using a spindle to the actuator. The actuator is a small motor used for moving the arms clock
wise or anti-clockwise. The role of the actuator is to position the head of an arm on a given
track by rotating it clockwise or ant-clockwise a given number of degrees.

A typical disk drive in a desktop processor has a track density of about 10,000 tracks per
inch. This means that the distance between tracks is 2.5 pm, and thus the actuator has to be
incredibly accurate. Typically there are some markings on a sector indicating the number of
the track. Consequently, the actuator typically needs to make slight adjustments to come to

(© Smruti R. Sarangi 704

Spindle
Read/Write
head
Arm
Bus
Bus
interface
Spindle motor

Drive
electronics

Figure 13.32: Internals of a hard disk

the exact point. This control mechanism is known as servo control. Both the actuator and the
spindle motor are controlled by electronic circuits that are inside the chassis of the hard disk.
Once the actuator has placed the head on the right track, it needs to wait for the desired sector
to come under the head. A track has markings to indicate the number of the sector. The head
keeps reading the markings after its positioned on a track. Based on these markings it can
accurately predict when the desired sector will be underneath the head.

Along with the mechanical components, a hard disk has electronic components including
small processors. They receive and transmit data on the bus, schedule requests on the hard
disk, and perform error correction. The reader needs to appreciate the fact that we have just
scratched the surface in this book. A hard disk is an incredible feat of human engineering. The
hard disk can most of the time seamlessly tolerate errors, dynamically invalidate bad sectors
(sectors with faults), and remap data to good sectors. The reader is referred to [Jacob et al.,
2007| for further study.

Mathematical Model of a Hard Disk Access

Let us now construct a quick mathematical model for the time a request takes to complete its
access to the hard disk. We can divide the time taken into three parts. The first is the seek
time, which is defined as the time required for the head to reach the right track. Subsequently,
the head needs to wait for the desired sector to arrive under it. This time interval is known as
the rotational latency. Lastly, the head needs to read the data, process it to remove errors and
redundant information, and then transmit the data on the bus. This is known as the transfer
time. Thus, we have the simple equation.

705 (© Smruti R. Sarangi

Tdisk:,access = Lseek + Trot,latency + Ttransfer (138)

Definition 161

Seek Time The time required for the actuator to move the head to the right track.

Rotational Latency The time required for the desired sector to arrive under the head,
after the head is correctly positioned on the right track.

Transfer Time The time required to transfer the data from the hard disk to the processor.

Example 157
Assume that a hard disk has an average seek time of 12 ms, rotates at 600 rpm, and has
a bandwidth of 105 B/s. Find the average time to transfer 10,000 bytes of data (assuming
that the data is in consecutive sectors).
Answer: Tgeep, = 12 ms
Since the disk rotates at 600 rpm, it takes 100 ms per rotation. On an average, the rotational
latency is half this amount because the offset between the current position of the head, and
the desired offset is assumed to be uniformly distributed between (° and 360°. Thus, the
rotational latency(Trot iatency) s 50 ms. Now, the time it takes to transfer 104 contiguous
bytes is 0.01s or 10 ms, because the bandwidth is 10° B/s.

Hence, the average time per disk access is 12 ms + 50 ms + 10 ms = 72 ms

13.8.2 RAID Arrays

Most enterprise systems have an array of hard disks because their storage, bandwidth, and
reliability requirements are very high. Such arrays of hard disks are known as RAID arrays
(Redundant Arrays of Inexpensive Disks). Let us review the design space of RAID based
solutions in this section.

Definition 162

RAID (Redundant Array of Inexpensive Disks) is a class of technologies for deploying large
arrays of disks. There are different RAID levels in the design space of RAID solutions.
Each level makes separate bandwidth, capacity, and reliability guarantees.

(© Smruti R. Sarangi 706

RAID 0

Let us consider the simplest RAID solution known as RAID 0. Here, the aim is to increase
bandwidth, and reliability is not a concern. It is typically used in personal computers optimised
for high performance gaming.

The basic idea is known as data striping. Here, we distribute blocks of data across disks.
A block is a contiguous sequence of data similar to cache blocks. Its size is typically 512 B;
however, its size may vary depending on the RAID system. Let us consider a two disk system
with RAID 0 as shown in Figure We store all the odd numbered blocks (B1, B3, ...)
in disk 1, and all the even numbered blocks (B2, B4, ...) in disk 2. If a processor has a page
fault, then it can read blocks from both the disks in parallel, and thus in effect, the hard disk
bandwidth is doubled. We can extend this idea and implement RAID 0, using N disks. The
disk bandwidth can thus be theoretically increased N times.

Unaaal
St

Figure 13.33: RAID 0

RAID 1

Let us now add reliability to RAID 0. Note that the process of reading and writing bits in a hard
disk is a mechanical process. It is possible that some bits might not be read or written correctly
because there might be a slight amount of deviation from ideal operation in the actuator, or the
spindle motor. Secondly, external electro-magnetic radiation, and cosmic particle strikes can
flip bits in the hard disk and its associated electronic components. The latter type of errors are
also known as soft errors. Consequently, each sector of the disk typically has error detecting
and correcting codes. Since an entire sector is read or written atomically, error checking and
correction is a part of hard disk access. We typically care about more catastrophic failures
such as the failure of an entire hard disk drive. This means that the there is break down in
the actuator, spindle motor, or any other major component that prevents us from reading or
writing to most of the hard disk. Let us consider disk failures from this angle. Secondly, let us
also assume that disks follow the fail stop model of failure. This means that whenever there is
a failure, the disks are not operational anymore, and the system is aware of it.

