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Introduction to Computer Architecture

Welcome to the exciting world of computer architecture. Computer architecture is the study
of computers. We shall study the basic design principles of computers in this book including
the basic technologies, algorithms, design methodologies and future trends.

The field of computer architecture is a very fast moving field, and every couple of years
there are a plethora of new inventions. Fifty years ago, the existence of computers was almost
unknown to the common man. Computers were visible only in large financial institutions or in
top universities. However, today billions of people all over the world have access to some form
of computing device. They use it actively, and have found a place for it in their daily activities.
Such kind of an epic transformation in the use, and ubiquity of computers has made the field
of computer architecture extremely interesting.

In this chapter, we shall present an overview of computer architecture from an academic
standpoint, and explain the major principles behind today’s computers. We shall observe that
there are two perspectives in computer architecture. We can look at computer architecture
from the point of view of software applications. This point of view is sometimes referred to as
architecture in literature. It is very important for students of computer architecture to study
computer architecture from the viewpoint of a software designer because they need to know
about the expectations of software writers from hardware. Secondly, it is also important for
software writers to know about computer architecture because they can tailor their software
appropriately to make it more efficient. In the case of system software such as operating systems
and device drivers, it is absolutely essential to know the details of the architecture because the
design of such kind of software is very strongly interlinked with low level hardware details.

The other perspective is the point of view of hardware designers. Given the software inter-
face, they need to design hardware that is compatible with it and also implement algorithms
that make the system efficient in terms of performance and power. This perspective is also
referred to as organisation in literature.

13
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Definition 1

Architecture The view of a computer presented to software designers.

Organisation The actual implementation of a computer in hardware.

Computer architecture is a beautiful amalgam of software concepts and hardware concepts.
We design hardware to make software run efficiently. Concomitantly, we also design software
keeping in mind the interface and constraints presented by hardware. Both the perspectives
run hand in hand. Let us start out by looking at the generic definition of a computer.

1.1 What is a Computer?

Let us now answer the following questions.

Question 1

What is a computer?

What it can do, and what it cannot do?
How do we make it do intelligent things?

Let us start out with some basic definitions. The first question that we need to answer is —
What is a computer? Well to answer this question, we just need to look all around us. We are
surrounded by computers. Nowadays, computers are embedded in almost any kind of device
such as mobile phones, tablets, mp3 players, televisions, dvd players, and obviously desktops
and laptops. What is common between all of these devices? Well, each one of them has a
computer that performs a specific task. For example, the computer in a mp3 player can play a
song, and the computer in a dvd player can play a movie. It is absolutely not necessary that the
mp3 player and dvd player contain different types of computers. In fact, the odds are high that
both the devices contain the same type of computer. However, each computer is programmed
differently, and processes different kinds of information. An mp3 player processes music files,
and a dvd player processes video files. One can play a song, while the other can play a video.

Using these insights, let us formally define a computer in Definition

Definition 2

A computer is a general purpose device that can be programmed to process information, and
yield meaningful results.
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Information
store

Program

Computer

Results

Figure 1.1: A basic computer

Note that there are three important parts to the definition as shown in Figure — the
computer, information store, and the program. The computer takes as an input a program,
and in response performs a set of operations on the information store. At the end it yields
meaningful results. A typical program contains a set of instructions that tell the computer
regarding the operations that need to be performed on the information store. The information
store typically contains numbers and pieces of text that the program can use. Let us consider
an example.

Example 1
Here is a snippet of a simple C program.

1: a = 4;
2: b = 6;
3: ¢ = a + b;
4: print c

A computer will produce the output - 10. This C program contains four statements.
Here, each statement can conceptually be treated as an instruction. Fach statement instructs
the computer to do something. Statements 1 and 2 instruct the computer to assign the
variables a and b, the values 4 and 6 respectively. Statement 8 instructs the computer to
add a and b, and assign the result to variable c. Finally, statement 4 instructs the computer
to print the value of ¢ (output of the program).

Given the fact that we have defined a computer as a sophisticated device that follows the
instructions in a program to produce an output, let us see how it can be built. Modern day
computers are made of silicon based transistors and copper wires to connect them. How-
ever, it is absolutely not necessary that computers need to be built out of silicon and copper.
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Figure 1.2:

Researchers are now looking at building computers with electrons (quantum computers), pho-
tons(optical computers), and even DNA. If we think about it, our own brains are extremely
powerful computers themselves. They are always in the process of converting thoughts(program)
into action(output).

1.2 Structure of a Typical Desktop Computer

Let us now open the lid of a desktop computer, and see what is inside (shown in Figure .
There are three main parts of a typical desktop computer — CPU (Central Processing Unit),
Main Memory, and Hard Disk. The CPU is also referred to as the processor or simply machine
in common parlance. We will use the terms interchangeably in this book. The CPU is the
main part of the computer that takes a program as input, and executes it. It is the brain of
the computer. The main memory is used to store data that a program might need during its
execution (information store). For example, let us say that we want to recognise all the faces in
an image. Then the image will be stored in main memory. There is some limited storage on the
processor itself. However, we shall discuss this aspect later. When we turn off the power, the
processor and main memory lose all their data. However, the hard disk represents permanent
storage. We do not expect to lose our data when we shut down the system. This is because all
our programs, data, photos, videos, and documents are safely backed up in the hard disk.
Figure[I.3|shows a simplistic block diagram of the three components. Along with these main
components, there are a host of peripheral components that are connected to the computer. For
example, the keyboard and mouse are connected to a computer. They take inputs from the user
and communicate them to programs running on the processor. Similarly, to show the output
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Memory(1 “IHard disk

Computer

Figure 1.3: Block diagram of a simple computer

of a program, the processor typically sends the output data to a monitor that can graphically
display the result. It is also possible to print the result using a printer. Lastly the computer
can be connected to other computers through the network. A revised block diagram with all
the peripherals is shown in Figure [1.4

Memory(TV “IHard disk

Computer

(Keyboard ~(Monitor )

- printer’

Figure 1.4: Block diagram of a simple computer with peripherals

In this book, we will mainly study the processor. The processor has the central responsibility
of executing programs, communicating with the main memory, hard disk, and peripherals. It is
the only active unit in our entire system. The others are passive and only respond to requests.
They do not have any computational capability of their own.

1.3 Computers are Dumb Machines

Irrespective of the underlying technology, a fundamental concept that we need to understand
is that a computer is fundamentally a dumb machine. Unlike our brains, it is not endowed with
abstract thought, reason, and conscience. At least at the moment, computers cannot take very
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sophisticated decisions on their own. All they can do is execute a program. Nonetheless, the
reason computers are so powerful is because they are extremely good at executing programs.
They can execute billions of basic instructions per second. This makes them dumb yet very
fast. A comparison of the computer with the human brain is shown in Table

Feature Computer | Our Brilliant Brain
Intelligence Dumb Intelligent

Speed of basic calculations | Ultra-fast | Slow

Can get tired Never After some time
Can get bored Never Almost always

Table 1.1: Computer vs the brain

If we combine the processing power of computers, with intelligent programs written by
the human brain, we have the exquisite variety of software available today. Everything from
operating systems to word processors to computer games is written this way.

The basic question that we need to answer is :

Question 2
How, do we make a dumb machine do intelligent things?

Computers are these tireless machines that can keep on doing calculations very quickly
without ever complaining about the monotonicity of the work. As compared to computers, our
brains are creative, tire easily, and do not like to do the same thing over and over again. To
combine the best of both worlds, our brains need to produce computer programs that specify
the set of tasks that need to be performed in great detail. A computer can then process the
program, and produce the desired output by following each instruction in the program.

Hence, we can conclude that we should use the creative genius of our brains to write pro-
grams. Each program needs to contain a set of basic instructions that a computer can process.
Henceforth, a computer can produce the desired output. An instruction is defined as a basic
command that can be given to a computer.

1.4 The Language of Instructions

We observe that to communicate with a computer, we need to speak its language. This language
consists of a set of basic instructions that the computer can understand. The computer is not
smart enough to process instructions such as, “calculate the distance between New Delhi and
the North Pole”. However, it can do simple things like adding two numbers. This holds for
people as well. For example, if a person understands only Spanish, then there is no point
speaking to her in Russian. It is the responsibility of the person who desires to communicate to
arrange for a translator. Likewise, it is necessary to convert high level thoughts and concepts
to basic instructions that are machine understandable.
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Programmers typically write programs in a high level language such as C or Java™. These
languages contain complex constructs such as structures, unions, switch-case statements, classes
and inheritance. These concepts are too complicated for a computer to handle. Hence, it is
necessary to pass a C or C++ program through a dedicated program called a compiler that
can convert it into a sequence of basic instructions. A compiler effectively removes the burden
of creating machine (computer) readable code from the programmer. The programmer can
concentrate only on the high level logic. Figure shows the flow of actions. The first step
is to write a program in a high level language (C or C++). Subsequently, the second step
involves compiling it. The compiler takes the high level program as input, and produces a
program containing machine instructions. This program is typically called an ezrecutable or
binary. Note, that the compiler itself is a program consisting of basic machine instructions.

compile execute
> Executable > Output

Program

Figure 1.5: Write-compile-execute

Let us now come to the semantics of instructions themselves. The same way that any
language has a finite number of words, the number of basic instructions/rudimentary commands
that a processor can support have to be finite. This set of instructions is typically called the
instruction set. Some examples of basic instructions are: add, subtract, multiply, logical or,
and logical not. Note that each instruction needs to work on a set of variables and constants,
and finally save the result in a variable. These variables are not programmer defined variables;
they are internal locations within the computer. We define the term instruction set architecture
as:

Definition 3

The semantics of all the instructions supported by a processor is known as the instruction
set architecture (ISA). This includes the semantics of the instructions themselves, along
with their operands, and interfaces with peripheral devices.

The instruction set architecture is the way that software perceives hardware. We can think
of it as the list of basic functions that the hardware exports to the external world. It is the,
“language of the computer”. For example, Intel and AMD CPUs use the x86 instruction set,
IBM processors use the PowerPC® instruction set, HP processors use the PA-RISC instruction
set, and the ARM processors use the ARM® instruction set (or variants of it such as Thumb-1
and Thumb-2). It is thus not possible to run a binary compiled for an Intel system on an ARM
based system. The instruction sets are not compatible. However, in most cases it is possible
to reuse the C program. To run a C program on a certain architecture, we need to procure a
compiler for that specific architecture, and then appropriately compile the C program.
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1.5 Instruction Set Design

Let us now begin the difficult process of designing an instruction set for a processor. We can
think of an instruction set as a legal contract between software and hardware. Both sides
need to implement their side of the contract. The software part needs to ensure that all the
programs that users write can be successfully and efficiently translated to basic instructions.
Likewise, hardware needs to ensure that all the instructions in the instruction set are efficiently
implementable. On both sides we need to make reasonable assumptions. An ISA needs to have
some necessary properties and some desirable properties for efficiency. Let us first look at a
property, which is absolutely necessary.

1.5.1 Complete - The ISA should be able to Implement all User Programs

This is an absolutely necessary requirement. We want an ISA to be able to represent all
programs that users are going to write for it. For example, if we have an ISA with just an ADD
instruction, then we will not be able to subtract two numbers. To implement loops, the ISA
should have some method to re-execute the same piece of code over and over again. Without
this support for and while loops in C programs will not work. Note that for general purpose
processors, we are looking at all possible programs. However, a lot of processors for embedded
devices have limited functionality. For example, a simple processor that does string processing
does not require support for floating point numbers (numbers with a decimal point). We need
to note that different processors are designed to do different things, and hence their ISAs can
be different. However, the bottom line is that any ISA should be complete in the sense that it
should be able to express all the programs in machine code that a user intends to write for it.
Let us now explore the desirable properties of an instruction set.

1.5.2 Concise — Limited Size of the Instruction Set

We should ideally not have a lot of instructions. We shall see in Chapter [J] that it takes a fairly
non-trivial amount of hardware to implement an instruction. Implementing a lot of instructions
will unnecessarily increase the number of transistors in the processor and increase its complexity.
Consequently, most instruction sets have somewhere between 64 to 1000 instructions. For
example, the MIPS instruction set contains 64 instructions, whereas the Intel x86 instruction
set has roughly a 1000 instructions as of 2012. Note that 1000 is considered a fairly large
number for the number of instructions in an ISA.

1.5.3 Generic — Instructions should Capture the Common Case

Most of the common instructions in programs are simple arithmetic instructions such as add,
subtract, multiply, divide. The most common logical instructions are logical and, or, exclusive-
or, and not. Hence, it makes sense to dedicate an instruction to each of these common opera-
tions.

It is not a good idea to have instructions that implement a very rarely used computation.
For example, it might not make sense to implement an instruction that computes sin~!(z). It
is possible to provide dedicated library functions that compute sin~!(x) using existing mathe-
matical techniques such as Taylor series expansion. Since this function is rarely used by most
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programs, they will not be adversely affected if this function takes a relatively long time to
execute.

1.5.4 Simple — Instructions should be Simple

Let us assume that we have a lot of programs that add a sequence of numbers. To design a
processor especially tailored towards such programs, we have several options with regards to
the add instruction. We can implement an instruction that adds two numbers, or we can also
implement an instruction that can take a list of operands, and produce the sum of the list.
There is clearly a difference in complexity here, and we cannot say which implementation is
faster. The former approach requires the compiler to generate more instructions; however, each
add operation executes quickly. The latter approach generates a fewer number of instructions;
but, each instruction takes longer to execute. The former type of ISA is called a Reduced
Instruction Set, and the latter ISA type is called a Complex Instruction Set. Let us give two
important definitions here.

Definition 4
A reduced instruction set computer (RISC) implements simple instructions that have a

simple and regular structure. The number of instructions is typically a small number (64
to 128). Examples: ARM, IBM PowerPC, HP PA-RISC

Definition 5

A complex instruction set computer (CISC) implements complex instructions that are highly
irreqular, take multiple operands, and implement complex functionalities. Secondly, the
number of instructions is large (typically 500+ ). Ezamples: Intel 286, VAX

The RISC vs CISC debate used to be a very contentious issue till the late nineties. However,
since then designers, programmers, and processor vendors have been tilting towards the RISC
design style. The consensus seems to be go for a small number of relatively simple instructions
that have a regular structure and format. It is important to note that this point is still debat-
able as CISC instructions are sometimes preferable for certain types of applications. Modern
processors typically use a hybrid approach where they have simple, as well as some complicated
instructions. However, under the hood CISC instructions are translated into RISC instructions.
Hence, we believe that the scale tilts slightly more towards RISC instructions. We shall thus
consider it a desirable property to have simple instructions.

Important Point 1
An ISA needs to be complete, concise, generic, and simple. It is necessary to be complete,
whereas the rest of the properties are desirable (and sometimes debatable).
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Way Point 1
We have currently considered the following concepts.

o Computers are dumb yet ultra-fast machines.

o [nstructions are basic rudimentary commands used to communicate with the processor.
A computer can execute billions of instructions per second.

o The compiler transforms a user program written in a high level language such as C to
a program consisting of basic machine instructions.

o The instruction set architecture(ISA) refers to the semantics of all the instructions
supported by a processor.

o The instruction set needs to be complete. It is desirable if it is also concise, generic,
and simple.

Let us subsequently look at the conditions that ensure the completeness of an ISA. We will
then try to create a concise, simple, and generic ISA in Chapter

1.6 How to Ensure that an ISA is Complete?

This is a very interesting, difficult, and theoretically profound question. The problem of finding
if a given ISA is complete for a given set of programs, is a fairly difficult problem, and is beyond
the scope of the book. The general case is far more interesting. We need to answer the question:

Question 3
Given an ISA, can it represent all possible programs?

We will need to take recourse to theoretical computer science to answer this question. Casual
readers can skip Sections to without any loss in continuity. They can directly proceed
to Section where we summarise the main results.

1.6.1 Towards a Universal ISA*

Let us try to answer Question Assume that we are given an ISA that contains the basic
instructions add, and multiply. Can we use this ISA to run all possible programs? The answer
is no, because we cannot subtract two numbers using the basic instructions that we have. If we
add the subtract instruction to our repertoire of instructions, can we compute the square root
of a number? Even if we can, is it guaranteed that we can do all types of computations? To
answer such vexing questions we need to first define a universal machine.
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Definition 6
A machine that can execute any program is known as a universal machine.

It is a machine that can execute all programs. We can treat each basic action of this machine
as an instruction. Thus the set of actions of a universal machine is its ISA, and this ISA is
complete. Consequently, when we say that an ISA is complete, it is the same as saying that
we can build a universal machine exclusively based on the given ISA. Hence, we can solve the
problem of completeness of an ISA by solving the problem of designing universal machines.
They are dual problems. It is easier to reason in terms of universal machines. Hence, let us
delve into this problem.

Computer scientists started pondering at the design of universal machines at the beginning
of the 20" century. They wanted to know what is computable, and what is not, and the power
of different classes of machines. Secondly, what is the form of a theoretical machine that can
compute the results of all possible programs? These fundamental results in computer science
form the basis of today’s modern computer architectures.

Alan Turing was the first to propose a universal machine that was extremely simple and
powerful. This machine is aptly named after him, and is known as the Turing machine. This is
merely a theoretical entity, and is typically used as a mathematical reasoning tool. It is possible
to create a hardware implementation of a Turing machine. However, this would be extremely
inefficient, and require a disproportionate amount of resources. Nonetheless, Turing machines
form the basis of today’s computers and modern ISAs are derived from the basic actions of a
Turing machine. Hence, it is very essential for us to study its design. Note that we provide
a very cursory treatment in this book. Interested readers are requested to take a look at the
seminal text on the theory of computation by Hopcroft, Motwani and Ulmann |[Hopcroft et al.,
2006).

1.6.2 Turing Machine*

The general structure of a Turing machine is shown in Figure A Turing machine contains
an infinite tape that is an array of cells. Each cell can contain a symbol from a finite alphabet.
There is a special symbol $ that works as a special marker. A dedicated tape head points to
a cell in the infinite tape. There is a small piece of storage to save the current state among a
finite set of states. This storage element is called a state register.

The operation of the Turing machine is very simple. In each step, the tape head reads the
symbol in the current cell, its current state from the state register, and looks up a table that
contains the set of actions for each combination of symbol and state. This dedicated table is
called a transition function table or action table. Each entry in this table specifies three things —
whether to move the tape head one step to the left or right, the next state, and the symbol that
should be written in the current cell. Thus, in each step, the tape head can overwrite the value
of the cell, change its state in the state register and move to a new cell. The only constraint
is that the new cell needs to be to the immediate left or right of the current cell. Formally, its
format is (state, symbol) — ({L, R}, new_state, new_symbol). L stands for left, and R stands
for right.



(© Smruti R. Sarangi 24

Infinite tape

< [ [ [ [ [ I[ [ =
10

L R

-—

State register Tape head
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Figure 1.6: A Turing machine

This seemingly abstract and obscure computing device is actually very powerful. Let us
explain with examples. See Examples and [ In all the cases, we assume that the input is
demarcated by the special marker symbol $.

Example 2
Design a Turing machine to increment a number by 1.

L 1$[7[3]4[6]9]$] [ |
40

Tape head

Answer: Fach cell contains a single digit. The number is demarcated at both ends by the
special marker 3. Lastly, the tape head points to the unit’s digit.

We first define four states (Sp,S1): pre-exit and exit. The computation is over when
the Turing machine reaches the exit state. The states So and S1 represent the value of the
carry, 0 or 1, respectively. The state register is initialised to S since we are incrementing
the number by 1. In other words, we can assume that the starting value of the carry digit
1s equal to 1.

At each step, the tape head reads the current digit, d, and the value of the carry, c, from
the state register. For each combination of d, and c, the action table contains the next state
(new value of carry), and the result digit. The tape head always moves to the left. For
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example, if (d,c) = (9,1), then we are effectively adding (9 + 1). The next state is equal to
Sy (output carry), the Turing machine writes 0 in the current cell, and the tape head moves
to the cell on the left.

The only special case arises when the computation is ending. When the tape head en-
counters the § symbol, then it looks at the value of the carry. If it is equal to 0, then it
leaves the value untouched and mowves to the exit state. If it is equal to 1, then it moves to
the pre-exit state, writes 1 to the cell, and moves to the left. Subsequently, it writes $ to
the cell under the tape head, and then mowves to the exit state.

Example 3
Design a Turing machine to find out if a string is of the form aaa...abb...bb.

Answer: Let us define two states (Sq, Sp), and two special states — exit and error. If the
state becomes equal to exit or error, then the computation stops. The Turing machine can
start scanning the input from right to left as Example[3 It starts in state Sy. The action
table is as follows:

(Sb,b) — (L,Sb,b)
(Sp,a) = (L, Sq,a)
(Sp,$) — (L,error,$)
(Sq,b) — (L, error,b)
(Sg,a) = (L, Sy, a)
(Sa,$) — (L, exit, $)

Example 4

Design a Turing machine to find out if a string of characters is a palindrome. A palindrome
1s a word that reads the same forward and backwards. FEzample: civic, rotator, rotor.
Furthermore, assume that each character is either ‘a’ or ‘b’.

Answer: Let us assume that the Turing machine starts at the rightmost character in the
begin state. Let us consider the case when the symbol under the tape head is a in the begin
state. The machine enters the state L, (move left, starting symbol is a) and replaces a with
$. Now it needs to see if the leftmost character is a. Hence, the tape head moves towards
the left until it encounters $. It then enters the Rcheck, state. It moves one cell to the
right and checks if the symbol is equal to a. If it is a, then the string might be a palindrome.
Otherwise, it is definitely not a palindrome and the procedure can terminate by entering the
error state. The tape head again rewinds by moving all the way to the right and starts at
the cell, which is to the immediate left of the starting cell in the previous round. The same
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algorithm is performed iteratively till either an error is encountered or all the symbols are
replaced with $.

If the starting symbol was b, the procedure would have been exactly the same albeit with
a different set of states — Ly, and Rchecky. The action table is shown below.

(begin,$) — (L, exit,$)

(begin,a) — (L, Lg,$)

(Lg,a) — (L, Lq,a) begin,b) — (L, Ly, $)
(La,b) — (L, Lg,b) Ly,a) — (L, Ly, a)
(Lq,$) — (R, Rcheck,, $) Lp,b) = (L, Ly, b)
(
(
(
(
(

Rchecky, ) (R, error,$)
Rchecky,b) — (R, Rmove, $)

Rchecky,b) — (R, error,$)
Rmove,a) — (R, Rmove, a)
Rmove, b) — (R, Rmove,b)
Rmove,$) — (L, begin, $)

(
E

Rchecky,a) — (R, Rmove, $) ELba$) (R, Rchecky, )
(

In these examples we have considered three simple problems and designed Turing machines
from them. We can immediately conclude that designing Turing machines for even simple
problems is difficult, and cryptic. The action table can contain a lot of states, and quickly blow
out of size. However, the baseline is that it is possible to solve complex problems with this
simple device. It is in fact possible to solve all kinds of problems such as weather modelling,
financial calculations, and solving differential equations with this machine!

Definition 7
Church-Turing thesis: Any real-world computation can be translated into an equivalent com-
putation involving a Turing machine. (source: Wolfram Mathworld)

This observation is captured by the Church-Turing thesis, which basically says that all
functions that are computable by any physical computing device are computable by a Turing
machine. In lay man’s terms, any program that can be computed by deterministic algorithms
on any computer known to man, is also computable by a Turing machine.

This thesis has held its ground for the last half century. Researchers have up till now not
been able to find a machine that is more powerful than a Turing machine. This means that
there is no program that can be computed by another machine, and not by a Turing machine.
There are some programs that might take forever to compute on a Turing machine. However,
they would also take infinite time on all other computing machines. We can extend the Turing
machine in all possible ways. We can consider multiple tapes, multiple tape heads, or multiple
tracks in each tape. It can be shown that each of these machines is as powerful as a simple
Turing machine.



27 (© Smruti R. Sarangi

1.6.3 Universal Turing Machine*

The Turing machine described in the Section is not a universal machine. This is because
it contains an action table, which is specific to the function being computed by the machine.
A true universal machine will have the same action table, symbols, and also the same set of
states for every function. We can make a universal Turing machine, if we can design a Turing
machine that can simulate another Turing machine. This Turing machine will be generic and
will not be specific to the function that is being computed.

