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ARM R© Assembly Language

In this chapter, we will study the ARM instruction set. As of 2012, this instruction set is the
most widely used instruction set in smart phones, and tablets. It has more than 90% market
share1 in this space. ARM processors are also one of the most popular processors in hard disk
drives, and set top boxes for televisions. Hence, for any student of computer architecture it is
very important to learn about the ARM instruction set because it will prove to be useful in
programming the mobile and handheld devices of the future.

The ARM instruction set is a 32-bit instruction set. This means that the sizes of all registers
are 32 bits, and the size of the memory address is equal to 32 bits. It is a RISC instruction set
with a very regular structure. Each instruction is encoded into a string of exactly 32 bits like
SimpleRisc . All arithmetic and logical operations, use only register operands, and lastly all the
communication between registers and memory happens through two data transfer instructions
– load and store.

4.1 The ARM R© Machine Model

ARM assembly language assumes a machine model similar to that explained in Section 3.2.1
for SimpleRisc . For the register file, it assumes that there are 16 registers that are visible to
the programmer at any point of time. All the registers in ARM are 32 bits or 4 bytes wide.

The registers are numbered from r0 to r15. Registers r11 . . . r15 are known by certain
mnemonics also as shown in Table 4.1. r11 is the frame-pointer. It points to the top of the
activation block. r12 is a scratch register that is not meant to be saved by the caller or the
callee. r13 is the stack pointer. It is important to understand that r11 and r12 are assigned
a special connotation by the GNU compiler collection. They are not assigned special roles by
the ARM ISA.

1Most of the ARM code running on processors is actually written in the Thumb-2 ARM ISA. The Thumb-2
ISA is essentially a recoding (or a simpler variant) of the ISA presented in this chapter. Hence, it is necessary
for readers to get a thorough understanding of the material that follows.
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Register Abbrv. Name

r11 fp frame pointer

r12 ip intra-procedure-call scratch register

r13 sp stack pointer

r14 lr link register

r15 pc program counter

Table 4.1: Registers with special names in ARM

Let us differentiate between generic registers and registers with special roles. Registers
r0 . . . r12 are generic. The programmer and the compiler can use them in any way they like.
However, the registers r13(sp), r14(lr) and r15(pc) have special roles. sp is the stack pointer,
lr is the return address register, and pc is the program counter. In this chapter, we shall use
the little endian version of the ARM ISA, and we shall describe the syntax of the assembly
language used by the GNU ARM Assembler [arm, 2000].

4.2 Basic Assembly Instructions

4.2.1 Simple Data Processing Instructions

Register Transfer Instructions

The simplest type of assembly instructions transfer the value of one register into another, or
store a constant in a register. There are two instructions in this class – mov and mvn. Their
semantics are shown in Table 4.2. Note that we always prefix an immediate with ‘#’ in ARM
assembly.

Semantics Example Explanation

mov reg, (reg/imm)
mov r1, r2 r1 ← r2
mov r1, #3 r1 ← 3

mvn reg, (reg/imm)
mvn r1, r2 r1 ← ∼ r2
mvn r1, #3 r1 ← ∼ 3

Table 4.2: Semantics of the move instructions

The register based mov instruction simply moves the contents of r2 to register r1. Alter-
natively, it can store an immediate in a register. In Table 4.2, the mvn instruction flips every
bit in the 32-bit register r2, and then transfers the contents of the result to r1. The ∼ symbol
represents logical complement. For example, the complement of the 4-bit binary value, 0110,
is 1001. The mov and mvn instructions take two inputs. These instructions are examples of
2-address format instructions in ARM.
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Arithmetic Instructions

The simplest instructions in this class are add, sub, rsb (reverse subtract). Their semantics are
given in Table 4.3. The second operand can also be an immediate.

Semantics Example Explanation

add reg, reg, (reg/imm) add r1, r2, r3 r1 ← r2 + r3

sub reg, reg, (reg/imm) sub r1, r2, r3 r1 ← r2 - r3

rsb reg, reg, (reg/imm) rsb r1, r2, r3 r1 ← r3 - r2

Table 4.3: Semantics of add and subtract instructions

Example 37
Write an ARM assembly program to compute: 4+5 - 19. Save the result in r1.

Answer: Simple yet suboptimal solution.

mov r1, #4

mov r2, #5

add r3, r1, r2

mov r4, #19

sub r1, r3, r4

Optimal solution.

mov r1, #4

add r1, r1, #5

sub r1, r1, #19

Logical Instructions

Semantics Example Explanation

and reg, reg, (reg/imm) and r1, r2, r3 r1 ← r2 AND r3

eor reg, reg, (reg/imm) eor r1, r2, r3 r1 ← r2 XOR r3

orr reg, reg, (reg/imm) orr r1, r2, r3 r1 ← r2 OR r3

bic reg, reg, (reg/imm) bic r1, r2, r3 r1 ← r2 AND (∼ r3)

Table 4.4: Semantics of logical instructions
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ARM’s bitwise logical instructions are shown in Table 4.4. and computes a bit-wise AND,
eor computes an exclusive OR, orr computes a regular bit-wise OR, and the bic(bit-clear)
instruction clears off the bits in r2 that are specified in r3. Like arithmetic instructions, the
second operand can be an immediate.

Example 38
Write an ARM assembly program to compute: A ∨B, where A and B are 1 bit Boolean
values. Assume that A = 0 and B = 1. Save the result in r0.

Answer:

mov r0, #0x0

orr r0, r0, #0x1

mvn r0, r0

Multiplication Instructions

We shall introduce four multiply instructions with varying degrees of complexity. The fun-
damental issue with multiplication is that if we are multiplying two 32-bit numbers, then the
result will require 64 bits. The reason is that the largest unsigned 32-bit number is 232 − 1.
Consequently, when we try to square this number, our result is approximately 264. We would
thus need a maximum of 64 bits.

ARM has two 32-bit multiplication instructions that truncate the result to 32 bits – mul
and mla. They ignore the rest of the bits. mul multiplies the values in two registers and stores
the result in a third register. mla (multiply and accumulate) is in the 4-address format. It
multiplies the values of two registers, and adds the result to the value stored in a third register
(see Table 4.5). The advantage of the mla instruction is that it makes it possible to represent
code sequences of the form (d = a+ b∗ c) with one instruction. Such instructions are extremely
useful when it comes to implementing linear algebra kernels such as matrix multiplication.

Semantics Example Explanation

mul reg, reg, reg mul r1, r2, r3 r1 ← r2 × r3

mla reg, reg, reg, reg mla r1, r2, r3, r4 r1 ← r2 × r3 + r4

smull reg, reg, reg, reg smull r0, r1, r2, r3 r1 r0︸ ︷︷ ︸
64

← r2 ×signed r3

umull reg, reg, reg, reg umull r0, r1, r2, r3 r1 r0︸ ︷︷ ︸
64

← r2 ×unsigned r3

Table 4.5: Semantics of multiply instructions

In this chapter, we shall introduce two instructions that store the entire 64-bit result in
two registers. The smull and umull instructions perform signed and unsigned multiplication



143 c© Smruti R. Sarangi

respectively on two 32-bit values to produce a 64-bit result. Their semantics is shown in
Table 4.5. r0 contains the lower 32 bits, and r1 contains the upper 32 bits.

For all the multiply instructions that we have introduced, all the operands need to be
registers. Secondly, the first source register, should not be the same as the destination register.

Example 39
Compute 123 + 1, and save the result in r3.
Answer:

/* load test values */

mov r0, #12

mov r1, #1

/* perform the logical computation */

mul r4, r0, r0 @ 12*12

mla r3, r4, r0, r1 @ 12*12*12 + 1

Division Instructions

Newer versions of the ARM ISA have introduced two integer division instructions, sdiv and
udiv. The former is used for signed division and the latter is used for unsigned division (see
Table 4.6). Both of them compute the quotient. The remainder can be computed by subtracting
the product of the dividend and the quotient from the dividend.