In RAID 1, we typically have a 2 disk system (see Figure , and we mirror data of one
disk on the other. They are essentially duplicates of each other. We are definitely wasting half
of our storage space here. In the case of reads, we can leverage this structure to theoretically

707 (© Smruti R. Sarangi

double the disk bandwidth. Let us assume that we wish to read the blocks 1 and 3. In the case
of RAID 0, we needed to serialise the accesses, because both the blocks map to the same disk.
However, in this case, since each disk has a copy of all the data, we can read block 1 from disk
1, and read block 3 from disk 3 in parallel. Thus, the read bandwidth is potentially double that
of a single disk. However, the write bandwidth is still the same as that of a single disk, because
we need to write to both the disks. Note that here it is not necessary to read both the disks
and compare the contents of a block in the interest of reliability. We assume that if a disk is
operational, it contains correct data.

it
dddat

Figure 13.34: RAID 1

RAID 2

Let us now try to increase the efficiency of RAID 1. In this case, we consider a system of NV
disks. Instead of striping data at the block level, we stripe data at the bit level. We dedicate a
disk for saving the parity bit. Let us consider a system with 5 disks as shown in Figure
We have 4 data disks, and 1 parity disk. We distribute contiguous sequences of 4 bits in a
logical block across the 4 data disks. A logical block is defined as a block of contiguous data as
seen by software. Software should be oblivious of the fact that we are using a RAID system
instead of a single disk. All software programs perceive a storage system as an array of logical
blocks. Now, the first bit of a logical block is saved in disk 1, the second bit is saved in disk
2, and finally the fourth bit is saved in disk 4. Disk 5, contains the parity of the first 4 bits.
Each physical block in a RAID 2 disk thus contains a subset of bits of the logical blocks. For
example, B1 contains bit numbers 1,5,9, ... of the first logical block saved in the RAID array.
Similarly, B2 contains bit numbers 2,6, 10,.... To read a logical block, the RAID controller
assembles the physical blocks and creates a logical block. Similarly, to write a logical block, the
RAID controller breaks it down into its constituent physical blocks, computes the parity bits,
and writes to all the disks.

Reads are fast in RAID 2. This is because we can read all the 9 disks in parallel. Writes
are also fast, because we can write parts of a block to different disks, in parallel. RAID 2 is
currently not used because it does not allow parallel access to different logical blocks, introduces
complexity because of bit level striping, and every I/O request requires access to all the disks.
We would like to iterate again that the parity disk is not accessed on a read. The parity disk
is accessed on a write because its contents need to be updated. Its main utility is to keep the

(© Smruti R. Sarangi 708

system operational if there is a single disk failure. If a disk fails, then the contents of a block
can be recovered by reading other blocks in the same row from the other disks, and by reading
the parity disk.

Bl B4

B8

B2

& el

bl
el
ool
ol

arity disk

)

Data disks

Figure 13.35: RAID 2

RAID 3

RAID 3 is almost the same as RAID 2. Instead of striping at the bit level, it stripes data at
the byte level. It has the same pros and cons as RAID 2, and is thus seldom used.

RAID 4

RAID 4 is designed on the same lines as RAID 2 and 3. It stripes data at the block level. It has
a dedicated parity disk that saves the parity of all the blocks on the same row. In this scheme, a
read access for a single block is not as fast as RAID 2 and 3 because we cannot access different
parts of a block in parallel. A write access is also slower for the same reason. However, we can
read from multiple blocks at the same time if they do not map to the same disk. We cannot
unfortunately do this for writes.

For a write access, we need to access two disks — the disk that contains the block, and the
disk that contains the parity. An astute reader might try to argue that we need to access all
the disks because we need to compute the parity of all the blocks in the same row. However,
this is not true. Let us assume that there are m data disks, and the contents of the blocks in
a row are Bj...B,, respectively. Then the parity block, P, is equal to B1 @ By ® ... ® B,,.
Now, let us assume that we change the first block from By to Bj. The new parity is given by
P'= B} ® By...® B,,. We thus have:

P =B\®Bsy...® By,
=B ®B1®B®Bsy...® By, (13.9)
=B1®oB®P

The results used in Equation are: B ® By =0 and 0@ P’ = P’. Thus, to compute P,
we need the values of By, and P. Hence, for performing a write to a block, we need two read

709 (© Smruti R. Sarangi

accesses (for reading By and P), and two write accesses (for writing B} and P’) to the array of
hard disks. Since all the parity blocks are saved in one disk, this becomes a point of contention,
and the write performance becomes very slow. Hence, RAID 4 is also seldom used.

RAID 5

RAID 5 mitigates the shortcomings of RAID 4. It distributes the parity blocks across all the
disks for different rows as shown in Figure For example, the 5" disk stores the parity for
the first row, and then the 1% disk stores the parity for the second row, and the pattern thus
continues in a round robin fashion. This ensures that no disk becomes a point of contention,
and the parity blocks are evenly distributed across all the disks.

Note that RAID 5 provides high bandwidth because it allows parallel access for reads, has
relatively faster write speed, and is immune to one disk failure. Hence, it is heavily used in
commercial systems.

Striping

Bl B2 B3 B4

cEl=lelel
clalddldl
dodlddl
. alval
2elEel

Figure 13.36: RAID 5

RAID 6

Sometimes, we might desire additional reliability. In this case, we can add a second parity
block, and distribute both the parity blocks across all the disks. In this case, a write to the
RAID array becomes slightly slower at the cost of higdher reliability. RAID 6 is mostly used in
enterprises that desire highly reliable storage. It is important to note that the two parity blocks
in RAID 6 are not a simple XOR of bits. The contents of the two parity blocks for each row
differ from each other, and are complex functions of the data. The reader requires background
in field theory to understand the operation of the error detection blocks in RAID 6.