Let the Turing machine that is being simulated be called M, and the universal Turing
machine be called U. Let us first create a generic format for the action table of M, and save
it in a designated location on the tape of Y. This simulated action table contains a list of
actions, and each action requires the five parameters — old state, old symbol, direction(left or
right), new state, new symbol. We can use a common set of basic symbols that can be the 10
decimal digits (0-9). If a function requires more symbols then we can consider one symbol to be
contained in a set of contiguous cells demarcated by special delimiters. Let such a symbol be
called a simulated symbol. Likewise, the state in the simulated action table can also be encoded
as a decimal number. For the direction, we can use 0 for left, and 1 for right. Thus a single
action table entry might look something like (@1334@34@0@1335@10@). Here the ‘Q’ symbol
is the delimiter. This entry is saying that we are moving from state 1334 to 1335 if symbol
34 is encountered. We move left (0), and write a value of 10. Thus, we have found a way of
encoding the action table, set of symbols, and states of a Turing machine designed to compute
a certain function.

Similarly, we can designate an area of the tape to contain the state register of M. We call
this the simulated state register. Let the tape of M be given a dedicated space in the tape of
U, and let us call this space the work area.

The organisation is shown in Figure

Simulated state register
Simulated action table ¢ Work area

A\

= [T T T T ][
L R
|Generic state register |  Tape head

Generic action table

Figure 1.7: Layout of a universal Turing machine

The tape is thus divided into three parts. The first part contains the simulated action table,
the second part contains the simulated state register, and the last part contains the work area
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that contains a set of simulated symbols.

The universal Turing machine(U) has a very simple action table and set of states. The idea
is to find the right entry in the simulated action table that matches the value in the simulated
state register and simulated symbol under the tape head. Then the universal Turing machine
needs to carry out the corresponding action by moving to a new simulated state, and overwriting
the simulated symbol in the work area if required.

The devil is in the details. For doing every basic action, i/ needs to do tens of tape head
movements. The details are given in Hopcroft, Motwani, and Ulmann [Hopcroft et al., 2006).
However, the conclusion is that we can construct a universal Turing machine.

Important Point 2
It is possible to construct a universal Turing machine that can simulate any other Turing
machine.

Turing Completeness

Since the 1950s, researchers have devised many more types of hypothetical machines with their
own sets of states and rules. Each of these machines have been proven to be at most as powerful
as the Turing machine. There is a generic name for all machines and computing systems that are
as expressive and powerful as a Turing machine. Such systems are said to be Turing complete.
Any universal machine and ISA is thus Turing complete.

Definition 8
Any computing system that is equivalent to a Turing machine is said to be Turing complete.

We thus need to prove that an ISA is complete or universal if it is Turing complete.

1.6.4 A Modified Universal Turing Machine*

Let us now consider a variant of a universal Turing machine (see Figure [1.8) that is more
amenable to practical implementations. Let it have the following features. Note that such a
machine has been proven to be Turing complete.

1. The tape is semi-infinite (extends to infinity in only one direction).
2. The simulated state is a pointer to an entry in the simulated action table.

3. There is one unique entry in the simulated action table for each state. While looking up
the simulated action table, we do not care about the symbol under the tape head.

4. An action directs the tape head to visit a set of locations in the work area, and based
on their values computes a new value using a simple arithmetical function. It writes this
new value into a new location in the work area.
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Figure 1.8: A modified universal Turing machine

5. The default next state is the succeeding state in the action table.

6. An action can also arbitrarily change the state if a symbol at a certain location on the
tape is less than a certain value. Changing the state means that the simulated tape head
will start fetching actions from a new area in the simulated action table.

This Turing machine suggests a machine organisation of the following form. There is a large
array of instructions (action table). This array of instructions is commonly referred to as the
program. There is a state register that maintains a pointer to the current instruction in the
array. We can refer to this register as the program counter. It is possible to change the program
counter to point to a new instruction. There is a large work area, where symbols can be stored,
retrieved and modified. This work area is also known as the data area. The instruction table
(program) and the work area (data) were saved on the tape in our modified Turing machine.
In a practical machine, we call this infinite tape as the memory. The memory is a large array
of memory cells, where a memory cell contains a basic symbol. A part of the memory contains
the program, and another part of it contains data.

Definition 9

The memory in our conceptual machine is a semi-infinite array of symbols. A part of it
contains the program consisting of basic instructions, and the rest of it contains data. Data
refers to variables and constants that are used by the program.

Furthermore, each instruction can read a set of locations in the memory, compute a small
arithmetic function on them, and write the results back to the memory. It can also jump to any
other instruction depending on values in the memory. There is a dedicated unit to compute
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these arithmetic functions, write to memory, and jump to other instructions. This is called the
CPU(Central Processing Unit). Figure shows a conceptual organisation of this machine.

CPU

Prog ram Control Arithmetic
counter (PC) ( unit ) unit

}

Instruction
\ \/ / N\ \ /
Program Data
Memory

Figure 1.9: A basic instruction processing machine

Interested readers might want to prove the fact that this machine is equivalent to a Turing
machine. It is not very difficult to do so. We need to note that we have captured all aspects
of a Turing machine: state transition, movement of the tape head, overwriting symbols, and
decisions based on the symbol under the tape head. We shall see in Section that such a
machine is very similar to the Von Neumann machine. Von Neumann machines form the basis
of today’s computers. Readers can also refer to books on computational complexity.

Important Point 3
Figure[1.9 represents a universal machine that can be practically designed.

1.6.5 Single Instruction ISA*

Let us now try to design an ISA for our modified Turing machine. We shall see that it is
possible to have a complete ISA that contains just a single instruction. Let us consider an
instruction that is compatible with the modified Turing machine and has been proven to be
Turing complete.

sbn a, b, c

sbn stands for subtract and branch if negative. Here, a, and b are memory locations. This
instruction subtracts b from a, saves the results in a, and if a < 0, it jumps to the instruction
at location c in the instruction table. Otherwise, the control transfers to the next instruction.
For example, we can use this instruction to add two numbers saved in locations a and b. Note
that exit is a special location at the end of the program.
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1: sbn temp, b, 2
2: sbn a, temp, exit

Here, we assume that the memory location temp already contains the value 0. The first
instruction saves —b in temp. Irrespective of the value of the result it jumps to the next
instruction. Note that the identifier (number :) is a sequence number for the instruction. In
the second instruction we compute ¢ = a +b = a — (—b). Thus, we have successfully added
two numbers. We can now use this basic piece of code to add the numbers from 1 to 10. We
assume that the variable counter is initialised to 9, index is initialised to 10, one is initialised
to 1, and sum is initialised to O.

: sbn temp, temp, 2 // temp = O

: sbn temp, index, 3 // temp = -1 * index
: sbn sum, temp, 4 // sum += index

: sbn index, one, 5 // index -= 1

: sbn counter, one, exit // loop is finished, exit
: sbn temp, temp, 7 // temp = 0O
: sbn temp, one, 1 // (0 - 1 < 0), hence goto 1

~N O O W N

We observe that this small sequence of operations runs a for loop. The exit condition is in
line 5, and the loop back happens in line 7. In each iteration it computes — sum+ = index.

There are many more similar single instruction ISAs that have been proven to be complete
such as subtract and branch if less than equal to, reverse subtract and skip if borrow, and a
computer that has generic memory move operations. The interested reader can refer to the
book by Gilreath and Laplante |Gilreath and Laplante, 2003].

1.6.6 Multiple Instruction ISA*

Writing a program with just a single instruction is very difficult, and programs tend to be very
long. There is no reason to be stingy with the number of instructions. We can make our life
significantly easier by considering a multitude of instructions. Let us try to break up the basic
sbn instructions into several instructions.

Arithmetic Instructions We can have a set of arithmetic instructions such as add, subtract,
multiply and divide.

Move Instructions We can have move instructions that move values across different memory
locations. They should allow us to also load constant values into memory locations.

Branch Instructions We require branch instructions that change the program counter to
point to new instructions based on the results of computations or values stored in memory.

Keeping these basic tenets in mind, we can design many different types of complete ISAs.
The point to note is that we definitely need three types of instructions — arithmetic (data
processing), move (data transfer), and branch (control).
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Important Point 4
In any instruction set, we need at least three types of instructions:

1. We need arithmetic instructions to perform operations such as add, subtract, multiply,
and divide. Most instruction sets also have specialised instructions in this category to
perform logical operations such as logical OR and NOT.

2. We need data transfer instructions that can transfer values between memory locations
and can load constants into memory locations.

3. We need branch instructions that can start erecuting instructions at different points
in the program based on the values of instruction operands.

1.6.7 Summary of Theoretical Results

Let us summarise the main results that we have obtained from our short discussion on theoretical
computer science.

1. The problem of designing a complete ISA is the same as that of designing a universal
machine. A universal machine can run any program. We can map each instruction in
the ISA to an action in this universal machine. A universal machine is the most powerful
computing machine known to man. If a universal machine cannot compute the result of
a program because it never terminates (infinite loop), then all other computing machines
are also guaranteed to fail for this program.

2. Universal machines have been studied extensively in theoretical computer science. One
such machine is the Turing machine named after the father of computer science — Alan
Turing.

3. The Turing machine is a very abstract computing device, and is not amenable to practical
implementations. A practical implementation will be very slow and consume a lot of
resources. However, machines equivalent to it can be much faster. Any such machine,
ISA, and computing system that is equivalent to a Turing machine is said to be Turing
complete.

4. We defined a modified Turing machine that is Turing complete in Section It has
the structure shown in Figure Its main parts and salient features are as follows.

(a) It contains a dedicated instruction table that contains a list of instructions.

(b) It has a program counter that keeps track of the current instruction that is being
executed. The program counter contains a pointer to an entry in the instruction
table.

(c¢) It has a semi-infinite array of storage locations that can save symbols belonging to
a finite set. This array is known as the memory.
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Figure 1.10: A basic processing machine

(d) The memory contains the instruction table (also referred to as the program), and
contains a data area. The data area saves all the variables and constants that are
required by the program.

(e) Each instruction can compute the result of a simple arithmetic function using values
stored at different memory locations. It can then save the result in another memory
location.

(f) The machine starts with the first instruction in the program, and then by default,
after executing an instruction, the machine fetches the next instruction in the in-
struction table.

(g) It is possible for an instruction to direct the machine to fetch a new instruction from
an arbitrary location in the instruction table based on the value stored in a memory
location.

5. A simple one instruction ISA that is compatible with our modified Turing machine, con-
tains the single instruction sbn (subtract the values of two memory locations, and branch
to a new instruction if the result is negative).

6. We can have many Turing complete ISAs that contain a host of different instructions.
Such ISAs will need to have the following types of instructions.

Arithmetic Instructions Add, subtract, multiply and divide. These instructions can
be used to simulate logical instructions such as OR and AND.

Move Instructions Move values across memory locations, or load constants into mem-
ory.

Branch Instructions Fetch the next instruction from a new location in the instruction
table, if a certain condition on the value of a memory location holds.
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1.7 Design of Practical Machines

A broad picture of a practical machine has emerged from our discussion in Section We
have summarised the basic structure of such a machine in Figure Let us call this machine
as the concept machine. Ideas similar to our concept machine were beginning to circulate in
the computer science community after Alan Turing published his research paper proposing the
Turing machine in 1936. Several scientists got inspired by his ideas, and started pursuing efforts
to design practical machines.

1.7.1 Harvard Architecture

One of the earliest efforts in this direction was the Harvard Mark-I. The Harvard architecture
is very similar to our concept machine shown in Figure Its block diagram is shown in
Figure[I.11] There are separate structures for maintaining the instruction table and the memory.
The former is also known as instruction memory because we can think of it as a specialised
memory tailored to hold only instructions. The latter holds data values that programs need.
Hence, it is known as the data memory. The engine for processing instructions is divided
into two parts — control and ALU. The job of the control unit is to fetch instructions, process
them, and co-ordinate their execution. ALU stands for arithmetic-logic-unit. It has specialised
circuits that can compute arithmetic expressions or logical expressions (AND/OR/NOT etc.).

CPU

ALU
. Data
Instruction
memory COntr0| memory
/O devices

Figure 1.11: The Harvard architecture

Note that every computer needs to take inputs from the user/programmer and needs to
finally communicate results back to the programmer. This can be done through a multitude of
methods. Today we use a keyboard and monitor. Early computers used a set of switches and
the final result was printed out on a piece of paper.

1.7.2 Von Neumann Architecture

John von Neumann proposed the Von Neumann architecture for general purpose Turing com-
plete computers. Note that there were several other scientists such as John Mauchly and J.
Presper Eckert who independently developed similar ideas. Eckert and Mauchly designed the
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first general purpose Turing complete computer(with one minor limitation) called ENIAC (Elec-
tronic Numerical Integrator and Calculator) based on this architecture in 1946. It was used to
compute artillery firing tables for the US army’s ballistic research laboratory. This computer
was later succeeded by the EDVAC computer in 1949, which was also used by the US army’s
ballistics research laboratory.

The basic Von Neumann architecture, which is the basis of ENIAC and EDVAC is shown
in Figure This is pretty much the same as our concept machine. The instruction table is
saved in memory. The processing engine that is akin to our modified Turing machine is called
the CPU (central processing unit). It contains the program counter. Its job is to fetch new
instructions, and execute them. It has dedicated functional units to calculate the results of
arithmetic functions, load and store values in memory locations, and compute the results of
branch instructions. Lastly, like the Harvard architecture, the CPU is connected to the I/O
subsystem.

CPU

ALU

Memory Control /O devices

Figure 1.12: Von Neumann architecture

The path breaking innovation in this machine was that the instruction table was stored in
memory. It was possible to do so by encoding every instruction with the same set of symbols
that are normally stored in memory. For example, if the memory stores decimal values, then
each instruction needs to be encoded into a string of decimal digits. A Von Neumann CPU
needs to decode every instruction. The crux of this idea is that instructions are treated as
regular data(memory values). We shall see in later chapters that this simple idea is actually a
very powerful tool in designing elegant computing systems. This idea is known as the stored
program concept.

Definition 10
Stored-program concept: A program is stored in memory and instructions are treated as
reqular memory values.

The stored program concept tremendously simplifies the design of a computer. Since mem-
ory data and instructions are conceptually treated the same way, we can have one unified
processing system and memory system that treats instructions and data the same way. From
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the point of view of the CPU, the program counter points to a generic memory location whose
contents will be interpreted as that of an encoded instruction. It is easy to store, modify,
and transmit programs. Programs can also dynamically change their behavior during runtime
by modifying themselves and even other programs. This forms the basis of today’s complex
compilers that convert high level C programs into machine instructions. Furthermore, a lot
of modern systems such as the Java virtual machine dynamically modify their instructions to
achieve efficiency.

Lastly, astute readers would notice that a Von Neumann machine or a Harvard machine do
not have an infinite amount of memory like a Turing machine. Hence, strictly speaking they
are not exactly equivalent to a Turing machine. This is true for all practical machines. They
need to have finite resources. Nevertheless, the scientific community has learnt to live with this
approximation.

1.7.3 Towards a Modern Machine with Registers and Stacks

Many extensions to the basic Von-Neumann machine have been proposed in literature. In fact
this has been a hot field of study for the last half century. We discuss three important variants
of Von Neumann machines that augment the basic model with registers, hardware stacks, and
accumulators. The register based design is by far the most commonly used today. However,
some aspects of stack based machines and accumulators have crept into modern register based
processors also. It would be worthwhile to take a brief look at them before we move on.

Von-Neumann Machine with Registers

The term “register machine” refers to a class of machines that in the most general sense contain
an unbounded number of named storage locations called registers. These registers can be
accessed randomly, and all instructions use register names as their operands. The CPU accesses
the registers, fetches the operands, and then processes them. However, in this section, we look
at a hybrid class of machines that augment a standard Von Neumann machine with registers.
A register is a storage location that can hold a symbol. These are the same set of symbols that
are stored in memory. For example, they can be integers.

Let us now try to motivate the use of registers. The memory is typically a very large
structure. In modern processors, the entire memory can contain billions of storage locations.
Any practical implementation of a memory of this size is fairly slow in practice. There is a
general rule of thumb in hardware, “large is slow, and small is fast.” Consequently, to enable
fast operation, every processor has a small set of registers that can be quickly accessed. The
number of registers is typically between 8 and 64. Most of the operands in arithmetic and branch
operations are present in these registers. Since programs tend to use a small set of variables
repeatedly at any point of time, using registers saves many memory accesses. However, it
sometimes becomes necessary to bring in memory locations into registers or writeback values
in registers to memory locations. In those cases, we use dedicated load and store instructions
that transfer values between memory and registers. Most programs have a majority of pure
register instructions. The number of load and store instructions are typically about a third of
the total number of executed instructions.

Let us give an example. Assume that we want to add the cubes of the numbers in the
memory locations b and ¢, and we want to save the result in the memory location a. A machine
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with registers would need the following instructions. Assume that r1, r2, and r3 are the names
of registers. Here, we are not using any specific ISA (the explanation is generic and conceptual).

: rl = mem[b] // load b
: r2 = mem[c] // load ¢
:r3=r1 xrl // compute b~2
: r4 =rl x r3 // compute b3
: rb =12 *x r2 // compute c”2
: r6 = r2 * rb // compute c

: r7 =r4 + r6 // compute b"3 + c~3
: mem[a] = r7 // save the result

AN OO WN

Here, mem is an array representing memory. We need to first load the values into registers,
then perform arithmetic computations, and then save the result back in memory. We can
see in this example that we are saving on memory accesses by using registers. If we increase
the complexity of the computations, we will save on even more memory accesses. Thus, our
execution with registers will get even faster. The resulting processor organisation is shown in

Figure [I.13]
CPU

Registers

ALU

Memory |qummp Control /0 devices

Figure 1.13: Von Neumann machine with registers

Von-Neumann Machine with a Hardware Stack

A stack is a standard data structure that obeys the semantics — last in, first out. Readers are
requested to lookup a book on data structures such as [Lafore, 2002] for more information. A
stack based machine has a stack implemented in hardware.

First, it is necessary to insert values from the memory into the stack. After that arithmetic
functions operate on the top k£ elements of the stack. These values get replaced by the result
of the computation. For example, if the stack contains the values 1 and 2 at the top. They get
removed and replaced by 3. Note that here arithmetic operations do not require any operands.
If an add operation takes two operands, then they do not need to be explicitly specified. The
operands are implicitly specified as the top two elements in the stack. Likewise, the location
of the result also does not need to be specified. It needs to be inserted at the top of the stack.
Even though, generating instructions for such a machine is difficult and flexibility is an issue,
the instructions can be very compact. Most instructions other than load and store do not
require any operands. We can thus produce very dense machine code. Systems in which the
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size of the program is an issue can use a stack based organisation. They are also easy to verify
since they are relatively simpler systems.

A stack supports two operations — push and pop. Push pushes an element to the top of
the stack. Pop removes an element from the top of the stack. Let us now try to compute
w =+ y/z —ux v using a stack based Von Neumann machine, we have:

1: push u // load u

2: push v // load v

3: multiply // uxv

4: push z // load y

5: push y // load z

6: divide /] y/z

7: subtract // y/z - uxv

8: push x // load x

9: add // x + y/z - ukv

10: pop w // store result in w

It is clearly visible that scheduling a computation to work on a stack is difficult. There will
be many redundant loads and stores. Nonetheless, for machines that are meant to evaluate
long mathematical expressions, and machines for which program size is an issue, typically opt
for stacks. There are few practical implementations of stack based machines such as Burroughs
Large Systems, UCSD Pascal, and HP 3000 (classic). The Java language assumes a hypothetical
stack based machine during the process of compilation. Since a stack based machine is simple,
Java programs can virtually run on any hardware platform. When we run a compiled Java
program, then the Java Virtual Machine(JVM) dynamically converts the Java program into
another program that can run on a machine with registers.

Accumulator based Machines

Accumulator based machines use a single register called an accumulator. Each instruction takes
a single memory location as an input operand. For example, an add operation adds the value
in the accumulator to the value in the memory address and then stores the result back in the
accumulator. Early machines in the fifties that could not accommodate a register file used to
have accumulators. Accumulators were able to reduce the number of memory accesses and
speed up the program.

Some aspects of accumulators have crept into the Intel x86 set of processors that are the
most commonly used processors for desktops and laptops as of 2012. For multiplication and
division of large numbers, these processors use the register eax as an accumulator. For other
generic instructions, any register can be specified as an accumulator.

1.8 The Road Ahead

We have outlined the structure of a modern machine in Section which broadly follows
a Von Neumann architecture, and is augmented with registers. Now, we need to proceed to
build it. As mentioned at the outset, computer architecture is a beautiful amalgam of software
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and hardware. Software engineers tell us what to build? Hardware designers tell us how to
build?

(System design )

(Software interface) (Processor Design)

ARM assembly
anguage
of bits

Processor
design

6
Building blocks: J Computer
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Pipelining

i

( Design of a simple processor
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language
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( Instruction set architecture
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Figure 1.14: Roadmap of chapters

Let us thus first take care of the requirements of software engineers. Refer to the roadmap
of chapters in Figure The first part of the book will introduce computer architecture from
the point of view of system software designers and application developers. Subsequently, we
shall move on to designing processors, and lastly, we shall look at building a full systems of
processors, memory elements, and 1/O cum storage devices.

1.8.1 Representing Information

In modern computers, it is not possible to store numbers or pieces of text directly. Today’s
computers are made of transistors. A transistor can be visualised as a basic switch that has two
states — on and off. If the switch is on, then it represents 1, otherwise it represents 0. Every
single entity inclusive of numbers, text, instructions, programs, and complex software needs to
be represented using a sequence of Os and 1s. We have only two basic symbols that we can use
namely 0 and 1. A variable/value that can either be 0 or 1, is known as a bit. Most computers
typically store and process a set of 8 bits together. A set of 8 bits is known as a byte. Typically,
a sequence of 4 bytes is known as a word.

Definition 11

bit A wvalue that can either be 0 or 1.
byte A sequence of 8 bits.

word A sequence of 4 bytes.
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Figure 1.15: Memory — a large array of switches

We can thus visualise all the internal storage structures of a computer such as the memory
or the set of registers as a large array of switches as shown in Figure In Chapter 2] we
shall study the language of bits. We shall see that using bits it is possible to express logical
concepts, arithmetic concepts (integer and real numbers), and pieces of text.

This chapter is a prerequisite for the next chapter on assembly language. Assembly
language is a textual representation of an ISA. It is specific to the ISA. Since an instruction
is a sequence of Os and 1s, it is very difficult to study it in its bare form. Assembly language
gives us a good handle to study the semantics of instructions in an ISA. Chapter [3] introduces
the general concepts of assembly language and serves as a common introduction to the next
two chapters that delve into the details of two very popular real world ISAs — ARM and x86.
We introduce a simple ISA called SimpleRisc in Chapter Subsequently, in Chapter [4] we
introduce the ARM ISA, and in Chapter [5] we briefly cover the x86 ISA. Note that it is not
necessary to read both these chapters. After reading the introductory chapter on assembly
language and obtaining an understanding of the Simple Risc assembly language, the interested
reader can read just one chapter to deepen her knowledge about a real world ISA. At this point,
the reader should have a good knowledge of what needs to be built.

1.8.2 Processing Information

In this part, we shall actually build a basic computer. Chapter [7] will start out with the
basic building blocks of a processor — logic gates, registers, and memories. Readers who have
already taken a digital design course can skip this chapter. Chapter [§] deals with computer
arithmetic. It introduces detailed algorithms for addition, subtraction, multiplication, and
division for both integers as well as real numbers. Most computers today perform very heavy
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numerical computations. Hence, it is necessary to obtain a firm understanding of how numerical
operations are actually implemented, and get an idea of the tradeoffs of different designs.

After these two chapters, we would be ready to actually design a simple processor in Chap-
ter [0 We shall assemble a simple processor part by part, and then look at two broad design
styles — hardwired, and micro-programmed. Modern processors are able to process many in-
structions simultaneously, and have complex logic for taking the dependences across instructions
into account. The most popular technique in this area is known as pipelining. We shall discuss
pipelining in detail in Chapter

1.8.3 Processing More Information

By this point, we would have gotten a fair understanding of how simple processors are designed.
We shall proceed to optimise the design, add extra components, and make a full system that can
support all the programs that users typically want to run. We shall describe three subsystems

Memory System We shall see in Chapter [11] that it is necessary to build a fast and efficient
memory system, because it is a prime driver of performance. To build a fast memory
system, we need to introduce many new structures and algorithms.