Semantics Example Explanation

sdiv reg, reg, reg sdiv r1, r2, r3 r1 ← r2 ÷ r3 (signed)

udiv reg, reg, reg udiv r1, r2, r3 r1 ← r2 ÷ r3 (unsigned)

Table 4.6: Semantics of divide instructions

4.2.2 Advanced Data-Processing Instructions

Let us consider the generic format of 3-address data-processing instructions.

instruction <destination register> <register operand 1> <operand 2>

Likewise, the generic format for 2 address data processing instructions is

instruction <register operand 1> <operand 2>

Up till now, we have been slightly quiet about < operand 2 >. It can be a register operand,
an immediate, or a special class of operands called – shifter operands. The first two classes are
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reg1 , lsl
lsr
asr
ror

#shift_amt
reg2

10110
lsl #1

01100

10110
lsr #1

01011

Generic format

10110
asr #1

11011

10110
ror #1

01011

Examples

Figure 4.1: Format of shifter operands

intuitive. Let us describe shifter operands in this section. Their generic format is shown in
Figure 4.1.

A shifter operand contains two parts. This first part is a register, and the latter part specifies
an operation to be performed on the value in the register. The ARM instruction set defines
four such operations – lsl (logical shift left), lsr (logical shift right), asr (arithmetic shift right),
and ror (rotate right). These operations are collectively called shift and rotate instructions.

Shift and Rotate Instructions

A logical left shift operation is shown in Figure 4.1. In this example, we are shifting the value
10110 one place to the left. We need to shift in an extra 0 at the LSB position. The final result
is equal to 01100. A left shift operation is present in most programming languages including C
and Java. It is denoted by the following symbol: �. Note that shifting a word (4 byte number)
by k positions to the left is equivalent to multiplying it by 2k. This is in fact a quick way of
multiplying a number by a power of 2.

Let us now consider the right shift operation. Unlike the left shift operation, this operation
comes in two variants. Let us first consider the case of unsigned numbers. Here, we treat a
word as a sequence of 32 bits. In this case, if we shift the bits 1 position to the right, we fill
the MSB with a 0. This operation is known as – logical shift right (see Figure 4.1). Note that
shifting a number right by k places is usually the same as dividing it by 2k. The right shift
operation in C or Java is �.

If we consider a signed number, then we need to use the arithmetic right shift (asr) op-
eration. This operation preserves the sign bit. If we shift a number right using asr by one
position, then we fill the MSB with the previous value of the MSB. This ensures that if we shift
a negative number to the right, the number still remains negative. In a four bit number system,
if we shift 1010 to the right by 1 place using asr, then we get 1101. The original number is -6,
and the shifted number is equal to -3. We thus see that arithmetic right shift divides a signed
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number by a power of two. Note that using the right shift operations for odd numbers is tricky.
Let us consider the representation of -5 in a 4-bit number system. It is 1011. After performing
an arithmetic right shift, the result is equal to 1101, which is equal to -3 in decimal. Whether
we consider -5/2 = -3 as a correct answer or not depends on the semantics of the programming
language.

The right rotate operation performs a right shift on the number. However, it fills the MSB
with the number shifted out from the rightmost end. In Figure 4.1, if we right rotate 10110,
we get 01011. In this case we have moved the previous LSB (0) to the new MSB. Note that ror
(right rotate) by 32 positions gives us the original value. ARM provides a special connotation
for ror #0. It performs a right shift. It moves the value of the carry flag to the MSB, and then
sets the shifted out LSB to the carry flag. This is also referred to as the rrx operation. This
operation does not take any arguments.

Using Shifter Operands

A shifter operand of the form – r1, lsl #2 – means that we shift the value in r1 by 2 places to
the left. Note that the value in r1 is not affected in this process. Likewise, an operand of the
form – r1, lsr r3 – means that we shift the value in r1 to the right by the value specified in r3.
We can now use the shifter operand as a valid second operand. See examples 40, and 41.

Example 40
Write ARM assembly code to compute: r1 = r2 / 4. Assume that the number stored in r1
is divisible by 4.

Answer:

mov r1, r2, asr #2

Example 41
Write ARM assembly code to compute: r1 = r2 + r3 × 4.

Answer:

add r1, r2, r3, lsl #2

Addressing Modes

We have now seen different formats of operands. An operand can either be a register, an
immediate, or a shifted register.

We have up till now seen three addressing modes:

1. register addressing mode: Example, r1, r2, r3
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2. immediate addressing mode: Example, #1, #2

3. scaled-register addressing mode: Example, (r1, lsl #2), (r1, lsl r2)

4.2.3 Compare Instructions

ARM has four compare instructions – cmp, cmn, tst, and teq – in the 2-address format. These
instructions compare the values in the two registers and save some properties of the result of
the comparison in a dedicated internal register called the CPSR register. Other instructions
base their behavior based on the values saved in the CPSR register. This is similar to the flags
register in SimpleRisc .

The CPSR register

The CPSR (Current Program Status Register) maintains some state regarding the execution
of the program. It is a 32-bit register like the other registers, and is usually used implicitly.
In this book, we are concerned with four bits that it stores in the positions [29-32]. They are
N(Negative), Z(Zero), C(Carry), and V(Overflow). These four bits are known as condition code
flags, or simply flags. It is similar to the flags register in SimpleRisc .

There are two sets of instructions that can set CPSR flags. The first set comprises of
compare instructions, and the second set includes flag setting variants of generic instructions.
In either case, the rules for setting the flags are as follows:

N (Negative) This flag is set if the result is a 2’s complement based signed integer. It is set
to 1 if the result is negative, and 0 if it is non-negative.

Z (Zero) This flag is set to 1 if the result is zero. In a comparison operation, if the operands
are equal, then this flag is also set to 1.

C (Carry) • For an addition, the C bit is set to 1 if the result produced a carry. This
can happen when there was an overflow while adding the unsigned numbers. For
example, if we add -1(11112) and -2(11102), then the result is -3(11012), and there
is a carry out at the MSB. Note that there is no real overflow, because -3 can be
represented in the number system. However, if the numbers are treated as unsigned
numbers, then there is an unsigned overflow. Consequently, we can also say that the
carry bit is set if there is an unsigned overflow.

• For a subtraction, the carry bit is set to 0 if there is an unsigned underflow. For
example, if we try to compute 0− 1, then there is no real overflow/underflow. How-
ever, 00002 − 00012 will lead to an unsigned underflow. This basically means that
when we subtract these two numbers, we will need to borrow a bit. In this case, we
set the C flag to 0. Otherwise, we set it to 1.

• For logical shift operations, C is equal to the last bit shifted out of the result value.

V (Overflow) V is set to 1 when an actual signed overflow/underflow occurs. Note that in the
rest of the book, we might casually refer to both overflow and underflow as just overflow.
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Compare Instructions

ARM has four compare instructions – cmp, cmn, tst and teq. All four of them update the
CPSR flags. Let us consider the cmp instruction. It is a 2-address instruction that takes two
inputs. It essentially subtracts their values and sets the appropriate flags. For example, if the
values are equal, then the zero flag is set. Later instructions can take some decisions based
on these flags. For example, they might decide if they need to branch, or perform a certain
computation based on the value of the zero flag. We show the semantics of all four compare
instructions in Table 4.7.

Semantics Example Explanation

cmp reg, (reg/imm) cmp r1, r2 Set flags after computing (r1 - r2)

cmn reg, (reg/imm) cmn r1, r2 Set flags after computing (r1 + r2)

tst reg, (reg/imm) tst r1, r2 Set flags after computing (r1 AND r2)

teq reg, (reg/imm) teq r1, r2 Set flags after computing (r1 XOR r2)

Table 4.7: Semantics of compare instructions

cmn computes the flags after adding the register values, tst computes a bitwise AND of the
two operands and then sets the flags, and teq tests for equality by computing an XOR (exclusive
or) of the operands. For this set of instructions, the second operand can be an immediate also.
Note that the compare instructions, are not the only instructions that can set the flags. Let us
discuss a generic class of instructions that can set the CPSR flags.

4.2.4 Instructions that Set CPSR Flags – The ‘S’ Suffix

Normal instructions such as add and sub do not set the CPSR flags. However, it is possible to
make any data processing instruction set the flags by adding the suffix - ‘s’ - to it. For example,
the adds and subs instructions do the regular jobs of addition and subtraction respectively, and
additionally also set the CPSR flags. The rules for setting the flags are given in Section 4.2.3.
Let us now see how we can use these flags.