13.8.3 Optical Disks — CD, DVD, Blu-ray

We typically use optical disks such as CDs, DVDs, and Blu-ray disks to store videos, music,
and software. As a matter of fact, optical disks have become the default distribution media
for videos and music (other than the internet of course). Consequently, almost all desktops
and laptops have a built-in CD or DVD drive. The reader needs to note that the physics of
optical disks is very different from that of hard disks. We read the data stored in a hard disk by

(© Smruti R. Sarangi 710

B4 P1A
B8

Bl B2 B3

st
2 ElElel)
alel=E(e!
el=E:(H)
2le

2elEE)

Figure 13.37: RAID 6

measuring the change in magnetic field due to the relative motion of tiny magnets embedded in
the platters of the hard disk. In comparison, in an optical disk, we read data by using photo-
detectors (light detectors) to measure the intensity of optical signals reflected off the surface of
the disk.

The reader needs to note that CDs (compact disks), DVDs (Digital Video Disks, or Digital
Versatile Disks), and Blu-ray disks, basically use the same technology. CDs represent first
generation optical disks, DVDs represent second generation optical disks, and Blu-ray disks
are representative of the third generation. Successive generations are typically faster and can
provide more storage capacity. Let us now consider the physics of optical storage media.

Basic Physics of Optical Storage Media

An optical disk is shown in Figure[13.38] It is a circular disk, and is typically 12 cm in diameter.
It has a hole in the center that is meant for attaching to a spindle (similar to hard disks). The
hole is 1.5 ¢m in diameter, and the entire optical disk is 1.2 mm thick. An optical disk is made
of multiple layers. We are primarily concerned with the reflective layer that reflects laser light
to a set of detectors. We encode data bits by modifying the surface of the reflective layer. Let
us elaborate.

The data is saved in a spiral pattern that starts from the innermost track, covers the entire
surface of the disk, and ends at the outermost track. The width of the track, and the spacing
between the tracks depends on the optical disk generation. Let us outline the basic mechanism
that is used to encode data on the spiral path. The spiral path has two kinds of regions namely
lands and pits. Lands reflect the optical signal, and thus represent the physical bit, 1. Lands are
represented by a flat region in the reflective layer. In comparison, pits have lower reflectivity,
and the reflected light is typically out of phase with the light reflected off the lands, and thus
they represent the physical bit, 0. A pit is a depression on the surface of the reflective layer.
The data on a CD is encoded using the NRZI encoding scheme (see Section . We infer
a logical 1 when there is a pit to land, or land to pit transition. However, if there are no
transitions, then we keep on inferring logical Os.

Optical Disk Layers
An optical disk typically has four layers (refer to Figure [13.39).

711 (© Smruti R. Sarangi

Figure 13.38: An optical disk (source [dis,])

Polycarbonate Layer The polycarbonate layer is a layer of polycarbonate plastic. Lands
and pits are created at its top using an injection moulding process.

Reflective Layer The reflective layer consists a thin layer of aluminium or gold that reflects
the laser light.

Lacquer Layer The lacquer based layer on top of the reflective layer protects the reflective
layer from scratches, and other forms of accidental damage.

Surface Layer Most vendors typically add a plastic layer over the lacquer layer such that it
is possible to add a label to the optical disk. For example, most optical disks typically
have a poster of the movie on their top surface.

The optical disk reader sends a laser signal that passes through the polycarbonate layer and
gets focused on the lands or pits. In CDs, the polycarbonate layer is typically very deep and
it occupies most of the volume. In comparison the polycarbonate layer occupies roughly half
the volume in DVDs. For third generation optical disks the reflective layer is very close to the
bottom surface.

Plastic surface
Lacquer layer
Reflective layer

Pit Polycarbonate layer

Land

Figure 13.39: Optical disk layers

(© Smruti R. Sarangi 712

Optical Disk Reader

Actuator Spindle
motor motor

Figure 13.40: Optical disk reader

An optical disk reader is very similar to a hard disk drive (refer to Figure . The
optical disk rotates on a spindle. The label of the optical disk is oriented towards the top. The
actuator and head assembly are located at the bottom. Unlike a hard disk that uses a rotary
actuator (rotating arm), an optical disk drive uses a linear actuator |[Abramovitch, 2001] that
slides radially in or out. Figure shows a laser assembly that slides on a set of rails. The
laser assembly is connected to an actuator via a system of gears and mechanical components.
The actuator motor can very precisely rotate its spindle, and the system of gears translate
rotational motion into linear motion of the laser assembly.

The head is a part of the laser assembly. The head typically contains a light source (laser)
that is focused on the reflective layer through a system of lenses. The reflective layer then
reflects the light, and a part of the reflected light gets captured by the optical disk head.
The reflected light is converted to electrical signals within the head by photodetectors. The
sequence of electrical signals are processed by dedicated circuitry in the drive, and converted
to a sequence of logical bits. Similar to hard disks, optical drives perform error detection and
correction.

One important point of difference from hard disks is that the optical disk rotates at constant
linear velocity. This means that pits and lands traverse under the head at the same velocity
irrespective of the track. In other words, the data transfer rate is the same irrespective of the
position of the head. To support this feature, it is necessary to change the rotational speed of the
spindle according to the position of the head. When the head is travelling towards the periphery

713 (© Smruti R. Sarangi

of the disk, it is necessary to slow the disk down. The spindle motor has sophisticated support
for acceleration and deceleration in optical drives. To simplify the logic, we can implement
zoning here similar to the zoning in hard disk drives (see Section [13.8.1)). However, in the case
of optical drives, zoning is mostly used in high performance drives.