Multiprocessors Nowadays, vendors are incorporating multiple processors on a single chip.
The future belongs to multiprocessors. The field of multiprocessors is very extensive and
typically forms the core of an advanced architecture course. In this book, we shall provide
a short overview of multiprocessors in Chapter [12]

I/O and Storage In Chapter we shall look at methods to interface with different I/O
devices, especially storage devices such as the hard disk. The hard disk saves all our
programs and data when the computer is powered off, and it also plays a crucial role in
supplying data to our programs during their operations. Hence, it is necessary to study
the structure of the hard disk, and optimise it for performance and reliability.

1.9 Summary and Further Reading

1.9.1 Summary

Summary 1

1. A computer is a dumb device as compared to the human brain. However, it can
perform routine, simple and monotonic tasks, very quickly.

2. A computer is defined as a device that can be programmed to process information.

3. A program consists of basic instructions that need to be executed by a computer.
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4. The semantics of all the instructions supported by a computer is known as the in-
struction set architecture (ISA).

5. Ideally, an ISA should be complete, concise, simple, and generic.

6. An ISA is complete, if it is equivalent to an universal Turing machine.

7. A practical implementation of any complete ISA requires:

(a) A memory to hold instructions and data.
(b) A CPU to process instructions and perform arithmetic and logical operations.
(c) A set of I/O devices for communicating with the programmer.

8. Harvard and Von Neumann architectures are practical implementations of complete
ISAs, and are also the basis of modern computers.

9. Modern processors typically have a set of registers, which are a set of named storage
locations. They allow the processor to access data quickly by avoiding time consuming
Memory accesses.

10. Some early processors also had a stack to evaluate arithmetic expressions, and had
accumulators to store operands and results.
1.9.2 Further Reading

The field of computer architecture is a very exciting and fast moving field. The reader can
refer to the books by Jan Bergstra [Bergstra and Middelburg, 2012] and Gilreath [Gilreath and
Laplante, 2003| to learn more about the theory of instruction set completeness and classes of
instructions. The book on formal languages by by Hopcroft, Motwani, and Ulmann [Hopcroft
et al., 2006] provides a good introduction to Turing machines and theoretical computer science
in general. To get a historical perspective, readers can refer to the original reports written by
Alan Turing |[Carpenter and Doran, 1986] and John von Neumann [von Neumann, 1945].

Exercises

Processor and Instruction Set

Ex. 1 — Find out the model and make of at least 5 processors in devices around you. The
devices can include desktops, laptops, cell phones, and tablet PCs.

Ex. 2 — Make a list of peripheral I/O devices for computers. Keyboards are mice are common
devices. Search for uncommon devices. (HINT: joysticks, game controllers, fax machines)
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Ex. 3 — What are the four properties of an instruction set?
Ex. 4 — Design an instruction set for a simple processor that needs to perform the following
operations:

1.Add two registers

2.Subtract two registers

Ex. 5 — Design an instruction set for a simple processor that needs to perform the following
operations:

1.Add two registers
2.Save a register to memory
3.Load a register from memory

4.Divide a value in a register by two

Ex. 6 — Design an instruction set to perform the basic arithmetic operations — add, subtract,
multiply, and divide. Assume that all the instructions can have just one operand.

* Ex. 7 — Consider the sbn instruction that subtracts the second operand from the first
operand, and branches to the instruction specified by the label (third operand), if the result is
negative. Write a small program using only the sbn instruction to compute the factorial of a
positive number.

* Ex. 8 — Write a small program using only the sbn instruction to test if a number is prime.

Theoretical Aspects of an ISA*
Ex. 9 — Explain the design of a modified Turing machine.

Ex. 10 — Prove that the sbn instruction is Turing complete.

Ex. 11 — Prove that a machine with memory load, store, branch, and subtract instructions
is Turing complete.

** Ex. 12 — Find out other models of universal machines from the internet and compare
them with Turing Machines.

Practical Machine Models

Ex. 13 — What is the difference between the Harvard architecture and Von Neumann archi-
tecture?
Ex. 14 — What is a register machine?

Ex. 15 — What is a stack machine?

Ex. 16 — Write a program to compute a + b + ¢ — d on a stack machine.
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Ex. 17 — Write a program to compute a + b + (¢ — d) * 3 on a stack machine.
Ex. 18 — Write a program to compute (a+ b/c) x (c — d) + e on a stack machine.

** Ex. 19 — Try to search the internet, and find answers to the following questions.
1.When is having a separate instruction memory more beneficial?

2.When is having a combined instruction and data memory more beneficial?
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The Language of Bits

A computer does not understand words or sentences like human beings. It understands only a
sequence of 0s and 1s. We shall see in the rest of this book that it is very easy to store, retrieve
and process billions of Os and 1s. Secondly, existing technologies to implement computers using
silicon transistors are very compatible with the notion of processing 0s and 1s. A basic silicon
transistor is a switch that can set the output to a logical 0 or 1, based on the input. The
silicon transistor is the basis of all the electronic computers that we have today right from
processors in mobile phones to processors in supercomputers. Some early computers made
in the late nineteenth century processed decimal numbers. They were mostly mechanical in
nature. It looks like for the next few decades, students of computer architecture need to study
the language of 0Os and 1s in great detail.

Now, let us define some simple terms. A variable that can be either 0 or 1, is called a bit.
A set of 8 bits is called a byte.

Definition 12
Bit: A wariable that can have two values: 0 or 1.

Definition 13
Byte: A sequence of 8 bits.

In this chapter, we shall look at expressing different concepts in terms of bits. The first
question is, “ what can we do with our notion of bits?”. Well it turns out that we can do
everything that we could have done if our basic circuits were able to process normal decimal

47
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numbers. We can divide the set of operations into two major types — logical and arithmetic.
Logical operations express concepts of the form, “the red light is on AND the yellow light is on”,
or “the bank account is closed if the user is inactive AND the account is a current account.”
Arithmetic operations refer to operations such as addition, multiplication, subtraction, and
division.

We shall first look at logical operations using bits in Section Then, we shall look
at methods to represent positive integers using Os and 1s in Section A representation
of a number using 0s and 1s is also known as a binary representation. We shall then look
at representing negative integers in Section representing floating point numbers(numbers
with a decimal point) in Section and representing regular text in Section [2.5] Arithmetic
operations using binary values will be explained in detail in Chapter

Definition 14
Representation of numbers or text using a sequence of Os and 1s is known as a binary
representation.

2.1 Logical Operations

Binary variables (0 or 1) were first described by George Boole in 1854. He used such variables
and their associated operations to describe logic in a mathematical sense. He defined a full
algebra consisting of simple binary variables, along with a new set of operators, and basic
operations. In the honour of George Boole, a binary variable is also known as a Boolean
variable, and an algebraic system of Boolean variables is known as Boolean algebra.

Historical Note 1

George Boole(1815 — 1864) was a professor of mathematics at Queen’s college, Cork, Ire-
land. He proposed his theory of logic in his book — An Investigation of the Laws of Thought,
on Which are Founded the Mathematical Theories of Logic and Probabilities. During his
lifetime, the importance of his work was not recognised. It was only in 1937 that Claude
Shannon observed that it is possible to describe the behavior of electronic digital circuits
using Boole’s system.

Definition 15

Boolean variable A wariable that can take only two values — 0 or 1.

Boolean algebra An algebraic system consisting of Boolean variables and some special
operators defined on them.
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2.1.1 Basic Operators

A simple Boolean variable can take two values — 0 or 1. It corresponds to two states of a system.
For example, it can represent the fact that a light bulb is off(0) or on(1). It is easy to represent
a Boolean variable in an electronic circuit. If the voltage on a wire is 0, then we are representing
a logical 0. If the voltage is equal to the supply voltage Vy4, then we are representing a logical
1. We shall have an opportunity to read more about electronic circuits in Chapter

Let us consider a simple Boolean variable, A. Let us assume that A represents the fact that
a light bulb is on. If A = 1, then the bulb is on, else it is off. Then the logical complement
or negation of A, represented by A, represents the fact that the bulb is off. If A = 1, then the
bulb is off, otherwise, it is on. The logical complement is known as the NOT operator. Any
Boolean operator can be represented by the means of a truth table, which lists the outputs of
the operator for all possible combinations of inputs. The truth table for the NOT operator is
shown in Table 2.1l

Al A
0|1
1]0

Table 2.1: Truth table for the NOT operator

Let us now consider multiple Boolean variables. Let us consider the three bulbs in a typical
traffic light — red, yellow, green. Let their states at a given time ¢ be represented by the Boolean
variables — R, Y, and G — respectively. At any point of time, we want one and only one of the
lights to be on. Let us try to represent the first condition (one light on) symbolically using
Boolean logic. We need to define the OR operator that represents the fact that either of the
operands is equal to 1. For example, A OR B, isequal to 1,if A =1 or B = 1. Two symbols for
the OR operator are used in literature — '+’ and "V’. In most cases '+’ is preferred. The reader
needs to be aware that '+’ is not the same as the addition operator. The correct connotation
for this operator needs to be inferred from the context. Whenever, there is a confusion, we will
revert to the V operator in this book. By default, we will use the '+’ operator to represent
Boolean OR. Thus, condition 1 is: R+ Y + G = 1. The truth table for the OR operator is
shown in Table

B| AORB
0 0
1
0
1

== olo|

1
1
1

Table 2.2: Truth table for the OR operator

Now, let us try to formalise condition 2. This states that only one light needs to be on. We
can alternatively say that it is not possible to find a pair of bulbs that are on together. We
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B | AAND B
0 0
1
0
1

—l=olo|

0
0
1

Table 2.3: Truth table for the AND operator

need to define a new operator called the AND operator (represented by ’.” or '’A’). A AND B
is equal to 1, when both A and B are 1. The truth table for the AND operator is shown in
Table Now, R.Y represents the fact that both the red and yellow bulbs are on. This is
not possible. Considering all such pairs, we have condition 2 as: R.Y + R.G + G.Y = 0. This
formula represents the fact that no two pairs of bulbs are on simultaneously.

We thus observe that it is possible to represent complex logical statements using a combi-
nation of Boolean variables and operators. We can say that NOT, AND, and OR, are basic
operators. We can now derive a set of operators from them.

2.1.2 Derived Operators

Two simple operators namely NAND and NOR are very useful. NAND is the logical complement
of AND (truth table in Table and NOR is the logical complement of OR (truth table in

Table [2.5).

A B | ANAND B = TNon
010 1 - -
0]1 1 01 0
110 1 — .
1)1 0 11 0

Table 2.4: Truth table for the NAND operator Table 2.5: Truth table for the NOR operator

NAND and NOR are very important operators because they are known as universal oper-
ators. We can use just the NAND operator or just the NOR operator to construct any other
operator. For more details the reader can refer to Kohavi and Jha [Kohavi and Jha, 2009).

Let us now define the XOR operator that stands for exclusive-or. A XOR B is equal to 1,
when A=1,B =0, or A=0,B = 1. The truth table is shown in Table They symbol for
XOR is @. The reader can readily verify that A® B = A.B+ A.B by constructing truth tables.

2.1.3 Boolean Algebra

Given Boolean variables and basic operators, let us define some rules of Boolean algebra.
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B | AXOR B
0 0
1
0
1

== olo|

1
1
0

Table 2.6: Truth table for the XOR operator

NOT Operator

Let us look at some rules governing the NOT operator.

1.

2.

Definition: 0 = 1, and 1 = 0 — This is the definition of the NOT operator.

Double negation: 4 = A — The NOT of (NOT of A) is equal to A itself.

OR and AND Operators

1.

Identity: A+ 0 = A, and A.1 = A — If we compute the OR of a Boolean variable, A,
with 0, or AND with 1, the result is equal to A.

. Annulment: A+1=1, and A.0 =0 — If we compute A OR 1, then the result is always

equal to 1. Similarly, A AND 0, is always equal to 0 because the value of the second
operand determines the final result.

. Idempotence: A+ A= A, and A.A = A — The result of computing the OR or AND of

A with itself, is A.

. Complementarity: A+ A =1, and A.A =0 - Either A =1, or A = 1. In either case

A + A will have one term, which is 1, and thus the result is 1. Similarly, one of the terms
in A.A is 0, and thus the result is 0.

. Commutativity: A.B = B.A, and A+ B = B+ A — The order of Boolean variables

does not matter.

. Associativity: A+ (B+C) = (A+ B)+ C, and A.(B.C) = (A.B).C — We are free to

parenthesise expressions containing only OR or AND operators in any way we choose.

Distributivity: A.(B+C) = A.B+ A.C, and A+ B.C = (A+ B).(A+ C) - We can
use this law to open up a parenthesis and simplify expressions.

We can use these rules to manipulate expressions containing Boolean variables in a variety
of ways. Let us now look at a basic set of theorems in Boolean algebra.
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2.1.4 De Morgan’s Laws

There are two De Morgan’s laws that can be readily verified by constructing truth tables for
the LHS and RHS.

A+B=AB (2.1)

The NOT of (A + B) is equal to the AND of the complements of A and B.

AB=A+B (2.2)

The NOT of (A.B) is equal to the OR of the complements of A and B.

Example 5
Prove the consensus theorem: X.Y + X.Z+Y.Z =XY + X.Z.
Answer:

XY+XZ+YZ=XY+XZ+(X+X)YZ
=XY+XZ+XYZ+XYZ 23
=XY.(1+2)+X.Z(1+Y) '
=XY+X.Z

Example 6
Prove the theorem: (X + Z).(X +Y)=X.Y + X.Z.
Answer:

(X+2).(X+Y)=XX+XY+ZX+2ZY
=0+XY+XZ+Y.Z (2.4
=XY+XZ+YZ '
=X.Y +X.Z (see Ezample[3)

2.1.5 Logic Gates

Let us now try to implement circuits to realise complex Boolean formulae. We will discuss
more about this in Chapter []] We shall just provide a conceptual treatment in this section.
Let us define the term “logic gate” as a device that implements a Boolean function. It can be
constructed from silicon, vacuum tubes, or any other material.
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Definition 16
A logic gate is a device that implements a Boolean function.

Given a set of logic gates, we can design a circuit to implement any Boolean function. The
symbols for different logic gates are shown in Figure [2.1

NOT
A — A— J—
AB
L e i
AND NAND
A -
:D—A+B A A+B
B B
OR NOR
A A -
. ﬁ::>——A@B ) AGB
XOR XNOR

Figure 2.1: List of logic gates

2.1.6 Implementing Boolean Functions

Let us now consider a generic boolean function f(A,B,C...). To implement it we need to
create a circuit out of logic gates. Our aim should be to minimise the number of gates to save
area, power, and time. Let us first look at a brute force method of implementing any Boolean
function.

Simple Method

We can construct the truth table of the function, and then try to realise it with an optimal
number of logic gates. The reason we start from a truth table is as follows. In some cases,
the Boolean function that we are trying to implement might not be specified in a concise form.
It might be possible to simplify it significantly. Secondly, using truth tables ensures that the



(© Smruti R. Sarangi 54

process can be automated. For example, let us consider the following truth table of some
function, f. We show only those lines that evaluate to 1.

A | B | C | Result
1110 1
17111 1
1101 1

Let us consider the first line. It can be represented by the Boolean function A.B.C. Sim-
ilarly, the second and third lines can be represented as A.B.C and A.B.C respectively. Thus,
the function can be represented as:

f(A,B,C)=A.B.C+ A.B.C + A.B.C (2.5)

We see that we have represented the function as an OR function of several terms. This
representation is known as a sum-of-products representation, or a representation in the canonical
form. Each such term is known as a minterm. Note that in a minterm, each variable appears
only once. It is either in its original form or in its complemented form.

Definition 17
Let us consider a Boolean function f with n arguments.

minterm A minterm is an AND function on all n Boolean variables, where each vari-
able appears only once (either in its original form or in its complemented form). A
minterm corresponds to one line in the truth table, whose result is 1.

Canonical representation It is a Boolean formula, which is equivalent to the function
f. It computes an OR operation of a set of minterms.

To summarise, to implement a truth table, we first get a list of minterms that might evaluate
to a logical 1 (true), then create a canonical representation, and then realise it with logic
gates. To realise the canonical representation using logic gates, we need to realise each minterm
separately, and then compute an OR operation.

This process works, but is inefficient. The formula: A.B.C + A.B.C + A.B.C, can be
simplified as A.B + A.B.C. Our simple approach is not powerful enough to simplify this
formula.

Karnaugh Maps

Instead of directly converting the canonical representation into a circuit, let us build a structure
called a Karnaugh map. This is a rectangular grid of cells, where each cell represents one
minterm. To construct a Karnaugh map, let us first devise a method of numbering each
minterm. Let us first represent all minterms such that the order of variables in them is the same
(original or complemented). Second, if a variable is not complemented, then let us represent it
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Minterm | Representation
A.B.C 000
A.B.C 001
A.B.C 010
A.B.C 100
A.B.C 011
A.B.C 101
A.B.C 110
A.B.C 111

Table 2.7: Representation of minterms

by 1, otherwise, let us represent it by 0. Table shows the representation of all the possible
8 minterms in a three variable function.

Now, given the representation of a minterm we use some bits to specify the row in the
Karnaugh map, and the rest of the bits to specify the column. We number the rows and columns
such that adjacent rows or columns differ in the value of only one variable. We treat the last
row, and the first row as adjacent, and likewise, treat the first and last columns as adjacent.
This method of numbering ensures that the difference in representation across any two adjacent
cells (same row, or same column) in the Karnaugh map is in only one bit. Moreover, this also
means that the corresponding minterms differ in the value of only one variable. One minterm
contains the variable in its original form, and the other contains it in its complemented form.

AB
C 00 01

0

10

1

- Minterm is equal to 1

Minterm is equal to 0

Figure 2.2: Karnaugh Map for f(4, B,C) = A.B.C(110) + A.B.C(111) + A.B.C(101)

Now, let us proceed to simplify or minimise the function. We construct the Karnaugh map
as shown in Figure for our simple function f(A4,B,C) = A.B.C + A.B.C + A.B.C. We
mark all the cells(minterms) that are 1 using a dark colour. Let us consider the first minterm,
A.B.C. Its associated index is 110. We thus, locate the cell 110 in the Karnaugh map, and
mark it. Similarly, we mark the cells for the other minterms — A.B.C(111), and A.B.C(101).
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We see that we have three marked cells. Furthermore, since adjacent cells differ in the value
of only one variable, we can combine them to a single Boolean expression. In Figure we
try to combine the cells with indices 110, and 111. They differ in the value of the Boolean
variable, C. After combining them, we have the boolean expression: A.B.C' + A.B.C = A.B.
We have thus replaced two minterms by a smaller yet equivalent Boolean expression. We were
able to combine the two adjacent cells, because they represented a logical OR of the Boolean
expressions, which had the variable C' in both its original and complemented form. Hence, the
function f gets minimised to A.B + A.B.C.

AB
C 00 01 11 10

0

1

- Minterm is equal to 1

Minterm is equal to 0

Figure 2.3: Karnaugh Map for f(4, B,C) = A.B.C(110) + A.B.C(111) + A.B.C(101)

Instead of combining, two cells in the same column, let us try to combine two cells in
the same row as shown in Figure [2.3] In this case, we combine the minterms, A.B.C, and
A.B.C. Since the variable B is present in both its original and complemented forms, we can
eliminate it. Thus, the Boolean expression denoting the combination of the cells is A.C. Hence,
function f is equal to A.C' + A.B.C. We can readily verify that both the representations for f
— (A.C + A.B.C) and (A.B + A.B.C), are equivalent and optimal in terms of the number of
Boolean terms.

Note that we cannot arbitrarily draw rectangles in the Karnaugh map. They cannot include
any minterm that evaluates to 0 in the truth table. Secondly, the size of each rectangle needs
to be a power of 2. This is because to remove n variables from a set of m minterms, we need
to have all combinations of the n variables in the rectangle. It thus needs to have 2" minterms.

To minimise a function, we need to draw rectangles that are as large as possible. It is
possible that two rectangles might have an overlap. However, one rectangle should not be a
strict subset of the other.

2.1.7 The Road Ahead

Way Point 2
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e Boolean algebra is a symbolic algebra that uses Boolean variables, which can be either
0 or 1.

e The basic Boolean operators are AND, OR, and NOT.
e These operators are associative, commutative, and reflexive.
e NAND, NOR, XOR are very useful Boolean operators.

e De Morgan’s laws help convert an expression with an AND operator, to an expression
that replaces it with an OR operator.

e A logic gate is a physical realisation of a simple Boolean operator or function.

e Qur aim is to minimise the number of logic gates while designing a circuit for a
Boolean function.

e One effective way of minimising the number of logic gates is by using Karnaugh maps.

Up till now, we have learnt about the basic properties of Boolean variables, and a simple method
to design efficient circuits to realise Boolean functions. An extensive discussion on Boolean logic
or optimal circuit synthesis is beyond the scope of this book. Interested readers can refer to
seminal texts by Zvi Kohavi [Kohavi and Jha, 2009] and [Micheli, 1994].

Nevertheless, we are at a position to appreciate the nature of Boolean circuits. Up till now,
we have not assigned a meaning to sets of bits. We shall now see that sequences of bits can
represent integers, floating point numbers, and strings(pieces of text). Arithmetic operations
on such sequences of bits are described in detail in Chapter

2.2 Positive Integers

2.2.1 Ancient Number Systems

Ever since man developed higher intelligence, he has faced the need to count. For numbers from
one to ten, human beings can use their fingers. For example, the little finger of the left hand
can signify one, and the little finger of the right hand can signify ten. However, for counting
numbers greater than ten, we need to figure out a way for representing numbers. In the ancient
world, two number systems prevailed — the Roman numerals used in ancient Rome, and the
Indian numerals used in the Indian subcontinent.

The Roman numerals used the characters — I, IT ... X, for the numbers 1...10 respectively.
However, there were significant issues for representing numbers greater than ten. For example,
to represent 50, 100, 500, and 1000, Romans used the symbols L, C, D, and M respectively. To
represent a large number, the Romans represented it as a sequence of symbols. The number 204
can be represented as CCIV (C 4+ C + IV = 100 + 100 + 4). Hence, to derive the real value
of a number, we need to scan the number from left to right, and keep on adding the values. To
make things further complicated, there is an additional rule that if a smaller number is preceded
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by a larger value, then we need to subtract it from the total sum. Note that there is no notion
of negative numbers, and zero in this number system. Furthermore, it is extremely difficult to
represent large numbers, and perform simple operations such as addition and multiplication.

The ancient Indians used a number system that was significantly simpler, and fundamentally
more powerful. The Arabs carried the number system to Europe sometime after seventh century
AD, and thus this number system is popularly known as the Arabic number system. The magic
tricks used by ancient Indian mathematicians are the number '0’, and the place value system.
The Indian mathematicians used a sequence of ten symbols including zero, as the basic alphabet
for numbers. Figure shows ten symbols obtained in the Bakhshali manuscript obtained in
the north west frontier province of modern Pakistan (dated seventh century AD). Each such
symbol is known as a ‘digit’.

~NTQ "\0"3 ?or& a\ QL )\«FQ.
1 2 3 A BB GER T 18 GG

Figure 2.4: Numerals from the Bakhshali Manuscript (source Wikipedia® ) This article uses
material from the Wikipedia article “Bakhshali Manuscript” [bak, |, which is released under
the Creative Commons Attribution-Share-Alike License 3.0 [ccl, |

Every number was represented as a sequence of digits. Each digit represents a number
between zero and nine. The first problem is to represent a number that is greater than nine
by one unit. This is where we use the place value system. We represent it as 10. The left
most number, 1, is said to be in the ten’s place, and the right most number, 0, is in the unit’s
place. We can further generalise this representation to any two digit number of the form, xox;.
The value of the number is equal to 10 X x9 + z1. As compared to the Roman system, this
representation is far more compact, and can be extended to represent arbitrarily large integers.

A number of the form z,z,_1...21 is equal to z, x 10" 1 + 2,1 x 10"+ ... + 2, =
Yoy x;10°"!. Each decimal digit is multiplied with a power of 10, and the sum of the products
is equal to the value of the number. As we have all studied in elementary school, this number
system makes the job of addition, multiplication, and subtraction substantially easier. In this
case, the number ‘10’, is known as the base of the number system.