4.2.5 Data Processing Instructions that use CPSR Flags

There are three simple data processing instructions that use the CPSR flags in their computa-
tion. They are sbc, rsc, and adc.

Let us now motivate this section with an example. Our basic ARM instruction format does
not support 64-bit registers. Consequently, if we desire to implement the long data type that
uses 64 bits, we need to use two registers. Let us assume that one long value is present in
registers, r2, and r1. Here, r2 contains the upper 32 bits, and r1 contains the lower 32 bits.
Let the second long value be present in registers r4, and r3. Let us now try to add these two
long values to produce a 64-bit result, and save it in registers, r6 and r5. See Example 42.
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Example 42
Add two long values stored in r2,r1 and r4,r3.

Answer:

adds r5, r1, r3

adc r6, r2, r4

The (adds) instruction adds the values in r1 and r3. adc(add with carry) adds r2, r4, and
the value of the carry flag. This is exactly the same as normal addition.

Example 43 shows how to subtract the values.

Example 43
Subtract two long values stored in r2,r1 and r4,r3.

Answer:

subs r5, r1, r3

sbc r6, r2, r4

subs subtracts the value of r3 from the value in r1. sbc(subtract with carry) subtracts the
value in r4 from the value in r2. Additionally, if the previous instruction resulted in a
borrow (carry equal to 0), then it also subtracts the carry bit. This is the same as normal
subtraction.

We list the semantics of the instructions in Table 4.8. Note that in the case of a subtraction
the carry flag is set to 0, when there is a borrow. The NOT operation flips a 0 to 1, and vice
versa. Lastly, rsc stands for – reverse subtract with carry.

Semantics Example Explanation

adc reg, reg, reg adc r1, r2, r3 r1 = r2 + r3 + Carry Flag

sbc reg, reg, reg sbc r1, r2, r3 r1 = r2 - r3 - NOT(Carry Flag)

rsc reg, reg, reg rsc r1, r2, r3 r1 = r3 - r2 - NOT(Carry Flag)

Table 4.8: Semantics of adc, sbc, and rsc instructions

4.2.6 Simple Branch Instructions

An ISA with just data processing instructions is very weak. We need branch instructions such
that we can implement if-statements and for-loops. ARM programs primarily use three branch
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instructions to do most of their work. They are: b, beq, bne. Their semantics are given in
Table 4.9.

Semantics Example Explanation

b label b .foo Jump unconditionally to label .foo

beq label beq .foo Branch to .foo if the last flag setting
instruction has resulted in an equal-
ity and (Z flag is 1)

bne label bne .foo Branch to .foo if the last flag set-
ting instruction has resulted in an
inequality and (Z flag is 0)

Table 4.9: Semantics of simple branch instructions

Example 44
Write an ARM assembly program to compute the factorial of a positive number (> 1)
stored in r0. Save the result in r1.
Answer:

C
int val = get_input();

int idx;

int prod = 1;

for (idx = 1; idx <= val ;

idx++) {

prod = prod * idx;

}

ARM assembly
mov r1, #1 /* prod = 1 */

mov r3, #1 /* idx = 1 */

.loop:

mul r1, r3, r1 /* prod = prod * idx */

cmp r3, r0 /* compare idx, with the input (num) */

add r3, r3, #1 /* idx ++ */

bne .loop /* loop condition */

Let us now see, how we can use the power of branches to write some powerful programs.
Let us consider the factorial function. In Example 44, we show a small program to compute the
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factorial of a natural number. r3 is a counter that is initialised to 0. We keep on incrementing
it till it matches r0. r1 represents the product. We iteratively multiply the value of r3 with r1.
At the end of the set of iterations, r1 contains the factorial of the value given in r0.

Example 45
Write an assembly program to find out if a natural number stored in r0 is a perfect square.
Save the Boolean result in r1.
Answer:

1 mov r1, #0 /* result initialised to false */

2 mov r2, #1 /* counter */

3 .loop:

4 mul r3, r2, r2

5 cmp r3, r0

6 beq .square

7 add r2, r2, #1

8 cmp r2, r0

9 bne .loop

10

11 b .exit /* number is not a square */

12 .square:

13 mov r1, #1 /* number is a square */

14 .exit:

Let us show the example of another program to test if a number is a perfect square (see
Example 45). r1 contains the result of the operation. If the number is a perfect square we set r1
to 1, else we set r1 to 0. The main loop is between lines 3 and 9. Here, we increment the value
of r2 iteratively, and test if its square equals r0. If it does, we jump to .square, set r1 to 1, and
jump to .exit. Here, we print the value (code not shown), and exit the program. We assume a
hypothetical label – .exit – that is present at the end of the program (also shown in the code).
The exit condition of the loop is Line 9, where we consider the result of the comparison of r2
and r0. If r2 is equal to r0, then r0 cannot contain a perfect square because r0 is at least equal
to 2 at the end of any iteration.

4.2.7 Branch and Link Instruction

We can use the simple branch instructions to implement for loops and if statements. However,
we need a stronger variant of the branch instruction to implement function calls. Function calls
are different than regular branches because we need to remember the point in the program that
the function needs to return to. ARM provides the bl (branch-and-link) instruction for this
purpose. The semantics of this instruction is shown in Table 4.10.
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Semantics Example Explanation

bl label bl .foo (1) Jump unconditionally to the function at .foo
(2) Save the next PC (PC + 4) in the lr register

Table 4.10: Semantics of the branch and link instruction

The bl instruction jumps to the function that begins at the specified label. Note that in the
ARM ISA, there is no special way for designating the start of a function. Any instruction can
in principle be the start of a function. In ARM assembly, the starting instruction of a function
needs to have a label assigned to it. Along with branching to the given label, the bl instruction
also saves the value of the return address, which is equal to the current PC plus 4, into the lr
register (r14). We need to add 4 over here because the size of an instruction in ARM is exactly
equal to 4 bytes.

Once a function starts executing, it is expected that it will preserve the value of the return
address saved in the lr register unless it invokes other functions. If a function invokes other
functions, it needs to spill and restore registers as mentioned in Section 3.3.10. When we wish
to return from a function, we need to move the value in the lr register to the pc register (r15).
The PC will point to the instruction at the return address and execution will proceed from that
point.

Example 46
Example of an assembly program with a function call.

C
int foo() {

return 2;

}

void main() {

int x = 3;

int y = x + foo();

}

ARM assembly
foo:

mov r0, #2

mov pc, lr

main:

mov r1, #3 /* x = 3 */

bl foo /* invoke foo */

/* y = x + foo() */

add r2, r0, r1
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Let us take a look at Example 46. In this example, we consider a simple piece of C code
that calls a function foo that returns a constant value of 2. It adds the return value to the
variable x to produce y.

In the equivalent ARM code, we define two labels – foo andmain. We assume that execution
starts from the main label. We map x to r1, and set its value equal to 3. Then, we call the
function foo. In it we set the value of register r0 to 2, and return by moving the value in the
lr register to the PC. When the program returns, it begins execution at the subsequent line in
the main function. The register r0 maintains its value equal to 2 across functions. We add the
value in r1 to the value in r0 to produce the value for y. It is saved in r2.

Nowadays, there is a simpler method is used to return from a function. We can use the bx
instruction that jumps to an address contained in a register (semantics shown in Figure 4.11).

Semantics Example Explanation

bx reg bx r2 (1) Jump unconditionally to the ad-
dress contained in register, r2

Table 4.11: Semantics of the bx instruction

We can simplify the assembly code in Example 46 as follows.