Advanced Features

Most audio, video, and software CDs/DVDs are written once by the original vendors, and are
sold as read-only media. Users are not expected to overwrite the optical storage media. Such
kind of optical disks use 4 layers as described in Figure Optical disks are also used
to archive data. Such disks are typically meant to be written once, and read multiple times
(CD-R and DVD-R formats). To create such recordable media, the polycarbonate layer is
coated with an organic dye that is sensitive to light. The organic dye layer is coated with the
reflective metallic layer, the lacquer layer, and the surface layer. While writing the CD, a high
powered write-laser focuses light on the dye and changes its reflectivity. Lands are regions of
high reflectivity, and pits are regions of low reflectivity. Such write-once optical media were
superseded by optical media (CDs or DVDs) that can be read and written many times. Here,
the reflective layer is made of a silver-indium-antimony-tellurium alloy. When it is heated to
500°C, spots in the reflective layer lose their reflectivity because the structure of the alloy
becomes amorphous. To make the spots reflective they are heated to 200°C such that the state
of the alloy changes to the polycrystalline state. We can thus encode lands and pits in the
reflective layer, erase them, and rewrite them as required.

Modern disks can additionally have an extra layer of lands and pits. The first layer is
coated with a chemical that is partially transparent to light. For example, pits can be coated
with fluorescent material. When irradiated with red light they glow and emit light of a certain
wavelength. However, most of the red light passes to the second layer, and then interacts with
the fluorescent material in the pits, which is different from the material in the first layer. By
analysing the nature of reflected light, and by using sophisticated image filtering algorithms, it
is possible to read the encoded data in both the layers. A simpler solution is to encode data
on both sides of the optical disk. This is often as simple as taking two single side disks and
pasting their surface layers together. To read such a disk, we need two laser assemblies.

Comparison of CDs, DVDs, and Blu-ray Disks

CD DVD Blu-ray
Generation 15t ond 3rd
Capacity 700 MB 4.7 GB 25 GB
Uses Audio Video High definition Video
Laser wavelength 780 nm 650 nm 405 nm
Raw 1X transfer rate | 153 KB/s | 1.39 MB/s | 4.5 MB/s

Table 13.9: Comparison between CD, DVD, and Blu-ray disks

Refer to Table for a comparison of CD, DVD, and Blu-ray disks.

(© Smruti R. Sarangi 714

13.8.4 Flash Memory

Hard disks, and optical drives are fairly bulky, and need to be handled carefully because they
contain sensitive mechanical parts. An additional shortcoming of optical storage media is that
they are very sensitive to scratches and other forms of minor accidental damage. Consequently,
these devices are not ideally suited for portable and mobile applications. We need a storage
device that does not consist of sensitive mechanical parts, can be carried in a pocket, can be
attached to any computer, and is extremely durable. Flash drives such as USB pen drives
satisfy all these requirements. A typical pen drive can fit in a wallet, can be attached to all
kinds of devices, and is extremely robust and durable. It does not lose its data when it is
disconnected from the computer. We have flash based storage devices in most portable devices,
medical devices, industrial electronics, disk caches in high end servers, and small data storage
devices. Flash memory is an example of an EEPROM (Electrically Erasable Programmable
Read Only Memory) or EPROM (Erasable Programmable Read Only Memory). Note that
traditionally EPROM based memories used ultraviolet light for erasing data. They have been
superseded by flash based devices.

Let us look at flash based technology in this section. The basic element of storage is a
floating gate transistor.

The Floating Gate Transistor

Control gate
SiO2 Floating gate
Source Drain |

>

Symbol
(a) (b)

Figure 13.41: A floating gate transistor

Figure shows a floating gate transistor. The figure shows a regular NMOS transistor
with two gates instead of one. The gate on top is known as the control gate, and is equivalent to
the gate in normal MOS transistors. The gate below the control gate is known as the floating
gate. It is surrounded on all sides by an Si0Os based electrical insulation layer. Hence, the
floating gate is electrically isolated from the rest of the device. By some means if we are able to
implant a certain amount of charge in the floating gate, then the floating gate will maintain its
potential for a very long time. In practice, there is a negligible amount of current flow between
the floating gate and the rest of the components in the floating gate transistor under normal
conditions. Let us consider two scenarios. In the first scenario, the floating gate is not charged.
In this case, the floating gate transistor acts as a regular NMOS transistor. However, if the

715 (© Smruti R. Sarangi

floating gate has accumulated electrons containing negative charge, then we have a negative
potential gradient between the channel and the control gate. Recall that to create a n-type
channel in the transistor, it is necessary to apply a positive voltage to the gate, where this
voltage is greater than the threshold voltage. In this case the threshold voltage is effectively
higher because of the accumulation of electrons in the floating gate. In other words, to induce
a channel in the substrate, we need to apply a larger positive voltage at the control gate.

Let the threshold voltage when the floating gate is not charged with electrons be Vp, and
let the threshold voltage when the floating gate contains negative charge be VT+ (ijr > Vp). If
we apply a voltage that is in between Vi and V:,Jf to the control gate, then the NMOS transistor
conducts current if no charge is stored in the floating gate (threshold voltage is V). If the
threshold voltage of the transistor is equal to V; , then the transistor remains in the off state.
It thus does not conduct any current. We typically assume that the default state (no charge on
the floating gate) corresponds to the 1 state. When the floating gate is charged with electrons,
we assume that the transistor is in the 0 state. When we set the voltage at the control gate to
a value between Vr and V; , we enable the floating gate transistor.