Historical Note 2
The largest number known to ancient Indian mathematicians was 10° [ind, |.

Let us now ponder about a basic point. Why did the Indians choose ten as the base. They
had the liberty to choose any other number such as seven or eight or nine. The answer can
be found by considering the most basic form of counting again, i.e., with fingers. Since human
beings have ten fingers, they use them to count till one to ten, or from zero to nine. Hence,
they were naturally inclined to use ten as the base.

Let us now move to a planet, where aliens have seven fingers. It would not be surprising
to see them use a base seven number system. In their world, a number of the form, 56, would
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actually be 7 X 5 4+ 6 in our number system. We thus observe that it is possible to generalise
the concept of a base, and it is possible to represent any number in any base. We introduce the
notation 324319, which means that the number 3243 is being represented in base 10.

Example 7
The number 10223 is equal to : 83 + 0+ 2% 8" + 2 = 53019.

2.2.2 Binary Number System

What if we consider a special case? Let us try to represent numbers in base 2. The number 719
can be represented as 1113, and 1219 is equal to 11002. There is something interesting about
this number system. Every digit is either 0 or 1. As we shall see in Chapters[7]and [8] computers
are best suited to process values that are either 0 or 1. They find it difficult to process values
from a larger set. Hence, representing numbers in base 2 should be a natural fit for computers.
We call this a binary number system (see Definition . Likewise, a number system that uses
a base of 10, is known as a decimal number system.

Definition 18

o A number system based on Indian numerals that uses a base equal to 2, is known as
a binary number system.

o A number system based on Indian numerals that uses a base equal to 10, is known as
a decimal number system.

Formally, any number A can be represented as a sequence of n binary digits:

A=Y o (2.6)
i=1

Here, 21 ...z, are binary digits (0 or 1). We represent a number as a sum of the powers of 2,
as shown in Equation The coeflicients of the equation, are the binary digits. For example,
the decimal number 23 is equal to (16 + 4 + 2 + 1) = 1 x 24 + 0 x 22 + 1 x 22 + 1 x 2+ 1.
Thus, its binary representation is 10111.

Let us consider some more examples, as shown in Table
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Number in decimal | Number in binary
5 101
100 1100100
500 111110100
1024 10000000000

Table 2.8: Examples of binary numbers

Example 8
Convert the decimal number 27 to binary.

Answer: 27= 16 + 8 + 0 + 2 + 1 =11011,
1 1 0 1 1

Let us now define two more terms, the most significant bit (MSB), and the least significant
bit (LSB). The LSB is the rightmost bit, and the MSB is the leftmost bit.

Definition 19

e MSB (Most Significant Bit) : The leftmost bit of a binary number. For example the
MSB of 1110 is 1.

e LSB (Least Significant Bit) : The rightmost bit of a binary number. For example the
LSB of 1110 is 0.

Hexadecimal and Octal Numbers

If we have a 32-bit number system, then representing each number in binary will take 32 binary
digits (0/1). For the purposes of explanation, this representation is unwieldy. We can thus
make our representation more elegant by representing numbers in base 8 or base 16. We shall
see that there is a very easy method of converting numbers in base 8, or base 16, to base 2.
Numbers represented in base 8 are known as octal numbers. They are traditionally repre-
sented by adding a prefix, ’0’. The more popular representation is the hexadecimal number
system. It uses a base equal to 16. We shall use the hexadecimal representation extensively in
this book. Numbers in this format are prefixed by ‘0x’. Secondly, the word ‘hexadecimal’ is
popularly abbreviated as ‘hex’. Note that we require 16 hex digits. We can use the digits 0-9
for the first ten digits. The next six digits require special characters. These six characters are
typically — A (10), B(11), C(12), D(13), E(14), and F(15). We can use the lower case versions

of ABCDEF also.
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To convert a binary number (A) to a hexadecimal number, or do the reverse, we can use
the following relationship:

n
A= Z xi2i_1
=1

n/4
= 2(23 X Ty(j1yra + 22 X Taggonyas + 21 X @y(1yre + Tago1yr) x 2407
=1
n/4 2.7)
Z (2% X @iy + 22 X Tyonyas + 21 X Tago1yra + Tagonygr) X207
=1 Yj
n/4

— Z yjlﬁ(j_l)
j=1

We can thus represent the number (A) in base 16 (hexadecimal notation) by creating groups
of four consecutive binary digits. The first group is comprised of the binary digits z4xsxox,
the second group is comprised of xgxyxgxrs and so on. We need to convert each group of 4
binary digits, to represent a hexadecimal digit (y;). Similarly, for converting a number from
hex to binary, we need to replace each hex digit with a sequence of 4 binary digits. Likewise, for
converting numbers from binary to octal and back, we need to consider sequences of 3 binary
digits.

Example 9

Convert 1100010102 to the octal format.

Answer: 110 001 010 — 0612
XYY

Example 10
Convert 110000101011 to the hexadecimal format.
Answer: 110000101011 — 0zC2B
=~
C 2 B

2.2.3 Adding Binary Numbers

Adding binary numbers is as simple as adding decimal numbers. For adding decimal numbers,
we start from the rightmost position and add digit by digit. If the sum exceeds 10, then we write
the unit’s digit at the respective position in the result, and carry the value at the ten’s place
to the next position in the result. We can do something exactly similar for binary numbers.
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Let us start out by trying to add two 1-bit binary numbers, A and B. Table shows
the different combinations of numbers and results. We observe that for two bits, a carry is
generated only when the input operands are both equal to 1. This carry bit needs to be added
to the bits in the higher position. At that position, we need to add three bits — two input
operand bits and a carry bit. This is shown in Figure In this figure, the input operand bits
are designated as A and B. The input carry bit is designated as Cj,. The result will have two
bits in it. The least significant bit (right most bit) is known as the sum, and the output carry
is referred to as Clyys.

Table shows the results for the different combinations of input and carry bits.

A| B| (A+ B)
01]0 00
0|1 01
110 01
111 11

Table 2.9: Addition of two binary bits

A Cin

B

Cout [SUM

Figure 2.5: Addition of two binary bits and a carry bit

A | B Cm Sum Cout
010 0 0 0
0|1 0 1 0
110 0 1 0
171 0 0 1
01]0 1 1 0
0] 1 1 0 1
110 1 0 1
111 1 1 1

Table 2.10: A truth table that represents the addition of three bits
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Let us now try to add two n-bit binary numbers. Our addition needs to proceed exactly
the same ways as decimal numbers. We add the values at a position, compute the result, and
carry a value to the next (more significant) position. Let us explain with an example (see

Example .

Example 11

Add the two binary numbers, 1011 and 0011.

Answer: The process of addition is shown in the figure, and the values of the intermediate
values of the carry bits are shown in shaded boxes. Let us now verify if the result of the
addition is correct. The two numbers expressed in the decimal number system are 11 and 3.
11 + 8 = 14. The binary representation of 14 is 1110. Thus, the computation is correct.

[01[1][1]
2AA

2.2.4 Sizes of Integers

Note that up till now we have only considered positive integers. We shall consider negative
integers in Section Such positive integers are known as unsigned integers in high level
programming languages such as C or C4++. Furthermore, high level languages define three
types of unsigned integers — short (2 bytes), int (4 bytes), long long int (8 bytes). A short
unsigned integer is represented using 16 bits. Hence, it can represent all the integers from 0 to
216 1 (for a proof, see Example . Likewise, a regular 32-bit unsigned integer can represent
numbers from 0 till 232 — 1. The ranges of each data type are given in Table

Example 12
Calculate the range of unsigned 2-byte short integers.

Answer: A short integer is represented by 16 bits. The smallest short integer is repre-
sented by 16 zeros. It has a decimal value equal to 0. The largest short integer is represented
by all 1s. Its value, V, is equal to 25 + ... 4+ 2° = 216 — 1. Hence, the range of unsigned
short integers is 0 to 216 — 1.
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Example 13
Calculate the range of an n-bit integer.

Answer: 0 to 2" —1.

Example 14
We need to represent a set of decimal numbers from 0 till m — 1. What is the minimum
number of binary bits that we require?

Answer: Let us assume that we use n binary bits. The range of numbers that we can
represent is 0 to 2™ — 1. We note that 2™ — 1 needs to be at least as large as m. Thus, we
have:

2" —1>m—1

=2">m

= n > loga(m)

= n = [logza(m)]

Hence, the minimum number of bits that we require is [loga(m)].

Data Type Size Range

unsigned short int 2 bytes | 0 to 216 — 1
unsigned int 4 bytes | 0 to 232 — 1
unsigned long long int | 8 bytes | 0 to 264 — 1

Table 2.11: Ranges of unsigned integers in C/C++

Important Point 5

For the more mathematically inclined, we need to prove that for a n bit integer, there is a
one to one mapping between the set of n bit binary numbers, and the decimal numbers, O
to 2" — 1. In other words, every n bit binary number has a unique decimal representation.
We leave this as an exercise for the reader.

64
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2.3 Negative Integers

We represent a negative decimal number by adding a ‘-’ sign before it. We can in principle do
the same with a binary number, or devise a better representation.

Let us consider the generic problem first. For a number system comprising of a set of
numbers, S (both positive and negative), we wish to create a mapping between each number
in S, and a sequence of zeros and ones. A sequence of zeros and ones can alternatively be
represented as an unsigned integer. Thus, putting it formally, we propose to devise a method
for representing both positive and negative integers as a function F : & — N that maps a
set of numbers, S, to a set of unsigned integers, N'. Let us define the function SgnBit(u) of
a number, u. It is equal to 1 when u is negative, and equal to 0 when w is positive or zero.
Secondly, unless specified otherwise, we assume that all our numbers require n bits per storage
in the next few subsections.

2.3.1 Sign-Magnitude based Representation

We can reserve a bit for representing the sign of a number. If it is equal to 0, then the number is
positive, else it is negative. This is known as the sign-magnitude representation. Let us consider
an n bit integer. We can use the MSB as the designated signed bit, and use the rest of the
number to represent the number’s magnitude. The magnitude of a number is represented using
n — 1 bits. This is a simple and intuitive representation. In this representation, the range of
the magnitude of a n bit integer is from 0 till 2" ~! — 1. Hence, the number system has a range
equal to £(2"~! — 1). Note that there are two zeros — a positive zero(00...0) and a negative
zero(10...0).

Formally, the mapping function — F(u) — where u is a number in the range of the number
system, is shown in Equation [2.8

F(u) = SgnBit(u) x 2" 14+ | u | (2.8)

For example, if we consider a 4-bit number system, then we can represent the number -2 as
10109. Here, the MSB is 1 (represents a negative number), and the magnitude of the number
is 010, which represents 2.

The issues with this system are that it is difficult to perform arithmetic operations such as
addition, subtraction, and multiplication. For example in our 4-bit number system, -2 + 2, can
be represented as 1010 + 0010. If we naively do simple unsigned addition, then the result is
1100, which is actually -6. This is the wrong result. We need to use a more difficult approach
to add numbers.

2.3.2 The 1’s Complement Approach

For positive numbers, let us use the same basic scheme that assigns the MSB to a dedicated
sign bit, which is 0 in this case. Moreover, let the rest of the (n— 1) bits represent the number’s
magnitude. For a negative number, -u(u > 0), let us simply flip all the bits of +u. If a bit is
0, we replace it by 1, and vice versa. Note that this operation flips the sign bit also, effectively
negating the number. The number system can represent numbers between +(2"~1 — 1) like the
sign-magnitude system.
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Formally, the mapping function F is defined as:

U u>0
H“)_{~<|u|>or<2"1|u|> u<o 29

Note that a bitwise complement(~) is the same as subtracting the number from 11...1
(2" —1).

Let us consider some examples with a 4-bit number system. We represent the number 2 as
0010. Here the sign bit is 0, signifying that it is a positive number. To compute -2, we need to
flip each bit. This process yields 1101. Note that the sign bit is 1 now.

The 1’s complement approach also suffers from similar deficiencies as the sign magnitude
scheme. First, there are two representations for zero. There is a positive zero - 0000, and a
negative zero - 1111.

Second, adding two numbers is difficult. Let us try to add 2 and -2. 2 + (-2) = 0010 +
1101. Using simple binary addition, we get 1111, which is equal to 0(negative zero). Hence, in
this case simple binary addition works. However, now let us try to add 1 to -0. We have: -0 +
1 = 1111 4+ 0001 = 0000. This leads to a mathematical contradiction. If we add one to zero,
the result should be one. However, in this case, it is still zero! This means that we need to
make the process of addition more sophisticated. This will slow down the process of addition
and make it more complex.

2.3.3 Bias-based Approach

Let us adopt a different approach now. Let us assume that the unsigned representation of a
number (F(u)) is given by:
F(u) = u+ bias (2.10)

Here, bias is a constant.

Let us consider several examples using a 4-bit number system. The range of unsigned
numbers is from 0 to 15. Let the bias be equal to 7. Then, the actual range of the number
system is from -7 to +8. Note that this method avoids some pitfalls of the sign-magnitude
and 1’s complement approach. First, there is only one representation for 0. In this case it is
0111. Second, it is possible to use standard unsigned binary addition to add two numbers with
a small modification.

Let us try to add 2 and -2. 2 is represented as +9 or 1001,. Likewise, -2, is represented as
+5, or 01015. If we add 2 and -2, we are in effect adding the unsigned numbers 5 and 9. 5 + 9
= 14. This is not the right answer. The right answer should be 0, and it should be represented
as 0111 or +7. Nonetheless, we can get the right answer by subtracting the bias, i.e., 7. 14 - 7
= 7. Hence, the algorithm for addition is to perform simple binary unsigned addition, and then
subtract the bias. Performing simple binary subtraction is also easy (need to add the bias).
Hence, in the case of addition, for two numbers, u© and v, we have:

Flu+v) = F(u) + F(v) — bias (2.11)

However, performing binary multiplication is difficult. The bias values will create issues. In
this case, if the real value of a number is A, we are representing it as A + bias. If we multiply
A and B naively, we are in effect multiplying A 4 bias and B + bias. To recover the correct
result, AB, from (A + bias) x (B + bias) is difficult. We desire an even simpler representation.
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2.3.4 The 2’s Complement Method

Here are the lessons that we have learnt from the sign-magnitude, 1’s complement, and bias
based approaches.

1. We need a representation that is simple.

2. We would ideally like to perform signed arithmetic operations, using the same kind of
hardware that is used for unsigned numbers.

3. It is not desirable to have two representations for zero. The number zero, should have a
single representation.

Keeping all of these requirements in mind, the 2’s complement system was designed. To
motivate this number system, let us consider a simple 4-bit number system, and represent the
numbers in a circle. Let us first consider unsigned numbers. Figure [2.6] shows the numbers
presented in a circular fashion. As we proceed clockwise, we increment the number, and as
we proceed anti-clockwise, we decrement the number. This argument breaks at one point as
shown in the figure. This is between 15 and 0. If we increment 15, we should get 16. However,
because of the limited number of bits, we cannot represent 16. We can only capture its four
low order bits which are 0000. This condition is also called an overflow. Likewise, we can also
define the term, underflow, that means that a number is too small to be represented in a given
number system (see Definition [20). In this book, we shall sometimes use the word “overflow”
to denote both overflow as well as underflow. The reader needs to infer the proper connotation
from the context.

Definition 20

overflow An overflow occurs when a number is too large to be represented in a given number
system.

underflow An underflow occurs when a number is too small to be represented in a given
number system.

Let us now take a look at these numbers slightly differently as shown in Figure We
consider the same circular order of numbers. However, after 7 we have -8 instead of +8.
Henceforth, as we travel clockwise, we effectively increment the number. The only point of
discontinuity is between 7 and -8. Let us call this point of discontinuity as the “break point”.
This number system is known as the 2’s complement number system. We shall gradually refine
the definition of a 2’s complement number to make it more precise and generic.

Definition 21
The point of discontinuity in the number circle is called the break point.
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SS 0000 (0)
1111 (15)

0001 (1)

1110 (14)
0010 (2)
Increment
1100 (12) 0100 (4)
1011 (11) 0101 (5)
1010 (10) 0110 (6)
0111 (7)

1001 (9) 1000 (8)

Figure 2.6: Unsigned 4-bit binary numbers

0000 (0)
1111 (-1)
0001 (1)
1110 (-2)

0010 (2)

1101 (-3) 0011 (3)
Increment

1100 (-4) 0100 (4)
1011 (-5) 0101 (5)

1010 (-6) 0110 (6)

0111 (7)
1001 (-7) 1000 (-8)%

Figure 2.7: Signed 4-bit binary numbers
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Let us now try to understand what we have achieved through this procedure. We have
16 numbers in the circle, and we have assigned each one of them to numbers from -8 to +7.
Each number is represented by a 4-bit value. We observe that incrementing a signed number,
is tantamount to incrementing its unsigned 4-bit representation. For example, -3 is represented
as 1101. If we increment, -3, we get -2, which is represented as 1110. We also observe that 1101
+ 1 =1110.

Let us now try to formalise the pattern of numbers shown in the circle in Figure First,
let us try to give the circular representation a name. Let us call it a Number Circle. In a
number circle, we observe that for numbers between 0 and 7, their representation is the same
as their unsigned representation. The MSB is 0. For numbers between -8 and -1, the MSB is
1. Secondly, the representation of a negative number, -u (u > 0), is the same as the unsigned
representation for 16 — wu.

Definition 22
The steps for creating a n bit number circle are:

1. We start by writing 0 at the top. Its representation is a sequence of n zeros.

2. We proceed clockwise and add the numbers 1 to (2"~'—1). Each number is represented
by its n bit unsigned representation. The MSB is 0.

3. We introduce a break point after 2"~1 — 1.
4. Then next number is —2"~1 represented by 1 followed by n — 1 zeros.

5. We then proceed clockwise incrementing both the numbers, and their unsigned repre-
sentations by 1 till we reach 0.

We can generalise the process of creating a number circle, to create a n bit number circle
(see Definition . To add a positive number, A, to a number B, we need to proceed A steps
in the clockwise direction from B. If A is negative, then we need to proceed A steps in the anti-
clockwise direction. Note that moving k steps in the clockwise direction is the same as moving
2" — k steps in the anti-clockwise direction. This magical property means that subtracting k
is the same as adding 2" — k. Consequently, every subtraction can be replaced by an addition.
Secondly, a negative number, —u, is located in the number circle by moving | u | steps anti-
clockwise from 0, or alternatively, 2"— | u | steps clockwise. Hence, the number circle assigns
the unsigned representation 2"— | u |, to a negative number of the form —u (u > 0).

Succinctly, a number circle can be described by Equation This number system is called
a 2’s complement number system.

F(u) = (2.12)

u o<u<2nl_1
2" |u| 2"l <u<0
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Properties of the 2’s Complement Representation

1.

2.

. Negation Rule: F(—

There is one unique representation for 0, i.e., 000...0.

The MSB is equal to the sign bit (SgnBit(u)).

Proof: Refer to the number circle. A negative number’s unsigned representation is
greater than or equal to 2" 1. Hence, its MSB is 1. Likewise all positive numbers are less
than 2"~!. Hence, their MSB is 0.

u) = 2" — F(u)
Proof: If u > 0, then F(—u) = 2" —u = 2" — F(u) according to Equation[2.12] Similarly,
if u <0, then F(—u) = |u] = 2" — (2" — |u|) = 2" — F(u).

. Every number in the range [-2"~!,2"~! — 1] has a unique representation.

Proof: Every number is a unique point on the number circle.

. Addition Rule:

Flu+v)=F(u)+ F(v) (2.13)

For the sake of brevity, we define the = operator. (a = b) means that (a mod 2" = b
mod 2"). Recall that the modulo ( mod ) operator computes the remainder of a division,
and the remainder is assumed to be always non-negative, and less than the divisor. The
physical significance of ( mod 2") is that we consider the n LSB bits. This is always the
case because we have a n bit number system, and in all our computations we only keep
the n LSB bits, and discard the rest of the bits if there are any. In our number circle
representation, if we add or subtract 2" to any point (i.e. move 2" hops clockwise or
anti-clockwise), we arrive at the same point. Hence, a = b implies that they are the same
point on the number circle, or their n LSB bits are the same in their binary representation.

Proof: Let us consider the point u on the number circle. Its binary representation is
F(u). Now, if we move v points, we arrive at u + v. If v is positive, we move v steps
clockwise; otherwise, we move v steps anticlockwise. The binary representation of the
new point is F(u + v).

We can interpret the movement on the number circle in another way. We start at u. We
move F(v) steps clockwise. If v > 0, then v = F(v) by Equation hence we can
conclude that we arrive at u +v. If v < 0, then F(v) = 2" — |v|. Now, moving |v| steps
anticlockwise is the same as moving 2" — |v| steps clockwise. Hence, in this case also we
arrive at u—+wv, which has a binary representation equal to F(u+wv). Since, each step moved
in a clockwise direction is equivalent to incrementing the binary representation by 1, we
can conclude that the binary representation of the destination is equal to: F(u) + F(v).
Since, we only consider, the last n bits, the binary representation is equal to (F(u)+F(v))
mod 2". Hence, F(u +v) = F(u) + F(v).

. Subtraction Rule

Flu—v)=F(u)+ (2" — F(v)) (2.14)

Proof: We have:
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F(u—v)=F(u)+ F(—v) (addition rule)

= F(u)+2" — F(v) (negation rule) (2.15)

7. Loop Rule: F(u) = 2" + F(u)

Proof: After moving 2™ points on the number circle, we come back to the same point.
8. Multiplication Rule: (assuming no overflows)
Fluxv)=F(u) x F(v) (2.16)

Proof: If v and v are positive, then this statement is trivially true. If u and v are
negative, then we have, v = —|u| and v = —|v|:
Flu) x F(v) = (2" = F(lu])) x (2" = F(|v]))
= 2" — 27 (F(fu]) + F(Jol) + F(Jul) x F(|v])

= F(lul) x F(Jv]) (2.17)
= F(lul x[vl)
= F(u xv)

Now, let us assume that u is positive and v is negative. Thus, u = |u| and v = —|v|. We

have:

F(u) x F(v) = F(u) x (2" — F(|v]))

= 2"F(u) — F(u) x F(|v])
—F(u) x F(|v]) (loop rule)
—(Fluxfo)) (u=0,v]>0)
2" — F(u x |v|) (loop rule)

(2.18)

(—(ux (|v]))) (negation rule)

(u x (=[v]))

(u x v)

f
J—.‘
f

Likewise, we can prove the result for a negative u and positive v. We have thus covered
all the cases.

We thus observe that the 2’s complement number system, and the number circle based
method make the process of representing both positive and negative numbers easy. It has a
unique representation for zero. It is easy to compute its sign. We just need to take a look at
the MSB. Secondly, addition, subtraction, and multiplication on signed numbers is as simple
as performing the same operations on their unsigned representations.
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Example 15
Add 4 and -8 using a 4-bit 2’s complement representation.

Answer: Let us first try to add it graphically. We can start at 4 and move 3 positions anti-
clockwise. We arrive at 1, which is the correct answer. Let us now try a more conventional
approach. 4 is represented as 0100, -3 is represented as 1101. If we add, 0100 and 1101
using a reqular unsigned binary adder, the result is 10001. However, we cannot represent
5 bits in our simple 4-bit system. Hence, the hardware will discard the fifth bit, and report
the result as 0001, which is the correct answer.

Computing the 2’s Complement Representation

Let us now try to explore the methods to compute a 2’s complement representation. For positive
numbers it is trivial. However, for negative numbers of the form, -u (u > 0), the representation
is 2" — u. A simple procedure is outlined in Equation 2.19]

2" —u=02"—-1—u)+1
( ) (2.19)
=(~u)+1
According to Equation we can conclude that (2" — 1 —u) is equivalent to flipping every
bit, or alternatively computing ~ u. Hence, the procedure for negating a number in the 2’s
complement system, is to first compute its 1’s complement, and then add 1.

The Sign Extension Trick

Let us assume that we want to convert a number’s representation from a 16-bit number system
to a 32-bit number system. If the number is positive, then we just need to prefix it with 16
zeros. Let us consider the case when it is negative. Let the number again be of the form, -u

(u > 0). Its representation in 16 bits is Fi(u) = 2'6 — u. Its representation using 32 bits is
Fao(u) = 232 — u.