ARM assembly
foo:

mov r0, #2

bx lr

main:

mov r1, #3 /* x = 3 */

bl foo /* invoke foo */

/* y = x + foo() */

add r2, r0, r1

4.2.8 Conditional Instructions

Now, that we have a fairly good idea of basic branch instructions, let us elaborate some special
features of ARM assembly. These features help make the process of coding very efficient. Let
us consider the instructions beq and bne again. We note that they are variants of the basic b
instruction. They are distinguished by their suffixes – eq and ne. The former denotes equality,
and the latter denotes inequality. These suffixes are known as condition codes

ARM Condition Codes

Let us first consider the list of condition codes shown in Table 4.12. There are 16 condition codes
in ARM. Each condition code has a unique number, and suffix. For example, the condition
code with suffix eq has a number equal to 0. Every condition code is associated with a unique
condition. For example, eq is associated with equality. To test if the condition holds, the ARM
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Number Suffix Meaning Flag State

0 eq equal Z = 1

1 ne not equal Z = 0

2 cs/hs carry set/ unsigned higher or equal C = 1

3 cc/lo carry clear/ unsigned lower C = 0

4 mi negative/ minus N = 1

5 pl positive or zero/ plus N = 0

6 vs overflow V = 1

7 vc no overflow V = 0

8 hi unsigned higher (C = 1) ∧ (Z = 0)

9 ls unsigned lower or equal (C = 0) ∨ (Z = 1)

10 ge signed greater than or equal N = 0

11 lt signed less than N = 1

12 gt signed greater than (Z = 0) ∧ ( N = 0)

13 le signed less than or equal (Z = 1) ∨ (N = 1)

14 al always

15 – reserved

Table 4.12: Condition codes

processor takes a look at the CPSR flags. The last column in Table 4.12 shows the values of
the flags that need to be set for the condition to hold.

The eq and ne conditions can be tested by considering the Z(zero) flag alone. The expec-
tation is that an earlier cmp or subs instruction would have set these flags. If the comparison
resulted in an equality, then the Z flag would be set to 1.

As described in Section 4.2.3, if a subtraction of unsigned numbers leads to a borrow, then
the carry flag is set to 0. This condition is also known as an unsigned underflow. If there is
no borrow, then the carry flag is set to 1. Consequently, if the comparison between unsigned
numbers concludes that the first number is greater than or equal to the second number, then
the C(carry flag) needs to be set to 1. Likewise, if the carry flag is set to 0, then we can say
that the first operand is smaller than the second operand (unsigned comparison). These two
conditions are captured by the hs and lo condition codes respectively.

The next four condition codes check if a number is positive or negative, and if there has
been an overflow. These conditions can be trivially evaluated by considering the values of
N(negative) and V (overflow) flags respectively. hi denotes unsigned higher. In this case, we
need to additionally test the Z flag. Likewise for ls (unsigned lower or equal), we need to test
the Z flag, along with the C flag.

ARM has four condition codes for signed numbers – ge(≥), le(≤), gt(>), and lt(<). The ge
condition code simply tests the N flag. It should be equal to 0. This means that a preceding
cmp or subs instruction has subtracted two numbers, where the first operand was greater than
or equal to the second operand. For the gt instruction, we need to consider the Z flag also. In
a similar manner, the less than condition codes – lt and le – work. The conditions for the flags
are given in Table 4.12.
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Note that for signed numbers, we have not considered the possibility of an overflow in
Table 4.12. Theorem 2.3.4.1 outlines the precise conditions for detecting an overflow. We
leave the process of augmenting the conditions to consider overflow as an exercise for the
reader. Lastly, the al(always) condition code means that the instruction is not associated with
any condition. It executes according to its default specification. Hence, it is not required to
explicitly specify the al condition since it is the default.

Conditional Variants of Normal Instructions

Condition codes are not just restricted to branches. We can use condition codes with normal
instructions such as add and sub also. For example, the instruction addeq performs an addition
if the Z flag in the flags register is set to true. It means that the last time that the flags
were set (most likely by a cmp instruction), the instruction must have concluded an equality.
However, if the last comparison instruction concluded that its operands are unequal, then the
ARM processor treats the addeq instruction as a nop instruction (no operation). We shall see
in Chapter 10 that by using such conditional instructions, we can increase the performance of
an advanced processor. Let us consider an example that uses the addeq instruction.

Example 47
Write a program in ARM assembly to count the number of 1s in a 32-bit number stored in
r1. Save the result in r4.
Answer:

mov r2, #1 /* idx = 1 */

mov r4, #0 /* count = 0 */

/* start the iterations */

.loop:

/* extract the LSB and compare */

and r3, r1, #1

cmp r3, #1

/* increment the counter */

addeq r4, r4, #1

/* prepare for the next iteration */

mov r1, r1, lsr #1

add r2, r2, #1

/* loop condition */

cmp r2, #32

ble .loop
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4.2.9 Load-Store Instructions

Simple Load-Store Instructions

The simplest load and store instructions are ldr and str respectively. Here, is an example.

ldr r1, [r0]

This instruction directs the processor to load the value in register r1, from the memory
location stored in r0, as shown in Figure 4.2.

ldr r1, [r0]

r0
r1

Register
   file

Memory

Figure 4.2: The ldr instruction

Note that in this case, r0, contains the starting address of the data in memory. The ldr
instructions loads 4 bytes in a register. If the value contained in r0 is v, then we need to fetch
the bytes from v to v + 3. These 32 bits (4 bytes), are brought from memory and saved in
register r1.

The str instruction performs the reverse process. It reads the value in a register and saves
it in a memory location. An example is shown in Figure 4.3. Here r0 is known as the base
register.

str r1, [r0]

Load-Store Instructions with an Offset

We can specify load and store instructions with a base register, and an optional offset. Let us
consider:

ldr r1, [r0, #4]
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str r1, [r0]

r0
r1

Register
   file

Memory

Figure 4.3: The str instruction

Here, the memory address is equal to the value in r0 plus 4. It is possible to specify a
register in place of an immediate operand.

ldr r1, [r0, r2]

The memory address is equal to r0 + r2. In this expression, r0 and r2 refer to the values
stored in them. We can alternatively state the operation in this program as: r1 ← [r0 + r2]
(see the register transfer notation defined in Section 3.2.5).

Semantics Example Explanation Addressing Mode
ldr reg, [reg ] ldr r1, [r0] r1 ← [r0] register-indirect
ldr reg, [reg, imm] ldr r1, [r0, #4] r1 ← [r0 + 4] base-offset
ldr reg, [reg, reg ] ldr r1, [r0, r2] r1 ← [r0 + r2] base-index
ldr reg, [reg, reg, shift imm] ldr r1, [r0, r2, lsl #2] r1 ← [r0 + r2� 2] base-scaled-index

str reg, [reg ] str r1, [r0] [r0] ← r1 register-indirect
str reg, [reg, imm] str r1, [r0, #4] [r0 + 4] ← r1 base-offset
str reg, [reg, reg ] str r1, [r0, r2] [r0 + r2] ← r1 base-index
str reg, [reg, reg, shift imm] str r1, [r0, r2, lsl #2] [r0 + r2� 2] ← r1 base-scaled-index

Table 4.13: Load and store instruction semantics

Table 4.13 shows the semantics of different types of load store instructions. The third
column shows the addressing mode. The register r2 in this case is known as the index register
because it contains a value that is added to the base register, and this value can be used as the
index of an array (see Section 4.3.1). Note that some authors call the base-offset mode as also
the displacement addressing mode.
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Load-Store instructions for Bytes and Half-Words

The ldr and str instructions load/store 4 bytes of data. However, it is possible to also load and
store 1 and 2 bytes of data. 2 bytes is also known as a half-word, where a word is equal to 4
bytes.

Semantics Example Explanation

ldrb reg, [reg, imm] ldrb r1, [r0, #2] r1 ← [r0 + 2] (1 unsigned byte)

ldrh reg, [reg, imm] ldrh r1, [r0, #2] r1 ← [r0 + 2] (2 unsigned bytes)

ldrsb reg, [reg, imm] ldrsb r1, [r0, #2] r1 ← [r0 + 2] (1 signed byte)

ldrsh reg, [reg, imm] ldrsh r1, [r0, #2] r1 ← [r0 + 2] (2 signed bytes)

strb reg, [reg, imm] strb r1, [r0, #2] [r0 + 2] ← r1 (1 unsigned byte)

strh reg, [reg, imm] strh r1, [r0, #2] [r0 + 2] ← r1 (2 unsigned bytes)

Table 4.14: Load and store instructions for bytes and half-words in the base-offset addressing
mode

Table 4.14 shows the load and store instructions for bytes and half words using the base-
offset addressing mode. ldrb loads an unsigned byte to a register. It places the byte in the least
significant 8 bits. The rest of the 24 bits are set to 0. ldrh similarly loads an unsigned half-word
(16 bits). ldrsb, and ldrsh load a signed byte and half-word respectively. They extend the sign
of the operand (see Section 2.3.4) to make it fit in 32 bits. This is done by replicating the MSB.
strb and strh store an unsigned byte in memory. Note that unlike loads, there are no ARM
instructions to extend the sign of the operand while saving it in memory.