Now, to write a value of 0 or program the transistor, we need to deposit electrons in the
floating gate. This can be done by applying a strong positive voltage to the control gate, and
a smaller positive voltage to the drain terminal. Since there is a positive potential difference
between the drain and source, a channel gets established between the drain and source. The
control gate has an even higher voltage, and thus the resulting electric field pulls electrons from
the n-type channel and deposits some of them in the floating gate.

Similarly, to erase the stored 0 bit, we apply a strong negative voltage between the control
gate and the source terminal. The resulting electric field pulls the electrons away from the
floating gate into the substrate, and source terminal. At the end of this process, the floating
gate loses all its negative charge, and the flash device comes back to its original state. It now
stores a logical 1.

To summarise, programming a flash cell means writing a logical 0, and erasing it means
writing a logical 1. There are two fundamental ways in which we can arrange such floating gate
transistors to make a basic flash memory cell. These methods are known as NOR flash and
NAND flash respectively.

NOR FLash

Figure shows the topology of a two transistor NOR flash cell that saves 2 bits. Each
floating gate transistor is connected to a bit line on one side, and to the ground on the other
side. Each of the control gates are connected to distinct word lines. After we enable a floating
gate transistor it pulls the bit line low if it stores a logical 1, otherwise it does not have any
effect because it is in the off state. Thus the voltage transition in the bit line is logically the
reverse of the value stored in the transistor. The bit line is connected to a sense amplifier that
senses its voltage, flips the bit, and reports it as the output. Similarly, for writing and erasing
we need to set the word lines, bit lines, and source lines to appropriate voltages. The advantage
of NOR flash is that it is very similar to a traditional DRAM cell. We can build an array of
NOR flash cells similar to a DRAM array. The array based layout allows us to access each
individual location in the array uniquely.

(© Smruti R. Sarangi 716

Bit
line

Figure 13.42: NOR Flash Cell

NAND Flash

Bit line

Ground Bit line

SelectJ_ WL§L WL_L WL_L WLEL WLélL WL_L WL_L WL£ selectL

Figure 13.43: NAND Flash Cell

A NAND flash cell has a different topology. It consists of a set of NMOS floating gate
transistors in series similar to series connections in CMOS NAND gates (refer to Figure [13.43).
There are two dedicated transistors at both ends known as the bit line select transistor, and
ground select transistor. A typical array of transistors connected in the NAND configuration
contains 8 or 16 transistors. To read the value saved in a certain transistor in a NAND flash
array, there are three steps. The first step is to enable the ground select, and bit line transistors.
The second step is to turn on the rest of the floating gate transistors other than the one we
wish to read by setting their word line voltages to Vr_,fr . Lastly, we read a specific transistor by
setting its word line voltage to some value between Vp and VTJr . If the cell is not programmed
(contains a 1), it drives the bit line low, otherwise it does not change the voltage on the bit
line. Sense amplifiers infer the value of the logical bit saved in the transistor. Such arrays of

717 (© Smruti R. Sarangi

floating gate transistors known as NAND flash cells are connected in a configuration similar to
NOR flash cells.

This scheme might look complicated at the outset; however, it has a lot of advantages.
Consequently, most of the flash devices in use today use NAND flash memories instead of NOR
flash memories. The bit storage density is much higher. A typical NAND flash cell uses a lesser
number of wires than a NOR flash cell because all the floating gate transistors are directly
connected to each other, and there is just one connection to the bit line and ground terminal.
Hence, NAND flash memories have at least 40-60% higher density as compared to NOR, flash
cells. Let us thus only consider NAND flash memories from now on, and refrain from discussing
NOR flash memories.

Blocks and Pages

The most important point to note here is that a (NAND) flash memory device is not a memory
device, it is a storage device. Memory devices provide byte level access. In comparison, storage
devices typically provide block level access, where one block can be hundreds of kilobytes long.
Due to temporal and spatial locality in accesses to storage media, the working set of most
programs is restricted to a few blocks. Secondly, to reduce the number of accesses to storage
devices, most operating systems have in-memory storage caches such as hard disk caches. Most
of the time, the operating system reads and writes to the in-memory caches. This reduces the
I/0 access time.

However, after certain events it is necessary to synchronise the cache with the underlying
storage device. For example, after executing a sync() system call in Linux, the hard disk cache
writes its updates to the hard disk. Depending on the semantics of the operating system, and file
system, writes are sent to the underlying storage media after a variety of events. For example,
when we right click on the icon for an USB drive in the “My Computer” screen on Windows
and select the eject option, the operating system ensures that all the outstanding write requests
are sent to the USB device. Most of the time users simply unplug an USB device. This practice
can occasionally lead to data corruption, and unfortunately your author has committed this
mistake several times. This is because, when we pull out an USB drive, some uncommitted
changes are still present in the in-memory cache. Consequently, the USB pen drive contains
stale and possibly half-written data.

Data in NAND flash devices is organised in the granularity of pages and blocks. A page
of data typically contains 512 — 4096 bytes (in powers of 2). Most NAND flash devices can
typically read or write data at the granularity of pages. Each page additionally has extra bits
for error correction based on CRC codes. A set of pages are organised into a block. Blocks can
contain 32 — 128 pages, and their total size ranges from 16 — 512 KB. Most NAND flash devices
can erase data at the level of blocks. Let us now look at some of the salient points of NAND
flash devices.