Faa(u) =27 —u
— (252 = 216) 4 (216 —y)
=11...100...0+F6(u)
16 16

(2.20)

For a negative number, we need to prepend it with 16 ones. By combining both the results,
we conclude that to convert a number from a 16-bit representation to a 32-bit representation,
we need to prepend it with 16 copies of its sign bit(MSB).
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Range of the 2’s Complement Number System

The range of the number system is from —2"~1 to 27~! —1. There is one extra negative number,
—2an—1

Checking if a 2’s Complement Addition has Resulted in an Overflow

Let us outline the following theorem for checking if a 2’s complement addition results in an
overflow.

Theorem 2.3.4.1 Let us consider an addition operation, where both the operands are non-
zero. If the signs of the operands are different, then we can never have an overflow. How-
ever, if the signs of the operands are the same, and the result has an opposite sign or is
zero, then the addition has led to an overflow.

Proof: Let us consider the number circle, and an addition operation of the form A 4+ B.
Let us first locate point A. Then, let us move B steps clockwise if B is positive, or B steps
anti-clockwise if B is negative. The final point is the answer. We also note that if we cross the
break point (see Definition , then there is an overflow, because we exceed the range of the
number system. Now, if the signs of A and B are different, then we need to move a minimum of
27~1 11 steps to cross the break point. This is because we need to move over zero (1), the break
point(1), and the set of all the positive numbers (2"~! —1), or all the negative numbers (2"~1).
Since, we have 1 less positive number, we need to move at least 21 —14+1+1=2""1 41
steps. Since B is a valid 2’s complement number, and is in the range of the number system, we
have | B |< 2"~ ! + 1. Hence, we can conclude that after moving B steps, we will never cross
the break point, and thus an overflow is not possible.

Now, let us consider the case in which the operands have the same sign. In this case, if the
result has an opposite sign or is zero, then we are sure that we have crossed the break point.
Consequently, there is an overflow. It will never be the case that there is an overflow and the
result has the same sign. For this to happen, we need to move at least 2"~! + 1 steps (cross
over 0, the break point, and all the positive/negative numbers). Like the earlier case, this is
not possible.

Alternative Interpretation of 2’s Complement

Theorem 2.3.4.2 A signed n bit number, A, is equal to (A1, 1 - An2"71). A; is the ith
bit in A’s 2’s complement binary representation (Ay is the LSB, and A,, is the MSB). Ay ;
is a binary number containing the first j digits of A’s binary 2’s complement representation.
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Proof: Let us consider a 4-bit representation. -2 is represented as 11102. The last n — 1 digits
are 1102. This is equal to 6 in decimal. The MSB represents 10002 or 8. Indeed -2 = 6 - 8.

If A >0, then A, = 0, and the statement of the theorem is trivially true. Let us consider
the case when A < 0. Here, A, = 1. We observe that 4; _, = 2" — |A] = 2" 4+ A since A is
negative. Thus, A = Ay _, —2".

A= Al...n -2"
= (o 427 2 (2.21)
- (Al..‘n—l + 2n—1) —2" (An - 1) .
=Ay g — 2"
[ |

2.4 Floating Point Numbers

Floating Point Numbers are numbers that contain a decimal point. Examples are: 3.923, -4.93,
10.23e-7 (10.23 x 1077). Note that the set of integers are a subset of the set of floating point
numbers. An integer such as 7 can be represented as 7.0000000. We shall describe a method
to represent floating point numbers in the binary format in this section.

In specific, we shall describe the IEEE 754 [Kahan, 1996] standard for representing floating
point numbers. We shall further observe that representing different kinds of floating point
numbers is slightly complicated, and requires us to consider many special cases. To make our
life easy, let us first slightly simplify the problem and consider representing a set of numbers
known as fized point numbers.

2.4.1 Fixed Point Numbers

A fixed point number has a fixed number of digits after the decimal point. For example, any
value representing money typically has two digits after the decimal point for most currencies in
the world. In most cases, there is no reason for having more than three digits after the decimal
point. Such numbers can be represented in binary easily.

Let us consider the case of values representing a monetary amount. These values will only
be positive. A value such as 120.23 can be represented in binary as the binary representation
of 12023. Here, the implicit assumption is that there are two digits after the decimal point. It
is easy to add two numbers using this notation. It is also easy to subtract two numbers as long
as the result is positive. However, multiplying or dividing such numbers is difficult.

2.4.2 Generic Form of Floating Point Numbers

Unlike fixed point numbers, there can potentially be many more digits after the decimal point
in floating point numbers. We need a more generic representation. Let us first look at how
we represent floating point numbers in a regular base 10 number system. For simplicity, let us
limit ourselves to positive floating point numbers in this section.
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Representing Floating Point Numbers in Base-10

Examples of positive floating point numbers in base 10 are: 1.344, 10.329, and 2.338. Alterna-
tively, a floating point number, A, can be expanded according to Equation [2.22]

n
A=Y z10 (2.22)
i=—n
For example, 1.344 = 1 x 10% +3 x 107! 44 x 1072 + 4 x 1073, The coefficient z; can vary
from 0 to 9. Let us try to use the basic idea in this equation to create a similar representation
for floating point numbers in base 2.

Representing Floating Point Numbers in Binary

Let us try to extend the expansion shown in Equation to expand positive floating point
numbers in base 2. A is a positive floating point number. We can try to expand A as:

n
A= z2 (2.23)
=N

Here, x; is either 0 or 1. Note that the form of Equation is exactly the same as
Equation However, we have changed the base from 10 to 2.

We have negative exponents from -1 to —n, and non-negative exponents from 0 to n. The
negative exponents represent the fractional part of the number, and the non-negative expo-
nents represent the integer part of the number. Let us show a set of examples in Table
We show only non-zero co-coefficients for the sake of brevity.

Number | Expansion
0.375 2724273

1 20
1.5 20 4+ o1
2.75 2l o1 492

17.625 |28 +20 49214273

Table 2.12: Representation of floating point numbers

We observe that using Equation we can represent a lot of floating point numbers ex-
actly. However, there are a lot of numbers such as 1.11, which will potentially require an infinite
number of terms with negative exponents. It is not possible to find an exact representation
for it using Equation [2.23] However, if n is large enough, we can reduce the error between the
actual number and the represented number to a large extent.

Let us now try to represent a positive floating point number in a binary format using
Equation There are two parts in a positive floating point number — integer part and
fractional part. We represent the integer part using a standard binary representation. We
represent the fractional part also with a binary representation of the form: xz_j1x_o...x_,.
Lastly, we put a ’.” between the integer and fractional parts.
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Number | Expansion Binary Representation
0.375 272 4273 0.011

1 20 1.0

1.5 20 4 2-1 1.1

2.75 2l 4 2-1 4972 10.11

17625 | 28 +204+ 2142731 10001.101

Table 2.13: Representation of floating point numbers in binary

Table shows the binary representation of numbers originally shown in Table

Normal Form

Let us take a look at Table again. We observe that there are a variable number of binary
bits before and after the decimal point. We can limit the number of bits before and after the
decimal point to L; and Ly respectively. By doing so, we can have a binary representation for
a floating point number that requires L; + Ly bits — L; bits for the integer part, and L; bits
for the fractional part. The fractional part is traditionally known as the mantissa, whereas the
entire number (both integer and fraction) is known as the significand. If we wish to devote 32
bits for representing a floating point number, then the largest number that we can represent
is approximately 2'¢ = 65,536 (if L, = L ), which is actually a very small number for most
practical purposes. We cannot represent large numbers such as 2°°.

Let us thus, slightly modify our generic form to expand the range of numbers that we can
represent. We start out by observing that 101110 in binary can be represented as 1.01110 x 2°.
The number 1.01110 is the significand. As a convention, we can assume that the first binary
digit in the significand is 1, and the decimal point is right after it. Using this notation, we can
represent all floating point numbers as:

A=Px2% (P=14+M0<M<1,X¢cZ) (2.24)

Definition 23

Significand It is the part of the floating point number that just contains its digits. The
decimal point is somewhere within the significand. The significand of 1.3829 x 103 is
1.5829.

Mantissa It represents the fractional part of the significand. The mantissa of 1.3829 x 103
is 0.3829.

Z is the set of integers, P is the significand, M is the mantissa, and X is known as the
exponent. This representation is slightly more flexible. It allows us to specify large exponents,
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both positive as well as negative. Lastly, let us try to create a generic form for both positive and
floating point numbers by introducing a sign bit, S. We show the resulting form in Equation [2.25|
and refer to it as the normal form henceforth.

A=(-1)9xPx2% (P=1+M0<M<1,XecZ) (2.25)

If S =0, the number is positive. If S = 1, the number is negative.

2.4.3 IEEE 754 Format for Representing Floating Point Numbers

Let us now try to represent a floating point number using a sequence of 32 bits. We shall
describe the IEEE 754 format, which is the de facto standard for representing floating point
numbers in binary.

Let us start with the normal form as shown in Equation[2.25] We observe that there are three
variables in the equation: S(sign bit), M (mantissa), and X (exponent). Since all significands
have 1 as their first digit, there is no need to explicitly represent it. We can assume that we
have a 1 by default as the MSB of the significand, and we need to just represent the Ly bits of
the mantissa. Secondly, since we are representing all our numbers in binary, the base is 2, and
this can be assumed to be the default value. The IEEE 754 format thus proposes to apportion
32 bits as shown in Figure [2.§

Sign(S) Exponent(X) Mantissa(M)
1| 8 | 23

Figure 2.8: IEEE 754 format for representing 32-bit floating point numbers

The format allocates 1 bit for the sign bit, 8 bits for the exponent, and 23 bits for the
mantissa. The exponent can be positive, negative or zero. The point to note here is that the
exponent is not represented in the 2’s complement notation. It is represented using the biased
representation (see Section [2.3.3). The exponent(X) is represented by a number, E, where:

E = X + bias (2.26)

In this case, the bias is equal to 127. Thus, if the exponent is equal 10, it is represented
as 137. If the exponent is -20, it is represented as 107. E is an unsigned number between 0
and 255. 0 and 255 are reserved for special values. The valid range for £ for normal floating
point numbers is 1 to 254. Thus, the exponent can vary from -126 to 127. We can represent
the normal form for IEEE 754 numbers as:

A= (=19 x Px2Fbes (P14 MO0<M<1,1<E<254) (2.27)

Example 16
Find the smallest and largest positive normal floating point numbers.
Answer:




(© Smruti R. Sarangi 78

e The largest positive normal floating point number is 1.11...1 x 2127,
—
23

The result is equal to (2 — 2723) x 2127 = 2128 _ 9104,

o The smallest positive normal floating point number is 1.00...0 x 27126 = 27126

Example 17
What is the range of normal floating point numbers.
Answer: +(2128 - 2104),

Special Numbers

We reserved two values of E, 0 and 255, to represent special numbers.

E M | Value

255 | 0 o if §=0

255 | 0 —x0if =1

255 | #0 | NAN (Not a number)
0 0 0

0 # 0 | Denormal number

Table 2.14: Special floating point numbers

If (E=255), then we can represent two kinds of values: oo and NAN (Not a number).
We need to further look at the mantissa(M). If (M = 0), then the number represents +oo
depending on the sign bit. We can get co as a result of trying to divide any non-zero number
by 0, or as the result of other mathematical operations. The point to note is that the IEEE
754 format treats infinities separately.

If we divide 0/0 or try to compute sin~!(x) for x > 1, then the result is invalid. An invalid
result is known as a NAN. Any mathematical operation involving a NAN has as its result a
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NAN. Even NAN — NAN = NAN. If M # 0, then the represented number is a NAN. In this
case the exact value of M is not relevant.

Now, let us take a look at the case, when E' = 0. If M is also 0, then the number represented
is 0. Note that there are two 0s in the IEEE 754 format — a positive zero and a negative
zero. Ideally implementations of this format are supposed to treat both the zeros as the same.
However, this can vary depending upon the processor vendor.

The last category of numbers are rather special. They are called denormal numbers. We
shall discuss them separately in Section [2.4.4]

2.4.4 Denormal Numbers

We have seen in Example [L6| that the smallest positive normal floating point number is 27126,
Let us consider a simple piece of code.

f =27(-126);
g=1=f/2;
if (g == 0)

print ("error");

Sadly, this piece of code will compute g to be 0 as per our current understanding. The reason
for this is that f is the smallest possible positive number that can be represented in our format.
g can thus not be represented, and most processors will round g to 0. However, this leads to a
mathematical fallacy. The IEEE 754 protocol designers thus tried to avoid situations like this
by proposing the idea of denormal numbers. Denormal numbers have a slightly different form
as given by Equation [2.28

A=(-1)9xPx271% (P=04+M0<M<1) (2.28)

Note the differences with Equation [2.25 The implicit value of 1 is not there any more.
Instead of (P = 1+ M), we have (P = 0+ M). Secondly, there is no room to specify any
exponent. This is because £F=0. The default exponent is -126. We can view denormal numbers
as an extension of normal floating point numbers on both sides (smaller and larger). Refer to

Figure

D Denormal numbers
D Normal FP numbers

- | >

0

Figure 2.9: Denormal numbers on a conceptual number line (not drawn to scale)
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Example 18
Find the smallest and largest positive denormal numbers.
Answer:

o The smallest positive denormal number is 0.00...01 x 27126 = 2149,
—

22

e The largest possible denormal number is 0.11...1 x27126 = 27126 _ 9—149,
—_—

23

e Note that the largest denormal number (27126 — 27149) is smaller than the small-
est positive normal number (27126). This justifies the choice of 27126 as the default
exponent for denormal numbers.

Example 19
Find the ranges of denormal numbers.
Answer:

e For positive denormal numbers, the range is [27149 27126 _ 9=149]

e For negative denormal numbers, the range is [—(27126 — 27149) _9=149],

By using denormal numbers we will not get a wrong answer if we try to divide 27126 by 2, and
then compare it with 0. Denormal numbers can thus be used as a buffer such that our normal
arithmetic operations do not give unexpected results. In practice, incorporating denormal
numbers in a floating point unit is difficult and they are very slow to process. Consequently,
a lot of small embedded processors do not support denormal numbers. However, most modern
processors running on laptops and desktops have full support for denormal numbers.

2.4.5 Double Precision Numbers

We observe that by using 32 bits, the largest number that we can represent is roughly 22, which
is approximately 1038. We might need to represent larger numbers, especially while studying
cosmology. Secondly, there are only 23 bits of precision (mantissa is 23 bits long). If we are
doing highly sensitive calculations, then we might need more bits of precision. Consequently,
there is a IEEE 754 standard for double precision numbers. These numbers require 64 bits
of storage. They are represented by the double datatype in C or Java.

64 bits are apportioned as follows:

The mantissa is now 52 bits long. We have 11 bits for representing the exponent. The bias
is equal to 1023, and the range of the exponent is from -1022 to 1023. We can thus represent
many more numbers that are much larger, and we have more bits in the mantissa for added
precision. The format and semantics of +o00, zero, NAN, and denormal numbers remains the
same as the case for 32 bits.
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Field | Size(bits)
S 1
E 11
M 52

2.4.6 Floating Point Mathematics

Because of limited precision, floating point formats do not represent most numbers accurately.
This is because, we are artificially constraining ourselves to expressing a generic real number
as a sum of powers of 2, and restricting the number of mantissa bits to 23. It is possible that
some numbers such as 1/7 can be easily represented in one base (base 7), and can have inexact
representations in other bases (base 2). Furthermore, there are a large set of numbers that
cannot be exactly represented in any base. These are irrational numbers such as v/2 or w. This
is because a floating point representation is a rational number that is formed out of repeatedly
adding fractions. It is a known fact that rational numbers cannot be used to represent numbers
such as v/2. Leaving theoretical details aside, if we have a large number of mantissa bits, then
we can get arbitrarily close to the actual number. We need to be willing to sacrifice a little bit
of accuracy for the ease of representation.

Floating point math has some interesting and unusual properties. Let us consider the
mathematical expression involving two positive numbers A and B: A+ B — A. We would
ideally expect the answer to be non-zero. However, this need not be the case. Let us consider
the following code snippet.

A = 27(50);
B = 27(10);
C= (B + A) - A;

Due to the limited number of mantissa bits (23), there is no way to represent 2°0 + 210, If
the dominant term is 2°°, then our flexibility is only limited to numbers in the range 2°0+23,
Hence, a processor will compute A+ B equal to A, and thus C will be 0. However, if we slightly
change the code snippet to look like:

A = 27(50);
B = 27(10);
C=B+ (A - A);

C is computed correctly in this case. We thus observe that the order of floating point
operations is very important. The programmer has to be either smart enough to figure out the
right order, or we need a smart compiler to figure out the right order of operations for us. As
we see, floating point operations are clearly not associative. The proper placement of brackets
is crucial. However, floating point operations are commutative (A + B = B + A).

Due to the inexact nature of floating point mathematics, programmers and compilers need
to pay special attention while dealing with very large or very small numbers. As we have also
seen, if one expression contains both small and large numbers, then the proper placement of
brackets is very important.
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2.5 Strings

A string data type is a sequence of characters in a given language such as English. For example,
“test”, is a string of four characters. We need to derive a bitwise representation for it, the same
way we devised a representation for integers. Traditionally, characters in the English language
are represented using the ASCII character set. Hence, we shall describe it first.

2.5.1 ASCII Format

ASCII stands for “American Standard Code for Information Interchange”. It is a format that
assigns a 7 bit binary code for each English language character including punctuation marks.
Most languages that use the ASCII format, use 8 bits to represent each character. One bit(MSB)
is essentially wasted.

The ASCII character set defines 128 characters. The first 32 characters are reserved for
control operations, especially for controlling the printer. For example, the zeroth character
is known as the null character. It is commonly used to terminate strings in the C language.
Similarly, there are special characters for backspace(8), line feed(10), and escape(27). The
common English language characters start from 32 onwards. First, we have punctuation marks
and special characters, then we have 26 capital letters, and finally 26 small letters. We show a
list of ASCII characters along with their decimal encodings in Table

Since ASCII can represent only 128 symbols, it is suitable only for English. However, we
need an encoding for most of the languages in the world such as Arabic, Russian, French,
Spanish, Swahili, Hindi, Chinese, Thai, and Vietnamese. The Unicode format was designed for
this purpose. The most popular Unicode standard until recently was UTF-8.

2.5.2 UTF-8

UTF (Universal character set Transformation Format - 8 bit) can represent every character in
the Unicode character set. The Unicode character set assigns a unsigned binary number to each
character of most of the world’s writing systems. UTF-8 encodes 1,112,064 characters defined
in the Unicode character set. It uses 1-6 bytes for this purpose.

UTF-8 is compatible with ASCII. The first 128 characters in UTF-8 correspond to the ASCII
characters. When using ASCII characters, UTF-8 requires just one byte. It has a leading 0.
However, the first byte can contain extra information such as the total number of bytes. This
is encoded by having leading ones followed by a zero in the first byte. For example, if the
first byte is of the form 11100010, then it means that the character contains 3 bytes. Each
continuation byte begins with 10. Most of the languages that use variants of the Roman script
such as French, German, and Spanish require 2 bytes in UTF-8. Greek, Russian (Cyrillic),
Hebrew, and Arabic, also require 2 bytes.

UTF-8 is a standard for the world wide web. Most browsers, applications, and operating
systems are required to support it. It is by far the most popular encoding as of 2012.

2.5.3 UTF-16 and UTF-32

UTF-8 has been superseded by UTF-16, and UTF-32. UTF-16 uses either 2 byte or 4 byte
encodings to represents all the Unicode characters. It is primarily used by Java and the Windows
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Character | Code || Character | Code || Character | Code
a 97 A 65 0 48
b 98 B 66 1 49
¢ 99 C 67 2 50
d 100 D 68 3 51
e 101 E 69 4 52
f 102 F 70 5 53
g 103 G 71 6 54
h 104 H 72 7 55
i 105 I 73 8 56
j 106 J 74 9 57
k 107 K 75 ! 33
1 108 L 76 # 35

m 109 M 77 $ 36
n 110 N 78 % 37
0 111 O 79 & 38
p 112 P 80 ( 40
q 113 Q 81 ) 41
r 114 R 82 * 42
S 115 S 83 + 43
t 116 T 84 , 44
u 117 U 85 . 46
v 118 A% 86 ; 59
w 119 \WY% 87 = 61
X 120 X 88 ? 63
y 121 Y 89 Q 64
Z 122 7 90 A 94

operating system. UTF-32 encodes all characters using exactly 32 bits.

it is an inefficient encoding.

Table 2.15: ASCII Character Set

2.6 Summary and Further Reading

2.6.1 Summary

It is rarely used since

Summary 2

1. In computer architecture, we represent information using the language of bits. A bit
can either take the value of 0 or 1. A sequence of 8 bits is called a byte.
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2. A variable representing a bit is also called a Boolean variable, and an algebra on such
Boolean variables is known as Boolean algebra.
3. (a) The basic operators in Boolean algebra are logical OR, AND, and NOT.
(b) Some derived operators are NAND, NOR, and XOR.
(c) We typically use the De Morgan’s laws (see Section to simplify Boolean

expressions.

4. Any Boolean expression can be represented in a canonical form as a logical OR of
minterms. It can then be minimised using Karnaugh Maps.

5. We can represent positive integers in a binary representation by using a sequence of
. : _ N oi—1
bits. In this case, we represent a number, A, as xpTp_1...21, where A =Y"" | ;2"

6. The four methods to represent a negative integer are:

(a) Sign Magnitude based Method
(b) The 1’s Complement Method
(¢) Bias based Method

(d) The 2’s Complement Method

7. The 2’s complement method is the most common. Its main properties are as follows:
(a) The representation of a positive integer is the same as its unsigned representation

with a leading 0 bit.

(b) The representation of a negative integer (—u) is equal to 2™ — u, in an n bit
number system.

(c) To convert an m-bit 2’s complement number to an n-bit 2’s complement number,
where n > m, we need to extend its sign by n —m places.

(d) We can quickly compute the 2’s complement of a negative number of the form
—u (u > 0), by computing the 1’s complement of u (flip every bit), and then
adding 1.

(e) Addition, subtraction, and multiplication (ignoring overflows) of integers in the
2’s complement representation can be done by assuming that the respective binary
representations represent unsigned numbers.

8. Floating point numbers in the IEEE 754 format are always represented in their normal
form.

(a) A floating point number, A, is equal to
A= (-1 x Px2¥

S is the sign bit, P is the significand, and X is the exponent.




85 (©) Smruti R. Sarangi

(b) We assume that the significand is of the form 1 + M, where 0 < M < 1. M 1is
known as the mantissa.

9. The salient points of the IEEE 754 format are as follows:

(a) The MSB is the sign bit.

(b) We have a 8 bit exponent that is represented using the biased notation (bias equal
to 127).

(¢) We do not represent the leading bit (equal to 1) in the significand. We represent
the mantissa using 23 bits.

(d) The exponents, 0 and 255, are reserved for special numbers — denormal numbers,
NAN, zero, and £oo.

10. Denormal numbers are a special class of floating point numbers, that have a slightly
different normal form.

A=(-1)¥xPx27 (0<P<1,P=0+M)

11. Floating point arithmetic is always approrimate; hence, arithmetic operations can lead
to mathematical contradictions.

12. We represent pieces of text as a contiguous sequence of characters. A character can
either be encoded in the 7 bit ASCII format, or in the Unicode formats that use 1-4
bytes per character.

2.6.2 Further Reading

Boolean algebra is a field of study by itself. Boolean formulae, logic, and operations form
the basis of modern computer science. We touched upon some basic results in this chapter.
The reader should refer to [Kohavi and Jha, 2009] for a detailed discussion on Boolean logic,
Karnaugh Maps, and a host of other advanced techniques to minimise the number of terms
in Boolean expressions. For Boolean logic and algebra, the reader can also consult [Gregg,
1998, [Patt and Patel, 2003, Whitesitt, 2010] The next step for the reader is to read more about
the synthesis and optimisation of large digital circuits. The book by Giovanni de Michel [Micheli,
1994] can be a very helpful reference in this regard. Number systems such as 2’s complement
naturally lead to computer arithmetic where we perform complex operations on numbers. The
reader should consult the book by Zimmermann [Brent and Zimmermann, 2010]. For learning
more about the representation of characters, and strings, especially in different languages, we
refer the reader to the unicode standard [uni, |.
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Exercises

Boolean Logic

Ex. 1 — A, B, C' and D are Boolean variables. Prove the following results:

(A+B).(A+B).(A+B.D+C)=AB.D+ AC

Ex. 2 — Construct a circuit to compute the following functions using only NOR gates.
a)A
b)A+ B
c)A.B
d)Aa B
Ex. 3 — Construct a circuit to compute the following functions using only NAND gates.
a)A
b)A+ B
c)A.B
d)Ae B

** Ex. 4 — Prove that any Boolean function can be realised with just NAND or NOR gates.
[HINT: Use the idea of decomposing a function into its set of minterms.]