4.3 Advanced Features

We are in a good point to take a look at some of the advanced features in the ARM instruction
set. Up till now, we have taken a look at basic instructions that allow us to implement simple
data types in a high level language such as C or Java. We can translate simple programs that
contain integers into assembly code, compute the results of mathematical functions, load and
store values from memory. However, there are other high level features such as functions, arrays,
and structures that are present in high level languages. They shall require special support at
the assembly level for creating efficient implementations.

By no means has the process of programming language development stopped. We expect
that over the next few decades, there will be many new kinds of programming languages. They
will make the process of programming easier for more programmers, and it should be easier to
leverage novel features of futuristic hardware. This would require extra instructions and support
at the level of assembly programs. This is thus an evolving field, and deserves a thorough study.
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4.3.1 Arrays

Array Specific Features

Note that the starting memory location of entry i is equal to the base address of the array plus
4i in an array with word (4 byte) sized elements. In a high level language, the programmer
always specifies the index in an array, and relies on the compiler to multiply the index by 4.
ARM assembly provides nice features to multiply i by 4 by using the lsl instruction. This
feature can be embedded in load-store instructions.

ldr r0, [r1, r2, lsl #2]

In this case the base address is stored in register, r1, and the offset is equal to r2 <<
2 = 4 ∗ r2. The advantage here is that we do not need a separate instruction to multiply the
index by 4. We have already seen this optimisation in Section 4.2.2. However, there are other
optimisations that can make our life easier. Let us consider array accesses in a loop as shown
in Example 48.

Example 48 Convert the following C program to a program to ARM assembly. Assume
that the base address of the array is stored in r0.

C
void addNumbers(int a[100]) {

int idx;

int sum = 0;

for (idx = 0; idx < 100; idx++){

sum = sum + a[idx];

}

}

Answer:
ARM assembly

1 /* base address of array a in r0 */

2 mov r1, #0 /* sum = 0 */

3 mov r2, #0 /* idx = 0 */

4

5 .loop:

6 ldr r3, [r0, r2, lsl #2]

7 add r2, r2, #1 /* idx ++ */

8 add r1, r1, r3 /* sum += a[idx] */

9 cmp r2, #100 /* loop condition */

10 bne .loop

There is a scope for added efficiency here. We note that Lines 6 and 7 form a standard
pattern. Line 6 reads the array entry, and Line 7 increments the index. Almost all sequential
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array accesses follow a similar pattern. Hence, it makes sense to have one instruction that
simplifies this process.

The ARM architecture adds two extra addressing modes for the load and store instructions
to achieve this. They are called pre-indexed and post-indexed with auto-update. In the pre-
indexed addressing mode (with auto-update), the base address is updated first, and then the
effective memory address is computed. In a post-indexed scheme, the base address is updated
after the effective address is computed.

The pre-indexed addressing mode with auto-update is implemented by adding a ‘!’ sign
after the address.

Examples of the pre-indexed addressing mode
ldr r3, [r0, #4]! /* r3 = [r0+4]; r0 = r0 + 4*/

ldr r3, [r0, r1, lsl #2]! /* r3 = [r0 + r1 << 2];

r0 = r0 + r1 << 2; */

The post-indexed addressing mode is implemented by encapsulating the base address within
‘[’ and ‘]’, and writing the offset arguments separated by commas after it.

Examples of the post-indexed addressing mode
ldr r3, [r0], #4 /* r3 = [r0], r0 = r0 + 4 */

ldr r3, [r0], r1, lsl #2 /* r3 = [r0], r0 = r0 + r1 << 2 */

Let us now see, how we can slightly make our addNumbers slightly more intuitive. The
modified ARM code is shown in Example 49.

Example 49
Convert the assembly code shown in Example 48 to use the post indexed addressing mode.
Answer:

ARM assembly
1 /* base address of array a in r0 */

2 mov r1, #0 /* sum = 0 */

3 add r4, r0, #400 /* address of a[100]*/

4 .loop:

5 ldr r3, [r0], #4

6 add r1, r1, r3 /* sum += a[idx] */

7 cmp r0, r4

8 bne .loop

We have eliminated the index variable saved in r2. It is not required anymore. We directly
update the base address in Line 5. For the loop exit condition, we compute the first address
beyond the end of the array in Line 3. We compare the base address with this illegal address
in Line 7, and then if they are unequal we keep iterating.

Example 48 contains 5 lines in the loop, whereas the code in Example 49 contains 4 lines in
the loop. We have thus shown that it is possible to reduce the code size (of the loop) by 20%
using post-indexed addressing, and increase performance too since most cores do not impose
additional time overheads when auto-update addressing modes are used.
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Structures

Implementing structures is very similar to implementing arrays. Let us look at a typical struc-
ture in C.

struct Container {

int a;

int b;

char c;

short int d;

int e;

};

We can treat each structure as an array. Consequently, a structure will have a base address
and each element of the structure will have an offset. Unlike an array, different elements in a
structure can have different sizes, and thus they are not constrained to start with offsets that
are multiples of the word size.

Type Element Offset

int a 0

int b 4

char c 8

short int d 10

int e 12

Table 4.15: Elements in the structure and their offsets

Table 4.15 shows the offsets for different elements within a structure (as generated by the
GNU ARM compiler). We need to note that compilers for the ARM architecture impose
additional constraints. They pad variable addresses, and align them with 2 byte or 4 byte
boundaries as shown in Table 4.15 The rules for variable alignment are described in detail in
the ARM architecture manual [arm, 2000]. In a similar fashion it is possible to implement more
high level data structures such as unions and classes. The interested reader is referred to a
book on compilers.

4.3.2 Functions

Let us now use two sophisticated ARM instructions for spilling and restoring registers in the
stack. They can be used to implement both caller saved and callee saved functions.

Instructions for Spilling and Restoring Registers

Let us now describe two instructions to use the stack for saving and restoring a set of registers
– ldmfd and stmfd. These registers load and store multiple registers in a memory region such
as the stack. For brevity, we do not consider generic memory regions in this book. We limit our
discussion to the stack. ldmfd and stmfd instructions take a base register (e.g., stack pointer),
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and set of registers as arguments. They load or store the set of registers in the memory region
pointed to by the base register. Note that the order of the registers does not matter. The
registers are always rearranged in ascending order.

Let us consider an example using the store instruction, stmfd.

stmfd sp!, {r2,r3,r1,r4}

Instruction Semantics

ldmfd sp!, {list of registers } Pop the stack and assign values to
registers in ascending order. Update
the value of sp.

stmfd sp!, {list of registers } Push the registers on the stack in
descending order. Update the value
of sp.

Table 4.16: Semantics of the ldmfd and stmfd instructions

The stmfd instruction assumes a downward growing stack, and it also assumes that the
stack pointer points to the starting address of the value at the top of the stack. Recall that
the top of the stack in a downward growing stack is defined as the starting address of the last
value pushed on the stack. In this case the registers are processed in ascending order – r1, r2,
r3, r4. Secondly memory addresses are also accessed in ascending order. Consequently r1 will
be saved in sp− 16, r2 in sp− 12, r3 in sp− 8, and r4 in sp− 4. Alternatively, we can explain
this instruction by observing that registers are pushed into the stack in descending order. We
use the ‘!’ suffix with the base address register to instruct the processor to update the value of
the stack pointer after the execution of the instruction. In this case, we set sp equal to sp− 16.

There is a variant of this instruction that does not set the stack pointer to the starting
address of the memory region used to save registers. An example with this variant is:

stmfd sp, {r2,r3,r1,r4}

Note that this variant is rarely used in practice, especially when the base register is sp.