Program/Erase Cycles

Writing to a flash device essentially means writing a logical 0 bit since by default each floating
gate transistor contains a logical 1. In general, after we have written data to a block, we
cannot write data again to the same block without performing additional steps. For example,
if we have written 0110 to a set of locations in a block, we cannot write 1001 to the same

(© Smruti R. Sarangi 718

set of locations without erasing the original data. This is because, we cannot convert a 0 to
a 1, without erasing data. Erasing is a slow operation, and consumes a lot of power. Hence,
the designers of NAND flash memories decided to erase data at large granularities, i.e., at the
granularity of a block. We can think of accesses to flash memory as consisting of a program
phase, where data is written, and an erase phase, where the data stored in all the transistors of
the block is erased. In other words, after the erase phase, each transistor in the block contains
a logical 1. We can have an indefinite number of read accesses between the program phase, and
the erase phase. A pair of program and erase operations is known as a program/erase cycle, or
P/E cycle.

Unfortunately, flash devices can endure a finite number of P/E cycles. As of 2013, this
number is between 100,000 to 1 million. This is because each P/E cycle damages the silicon
dioxide layer surrounding the floating gate. There is a gradual breakdown of this layer, and
ultimately after hundreds of thousands of P/E cycles it does not remain an electrical insulator
anymore. It starts to conduct current, and thus a flash cell loses its ability to hold charge. This
gradual damage to the insulator layer is known as wear and tear. To mitigate this problem,
designers use a technique called wear levelling.

Wear Levelling

The main objective of wear levelling is to ensure that accesses are symmetrically distributed
across blocks. If accesses are non-uniformly distributed, then the blocks that receive a large
number of requests will wear out faster, and develop faults. Since data accesses follow both
temporal and spatial locality we expect a small set of blocks to be accessed most often. This
is precisely the behaviour that we wish to prevent. Let us further elaborate with an example.
Consider a pen drive that contains songs. Most people typically do not listen to all the songs
in a round robin fashion. Instead they most of the time listen to their favourite songs. This
means that a few blocks that contain their favourite songs are accessed most often, and these
blocks will ultimately develop faults. Hence, to maximise the lifetime of the flash device, we
need to ensure that all the blocks are accessed with roughly the same frequency. This is the
best case scenario, and is known as wear levelling.

The basic idea of wear levelling is that we define a logical address and a physical address
for a flash device. A physical address corresponds to the address of a block within the flash
device. The logical address is used by the processor and operating system to refer to data in the
flash drive. We can think of the logical address as virtual memory, and the physical address as
physical memory. Every flash device contains a circuit that maps logical addresses to physical
addresses. Now, we need to ensure that accesses to blocks are uniformly distributed. Most
flash devices have an access counter associated with each block. This counter is incremented
once every P/E cycle. Once the access count for a block exceeds the access counts of other
blocks by a predefined threshold, it is time to swap the contents of the frequently accessed block
with another less frequently accessed block. Flash devices use a separate temporary block for
implementing the swap. First the contents of block 1 are copied to it. Subsequently, block 1
is erased, and the contents of block 2 are copied to block 1. The last step is to erase block 2,
and copy the contents of the temporary block to it. Optionally, at the end, we can erase the
contents of the temporary block. By doing such periodic swaps, flash devices ensure that no
single block wears out faster than others. The logical to physical block mapping needs to be

719 (© Smruti R. Sarangi

updated to reflect the change.

Definition 163

A technique to ensure that no single block wears out faster than other blocks is known as
wear levelling. Most flash devices implement wear levelling by swapping the contents of a
block that is frequently accessed with a block that is less frequently accessed.

Read Disturbance

Another reliability issue in flash memories is known as read disturbance. If we read the contents
of one page continuously, then the neighbouring transistors in each NAND cell start getting
programmed. Recall that the control gate voltage of the neighbouring transistors needs to be
greater than V; such that they can pass current. In this case, the voltage of the gate is not
as high as the voltage that is required to program a transistor, and it also lasts for a shorter
duration. Nonetheless, a few electrons do accumulate in the floating gate. After thousands of
read accesses to just one transistor, the neighbouring transistors start accumulating negative
charge in their floating gates, and ultimately get programmed to store a 0 bit.

To mitigate this problem, most designs have a read counter with each page or block. If the
read counter exceeds a certain threshold, then the flash controller needs to move the contents
of the block to another location. Before copying the data, the new block needs to be erased.
Subsequently, we transfer the contents of the old block to the new block. In the new block, all
the transistors that are not programmed start out with a negligible amount of negative charge
in their floating gates. As the number of read accesses to the new block increases, transistors
start getting programmed. Before we reach a threshold, we need to migrate the block again.

13.9 Summary and Further Reading

13.9.1 Summary

Summary 13

1. The 1/0 system connects the processor to the 1/O devices. The processor and all the
chips for processing 1/0 data (chipset), are attached to a printed circuit board known
as the motherboard. The motherboard also contains ports (hardware connectors) for
attaching I1/0 devices.

(a) The most important chips in the chipset are known as the North Bridge and
Soutbridge chips in Intel-based systems.

(b) The North Bridge chip connects the processor to the graphics card, and main
memory.

(© Smruti R. Sarangi 720

(¢) The South Bridge chip is connected to the North Bridge chip and a host of 1/O

and storage devices such as the keyboard, mouse, hard disk, and network card.

2. Most operating system define two basic 1/O operations namely read and write. An
1/0 request typically passes from the application to the 1/0 device through the kernel,
device driver, the processor, and elements of the 1/0 system.

3. We divide the functionality of the 1/0 system into 4 layers.

(a) The physical layer defines the electrical specifications, signalling and timing pro-
tocols of a bus. It is further divided into two sublayers namely the transmission
sublayer, and the synchronisation sublayer.

(b) The data link layer gets a sequence of logical bits from the physical layer, and then
performs the tasks of framing, buffering, and error correction. If multiple devices
want to access the bus, then the process of scheduling the requests is known as
arbitration. The data link layer implements arbitration, and also has support for
I/0 transactions (sequence of messages between sender and receiver), and split
transactions (transactions divided into multiple mini transactions).