Ex. 5 — Why are the first and last rows or columns considered to be adjacent in a Karnaugh
Map?

Ex. 6 — Minimise the following Boolean functions using a Karnaugh Map.
a)ABC + ABC + ABC
b)ABCD + ABCD + AD

* Ex. 7 — Consider the Karnaugh map of the function A; ® As ... ® A,. Prove that it looks
like a chess board. Why cannot we minimise this expression further?

Integer Number Systems

Ex. 8 — Convert the following 8 bit binary numbers in 1’s complement form to decimal.

a) 01111101
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b) 10000000
c) 11111111
d) 00000000
e) 11110101

Ex. 9 — Convert the following unsigned numbers (in the given base) to decimal:

Ex. 10 — Do the following calculations on unsigned binary numbers and write the result as
an unsigned binary number.

a) 1100110101 + 1111001101
b) 110110110 + 10111001

c¢) 11101110 — 111000

d) 10000000 — 111

Ex. 11 — What are the pros and cons of the 1’s complement number system?

Ex. 12 — What are the pros and cons of the sign-magnitude number system?

Ex. 13 — What is a number circle? How is it related to the 2’s complement number system?
Ex. 14 — What does the point of discontinuity on the number circle signify?

Ex. 15 — Why is moving k steps on the number circle in a clockwise direction equivalent to
moving 2" - k steps in an anti-clockwise direction? Assume that the number circle contains 2"
nodes.

Ex. 16 — What are the advantages of the 2’s complement notation over other number sys-
tems?
Ex. 17 — Outline a method to quickly compute the 2’s complement of a number.
Ex. 18 — Prove the following result in your own words:

Fu—v)=F(u)+ (2" — F(v)) (2.29)
Ex. 19 — Let us define sign contraction to be the reverse of sign extension. What are the

rules for converting a 32-bit number to a 16-bit number by using sign contraction? Can we do
this conversion all the time without losing information?

Ex. 20 — What are the conditions for detecting an overflow while adding two 2’s complement
numbers?
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Floating Point Number System
Ex. 21 — Describe the IEEE 754 format.

Ex. 22 — Why do we avoid representing the bit to the left of the decimal point in the
significand?

Ex. 23 — Define denormal numbers. How do they help to extend the range of normal floating
point numbers?

Ex. 24 — In the standard form of a denormal number, why is the exponent term equal to
271262 Why is it not equal to 271277

Ex. 25 — Convert the following floating point numbers into the IEEE 32-bit 754 format.
Write your answer in the hexadecimal format.

a) —1 % (1.75 % 2729 4- 2710 4 2745)
b) 52

Ex. 26 — What is the range of positive and negative denormal floating point numbers num-
bers?

Ex. 27 — What will be the output of the following C code snippet assuming that the fractions
are stored in an IEEE 32-bit 754 format:
float a=pow(2,-50);
float b=pow(2,-74);
float d=a;
for(i=0; i<100000; i++)
{
d=d+b;
}
if (d>a)
printf ("%d4d",1);
else
printf ("%d4d",2);

Ex. 28 — We claim that the IEEE 754 format represents real numbers approximately. Is this
statement correct?

* Ex. 29 — Prove that it is not possible to exactly represent v/2 even if we have an indefinitely
large number of bits in the mantissa.

* Ex. 30 — How does having denormal numbers make floating point mathematics slightly
more intuitive?

* Ex. 31 — What is the correct way for comparing two floating point numbers for equality?

** Ex. 32 — Assume that the exponent e is constrained to lie in the range 0 < e < X with
a bias of ¢ , and the base is b . The significand is p digits in length. Use an IEEE 754 like
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encoding. However, you need to devote one digit to store the value to the left of the decimal
point in the significand.

a) What are the largest and smallest positive values that can be written in normal form.

b) What are the largest and smallest positive values that can be written in denormal form.

* Ex. 33 — Most of the floating point numbers cannot be represented accurately in hardware
due to the loss of precision. However, if we choose some other representation, we can represent
certain kinds of floating point numbers without error.

a) Give a representation for storing rational numbers accurately. Devise a normal form for
it.

b) Can other floating point numbers such as v/2 be represented in a similar way?

Ex. 34 — Design a floating point representation, for a base 3 system on the lines of the IEEE
754 format.

Strings
Ex. 35 — Convert the string “459801” to ASCIL. The ASCII representation of 0 is 0x30.

Assume that all the numbers are represented in the ASCII format in sequence.

Ex. 36 — Find the Unicode representation for characters in a non-English language, and
compare it with the ASCII encoding.

Design Problems

Ex. 37 — In this section, we have minimised Boolean expressions using Karnaugh maps.
We solved all our examples manually. This method is not scalable for expressions containing
hundreds of variables. Study automated techniques for minimising Boolean expressions such as
the Quinn-McCluskey tabulation method. Write a program to implement this method.
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Assembly Language

Assembly language can broadly be defined as a textual representation of machine instructions.
Before building a processor, we need to know about the semantics of different machine instruc-
tions, and a rigorous study of assembly language will be of benefit in this regard. An assembly
language is specific to an ISA and compiler framework; hence, there are many flavors of as-
sembly languages. In this chapter we shall describe the broad principles underlying different
variants of assembly languages, some generic concepts and terms. We will subsequently design
our own assembly language, SimpleRisc . It is a simple RISC ISA with a few instructions.
Subsequently, in Chapter [9} we will design a processor that fully implements this ISA. Thus,
the plan for this chapter is as follows. We shall first convince ourselves of the need for assem-
bly language in Section from the point of view of both software developers and hardware
designers. Then we shall proceed to discuss the generic semantics of assembly languages in
Section Once, we have a basic understanding of assembly languages, we shall design our
own assembly language, SimpleRisc , in Section (3.3, and then design a method to encode it
using a sequence of 32 bits in Section

Subsequently, in Chapter [4] we shall describe the ARM assembly language that is meant for
ARM based processors, and in Chapter |5, we shall describe the x86 assembly language meant
for Intel/AMD processors. In these two chapters, these machine specific assembly languages
will be covered in great detail. This chapter is introductory, and creates the framework for a
more serious study of different instruction sets and assembly languages.

3.1 Why Assembly Language

3.1.1 Software Developer’s Perspective

A human being understands natural languages such as English, Russian, and Spanish. With
some additional training a human can also understand computer programming languages such
as C or Java. However, a computer is a dumb machine as mentioned in Chapter [T} It is

91
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not smart enough to understand commands in a human language such as English, or even a
programming language such as C. It only understands zeros and ones. Hence, to program a
computer it is necessary to give it a sequence of zeros and ones. Indeed some of the early
programmers used to program computers by turning on or off a set of switches. Turning on
a switch corresponded to a 1, and turning it off meant a 0. However, for today’s massive
multi-million line programs, this is not a feasible solution. We need a better method.

Consequently, we need an automatic converter that can convert programs written in high
level languages such as C or Java to a sequence of zeros and ones known as machine code.
Machine code contains a set of instructions known as machine instructions. Each machine
instruction is a sequence of zeros and ones, and instructs the processor to perform a certain
action. A program that can convert a program written in a high level language to machine
code is called a compiler( see Figure .

Definition 24

e A high level programming language such as C or Java uses fairly complex constructs
and statements. Each statement in these languages typically corresponds to a multi-
tude of basic machine instructions. These languages are typically independent of the
processor’s ISA.

o A compiler is an executable program that converts a program written in a high level
language to a sequence of machine instructions that are encoded using a sequence of
zeros and ones.

— 01001001
— : 10001010

- > 5| Compiler |——>
—_ > 10010010
Program 10001010

Machine code

Figure 3.1: The compilation process

Note that the compiler is an executable program that typically runs on the machine that
it is supposed to generate machine code for. A natural question that can arise is — who wrote
the first compiler? See Trivia[l]

Trivia 1 Who Wrote the First Compiler? If a programmer wrote the compiler in a high
level language such as C or Java, then she must have needed a compiler to compile it into
machine code. However, she did not have a compiler with her at that point of time, because
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she was in the process of building one! Since she did not have a compiler, while building the
compiler, how did she ultimately build it? This is an example of a chicken and egg problem.
The classic chicken and egg problem poses a simple yet vexing question — did the chicken
come first or the egg come first? However, the chicken and egg problem has a solution that
can be explained in terms of evolution. Scientists believe that early organisms reproduced
by replication. At some point of time, due to a genetic mutation, an organism started to
lay eggs. These organisms perpetuated, and started reproducing by only laying eggs. They
evolved into all kinds of birds and reptiles, including chickens.

We can explain this conundrum in a similar manner. The early programmers wrote sim-
ple compilers using machine instructions. A primitive compiler is just a sequence of zeros
and ones. The early programmers then used these primitive compilers to compile programs.
A special class of such programs were compilers themselves. They were written in high level
languages and were better in terms of features, functionality and even performance. These
first generation compilers were then used to create second generation compilers, and this
process has continued till date. Nowadays, if a new processor is being developed, then it
18 not necessary to follow this procedure. Programmers, use another set of programs called
cross compilers. A cross compiler runs on an existing processor, and produces an executable
using the machine instructions of the new processor that is being developed. Once the new
processor is ready, this program can be moved to the new processor and executed directly. It
1s thus possible to develop a large range of software including compilers for processors with
new instruction sets. Hence, most modern day programmers do not have to write programs
using raw machine instructions.

Definition 25
A cross compiler is a program that runs on machine A, and generates machine code for
machine B. It is possible that B has a different ISA.

Given the ubiquity of compilers, almost all programs are written in high level languages and
compilers are used to convert them to machine code. However, there are important exceptions
to this rule. Note that the role of a compiler is two fold. First, it needs to correctly translate a
program in a high level language to machine instructions. Second, it needs to produce efficient
machine code that does not take a lot of space, and is fast. Consequently, algorithms in compilers
have become increasingly complicated over the years. However, it is not always possible to meet
these requirements. For example, in some scenarios, compilers might not be able to produce
code that is fast enough, or has a certain kind of functionality that the programmer desires. Let
us elaborate further. Algorithms in compilers are limited by the amount of analysis that they
can perform on the program. For example, we do not want the process of compilation to be
extremely slow. A lot of the problems in the area of compilers are computationally difficult to
solve and are thus time consuming. Secondly, the compiler is not aware of the broad patterns
in the code. For example, it is possible that a certain variable might only take a restricted set



(© Smruti R. Sarangi 94

of values, and on the basis of this, it might be possible to optimise the machine code further. It
is hard for a compiler to figure this out. However, smart programmers can sometimes produce
machine code that is more optimal than a compiler because they are aware of some broad
patterns of execution, and their brilliant brains can outsmart compilers.

Secondly, it is also possible that a processor vendor might add new instructions in their ISA.
In this case, compilers meant for older versions of the processor might not be able to leverage
the new instructions. It will be necessary to add them manually in programs. Continuing this
argument further, we observe that popular compilers such as gcc (GNU compiler collection)
are fairly generic. They do not use all possible machine instructions that a processor provides
while generating machine code. Typically, a lot of the missed out instructions are required
by operating systems and device drivers (programs that interface with devices such as the
printer, and scanner). These software programs require these instructions because they need
low level access to the hardware. Consequently, system programmers have a strong incentive
to occasionally bypass the compiler.

In all of these situations, it is necessary for programmers to manually embed a sequence of
machine instructions in a program. As mentioned, there are two primary reasons for doing so —
efficiency and extra functionality. Hence, from the point of view of system software developers,
it is necessary to know about machine instructions such that they can be more productive in
their job.

Now, our aim is to insulate modern day programmers from the intricate details of zeros
and ones. Ideally, we do not want our programmers to program by manually turning on and
off switches as was done fifty years ago. Consequently, a low level language called assembly
language was developed (see Definition . Assembly language is a human readable form
of machine code. Each assembly language statement typically corresponds to one machine
instruction. Furthermore, it eases the burden on the programmer significantly by not forcing
her to remember the exact sequence of zeros/ones that are needed to encode an instruction.

Definition 26

e A low level programming language uses simple statements that correspond to typically
just one machine instruction. These languages are specific to the ISA.

o The term “assembly language” refers to a family of low level programming languages
that are specific to each ISA. They have a generic structure that consists of a sequence
of assembly statements. Typically, each assembly statement has two parts — (1) an
instruction code that is a mnemonic for a basic machine instruction, and (2) and a
list of operands.

From a practical standpoint, it is possible to write stand alone assembly programs and
convert them to executables using a program called an assembler(Definition . Alternatively,
it is also possible to embed snippets of assembly code in high level languages such as C or
C++. The latter is more common. A compiler ensures that it is able to compile the combined
program into machine code. The benefits of assembly languages are manifold. Since each
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line in assembly code corresponds to one machine instruction, it is as expressive as machine
code. Because of this one to one mapping, we do not sacrifice efficiency by writing programs in
assembly. Secondly, it is a human readable and elegant form of textually representing machine
code. It makes it significantly easier to write programs using it, and it is also possible to cleanly
embed snippets of assembly code in software written in high level languages such as C. The
third advantage of assembly language is that it defines a level of abstraction over and above real
machine code. It is possible that two processors might be compatible with the same variant of
assembly language, but actually have different machine encodings for the same instruction. In
this case, assembly programs will be compatible across both of these processors.

Definition 27
An assembler is an executable program that converts an assembly program into machine
code.

Example 20
The core engines of high performance 3D games need to be optimised for speed as much
as possible [Phelps and Parks, 2004)]. Most compilers fail to produce code that runs fast
enough. It becomes necessary for programmers to manually write sequences of machine
nstructions.

Example 21

Vranas et. al. [Vranas et al., 2006] describe a high performance computing application
to study the structure of an atomic nucleus. Since the computational requirements are
high, they needed to run their program on a supercomputer. They observed that the core
of the program lies in a small set of functions that are just 1000 lines long. They further
observed that compilers were not doing a good in job in optimising the output machine code.
Consequently, they decided to write the important functions in assembly code, and obtained
record speedups on a supercomputer. Durr et. al. [Durr et al., 2009] subsequently used this
framework to accurately calculate the mass of a proton and a neutron from first principles.
The results were in complete agreement with experimentally observed values.

3.1.2 Hardware Designer’s Perspective

The role of hardware designers is to design processors that can implement all the instructions
in the ISA. Their main aim is to design an efficient processor that is optimal with regards to
area, power efficiency, and design complexity. From their perspective, the ISA is the crucial
link between software and hardware. It answers the basic question for them — “what to build?”
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Hence, it is very essential for them to understand the precise semantics of different instruction
sets such that they can design processors for them. As mentioned in Section it is cum-
bersome to look at instructions as merely a sequence of zeros and ones. They can gain a lot
by taking a look at the textual representation of a machine instruction, which is an assembly
instruction.

An assembly language is specific to an instruction set and an assembler. In this chapter, we
use the assembly language format of the popular GNU assembler |[Elsner and Fenlason, 1994]
to explain the syntax of a typical assembly language file. Note that other systems have similar
formats, and the concepts are broadly the same.

3.2 The Basics of Assembly Language

3.2.1 Machine Model

Let us reconsider the basic abstract machine model explained in Chapter [l We had finished
the chapter by describing a form of the Harvard and Von Neumann machines with registers.
Assembly languages do not see the instruction memory and data memory as different entities.
They assume an abstract Von Neumann machine augmented with registers.

Refer to Figure for a pictorial representation of the machine model. The program is
stored in a part of the main memory. The central processing unit (CPU) reads out the program
instruction by instruction, and executes the instructions appropriately. The program counter
keeps track of the memory address of the instruction that a CPU is executing. We typically
refer to the program counter using the acronym — PC. Most instructions are expected to get
their input operands from registers. Recall that every CPU has a fixed number of registers
(typically < 64). However, a large number of instructions, can also get their operands from
the memory directly. It is the job of the CPU to co-ordinate the transfers to and from the
main memory and registers. Secondly, the CPU also needs to perform all the arithmetic/logical
calculations, and liaise with external input/output devices.

CPU

Registers

ALU

Memory |qummp Control 1/0 devices

Figure 3.2: The Von Neumann machine with registers

Most flavors of assembly language assume this abstract machine model for a majority of
their statements. However, since another aim of using assembly language is to have more fine
grained and intrusive control of hardware, there are a fair number of assembly instructions that
are cognisant of the internals of the processor. These instructions typically modify the behaviour
of the processor by changing the behaviour of some key internal algorithms; they modify built-in
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parameters such as power management settings, or read/write some internal data. Finally, note
that the assembly language does not distinguish between machine independent and machine
dependent instructions.

View of Registers

Every machine has a set of registers that are visible to the assembly programmer. ARM has 16
registers, x86 (32-bit) has 8 registers, and x86_-64 (64 bits) has 16 registers. The registers have
names. ARM names them r0...7r15, and x86 names them eaz, ebx, ecx, edz, esi, edi, ebp, and
esp. A register can be accessed using its name.

In most ISAs, a return address register is used for function calls. Let us assume that a
program starts executing a function. It needs to remember the memory address that it needs to
come back to after executing the function. This address is known as the return address. Before
jumping to the starting address of a function, we can save the value of the return address in
this register. The return statement can simply be implemented by copying the value saved in
the return address register to the PC. The return address register is visible to the programmer
in assembly languages such as ARM and MIPS. However, x86 does not use a return address
register. It uses another mechanism called a stack, which we shall study in Section [3.3.10

In an ARM processor, the PC is visible to the programmer and it is the last register (r15).
It is possible to read the value of the PC, as well as set its value. Setting the value of the PC
means that we want to branch to a new location within the program. However, in x86, the
program counter is implicit, and is not visible to the programmer.

3.2.2 View of Memory

In Section we explained the concept of a memory in an abstract machine. The memory can
be thought of as one large array of bytes. Each byte has a unique address, which is essentially
its location in the array. The address of the first byte is 0, the address of the second byte is
1, and so on. Note that the finest granularity at which we can access memory is at the level
of a byte. We do not have a method to uniquely address a given bit. The address is a 32-bit
unsigned integer in 32-bit machines and it is a 64-bit unsigned integer in 64-bit machines.

Now, in a Von Neumann machine, we assume that the program is stored in memory as a
sequence of bytes, and the program counter points to the next instruction that is going to be
executed.

Assuming that memory is one large array of bytes is fine, if all our data items are only one
byte long. However, languages such as C and Java have data types of different sizes — char
(1 byte), short (2 bytes), integer (4 bytes), and long integer (8 bytes). For a multi-byte data
type it is necessary to find a representation for it in memory. There are two possible ways of
representing a multibyte data type in memory — little endian and big endian. Secondly, we also
need to find methods to represent arrays or lists of data in memory.

Little Endian and Big Endian Representations

Let us consider the problem of storing an integer in locations 0-3. Let the integer be 0x87654321.
It can be broken into four bytes — 87, 65, 43, and 21. One option is to store the most significant
byte, 87, in the lowest memory address 0. The next location can store 65, then 43, and then
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21. This is called the big endian representation because we are starting from the position of the
most significant byte. In comparison, we can save the least significant byte first in location 0,
and then continue to save the most significant byte in location 3. This representation is called
little endian. Figure [3.3] shows the difference.

Big endian
876543 |21
o1 2 3

\ Little endian
21|43 |65 |87

o 1 2 3

0x87654321

Figure 3.3: Big endian and little endian representations

There is as such no reason to prefer one representation over the other. It depends on the
convention. For example, x86 processors use the little endian format. Early versions of ARM
processors used to be little endian. However, now they are bi-endian. This means an ARM
processor can work as both a little endian and a big endian machine depending on the settings
set by the user. Traditionally, IBM® POWER® processors, and Sun® SPARC® processors
have been big endian.

Representing Arrays

An array is a linearly ordered set of objects, where an object can be a simple data type such
as an integer or character, or can be a complex data type also.

int a[100];
char c[100];

Let us consider a simple array of integers, a. If the array has 100 entries, then the total size
of the array in memory is equal to 100 x 4 = 400 bytes. If the starting memory location of the
array is loc. Then a[0] is stored in the locations (loc + 0), (loc + 1), (loc + 2), (loc 4+ 3). Note
that there are two methods of saving the data — big endian and little endian. The next array
entry, a[l], is saved in the locations (loc+4) ... (loc+ 7). By continuing the argument further,
we note that the entry ali] is saved in the locations — (loc +4 x i) ... (loc + 4 x i + 3).

Most programming languages define multidimensional arrays of the form:

int a[100] [100];
char c[100] [100];

They are typically represented as regular one dimensional arrays in memory. There is a mapping
function between the location in a multidimensional array and an equivalent 1-dimensional
array. Let us consider Example We can extend the scheme to consider multidimensional
arrays of dimensions greater than 2.
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Example 22
Consider a multidimensional array: a[100][100]. Map each entry (i,j) to an entry in a
1-D array: b[10000].

Answer: Let us assume that each entry (i,7), is in a (row,column) format. Let us try
to save the array in row-major fashion. We save the first row in contiguous locations, then
the second row and so on. The starting entry of each row is equal to 100 x i. Within each
row the offset for column j is equal to j. Thus we can map (i,j) to the entry: (100 X i+ j)
in the array b.

We observe that a two-dimensional array can be saved as a one dimensional array by saving
it in row-major fashion. This means that data is saved row wise. We save the first row, then
the second row, and so on. Likewise, it is also possible to save a multidimensional array in
column major fashion, where the first column is saved, then the second column and so on.

Definition 28

row major In this representation, an array is saved row wise in Memory.

column major In this representation, an array is saved column wise in memory.

3.2.3 Assembly Language Syntax

In this section, we shall describe the syntax of assembly language. The exact syntax of an
assembly file is dependent on the assembler. Different assemblers can use different syntax, even
though they might agree on the basic instructions, and their operand formats. In this chapter,
we explain the syntax of the GNU family of assembly languages. They are designed for the
GNU assembler, which is a part of the GNU compiler collection (gcc). Like all GNU software,
this assembler and the associated compiler is freely available for most platforms. As of 2012,
the assembler is available at [gnu.org, |. In this section, we shall provide a brief overview of
the format of assembly files. For additional details refer to the official manual of the GNU
assembler [Elsner and Fenlason, 1994]. Note that other assemblers such as NASM, and MASM,
have their own formats. However, the overall structure is not conceptually very different from
what we shall describe in this section.

Assembly Language File Structure

An assembly file is a regular text file, and it has a (.s) suffix. The reader can quickly generate
an assembly file for a C program (test.c), if she has the gcc (GNU Compiler) installed. It can
be generated by issuing the following command.
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gcc -8 test.c

Assembly file
( file )
( .text )
( .data )
C )
( )

Figure 3.4: Assembly language file structure

The generated assembly file will be named test.s. GNU assembly files have a very simple
structure, as shown in Figure They contain a list of sections. Examples of different sections
are text (actual program), data (data with initialised values), and bss (common data that is
initialised to 0). Each section starts with a section heading, which is the name of the section
prefixed by the ‘. symbol. For example, the text section starts with the line “.text”. Thereafter,
there is a list of assembly language statements. Each statement is typically terminated by the
newline character. Likewise, the data section contains a list of data values. An assembly file
begins with the file section that contains a line of the form — “.file <name of the file> 7. When
we are generating an assembly file from a C program using the gcc compiler, the name of the file
in the .file section is typically the same as our original C program (test.c). The text section is
mandatory, and the rest of the sections are optional. There might be one or more data sections.
It is also possible to define new sections using the .section directive. In this book, we primarily
concentrate on the text section because we are interested in learning about the nature of the
instruction set. Let us now look at the format of assembly statements.