Similarly, the ldmfd instruction loads a set of values starting at the stack pointer, and then
updates the stack pointer. Akin to the stmfd instruction, we use the ‘!’ suffix to use the base
register auto update feature.

ldmfd sp!, {r2,r3,r1,r4}

For example, in this case we set r1 = [sp], r2 = [sp+4], r3 = [sp+8], and r4 = [sp+12]. In
other words, we iteratively pop the stack and assign the values to registers in ascending order.
The ldmfd instruction also has a variant that does not update the base register. We simply
need to delete the ‘!’ suffix after the base register.

ldmfd sp, {r2,r3,r1,r4}
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The semantics of these instructions are shown in Table 4.16.
Let us conclude this section with an example. We show a recursive power function in C

that takes two arguments x and n, and computes xn.

Example 50
Write a function in C and implement it in ARM assembly to compute xn, where x and n
are natural numbers. Assume that x is passed through r0, n through r1, and the return
value is passed back to the original program via r0. Answer:

C
int power(int x, int n) {

if (n == 0)

return 1;

int y = x * power(x, n-1);

return y;

}

When we compile this function to ARM assembly, we get:

ARM assembly
1 power:

2 cmp r1, #0 /* compare n with 0 */

3 moveq r0, #1 /* return 1 */

4 bxeq pc, lr /* return */

5

6 stmfd sp!, {r4, lr} /* save r4 and lr */

7 mov r4, r0 /* save x in r4 */

8 sub r1, r1, #1 /* n = n - 1 */

9 bl power /* recursively call power */

10 mul r0, r4, r0 /* power(x,n) = x * power(x,n-1) */

11 ldmfd sp!, {r4, pc} /* restore r4 and return */

We first compare n with 0. If n is equal to 0, then we need to return 1 (Line 3). We
subsequently, return from the function. Note the use of the instruction moveq here.

However, if n 6= 0, then we need to make a recursive function call to evaluate xn−1.
We start out by saving register r4, and the return address (lr) on the stack in Line 6 using
the stmfd instruction. We save the value of r0 in r4 because it will get overwritten by the
recursive call to the power function. Subsequently, we decrement r1 that contains the value
of n, and then we call the power function recursively in Line 10. The result of the power
function is assumed to be present in r0. We multiply this result with the value of x (stored
in r4) in Line 10.

We simultaneously do two operations in Line 11. We load the value of r4, and pc
from the stack. We first read the first operand, r4, which was saved on the stack by the
corresponding stmfd instruction in Line 6. The second operand saved on the stack was
the return address. We read this value and save it in pc. Effectively, we are executing the
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instruction mov pc, lr, and we are thus returning from the function. Hence, after executing
Line 11, we start executing instructions from the return address of the function.

The ldm and stm instructions can also assume an upward growing stack. The interested
reader can refer to the ARM manual [arm, 2000] for a thorough explanation.

4.4 Encoding the Instruction Set

Let us now see how to convert ARM assembly instructions to a sequence of 0s and 1s. Each
ARM instruction is represented using 32 bits. We need to encode the instruction type, values
of conditional fields, register numbers, and immediate operands using these 32 bits only.

Let us take a look at the generic format of ARM instructions. For every instruction we need
to initially encode at least two pieces of information – condition codes (see Table 4.12), and the
format of the instruction (data processing, branch, load/store, or others). Table 4.12 defines
15 conditions on each instruction. It will take 4 bits to represent this information.

Important Point 6
To uniquely encode a set of n elements, we need at least dlog2(n)e bits. We can assign
each element a number between 0 and n− 1. We can represent these numbers in the binary
format. The number of bits required is equal to the number of bits needed to represent the
largest number, n−1. If we have log2(n) bits, then the largest number that we can represent
is 2log2(n)−1 = n−1. However, log2(n) might be a fraction. Hence, we need to use dlog2(n)e
bits.

ARM has four types of instructions – data processing (add/ subtract/ multiply/ compare),
load/store, branch, and miscellaneous. We need 2 bits to represent this information. These
bits determine the type of the instruction. Figure 4.4 shows the generic format for instructions
in ARM.

cond
32 29

type
2728

4 2

Figure 4.4: Generic format of an ARM instruction

4.4.1 Data Processing Instructions

The type field is equal to 00 for data processing instructions. The rest of the 26 bits need to
contain the instruction type, special conditions, and registers. Figure 4.5 shows the format for
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data processing instructions.

cond
32 29

 0 0
2728

4 2

I
26

4

shifter operand/
immediate25 22

S
21

4

rs
20 17

rd

4

16 13

12

12 1

opcode

Figure 4.5: Format of the data processing instruction

The 26th bit is called the I (immediate) bit. It is similar to the I bit in SimpleRisc . If it is
set to 1, then the second operand is an immediate, otherwise, it is a register. Since ARM has
16 data processing instructions, we require 4 bits to represent them. This information is saved
in bits 22-25. The 21st bit saves the S bit. If it is turned on, then the instruction will set the
CPSR (see Section 4.2.4).

The rest of the 20 bits save the input and output operands. Since ARM has 16 registers,
we require 4 bits to encode a register. Bits 17-20 save the identifier of the first input operand
(rs), which needs to be a register. Bits 13-16 save the identifier of the destination register (rd).

Bits 1-12 are used to save the immediate value or the shifter operand. Let us see how to
make best use of these 12 bits.

Encoding Immediate Values

ARM supports 32-bit immediate values. However, we observe that we have only 12 bits to
encode them. Hence, we cannot possibly encode all the 232 possible values. We need to choose
a meaningful subset of them. The idea is to encode a subset of 32-bit values using 12 bits. The
hardware is expected to decode these 12 bits, and expand them to 32 bits while processing the
instruction.

Now, 12 bits is a rather unwieldy value. Neither is it 1 byte nor is it 2 bytes. Hence, it was
necessary to come up with a very ingenious solution. The idea is to split the 12 bits into two
parts – a 4-bit constant (rot), and an 8 bit payload (payload) (see Figure 4.6).

rot payload

4 8

Figure 4.6: Format of the immediate

Let the actual number that is encoded in these 12 bits be n. We have:

n = payload ror (2× rot)

The actual number n is obtained by right rotating the payload by 2 times the value in the
rot field. Let us now try to understand the logic of doing so.
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The final number n is a 32-bit value. A naive solution would have been to use the 12 bits to
specify the least significant bits of n. The higher order bits could be 0. However, programmers
tend to access data and memory in terms of bytes. Hence, 1.5 bytes is of no use to us. A better
solution is to have a 1 byte payload and place it in any location in the 32-bit field. The rest
of the 4 bits are used for this purpose. They can encode a number from 0 to 15. The ARM
processor doubles this value to consider all even numbers between 0 and 30. It right rotates
the payload by this amount. The advantage of doing so is that it is possible to encode a wider
set of numbers. For all of these numbers, there are 8 bits that correspond to the payload, and
the rest of the 24 bits are all zeros. The rot bits just determine which 8 bits in a 32-bit field
are occupied by the payload.

Let us consider a set of examples.

Example 51
Encode the decimal number 42.
Answer: 42 in the hex format is 0x2A, or alternatively 0x00 00 00 2A. There is no right
rotation involved. Hence, the immediate field is 0x02A.

Example 52
Encode the number 0x2A 00 00 00.
Answer: This number is obtained by right rotating 0x2A by 8 places. Note that we need
to right rotate by 4 places to move a hex digit by one position. We need to now divide 8 by
2, to get 4. Thus, the encoded format for this number is 0x42A.

Example 53
Encode 0x 00 00 2A 00.
Answer: The first step is to count the number of right rotations. We observe that the
number 0x2A has been rotated to the right by 24 positions. We now proceed to divide 24 by
2 to obtain 12. Thus, the encoded format of the number is 0xC2A.

Example 54
Encode the number 0x 00 02 DC 00 as an ARM immediate.
Answer: The first part is to figure out the payload. The payload is – 10 1101 11 – in
binary. This is equal to 0xB7. The next step is to figure out the rotation. Let us simplify the
task by observing that right rotating by n places is the same as left rotating by 32−n places.
Let us concentrate on 0xC00. This is equal to 110000000000 in binary. The rightmost 1 is
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now at the 11th position. It has moved 10 places from the 1st position. Thus the number
has been rotated to the left by 10 places. It has been rotated to the right by 22 places.
22/2 = 11(0xB). Hence, the encoded number is 0xBB7.