(c) The network layer helps to route data from the processor to 1/O devices and back.
(d) The protocol layer is concerned with implementing an entire 1/0 request end-to-
end.

4. Physical Layer:

(a) Transmission Sublayer Protocols: active high, active low, return to zero (RZ),
non return to zero (NRZ), non return to zero inverted (NRZI), and Manchester
encoding.

(b) Synchronisation Sublayer Protocols: synchronous (same clock for both ends),
mesochronous (fized phase delay), plesiochronous (slow drift in the clock), source
synchronous (clock passed along with the data), and asynchronous (2 phase hand-
shake, and 4 phase handshake).

5. Data Link Layer

(a) Framing protocols: bit stuffing, pauses, bit count

(b) Error Detection/ Correction: parity, SEC, SECDED, CRC

(c) Arbitration: centralised, daisy chain (supports priority, and notion of tokens)

(d) Transaction: single transaction (example, DRAM bus), split transaction (break
a transaction into smaller transactions)

6. Network Layer

(a) I/O Mapped 1/0: Each 1/0 port is mapped to a set of registers that have unique
addresses. The in and out instructions are used to read and write data to the
ports respectively.

721 (© Smruti R. Sarangi

(b) Memory Mapped I/0: Here, we map the 1/0 ports to the virtual address space.
7. Protocol Layer:

(a) Polling: Keep querying the device for a change in its state.
(b) Interrupts: The device sends a message to the processor, when its status changes.

(¢c) DMA (Direct Memory Access): Instead of transferring data from an 1/0 device
to main memory by issuing 1/0 instructions, the device driver instructs the DMA
engine to transfer a chunk of data between 1/0 devices and main memory. The
DMA engine interrupts the processor after it is done.

8. Case Studies:

Protocol Usage Salient Points

PCI Ezxpress | motherboard bus | high speed asynchronous bus, sup-
ports multiple lanes

SATA storage devices half duplex, asynchronous bus, sup-
ports low level commands on storage
devices

SAS storage devices | full duplex, asynchronous bus, back-

ward compatible with SATA, exten-
siwe SCSI command set

USB peripherals single bit, half duplex, asynchronous
bus. Extensive support for all
kinds of traffic (bulk, interrupt, and
isochronous).

FireWire peripherals full duplex, data strobe encoding.

Peripherals organised as a computer
network with a leader node.

9. Storage Devices: Hard Disk

(a) In a hard disk we encode data by changing the relative orientations of tiny mag-
nets on the surface of the platter.

(b) We group a set of typically 512 bytes into a sector. On a platter, sectors are
arranged in concentric circles known as tracks.

(¢) The head of a hard disk first needs to move to the right track (seek time), then wait
for the correct sector to arrive under the head (rotational latency). Finally, we
need to transfer the data to the processor after post processing (transfer latency).

10. Storage Dewvices: Optical disc

(a) The surface of an optical disc contains flat region (lands), and depressions (pits).
The pits have lower reflectivity.

(© Smruti R. Sarangi 722

(b) Optical discs rotate on a spindle similar to a platter in a hard disk. The optical
head focuses a laser light on the surface of the disc, and then an array of pho-
todetectors analyse the reflected light. A transition between a pit and a land (or
vice versa) indicates a logical 1. Otherwise, we read a logical 0.

(¢) CDs (compact discs) are first generation optical discs, DVDs are second gener-
ation optical discs, and Blu-Ray discs are third generation optical discs.

11. Storage Devices: Flash Memory

(a) Flash memory contains a floating gate transistor that has two gates — control and
floating. If the floating gate has accumulated electrons then the transistor stores
a logical 0 (else it stores a logical 1).

(b) We program (set to 0) a floating gate transistor by applying a high positive voltage
pulse to the control gate. Likewise, we erase the value when we apply a pulse
with the opposite polarity.

(¢) Floating gate transistors can be connected in the NAND and NOR configurations.
The NAND configuration has much higher density and is thus more commonly
used.

(d) While designing flash devices we need to perform wear levelling, and take the
phenomenon of read disturbance into account.

13.9.2 Further Reading

For the latest designs of motherboards, and chipsets, the most accurate and up to date source
of information is the vendor’s website. Most vendors such as Intel and AMD post the details
and configurations of their motherboards and chipsets after they are released. However, they
typically do not post a lot of details about the architecture of the chips. The reader can refer to
research papers for the architectural details of the AMD Opteron North Bridge chip |[Conway
and Hughes, 2007|, Intel Blackford North Bridge chip [Radhakrishnan et al., 2007], and AMD
North Bridge chip [Owen and Steinman, 2008| for the Griffin processor family. The book by
Dally and Poulton [Dally and Poulton, 1998] is one of the best sources for information on the
physical layer, and is a source of a lot of information presented in this book. Other books on
digital communication [Proakis and Salehi, 2007, [Sklar, 2001] are also excellent resources for
further reading. Error control codes are mostly taught in courses on coding and information
theory. Hence, for a deeper understanding of error control codes, the reader is referred to
[Ling and Xing, 2004, |Cover and Thomas, 2013]. For a detailed description of the Intel’s I/O
architecture and 1/O ports, we shall point the reader to Intel’s software developer manuals at
[int, |. The best sources for the I/O protocols are their official specifications — PCI Express [pci,
|, SATA [sat, |, SCSI and SAS [scs, |, USB [usb, |, and FireWire [fir, |. The book on memory
systems by Jacob, Ng, and Wang [Jacob et al., 2007] is one of the best resources for additional
information on hard disks, and DRAM memories. They explain the structure of a hard disk,
and its internals in great detail. The official standards for compact discs are documented in
the rainbow books. Each book in this collection contains the specifications of a certain type

723 (© Smruti R. Sarangi

of optical disc. One of the earliest and most influential books in this collection is the Red
Book [red, | that contains the specifications for audio CDs. The latest DVD standards are
available from http://www.dvdforum.org, and the latest Blu Ray standards are available at
the official website of the Blu Ray Disc Association (http://www.blu-raydisc.com/en).