Basic Statements

A bare bones assembly language statement specifies an assembly instruction and has two parts
— the instruction and its list of operands, as shown in Figure The instruction is a textual
identifier of the actual machine instruction. The list of operands contains the value or location
of each operand. The value of an operand is a numeric constant. It is also known as an
immediate value. The operand locations can either be register locations or memory locations.

Instruction| [operand 1||operand 2| e < [operand n

Figure 3.5: Assembly language statement
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Definition 29
In computer architecture, a constant value specified in an instruction is also known as an
immediate.

Now, let us consider an example.
add r3, r1, r2

In this ARM assembly statement, the add instruction is specifying the fact that we wish
to add two numbers and save the result in some pre-specified location. The format of the
add instruction in this case is as follows: < instruction > < destination register > <
operandregister 1 > < operandregister2 >. The name of the instruction is add, the des-
tination register is 3, the operand registers are r1 and 2. The detailed steps of the instruction
are as follows:

1. Read the value of register r1. Let us refer to the value as v;.
2. Read the value of register r2. Let us refer to the value as vs.
3. Compute v3 = vy + vs.

4. Save vs in register r3

Let us now give an example of two more instructions that work in a similar fashion(see

Example .

Example 23
sub r3, r1, r2
mul r3, r1, 8

The sub instructions subtracts two numbers stored in registers, and the mul instruction mul-
tiplies a number stored in the register, r1, with the numeric constant, 3. Both the instructions
save the result in the register, 3. Their mode of operation is similar to the add instruction.
Moreover, the arithmetic instructions — add, sub, and mul — are also known as data processing
instructions. There are several other classes of instructions such as data transfer instructions
that load or store values from memory, and control instructions that implement branching.

Generic Statement Structure

The generic structure of an assembly statement is shown in Figure It consists of three fields
namely a label (identifier of the instruction), the key (an assembly instruction, or a directive to
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the assembler), and a comment. All three of these fields are optional. However, any assembly
statement needs to have at least one of these fields.

A statement can optionally begin with a label. A label is a textual identifier for the state-
ment. In other words, a label uniquely identifies an assembly statement in an assembly file.
Note that we are not allowed to repeat labels in the same assembly file. We shall find labels to
be very useful while implementing branch instructions.

Definition 30
A label in an assembly file uniquely identifies a given point or data item in the assembly
program.

An example of a label is shown in Example Here the name of the label is “labell”, and
it is succeeded by a colon. After the label we have written an assembly instruction and given
it a list of operands. A label can consist of valid alpha-numeric characters [a — z][4 — Z][0 — 9]
and the symbols ‘., ‘_’, and ‘§’. Typically, we cannot start a label with a digit. After specifying
a label we can keep the line empty, or we can specify a key (part of an assembly statement).
If the key begins with a ‘.’, then it is an assembler directive, which is valid for all computers.
It directs the assembler to perform a certain action. This action can include starting a new
section, or declaring a constant. The directive can also take a list of arguments. If the key
begins with a letter, then it is a regular assembly instruction.

Example 24
labell: add r1, r2, r8

After the label, assembly instruction, and list of operands, it is possible to optionally insert
comments. The GNU assembler supports two types of comments. We can insert regular C or
Java style comments enclosed between /* and */. It is also possible to have a small single line
comment by preceding the comment with the ‘@Q’ character in ARM assembly.

Example 25

labell: add r1, r2, r3 @ Add the values in r2 and r3
label2: add r3, r4, r5 @ Add the values in r4 and r5
add r5, r6, r7 /* Add the values in r6 and r7 */

Let us not slightly amend our statement regarding labels. It is possible that an assembly
statement only contains a label, and does not contain a key. In this case, the label essentially
points to an empty statement, which is not very useful. Hence, the assembler assumes that in
such a case a label points to the nearest succeeding assembly statement that contains a key.
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Label : _ Directive | @ Comment

.]Constanﬁ /*]Comment\ */

Assembly
instruction

Figure 3.6: Generic Structure of an assembly statement

3.2.4 Types of Instructions
Classification by Functionality

The four major types of instructions are as follows:

1. Data Processing Instructions: Data processing instructions are typically arithmetic
instructions such as add, subtract, and multiply, or logical instructions that compute
bitwise or, and exclusive or. Comparison instructions also belong to this family.

2. Data Transfer Instructions: These instructions transfer values between two locations.
A location can be a register or a memory address.

3. Branch Instructions: Branch instructions help the processor’s control unit to jump
to different parts of the program based on the values of operands. They are useful in
implementing for loops and if-then-else statements.

4. Exception Generating Instructions: These specialised instructions help transfer
control from a user level program to the operating system.

In this book we shall cover data processing, data transfer, and control instructions.

Classification based on the Number of Operands

As mentioned in Section all assembly language statements in the GNU assembler have
the same structure. They start with the name of the instruction, and are succeeded by a list of
operands. We can classify instructions based on the number of operands that they require. If
an instruction requires n operands, then we typically say that it is in the n-address format. For
example, an instruction that does not require any operands is a 0-address format instruction.
If it requires 3 operands, then it is a 3-address format instruction.
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Definition 31
If an instruction requires n operands (including source and destination), then we say that
it 1s a n-address format instruction.

In ARM most of the data processing instructions are in the 3-address format, and data
transfer instructions are in the 2-address format. However, in x86 most of the instructions are
in the 2-address format. The first question that comes to our mind is what is the logic of having
a 3-address format instruction versus having a 2-address format instruction? There must be
some tradeoff here.

Let us outline some general rules of thumb. If an instruction has more operands then it will
require more bits to represent the instruction. Consequently, we will require more resources to
store, and handle instructions. However, there is a flip side to this argument. Having more
operands will also make the instruction more generic and flexible. It will make the life of
compiler writers and assembly programmers much easier, because it will be possible to do more
things with an instruction that uses more operands. The reverse logic applies to instructions
that take less operands. They take less space to store, and are less flexible. Let us consider an
example. Assume that we are trying to add two numbers, 3 and 5, to produce a result, 8.

An ARM instruction for addition would look like this:

add r3, r1, r2

This instruction adds the contents of registers, r1(3), and 72(5), and saves it in r3(8). However,
an x86 instruction would look like this:

add edx, eax

Here, we assume that edx contains 3, and eax contains 5. The addition is performed, and
the result, 8, is stored back in edzx. Thus, in this case the x86 instruction is in the 2-address
format because the destination register is the same as the first source register.

When we describe the details of the ARM and x86 instruction sets in Chapters [4] and [5] we
shall see many more examples of instructions that have different address formats. We will be
able to appreciate the tradeoffs of having different address formats in all their glory.

3.2.5 Types of Operands

Let us now look at the different types of operands. The method of specifying and accessing an
operand in an assembly statement is known as the addressing mode.

Definition 32
The method of specifying and accessing an operand in an assembly statement is known as
the addressing mode.
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The simplest way of specifying an operand is by embedding its value in the instruction. Most
assembly languages allow the user to specify the values of integer constants as an operand. This
addressing mode is known as the immediate addressing mode. This method is very useful for
initialising registers or memory locations, or for performing arithmetic operations.

Once the requisite set of constants have been loaded into registers and memory locations,
the program needs to proceed by operating on registers and memory locations. There are
several addressing modes in this space. Before introducing them, let us introduce some extra
terminology in the form of the register transfer notation.

Register Transfer Notation

This notation allows us to specify the semantics of instructions and operands. Let us look at
the various methods to represent the basic actions of instructions.

rl < r2

This expression has two register operands r1, and 2. r1 is the destination register, and r2
is the source register. We are transferring the contents of register r2 to register r1.
We can specify an add operation with a constant as follows:

rl+<r2+4

We can also specify operations on registers using this notation. We are adding the contents
of r2 and r3 and saving the result in r1.

rl < r2+r3
It is also possible to represent memory accesses using this notation.
rl < [r2]

In this case the memory address is saved in 2. The processor hardware fetches the memory
address in r2, accesses the location, fetches the contents of the memory location, and saves the
data item in r1. Let us assume that the value in r2 is 100. In this case the processor accesses
memory with address 100, fetches the integer saved in locations (100-103), and saves it in r1.
By default we assume that we are loading and saving integers.

We can also specify a more complicated memory address of the form:

rl < [r2 + 4]

Here, the memory address is equal to the contents of the register r2 plus 4. We fetch the integer
starting at the contents of this memory address, and save it in the register r1.

Generic Addressing Modes for Operands

Let us represent the value of an operand as V. In the subsequent discussion, we use expressions
such as V <— r1. This does not mean that we have a new storage location called V. It basically
means that the value of an operand is specified by the RHS (right hand side). Let us briefly
take a look at some of the most commonly used addressing modes with examples.
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immediate V < imm
Uses the constant ¢mm as the value of the operand.

register V « rl
In this addressing mode, the processor uses the value contained in a register as the
operand.

register-indirect V < [rl]
The register saves the address of the memory location that contains the value.

base-offset V « [rl + of fset]
of fset is a constant. The processor fetches the base memory address from r1, adds the
constant of fset to it, and accesses the new memory location to fetch the value of the
operand. The of fset is also known as the displacement.

base-index V « [rl + r2]
rl is the base register, and 72 is the index register. The memory address is equal to
(r1 +1r2).

base-index-offset V < [rl +r2 4 of fset]
The memory address that contains the value is (rl 4+ 72 + of fset), where of fset is a
constant.

memory-direct V < addr
The value is contained in memory starting from address addr. addr is a constant. In this
case the memory address is directly embedded in the instruction.

memory-indirect V < [[r1]]
The value is present in a memory location, whose address is contained in the memory
location, M. Furthermore, the address of M is contained in the register, r1.

PC-relative V « [PC + of fset]
Here, of fset is a constant. The memory address is computed to be PC' + of fset, where
PC represents the value contained in the PC. This addressing mode is useful for branch
instructions.

Let us introduce a new term called the effective memory address by considering the base-
offset addressing mode. The memory address is equal to the contents of the base register plus
the offset. The computed memory address is known as the effective memory address. We can
similarly define the effective address for other addressing modes in the case of memory operands.

Definition 33
The memory address specified by an operand is known as the effective memory address.
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3.3 SimpleRisc

In this book, we shall introduce a simple, generic, complete and concise RISC ISA called
SimpleRisc . The assembly language of SimpleRisc has just 21 instructions, and captures most
of the features of full scale assembly languages. We will use SimpleRisc to demonstrate the
flavour of different types of assembly programs, and also design a processor for the SimpleRisc
ISA in Chapter[0] We shall assume that SimpleRisc assembly follows the GNU assembly format,
and we shall only describe the text section in this book.

Before proceeding further, let us take a tour of different instruction sets, and take a look at
their properties.

3.3.1 Different Instruction Sets

In Chapter [I, we looked at properties of different instruction sets including necessary, and
desirable properties. In this book, we shall describe two real instruction sets namely the ARM
instruction set and x86 instruction set. ARM stands for “Advanced RISC Machines”. It is
an iconic company based out of Cambridge, UK. As of 2012, around 90% of mobile devices
including the Apple iPhone, and iPad, run on ARM based processors. Similarly, as of 2012,
more than 90% of the desktops and laptops run on Intel or AMD based x86 processors. ARM
is a RISC instruction set, and x86 is a CISC instruction set.

There are many other instruction sets tailored for a wide variety of processors. Another
popular instruction set for mobile computers is the MIPS instruction set. MIPS based processors
are also used in a wide variety of processors used in automobiles, and industrial electronics.

H ISA ‘ Type ‘ Year ‘ Vendor ‘ Bits ‘ Endianness ‘ Registers H
VAX CISC | 1977 | DEC 32 little 16
RISC | 1986 | Sun 32 big 32
SPARC RISC | 1993 | Sun 64 bi 32
RISC | 1992 | Apple, IBM,Motorola | 32 bi 32
PowerPC p1sc | 2002 | Apple,IBM 64 | bi 32
RISC | 1986 | HP 32 big 32
PA-RISC | p1go | 1996 | P 64 | big 32
CISC | 1979 | Motorola 16 big 16
m68000 | g | 1979 | Motorola 32 | big 16
MIPS RISC | 1981 | MIPS 32 b} 32
RISC | 1999 | MIPS 64 bi 32
Alpha RISC | 1992 | DEC 64 bi 32
CISC | 1978 | Intel, AMD 16 little 8
x86 CISC | 1985 | Intel, AMD 32 little 8
CISC | 2003 | Intel, AMD 64 64 little 16
ARM RISC | 1985 | ARM 32 bi (little default) | 16
RISC | 2011 | ARM 64 | bi (little default) | 31

Table 3.1: List of instruction sets
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For large servers, typically IBM (PowerPC), Sun (now Oracle)(UltraSparc), or HP (PA-
RISC) processors are used. Each of these processor families has its own instruction set. These
instruction sets are typically RISC instruction sets. Most ISAs share simple instructions such
as add, subtract, multiply, shifts, and load/store instructions. However, beyond this simple
set, they use a large number of more specialised instructions. As we shall see in the next few
chapters, choosing the right set of instructions in an ISA is dependent on the target market of
the processor, the nature of the workload, and many design time constraints. Table shows
a list of popular instruction sets. The SimpleRisc ISA is conceptually the closest to ARM and
MIPS; however, it has some significant differences also.

3.3.2 Model of the SimpleRisc Machine

SimpleRisc assumes that we have 16 registers numbered 70...7r15. The first 14 registers are
general purpose registers, and can be used for any purpose within the program. Register r14
is known as the stack pointer. We shall also refer to it as sp. Register r15 is known as the
return address register, and it will also be referred as ra. We shall discuss sp and ra, when we
discuss how to implement functions in SimpleRisc . Each register is 32 bits wide. We assume
a special internal register called flags, which is not visible to the programmer. It contains two
fields flags.F(equal) and flags.GT(greater than). E is set to 1 if the result of a comparison
is equality, and GT is set to 1 if a comparison concludes that the first operand is greater than
the second operand. The default values of both the fields are 0.

Each instruction is encoded into a 32-bit value, and it requires 4 bytes of storage in memory.

SimpleRisc assumes a memory model similar to the Von Neumann machine augmented with
registers as described in Section [1.7.3] The memory is a large array of bytes. A part of it saves
the program and the rest of the memory is devoted to storing data. We assume that multibyte
data types such as integers are saved in the little endian format.

3.3.3 Register Transfer Instruction — mov

The mov instruction is a 2-address format instruction that can transfer values from one register
to another, or can load a register with a constant. Our convention is to always have the
destination register at the beginning. Refer to Table The size of the signed immediate
operand is limited to 16 bits. Hence, its range is between —2'° to 2% — 1.

Semantics Example Explanation

mov rl, 12 | 7l <12

mov reg, (reg/jmm) mov rl, 3 rl <3

Table 3.2: Semantics of the mov instruction

3.3.4 Arithmetic Instructions

SimpleRisc has 6 arithmetic instructions — add, sub, mul, div, mod, and cmp. The connotations
of add, sub, and mul are self explanatory (also see Table [3.3)). For arithmetic instructions, we
assume that the first operand in the list of operands is the destination register. The second



109 (©) Smruti R. Sarangi

operand is the first source operand, and the third operand is the second source operand. The
first and second operands need to be registers, whereas the last operand (second source register)
can be an immediate value.

Semantics Example Explanation

add r1, r2, 13 | rl < r2+173

add r1, r2, 10 | r1 < r2 410

sub reg, reg, (reg/imm) | subrl, r2,r3 | rl<r2—1r3

mul reg, reg, (reg/imm) | mul rl, r2, 13 | rl < r2 xr3

div reg, reg, (reg/imm) | divrl, r2,r3 | rl< r2/r3 (quotient)

mod reg, reg, (reg/imm) | mod rl, r2, r3 | r1 < r2 mod r3  (remainder)
cmp reg, (reg/imm) cmp rl, r2 set flags

add reg, reg, (reg/imm)

Table 3.3: Semantics of arithmetic instructions in SimpleRisc

Example 26
Write assembly code in SimpleRisc to compute: 31 * 29 - 50, and save the result in r4.
Answer:

SimpleRisc
mov r1, 31

mov r2, 29

mul r3, rl, r2e

sub 4, r3, 50

The div instruction divides the first source operand by the second source operand, computes
the quotient, and saves it in the destination register. For example it will compute 30/7 to be
4. The mod instruction computes the remainder of a division. For example, it will compute
30 mod 7 as 2.

Example 27
Write assembly code in SimpleRisc to compute: 31 / 29 - 50, and save the result in r4.

Answer:
SimpleRisc

mov r1, 31
mov r2, 29
div r3, ri, r2
sub 4, r3, 50

The cmp instruction is a 2-address instruction that takes two source operands. The first
source operand needs to be a register, and the second one can be an immediate or a register. It
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compares both the operands by subtracting the second from the first. If the operands are equal,
or in other words the result of the subtraction is zero, then it sets flags.F to 1. Otherwise
flags.E is set to 0. If the first operand is greater than the second operand, then the result of
the subtraction will be positive. In this case, the cmp instruction sets flags.GT to 1, otherwise
it sets it to 0. We will require these flags when we implement branch instructions.

3.3.5 Logical Instructions

SimpleRisc has three logical instructions — and, or, and not. and and or are 3-address instruc-
tions. They compute the bitwise AND and OR of two values respectively. The not instruction
is a 2-address instruction that computes the bitwise complement of a value. Note that the
source operand of the not instruction can be an immediate or a register. Refer to Table

Semantics Example Explanation
and reg, reg, (reg/imm) | and rl, r2, r3 rl < r2 Ar3
or reg, reg, (reg/imm) orrl, r2, r3 rl < r2Vvr3
not reg, (reg/imm) not rl, r2 rl <~ 12

A bitwise AND, V bitwise OR, ~ logical complement ‘

Table 3.4: Semantics of logical instructions in SimpleRisc

Example 28

Compute (a V' b). Assume that a is stored in r0, and b is stored in rl. Store the result in
r2.

Answer:
StmpleRisc

or r3, r0, rl
not r2, r3

3.3.6 Shift Instructions — [sl, [sr, asr

SimpleRisc has three types of shift instructions lsl (logical shift left), Isr (logical shift right),
and asr (arithmetic shift right). Each of these instructions are in the 3-address format. The
first source operand points to the source register, and the second source operand contains the
shift amount. The second operand can either be a register or an immediate value.

The sl instruction shifts the value in the first source register to the left Similarly, Isr, shifts
the value in the first source register to the right. Note that it is a logical right shift. This means
that it fills all the MSB positions with zeros. In comparison, asr, performs an arithmetic right
shift. It fills up all the MSB positions with the value of the previous sign bit. Semantics of shift
instructions are shown in Table 3.5
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Semantics Example Explanation

Isl 3, rl, r2 | r3 < rl < r2 (shift left)

Isl 3, r1, 4 r3 < rl1 < 4 (shift left)

Isr r3, r1, 12 | 73 <= r1 >> r2 (shift right logical)
Isrr3, rl, 4 | r3 < r1>> 4 (shift right logical)

asr r3, rl, r2 | 73 < r1 > r2 (arithmetic shift right)
asr r3, rl, 4 | r3 <= rl > 4 (arithmetic shift right)

Isl reg, reg, (reg/imm)

Isr reg, reg, (reg/imm)

asr reg, reg, (reg/imm)

Table 3.5: Semantics of shift instructions in SimpleRisc

3.3.7 Data Transfer Instructions: [d and st

SimpleRisc has two data transfer instructions — load(ld) and store(st). The load instructions
loads values from memory into registers, and the store instruction saves values in registers to
memory locations. Examples and semantics are shown in Table

Semantics Example Explanation
Id reg, immireg] | 1d r1, 12[r2] | r1 < [r2 + 12]
st reg, imm[reg] | st rl, 12[r2] | [r2 +12] -1

Table 3.6: Semantics of load-store instructions in SimpleRisc

Let us consider the load instruction: Id r1,12[r2]. Here, we are computing the memory
address as the sum of the contents of 2 and the number 12. The [d instructions accesses this
memory address, fetches the stored integer and stores it in 1. We assume that the computed
memory address points to the first stored byte of the integer. Since we assume a little endian
representation, the memory address contains the LSB. The details are shown in Figure [3.7|(a).

The store operation does the reverse. It stores the value of r1 into the memory address (r2
+ 12). Refer to Figure 3.7|(b).

3.3.8 Unconditional Branch Instructions

SimpleRisc has one unconditional branch instruction, b, which makes the program counter jump
to the address corresponding to a label in the code. It takes a single operand, which is a label
in the program. Its semantics is shown in Table

Semantics | Example | Explanation
b label b .foo branch to .foo

Table 3.7: Semantics of unconditional branch instructions in SimpleRisc

Let us explain its operation with the help of a simple example, as shown below.
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Id rl, 12([r2] strl, 12[r2]

) Memory Memory
Register Register
file [12] file [12]
rl rl Y
r2 r2 &+

- -

(a) (b)

Figure 3.7: Load and store operations in SimpleRisc

add r1, r2, r3
b .foo

.foo:
add r3, r1, r4

In this example, we add the values of 72, and 73, and then save the result in 1. After that,
the processor jumps to the code pointed to by the label, .foo. It proceeds to execute the code
after the label, . foo. It starts out by executing the instruction add r3,r1,r4. It then proceeds
to execute subsequent instructions.

3.3.9 Conditional Branch Instructions

SimpleRisc has two conditional branch instructions — beq and bgt. Real world instruction
sets typically have more branch instructions. Nonetheless, at the cost of code size, these two
instructions are sufficient for implementing all types of branches.

The beq instruction stands for “branch if equal”. This means that if any preceding cmp
instruction has set the E flag, then the PC will branch to the label specified in this instruction.
Otherwise, the branch is said to fail, and the processor will proceed to execute the instruction
after the branch. Similarly, the bgt instruction stands for “branch if greater than”. This branch
instruction bases its outcome on the value of the G'I" flag. It if is set to 1, then it branches to the

label specified in the branch instruction, otherwise the processor executes the next instruction
after the branch. Refer to Table 3.8
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Semantics | Example | Explanation
beq label | beq .foo | branch to .foo if flags.F =1
bgt label | bgt .foo | branch to .foo if flags.GT =1

Table 3.8: Semantics of ranch instructions in SimpleRisc

Example 29

Write an iterative program to compute the factorial of a number stored in r0. Assume that
the number is greater than 2. Save the result in r1.

Answer: Let us first take a look at a small C program to compute the factorial of the

variable num.
C

wnt prod = 1;

int idx;

for(idz = num; idz > 1; idz —-) {
prod = prod * idz

}

Let us now try to convert this program to SimpleRisc .

StmpleRisc
mov r1, 1 /* prod = 1 */
mov r2, 70 /* idz = num */

.loop:
mul r1, r1, r2 /* prod = prod * idz */
sub r2, r2, 1 /* idx = idz - 1 */
cmp r2, 1 /* compare (idz, 1) */
bgt .loop /* if (idz > 1) goto .loop*/

Example 30 Write an assembly program to find out if the number stored in r1 is a prime
number. Assume that it is greater than 3. Save the Boolean result in r0.

Answer:
SimpleRisc

mov r2, 2
.loop:

mod r3, r1, T2 @ divide number by r2

cmp r3, 0 compare the result with 0

beq .notprime 1f the result s 0, not prime

add r2, r2, 1 increment r2

cmp rl, T2

]
¢
e
¢

compare T2 with the number
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bgt .loop

mov r0, 1
b .exit

.notprime:
mov r0, 0

.exrt:

@ iterate 1f T2 s smaller

@ number is prime
@ exit

@ number is mot prime

Answer:

Example 31 Write an assembly program to find the least common multiple (LCM) of two
positive numbers stored in rl and r2. Save the result in r0.

StmpleRisc

@ rterate
mov r3, 1
mov T4, T1

.loop:
mod T5, T4, T2
cmp r5, 0
beq .lcm
add r3, r3, 1
mul v4, r1, r3
b .loop

.lem:
mov T0, T4

@ let the numbers be A(rl) and B(r2)

Q

tdr = 1

tmp =L b

compare mod with 0

LCM found (L %s the LCM)
increment 1dz

L =4 % idz

(SIS IS IS IO

@ result is equal to L

3.3.10 Functions

Now, that we have seen generic instructions, operands, and addressing modes, let us come
to one of the most advanced features in high level programming languages that makes their
structure extremely modular namely functions (also referred to as subroutines or procedures
in some languages). If the same piece of code is used at different points in a program, then it
can be encapsulated in a function. The following example shows a function in C to add two

numbers.
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int addNumbers(int a, int b) {
return (a+b);

Calling and Returning from Functions

Let us now go over the basic requirements to implement a simple function. Let us assume
that an instruction with address A calls a function foo. After executing function foo, we need
to come back to the instruction immediately after the instruction at A. The address of this
instruction is A + 4 (if we assume that the instruction at A is 4 bytes long). This process is
known as returning from a function, and the address (A 4 4) is known as the return address.