The reader needs to understand that this encoding is supposed to be done by the assembler
or the compiler. The user simply needs to only use values in her assembly code that can be
encoded as an ARM immediate. For example, a number like -1 cannot be encoded as an ARM
immediate. It is 0xFF FF FF FF. The payload is greater than 8 bits. Ideally, an instruction of
the form: add r1, r1,#− 1 is wrong. Some assemblers will try to fix the problem by changing
the instruction to sub r1, r1,#1. However, all assemblers are not smart enough to figure this
out. If the user wishes to uses a value that cannot be encoded in ARM’s 12 bit format, then
the user (or the program loader) needs to load it byte by byte in a register, and use the register
as an operand.

Encoding the Shifter Operand

We have 12 bits to encode the shifter operand. Figure 4.7 shows the scheme for encoding it. A
shifter operand is of the form: rt (lsl|lsr|asr|ror) (shift reg/ shift imm.)

rt

4

4 1
0

57 6
shift type

12 8
shift imm

25

rt

4

4 1
1

57 6
shift type

12 8
shift reg

24

9

Shift type

lsl

lsr
asr

ror

00
01
10
11

(a)

(b) (c)

Figure 4.7: Format of the shifter operand

The first four bits (1-4) encode the id of the register rt. The next bit determines the nature
of the shift argument (immediate or register). If it is 0 then the argument is an immediate,
otherwise it is a register. Bits 6 and 7 specify the type of the shift (also see Figure 4.7(c)).
For example, the type can be lsl (logical shift left). It can also be lsr (logic shift right), asr
(arithmetic shift right), or ror (right rotate). If we are shifting by an immediate value, then
bits 8-12 specify a 32-bit value called a shift immediate. Otherwise, if we are shifting by a value
in a register, then bits 9-12 specify the id of the register.

Let us consider an instruction of the form: add r3, r1, r2. In this case, the second operand
is r2. We can think of r2 as actually a shifter operand where it is being left shifted by 0. Hence,
to encode we need to set the shift type to lsl (00), set the argument to immediate (0), and set
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the shift immediate to 00000. We thus see that specifying a register as the second argument is
easy. It is a special case of a shifter operand, and we just need to set bits 5-12 as 0.

4.4.2 Load-Store Instructions

A simple load or store instruction can be represented as : (ldr | str) rd, [rs, (immediate/shifter
operand)]. We require additional syntax for pre and post-indexed addressing (see Section 4.3.1).
The format for the encoding of load and store instructions is shown in Figure 4.8.

cond
32 29

0  1
2728

4 2

I

6

shifter operand/
immediate

4

rs
20 17

rd

4

16 13

12

12 1

P U B W L

Figure 4.8: Format of the load/store instructions

The semantics of the bits I, P, U, B, W, and L is shown in Table 4.17. In this case, the
I bit has reverse semantics as compared to the case of data processing instructions. If it is 1,
then the last 12 bits represent a shifter operand, otherwise they represent an immediate value.
P represents the advanced addressing mode – pre or post, and W determines if the advanced
addressing mode is used or a simple addressing mode is used. We can either add the offset from
the base register or we can subtract it from the base register. This is specified by the U bit.
The B bit determines the granularity of the transfer – byte level or word level. Lastly, the L
bit determines if the instruction is a load or a store.

Bit Value Semantics

I
0 last 12 bits represent an immediate value
1 last 12 bits represent a shifter operand

P
0 post-indexed addressing
1 pre-indexed addressing

U
0 subtract offset from base
1 add offset to base

B
0 transfer word
1 transfer byte

W
0 do not use pre or post indexed addressing
1 use pre or post indexed addressing

L
0 store to memory
1 load from memory

Table 4.17: Semantics of I, P, U, B, W, and L bits

These six bits IPUBWL capture all the different variants of the load and store instructions.
The rest of the format is the same as the data processing instruction other than the encoding of
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immediates. Immediates in memory instructions do not follow the (rot+payload) format. The
12 bit immediate fields represents an unsigned number between 0 and 4095.

We thus observe that like SimpleRisc , the designers of the ARM instruction set have tried
to stick to the same instruction format with minor variations..

Question 6 What is the necessity for having the U bit?
Answer: Negative numbers such as -4 or -8 cannot be represented in ARM’s 12 bit format
for specifying offsets in memory instructions. However, we might need to use addresses with
a negative displacement, especially when they are relative to the frame pointer or the stack
pointer. The U bit allows us to represent an immediate such as -4 as +4. It additionally
instructs the processor to subtract the displacement from the base register.

4.4.3 Branch Instructions

offset
32 29 2628

4 3

L
25 24

101
1

24

cond

Figure 4.9: Format of the branch and branch-and-link instructions

Figure 4.9 shows the format of the branch (b) and the branch-and-link (bl) instructions. If
the L(link) bit is equal to 1, then the instruction is bl, otherwise it is just b. The instruction
contains a 24-bit signed offset. The ARM processor first shifts the offset by 2 bits. This is
because each instruction is 32 bits or 4 bytes long, and additionally the hardware expects in-
structions to be stored at 4 byte boundaries. Therefore, the starting address of each instruction
will contain two zeros in its two least significant positions. Hence, there is no necessity to waste
two bits in the encoding for saving these two zeros. The next step is to extend the sign of this
shifted offset to 32 bits. Lastly, the hardware computes the branch target by adding the shifted
and sign-extended offset to the PC plus 8 bytes.

The interesting thing to note is that we are adding the sign-extended shifted offset to
PC+8, not the PC. We shall see in Chapter 10 that the reason for doing this is to simplify the
hardware. The format for branches is different from the format used to encode data transfer and
data processing instructions. This is because more bits have used to encode the displacement.
We had followed a similar approach in SimpleRisc also. However, we need to note that having
a new format is not a very bad thing if it is simple as is the case for a branch.
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4.5 Summary and Further Reading

4.5.1 Summary

Summary 4

1. The ARM ISA is a simple 32-bit RISC ISA.

(a) It uses 16 registers r0 . . . r15.

(b) The return address register is known as lr (link register), and it is r14.

(c) The PC is visible to the programmer. It is register r15.

(d) All the instructions are encoded using 32 bits.

2. Data processing instructions accept register operands, and at most one immediate
operand. They are 3-address instructions.

3. ARM has a set of compare instructions that can set flags in the CPSR register. Ad-
ditionally, it is possible to instruct a standard data processing instruction to set the
CPSR flags by adding the suffix ‘s’ to it.

4. ARM supports conditional instructions that either execute or not depending upon the
values of the CPSR flags. They can be created by appending a condition code to a
regular data processing or branch instruction. There are 15 such condition codes.
Examples of some condition codes are: gt (greater than), and eq (equal).

5. ARM has two variants of branch instructions.

(a) It has simple branch instructions that branch to another instruction.

(b) It has branch-and-link instructions that additionally save the return address in
the link register lr.

6. ARM supports both the base-index and base-offset addressing modes for load and store
instructions. It has additional support for shifting the index register by treating it as
a shifter operand.

7. ARM supports complex addressing modes such as pre-indexed and post-indexed ad-
dressing. These addressing modes update the base register.

8. ARM also has support for loading and storing bytes and half-words (2 bytes).

9. The instruction set encoding for data processing instructions is as follows:

(a) Condition code (4 bits)

(b) Instruction type (2 bits)

(c) Second operand: immediate or register (1 bit)
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(d) Opcode (4 bits)

(e) S bit (should the CPSR flags be set) (1 bit)

(f) Source register1 (4 bits)

(g) Destination register (4 bits)

(h) Immediate or shifter operand (12 bits)

10. The data transfer instructions do not have the S bit. They instead have extra bits to
encode the type of load/store instructions, and the addressing mode.

11. The branch instructions have an L bit to specify if the return address needs to be
saved or not. They use PC-relative addressing and have a 24-bit signed offset. Like
SimpleRisc , the hardware assumes that instructions are aligned to 4 byte boundaries,
and treats this offset as a distance in terms of memory words. It thus left shifts the
offset by 2 positions.