Exercises

Overview of the I/O System

Ex. 1 — What are the roles of the North Bridge and South Bridge chips?
Ex. 2 — What is the role of the chipset in a motherboard?

Ex. 3 — Describe the four layers in the I/O system.

Ex. 4 — Why is it a good idea to design a complex system as a sequence of layers?

Physical Layer
Ex. 5 — What is the advantage of LVDS signalling?

Ex. 6 — Draw the circuit diagram of a LVDS transmitter and receiver.

Ex. 7 — Assume that we are transmitting the bit sequence: 01101110001101. Show the
voltage on the bus as a function of time for the following protocols: RZ, NRZ, Manchester,
NRZI.

Ex. 8 — What is the advantage of the NRZI protocol over the NRZ protocol?

* Ex. 9 — Draw the circuit diagram of the receiver of a plesiochronous bus.
* Ex. 10 — What are the advantages of a source synchronous bus?
* Ex. 11 — Why is it necessary to avoid transitions in the keep-out region?

Ex. 12 — Differentiate between a 2-phase handshake, and a 4-phase handshake?
* Ex. 13 — Why do we set the strobe after the data is stable on the bus?

** Ex. 14 — Design the circuit for a tunable delay element.

Data Link, Network, and Protocol Layer

Ex. 15 — What are the different methods for demarcating frames?

Ex. 16 — Consider a 8-5 SECDED code. Encode the message: 10011001.

http://www.dvdforum.org
http://www.blu-raydisc.com/en)

(© Smruti R. Sarangi 724

** Ex. 17 — Construct a code that can detect 3 bit errors.

** Ex. 18 — Construct a fully distributed arbiter. It should not have any central node that
schedules requests.

Ex. 19 — What is the advantage of split transaction buses?
Ex. 20 — How do we access I/O ports?
Ex. 21 — What is the benefit of memory mapped 1/0?

Ex. 22 — What are the various methods of communication between an I/O device and the
processor? Order them in the increasing order of processor utilisation.

Ex. 23 — Assume that for a single polling operation, a processor running at 1 MHz takes
200 cycles. A processor polls a printer 1000 times per minute. What percentage of time does
the processor spend in polling?

Ex. 24 — When is polling more preferable than interrupts?
Ex. 25 — When are interrupts more preferable than polling?

Ex. 26 — Explain the operation of the DMA controller.

Hard Disks
Ex. 27 — What is the advantage of zoned recording?

Ex. 28 — Describe the operation of a hard disk.

Ex. 29 — We have a hard disk with the following parameters:

Seek Time 50 ms
Rotational Speed | 600 RPM
Bandwidth 100 MB/s

(a) How long will it take to read 25 MB on an average if 25 MB can be read in one pass.

(b) Assume that we can only read 5 MB in one pass. Then, we need to wait for the platter
to rotate by 360° such that the same sector comes under the head again. Now, we can
read the next chunk of 5 MB. In this case, how long will it take to read the entire 25MB
chunk?

* Ex. 30 — Typically, in hard disks, all the heads do not read data in parallel. Why is this
the case?

Ex. 31 — Let us assume that we need to read or write long sequences of data. What is the
best way of arranging the sectors on a hard disk? Assume that we ideally do not want to change
tracks, and all the tracks in a cylinder are aligned.

725 (© Smruti R. Sarangi

* Ex. 32 — Now, let us change the assumptions in the previous exercise. Assume that it
is faster to move to the next track on the same recording surface, than starting to read from
another track in the same cylinder. With these assumptions, how should we arrange the sectors?
[NOTE: The question is not as easy as it sounds.|

Ex. 33 — Explain the operation of RAID 0,1,2,3,4,5, and 6.

Ex. 34 — Consider 4 disks D0, D1, D2, D3 and a parity disk P using RAID 4. The following
table shows the contents of the disks for a given sector address, S, which is the same across all
the disks. Assume the size of a block to be 16 bits.

Do D1 D2 D3
0xFFO00 | 0x3421 | 0x32FF | 0x98AB

Compute the value of the parity block? Now the contents of DO are changed to 0xABD1. What
is the new value of the parity block?

Ex. 35 — Assume that we want to read a block as fast as possible, and there are no parallel
accesses. Which RAID technology should we choose?

Ex. 36 — What is the advantage of RAID 5 over RAID 47

Optical and Flash Drives
Ex. 37 — What is the main difference between a CD and DVD?

Ex. 38 — How do we use the NRZI encoding in optical drives?

* Ex. 39 — Wahat is the advantage of running a drive at constant linear velocity over running
it at constant angular velocity?

* Ex. 40 — For an optical drive that runs at constant linear velocity, what is the relationship
between the angular velocity, and the position of the head?

Ex. 41 — What are the basic differences between NAND and NOR flash?

Ex. 42 — Explain wear levelling, and read disturbance? How are these issues typically han-
dled in modern flash drives?
Design Problems

Ex. 43 — Read more about the Hypertransport™ Intel Quickpath, Infiniband™ and Myrinet®
protocols? Try to divide their functionality into layers as we have presented in this chapter.