4.5.2 Further Reading

We have presented an overview of the major features of ARM’s assembly language. The reader
can refer to ARM’s assembly language manual [arm, 2000] for more details.

We have deliberately left out some advanced features. A subset of ARM cores support
Thumb-1 and Thumb-2 instructions. These instructions are based on a subset of general purpose
instructions and have implicit operands. They are used to decrease the size of compiled code.
Some ARM processors have extensive support for floating point instructions (VFP instruction
set), and SIMD instructions (execute an instruction on multiple integers/floating point numbers
in one go). However, we have not discussed these extensions for the sake of brevity. Some
other sophisticated features of ARM processors are security extensions that prevent malicious
programs or users from stealing data. Since 2013 ARM processors (conforming to the ARMv8-
A architecture) have started using a new 64-bit ARM ISA called A64. The reader can refer
to the books by Joseph Yiu [Yiu, 2011, Yiu, 2009], William Hohl [Hohl, 2009], and J. R.
Gibson [Gibson, 2011] for a detailed discussion on the ARM instruction set and its latest
extensions. Needless to say the reader can always find up to date documentation at ARM’s
web site http://www.arm.com.

Exercises

Basic ARM Instructions

Ex. 1 — Translate the following code in C to the ARM instruction set using a minimum
number of instructions. Assume the variables a, b, c, d and e are 32-bit integers and stored in
r0, r1, r2, r3 and r4 respectively.

http://www.arm.com
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(a) a=a+b+c+d+e;

(b) a=b+c;
d=a+b;

(c) a=b+c+d;
a=a+a;

(d) a=2*a+b+c+d;

(e) a=b+c+d;
a=3*a;

Ex. 2 — Translate the following pieces of code from the ARM assembly language to a high
level language. Assume that the variables a, b, c, d and e (containing integers) are stored in
the registers r0, r1, r2, r3 and r4 respectively.

(a) add r0, r0, r1

add r0, r0, r2

add r0, r0, r3

(b) orr r0, r0, r1, lsl #1

and r1, r0, r1, lsr #1

(c) add r0, r1, r2

rsb r1, r0, r2

(d) add r0, r1, r2

add r0, r3, r4

add r0, r0, r1

(e) mov r0 #1, lsl #3

mov r0, r0, lsr #1

Ex. 3 — Answer the following:

(a) Write the smallest possible ARM assembly program to load the constant 0xEFFFFFF2
into register r0.

(*b) Write the smallest possible ARM assembly program to load the constant 0xFFFD67FF
into register r0.

* Ex. 4 — Using valid ARM assembly instructions, load the constant, 0xFE0D9FFF, into
register r0. Try do to it with a minimum number of instructions. DO NOT use pseudo-
instructions or assembler directives.

Ex. 5 — Can you give a generic set of ARM instructions or a methodology using which you
can load any 32-bit immediate value into a register? Try to minimise the number of instructions.

Ex. 6 — Convert the following C program to ARM assembly. Store the integer, i, in register
r0. Assume that the starting address of array a is saved in register r1, and the starting address
of array b is saved in register r2.
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int i;

int b[500];

int a[500];

for(i=0; i < 500; i++) {

b[i] = a[a[i]];

}

** Ex. 7 — Consider the instruction, mov lr, pc. Why does this instruction add 8 to the PC,
and use that value to set the value of lr? When is this behaviour helpful?

Assembly Language Programming

• For all the questions below, assume that two specialised functions, div and mod, are
available. The div function divides the contents of r1 by the contents of r2, and saves
the result in r0. Similarly, the mod function is used to divide r1 by r2, and save the
remainder in r0. Note that in this case both the functions perform integer division.

Ex. 8 — Write an ARM assembly language program to compute the 2’s complement of a
number stored in r0.

Ex. 9 — Write an ARM assembly language program that subtracts two 64-bit integers stored
in four registers.

Assumptions:

•Assume that you are subtracting A−B

•A is stored in register, r4 and r5. The MSB is in r4, and the LSB is in r5.

•B is stored in register, r6 and r7. The MSB is in r6, and the LSB is in r7.

•Place the final result in r8(MSB), and r9(LSB).

Ex. 10 — Write an assembly program to add two 96-bit numbers A and B using the minimum
number of instructions. A is stored in three registers r2, r3 and r4 with the higher byte in r2
and the lower byte in r4. B is stored in registers r5, r6 and r7 with the higher byte in r5 and
the lower byte in r7. Place the final result in r8(higher byte), r9 and r10(lower byte).

Ex. 11 — Write an ARM assembly instruction code to count the number of 1’s in a 32-bit
number.

Ex. 12 — Given a 32-bit integer in r3, write an ARM assembly program to count the number
of 1 to 0 transitions in it.
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* Ex. 13 — Write an ARM assembly program that checks if a 32-bit number is a palindrome.
Assume that the input is available in r3. The program should set r4 to 1 if it is a palindrome,
otherwise r4 should have 0. A palindrome is a number which is the same when read from both
sides. For example, 1001 is a 4-bit palindrome.

Ex. 14 — Design an ARM Assembly Language program that will examine a 32-bit value
stored in r1 and count the number of contiguous sequences of 1s. For example, the value:

01110001000111101100011100011111

contains six sequences of 1s. Write the final value in register r2. Use conditional instructions
as much as possible.

** Ex. 15 — In some cases, we can rotate an integer to the right by n positions (less than
or equal to 31) so that we obtain the same number. For example: an 8-bit number 01010101
can be right rotated by 2, 4, or 6 places to obtain the same number. Write an ARM assembly
program to efficiently count the number of ways we can rotate a number to the right such that
the result is equal to the original number.

Ex. 16 — Write an ARM assembly program to load and store an integer from memory, where
the memory saves it in the big endian format.

Ex. 17 — Write an ARM assembly program to find out if a number is prime using a recursive
algorithm.

* Ex. 18 — Suppose you decide to take your ARM device to some place with a high amount
of radiation, which can cause some bits to flip, and consequently corrupt data. Hence, you
decide to store a single bit checksum, which stores the parity of all the other bits, at the
least significant position of the number (essentially you can now store only 31 bits of data in
a register). Write an ARM assembly program, which adds two numbers taking care of the
checksum. Assume that no bits flip while the program is running.

* Ex. 19 — Let us encode a 16-bit number by using 2 bits to represent 1 bit. We shall
represent logical 0 by 01, and logical 1 by 10. Now let us assume that a 16-bit number is
encoded and stored in a 32-bit register r3. Write a program in ARM assembly to convert it
back into a 16-bit number, and save the result in r4. Note that 00 and 11 are invalid inputs
and indicate an error. The program should set r5 to 1 in case of an error; otherwise, r5 should
be 0.

** Ex. 20 — Write an ARM assembly program to convert a 32-bit number to its 12 bit
immediate form, if possible, with first 4 bits for rotation and next 8 bits for the payload. If the
conversion is possible, set r4 to 1 and store the result in r5, otherwise, r4 should be set to 0.
Assume that the input number is available in register r3.

** Ex. 21 — Suppose you are given a 32-bit binary number. You are told that the number
has exactly one bit equal to 1; the rest of the bits are 0. Provide a fast algorithm to find
the location of that bit. Implement the algorithm in ARM assembly. Assume the input to be
available in r9. Store the result in r10.
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*** Ex. 22 — Write an ARM assembly language program to find the greatest common divisor
of two binary numbers u and v. Assume the two inputs (positive integers) to be available in r3
and r4. Store the result in r5. [HINT: The gcd of two even numbers u and v is 2∗gcd(u/2, v/2)]

ARM Instruction Encoding

Ex. 23 — How are immediate values encoded in the ARM ISA?

Ex. 24 — Encode the following ARM instructions. Find the opcodes for instructions from
the ARM architecture manual [arm, 2000].

i) add r3, r1, r2

ii) ldr r1, [r0, r2]

iii) str r0, [r1, r2, lsl #2]

Design Problems

Ex. 25 — Run your ARM programs on an ARM emulator such as the QEMU (www.qemu.org)
emulator, or arm-elf-run (available at www.gnuarm.com).

www.qemu.org
www.gnuarm.com