Definition 34
Return address: It is the address of the instruction that a process needs to branch to after
executing a function.

Thus, there are two fundamental aspects of implementing a function. The first is the process
of invoking or calling a function, and the second aspect deals with returning from a function.

Let us consider the process of calling a function in bit more detail. A function is essentially
a block of assembly code. Calling a function is essentially making the PC point to the start
of this block of code. We have already seen a method to implement this functionality when
we discussed branch instructions. We can associate a label with every function. The label
should be associated with the first instruction in a function. Calling a function is as simple as
branching to the label at the beginning of a function. However, this is only a part of the story.
We need to implement the return functionality as well. Hence, we cannot use an unconditional
branch instruction to implement a function call.

Let us thus propose a dedicated function call instruction that branches to the beginning of a
function, and simultaneously saves the address that the function needs to return to (referred to
as the return address). Let us consider the following C code, and assume that each C statement
corresponds to one line of assembly code.

foo(); /* Line 1 x/
a + b; /* Line 2 */

o P
I

In this small code snippet, we use a function call instruction to call the foo function. The
return address is the address of the instruction in Line 2. It is necessary for the call instruction to
save the return address in a dedicated storage location such that it can be retrieved later. Most
RISC instruction sets (including SimpleRisc ) have a dedicated register known as the return
address register to save the return address. The return address register gets automatically
populated by a function call instruction. When we need to return from a function, we need to
branch the address contained in the return address register. In SimpleRisc , we devote register
15 to save the return address, and refer to it as ra.

What happens if foo calls another function? In this case, the value in ra will get overwritten.
We will look at this issue later. Let us now consider the problem of passing arguments to a
function, and getting return values back.
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Passing Arguments and Return Values

Assume that a function foo invokes a function foobar. foo is called the caller, and foobar is
called the callee. Note that the caller-callee relationships are not fixed. It is possible for foo
to call foobar, and also possible for foobar to call foo in the same program. The caller and
callee are decided for a single function call based on which function is invoking the other.

Definition 35

caller A function, foo, that has called another function, foobar.

callee A function, foobar, that has been called by another function, foo.

Both the caller and the callee see the same view of registers. Consequently, we can pass
arguments through the registers, and likewise pass the return values through registers also.
However, there are several issues in this simple idea as we enumerate below (Assume that we
have 16 registers).

1. A function can take more than 16 arguments. This is more than the number of general
purpose registers that we have. Hence, we need to find a extra space to save the arguments.

2. A function can return a large amount of data, for example, a large structure in C. It
might not be possible for this piece of data to fit in registers.

3. The callee might overwrite registers that the caller might require in the future.

We thus observe that passing arguments and return values through registers works only
for simple cases. It is not a very flexible and generic solution. Nonetheless, there are two
requirements that emerge from our discussion.

Space Problem We need extra space to send and return more arguments.

Overwrite Problem We need to ensure that the callee does not overwrite the registers of the
caller.

To solve both the problems, we need to take a deeper look at how functions really work.
We can think of a function — foo — as a black box to begin with. It takes a list of arguments
and returns a set of values. To perform its job, foo can take one nano-second, or one week,
or even one year. foo might call other functions to do its job, send data to I/O devices, and
access memory locations. Let us visualise the function, foo, in Figure [3.8

To summarise, a generic function processes the arguments, reads and writes values from
memory and I/O devices if required, and then returns the result. Regarding memory and 1/0
devices, we are not particularly concerned at this point of time. There is a large amount of
memory available, and space is not a major constraint. Reading and writing I/O devices is also
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Read/write Read/write
I/0 devices memory

Arguments fO o Mﬁ

Figure 3.8: Function foo as a black box.

typically not associated with space constraints. The main issue is with registers, because they
are in short supply.

Let us solve the space problem first. We can transfer values through both registers and
memory. For simplicity, if we need to transfer a small amount of data, we can use registers,
otherwise we can transfer them through memory. Similarly, for return values, we can transfer
values through memory. We are not limited by space constraints if we use memory to transfer
data. However, this approach suffers from lack of flexibility. This is because there has to be
strict agreement between the caller and the callee regarding the memory locations to be used.
Note that we cannot use a fixed set of memory locations, because it is possible for the callee to
recursively call itself.

recursive function call

foobar() {

foobar();

An astute reader might argue that it is possible for the callee to read the arguments from
memory and transfer them to some other temporary area in memory and then call other func-
tions. However, such approaches are not elegant and not very efficient also. We shall look at
more elegant solutions later.

Hence, at this point, we can conclude that we have solved the space problem partially. If
we need to transfer a few values between the caller and the callee or vice versa, we can use
registers. However, if the arguments/return values do not fit in the set of available registers,
then we need to transfer them through memory. For transferring data through memory, we
need an elegant solution that does not require a strict agreement between the caller and the
callee regarding the memory locations used to transfer data. We shall consider such solutions

in Section B.3.101

Definition 36
The notion of saving registers in memory and later restoring them is known as register
spilling.
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To solve the overwrite problem, there are two solutions. The first is that the caller can
save the set of registers it requires in a dedicated location in memory. It can later retrieve its set
of registers after the callee finishes, and returns control to the caller. The second solution is for
the callee to save and restore the registers that it will require. Both the approaches are shown
in Figure 3.9 This method of saving the values of registers in memory, and later retrieving
them is known as spilling.

Caller Caller

Save registers

Callee Callee
| Save registers |

| Restore registers |

| Restore registers|

(a) Caller saved (b) Callee saved

Figure 3.9: Caller saved and callee saved registers

Here, we have the same problem again. Both the caller and the callee need to have a strict
agreement on the locations in memory that need to be used. Let us now try to solve both the
problems together.

The Stack

We simplified the process of passing arguments to and from a function, and saving/restoring the
registers using dedicated locations in memory. However, this solution was found to be inflexible
and it can be quite complex to implement for large real world programs. To simplify this idea,
let us find a pattern in function calls.

A typical C or Java program starts with the main function. This function then calls other
functions, which might in turn call other functions, and finally the execution terminates when
the main function exits. Each function defines a set of local variables and performs a com-
putation on these variables and the function arguments. It might also call other functions.
Finally, the function returns a value and rarely a set of values (structure in C). Note that after
a function terminates, the local variables, and the arguments are not required anymore. Hence,
if some of these variables or arguments were saved in memory, we need to reclaim the space.
Secondly, if the function has spilled registers, then these memory locations also need to be freed
after it exits. Lastly, we note that if the callee calls another function, then it will need to save
the value of the return address register in memory. We will need to free this location also after
the function exits.
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It is best to save all of these pieces of information contiguously in a single region of memory.
This is known as the activation block of the function. Figure [3.10| shows the memory map of
the activation block.

Activation block

| Arguments |

| Return address |

| Register spill area |

Local variables

Figure 3.10: Activation block

The activation block contains the arguments, return address, register spill area (for both
caller saved and callee saved schemes), and the local variables. Once a function terminates, it
is possible to get rid of the activation block entirely. If a function wants to return some values,
then it can either do so using registers. However, if it wants to return a large structure, then
it can write it into the activation block of the caller. The caller can supply a location within
its activation block where this data can be written. We shall see that it is possible to do this
more elegantly. Prior to explaining how this can be done, we need to look at how to arrange
activation blocks in memory.

We can have one memory region where all the activation blocks are stored in contiguous
regions. Let us consider an example. Let us assume that function foo calls function foobar,
which in turn calls foobarbar. Figure [3.1a) - (d) show the state of memory at four points —
(a) just before calling foobar, (b) just before calling foobarbar, (c) after calling foobarbar, (d)
just after foobarbar returns.

We observe that there is a last in first out behavior in this memory region. The function
that was invoked the last is the first function to finish. Such kind of a last in-first out structure
is traditionally known as a stack in computer science. Hence, the memory region dedicated to
saving activation blocks is known as the stack. Traditionally, the stack has been considered
to be downward growing (growing towards smaller memory addresses). This means that the
activation block of the main function starts at a very high location and new activation blocks
are added just below (towards lower addresses) existing activation blocks. Thus the top of the
stack is actually the smallest address in the stack, and the bottom of the stack is the largest
address. The top of the stack represents the activation block of the function that is currently
executing, and the bottom of the stack represents the initial main function.
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Stack

foo foo foo foo

foobar foobar| |foobar

foobarbar

(a) (b) (c) (d)

Figure 3.11: The state of the stack after several function calls

Definition 37
The stack is a memory region that saves all the activation blocks in a program.

o [t is traditionally considered to be downward growing.
e Before calling a function, we need to push its activation block to the stack.

o When a function finishes execution, we need to pop its activation block off the stack.

Definition 38
The stack pointer register maintains a pointer to the top of the stack.

Most architectures save a pointer to the top of the stack in a dedicated register called the
stack pointer. This register is r14 in SimpleRisc . It is also called sp. Note that for a lot of
architectures, the stack is a purely software structure. For them, the hardware is not aware
of the stack. However, for some architectures such as x86, hardware is aware of the stack and
uses it to push the return address or the values of other registers. However, even in this case
the hardware is not aware of the contents of each activation block. The structure is decided
by the assembly programmer or the compiler. In all cases, the compiler needs to explicitly add
assembly instructions to manage the stack.

Creating a new activation block for the callee involves the following steps.

1. Decrement the stack pointer by the size of the activation block.
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2. Copy the values of the arguments.

3. Initialise any local variables by writing to their corresponding memory locations if re-
quired.

4. Spill any registers (store to the activation block) if required.

It is necessary to destroy the activation block upon returning from a function. This can be
trivially done by adding the size of the activation block to the stack pointer.

By using a stack, we have solved all of our problems. The caller and the callee cannot
overwrite each other’s local variables. The local variables are saved in the activation blocks,
and two activation blocks do not overlap. Along with variables it is possible to stop the callee
from overwriting the caller’s registers by explicitly inserting instructions to save registers in the
activation blocks. There are two methods of achieving this — caller-saved scheme and callee-
saved scheme. Secondly, there is no need to have an explicit agreement regarding the memory
area that will be used to pass arguments. The stack can be used for this purpose. The caller
can simply push the arguments on the stack. These arguments will get pushed into the callee’s
activation block, and the callee can easily use them. Similarly, while returning from a function
the callee can pass return values through the stack. It needs to first destroy its activation block
by decrementing the stack pointer, and then it can push the return values on the stack. The
caller will be aware of the semantics of the callee, and thus after the callee returns it can assume
that its activation block has been effectively enlarged by the callee. The additional space is
consumed by the return values.

3.3.11 Function Call/Return Instructions

SimpleRisc has two instructions for functions — call and ret. The call instructions takes a single
argument, — the label of the first instruction of the function. It transfers control to the label
and saves the return address in register ra. The ret instructions transfers the contents of ra
to the PC. It is a 0-address instruction because it does not require any operands. Table
shows the semantics of these instructions. In Table [3.9] we assume that the address method
provides the address of the first instruction of the foo function. Secondly, the return address is
equal to PC' + 4 because we assume that each instruction is 4 bytes long. call and ret can be
thought of as branch instructions because they change the value of the PC. However, they are
not dependent on any condition such as the value stored in a register. Hence, these instructions
can conceptually be considered to be unconditional branch instructions.

Semantics | Example | Explanation
call label | call .foo | ra<+ PC+4; PC <« address(.foo);
ret ret PC +ra

Table 3.9: Semantics of function call/return instructions in SimpleRisc
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Example 32
Write a function in SimpleRisc that adds the values in registers 0, and r1, and saves the
result in r2.

Answer:
SimpleRisc

. foo:
add r2, r0, ri1
ret

Example 33

Write a function, foo, in SimpleRisc that adds the values in registers r0, and r1, and saves
the result in r2. Then write another function that invokes this function. The invoking
function needs to first set r0 to 3, vl to 5, and then invoke foo. After foo returns, it needs
to add 10 to the result of foo, and finally save the sum in r3.

Answer:
StmpleRisc

. foo:

add r2, r0, ri

ret
.main:

mov r0, 3

mov rl, 5

call . foo

add r3, r2, 10
Example 34

Write a recursive function to compute the factorial of 10 that is initially stored in r0. Save
the result in rl.
Answer: Let us first take a look at a small C program to compute the factorial of the

variable num.
C

int factorial (int num) {
if (num <= 1) return 1;
return num * factorial (num - 1);

}

void main() {
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int result = factorial (10);

Let us now try to convert this program to SimpleRisc .
StmpleRisc

.factorial:
cmp r0, 1 /* compare (1,num) */
beq .return
bgt .continue
b .return

.continue:
sub sp, sp, 8 /* create space on the stack */
st r0, [sp] /* push r0 on the stack */
st ra, 4[sp] /* push the return address register */
sub r0, r0, 1 /* num = num - 1 */
call .factorial /* result will be in r1 */
ld r0, [sp] /* pop 70 from the stack */
ld ra, 4[sp] /* restore the return address */
mul r1, r0, r1 /% factorial(n) = n * factorial(n-1) */
add sp, sp, 8 /* delete the activation block */
ret
.return:
mov r1, 1
ret

.main:
mov r0, 10
call .factorial

This example uses the stack to save and restore the value of r0. In this case, the caller
saves and restores its registers.

3.3.12 The nop Instruction

Let us now add an instruction called nop that does nothing. Unlike other instructions, we do not
need a table explaining the semantics of the instruction, because it does absolutely nothing!!!

Question 4 Why on earth would we add an instruction that does not do anything?
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We will justify the need to have a nop instruction in our portfolio of instructions in Chap-
ter We shall see that it is important to have an instruction that does not do anything
to ensure correctness in execution. Let us for the time being bear with this extra instruction
that does not seem to have any purpose. The reader will definitely appreciate the need for this
instruction in Chapter when we discuss pipelining.

3.3.13 Modifiers

Let us now consider the problem of loading a 32-bit constant into a register. The following
code snippet shows us how to load the constant OxF B12CDEF.

/* load the upper two bytes */
mov r0O, OxFB12
1sl r0, r0O, 16

/* load the lower two bytes with Ox CD EF */
mov rl, OxCDEF

1sl r1, r1, 16

lsr rl, rl, 16 /* top 16 bits are zeros */

/* load all the four bytes */
add r0, r0, ri1

This problem requires 6 instructions. The reader needs to note that loading constants is a
common operation in programs. Hence, let us devise a mechanism to speedup the process, and
load a constant in a register in two operations. Most assemblers provide directives to directly
load constants. Nevertheless, these directives need to get translated into a basic sequence of
assembly instructions. Thus directives do not fundamentally solve of our problem of loading
constants into registers of memory locations efficiently.

We shall achieve this by using modifiers. Let us assign a modifier, ‘w’, or ‘h’; to an ALU
instruction other than shift instructions. By default, we assume that when we load a 16-bit
immediate into a 32-bit register, the processor automatically performs sign extension. This
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means that it sets each of the 16 MSB bits to the sign of the immediate. This preserves the
value of the immediate. For example, if our immediate is equal to -2, then its hexadecimal
representation is 0x FF FE. If we try to store it in a register, then in effect, we are storing —
0x FF FF FF FE.

Let us have two additional modes. Let us add the suffix ‘u’ to an instruction to make
it interpret the immediate as an unsigned number. For example, the instruction movu 70, 0z
FEAB, will load 0x 00 00 FE AB into register r0. This suffix allows us to specify 16-bit unsigned
immediate values. Secondly, let us add the suffix ‘h’ to an instruction to instruct it to load the
16-bit immediate into the upper half of a register. For example, movh r0, Ox FEAB, effectively
loads 0x FE AB 00 00, into r0. We can use modifiers with all ALU instructions, with the
exception of shift instructions.

Let us now consider the previous example of loading a 32-bit constant into a register. We
can implement it with two instructions as follows:

movh r0O, OxFB12 /* 10
addu r0, r0, OxCDEF /* r0

0xFB 12 00 00 */
r0 + 0x00 00 CD EF */

By using modifiers, we can load constants in 2 instructions, rather than 6 instructions.
Furthermore, it is possible to create generic routines using modifiers that can set the value of
any single byte in a 4 byte register. These routines will require a lesser number of instructions
due to the use of modifiers.

3.3.14 Encoding the SimpleRisc Instruction Set

Let us now try to encode each instruction to a 32-bit value. We observe that we have instructions
in 0,1,2 and 3 address formats. Secondly, some of the instructions take immediate values. Hence,
we need to divide 32 bits into multiple fields. Let us first try to encode the type of instruction.
Since there are 21 instructions, we require 5 bits to encode the instruction type. The code for
each instruction is shown in Table We can use the five most significant bits in a 32-bit
field to specify the instruction type. The code for an instruction is also known as its opcode.

Definition 39
An opcode is a unique identifier for each machine instruction.

Now, let us try to encode each type of instruction starting from 0-address instructions.

Encoding 0-Address Instructions

The two 0-address instructions that we have are ret, and nop. The opcode is specified by the
five most significant bits. In this case it is equal to 10100 for ret, and 10010 for b (refer to
Table [3.10). Their encoding is shown in Figure We only need to specify the 5 bit opcode
in the MSB positions. The rest of the 27 bits are not required.
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Instruction | Code || Instruction | Code || Instruction | Code

add 00000 || not 01000 || beq 10000
sub 00001 || mov 01001 || bgt 10001
mul 00010 || Isl 01010 || b 10010
div 00011 || Isr 01011 || call 10011
mod 00100 || asr 01100 || ret 10100
cmp 00101 || nop 01101

and 00110 || 1d 01110

or 00111 || st 01111

Table 3.10: List of instruction opcodes

32
VAN
opcode
\_V_/
5

Figure 3.12: Encoding the ret instruction

Encoding 1-Address Instructions

The 1-address instructions that we have are call, b, beq, and bgt. In SimpleRisc assembly, they
take a label as an argument. While encoding the instruction we need to specify the address of
the label as the argument. The address of a label is the same as the address of the instruction
that it is pointing to. If the line after the label is empty, then we need to consider the next
assembly statement that has an instruction.

These four instructions require 5 bits for their opcode. The remaining 27 bits can be used for
the address. Note that a memory address is 32 bits long. Hence, we cannot cover the address
space with 27 bits. However, we can make two key optimisations. The first is that we can
assume PC-relative addressing. We can assume that the 27 bits specify an offset (both positive
and negative) with respect to the current PC. The branch statements in modern programs are
generated because of for/while loops or if-statements. For these constructs the branch target is
typically within a range of several hundred instructions. If we have 27 bits to specify the offset,
and we assume that it is a 2’s complement number, then the maximum offset in any direction
(positive or negative) is 226. This is more than sufficient for almost all programs.

There is another important observation to be made. An instruction takes 4 bytes. If
we assume that all instructions are aligned to 4-byte boundaries, then all starting memory
addresses of instructions will be a multiple of 4. Hence, the least two significant binary digits
of the address will be 00. There is no reason for wasting bits in trying to specify them. We can
assume that the 27 bits specify the offset of the address of the memory word (in units of 4-byte
memory words) that contains the instruction. With this optimisation, the offset from the PC
in terms of bytes becomes 29 bits. This number should suffice for even the largest programs.
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Just in case, there is a pathological example, in which the branch target is more than 22® bytes
away, then the assembler needs to chain the branches such that one branch will call another
branch and so on. However, this would be a very rare case. The encoding for these instructions
is shown in Figure 3.13

32
N\
opcode offset
op |offset]
1 v / \ v -
5 27

Figure 3.13: Encoding of 1-address instructions(branch format)

Note that the 1-address instruction format finds a use for the unused bits in the 0-address
format. We can think of the 0-address format for the ret instruction as a special case of the
l-address format. Let us refer to the 1-address format as the branch format. Let us name
the fields in this format. Let us call the opcode portion of the format as op, and the offset as
of fset. The op field contains the bits in positions 28-32, and the offset field contains the bits
in positions 1-27.

Encoding 3-Address Instructions

Let us consider 3-address instructions first, and then look at other types of instructions. The
3-address instructions in SimpleRisc are add, sub, mul, div, mod, and, or, lsl, lsr, and asr.

Let us consider a generic 3-address instruction. It has a destination register, one input
source register, and a second source operand that can either be a register or an immediate. We
need to devote one bit to find out if the second source operand is a register or an immediate.
Let us call this the I bit and specify it just after the opcode in the instruction. If 7 = 1, then
the second source operand is an immediate. If I = 0, the second source operand is a register.

Let us now consider the case of 3-address registers that have their second source operand as
a register(/ = 0). Since we have 16 registers, we require 4 bits to uniquely specify each register.
Register 77 can be encoded as the unsigned 4-bit binary equivalent of ¢. Hence, to specify the
destination register and two input source registers, we require 12 bits. The structure is shown in
Figure Let us call this instruction format as the register format. Like the branch format
let us name the different fields — op (opcode, bits: 28-32), I (immediate present, bits:27), rd
(destination register, bits: 23-26), rsl (source register 1, bits: 19-22), and rs2 (source register
2, bits:15-18).

Now, if we assume that the second source operand is an immediate, then we need to set [
to 1. Let us calculate the number of bits we have left for specifying the immediate. We have
already devoted 5 bits for the opcode, 1 bit for the I bit, 4 bits for the destination register, and
4 bits for the first source register. In all, we have expended 14 bits. Hence, out of 32 bits, we
are left with 18 bits, and we can use them to specify the immediate.

We propose to divide the 18 bits into two parts — 2 bits (modifier) + 16 bits (constant part
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32
A\

opcode (0| dest reg|src reglfsrc reg2

[op | [Ij[rd ][ rsl ][ rs2 |

‘_V_/LV"'\_\/ I‘_\/ I‘_V /
5 1 4 4 4

Figure 3.14: Encoding 3-address instructions with register operands (register format)

of the immediate). The two modifier bits can take three values — 00 (default), 01 (‘u’), and 10
(‘h’). The remaining 16 bits are used to specify a 16-bit 2’s complement number when we are
using default modifiers. For the u and h modifiers, we assume that the 16-bit constant in the
immediate field is an unsigned number. In the rest of this book, we assume that the immediate
field is 18 bits long with a modifier part, and a constant part. The processor internally expands
the immediate to a 32-bit value, in accordance with the modifiers.

This encoding is shown in Figure Let us call this instruction format as the immediate
format. Like the branch format let us name the different fields — op (opcode, bits: 28-32), I
(immediate present, bits:27), rd (destination register, bits: 23-26), rsl (source register 1, bits:
19-22), and imm (immediate, bits:1-18).

32
<
opcode |1 dest reg|src regl immediate
[op—] 1] [rdJ[7sT I,_\\ﬂ' imm J
5 1 4 4 [modifier bits| 18

Figure 3.15: Encoding 3-address instructions with an immediate source operand (immediate
format)

Example 35
Encode the instruction: sub r1, r2, 3.

Answer: Let us encode each field of the instruction. We have:

Field | Encoding | Field | Encoding
sub 00001 r2 0010

1 1 3 11

ri 0001
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Thus, the binary encoding is (spaces added for readability): 00001 1 0001 0010 00 0000
0000 0000 0011. When we convert to hex, we get: 0x0C4800083.

Encoding cmp, not, and mov

The e¢mp instruction has two source operands. The second source operand can be a register or
an immediate. We will use the standard 3-address register or immediate formats for encoding
the emp instruction. The destination register field will remain empty. See Figure One
of our aims in designing the encoding is to keep things as simple and regular as possible
such that the processor can decode the instruction very easily. We could have designed a
separate encoding for a 2-address instruction such as cmp. However, the gains would have been
negligible, and by sticking to a fixed format, the processor’s instruction decode logic becomes
more straightforward.

The not and mov instructions have one destination register, and one source operand. This
source operand can be either an immediate or a register. Hence, we can treat the source
operand of these instructions as the second source operand in the 3-address format, and keep
the field for the first source register empty for both of these instructions. The format is shown
in Figure (3.16

32
cmp 00101 || sl [ rs2/imm
\_V_A—\,J\—\, I— /\ v —
5 1 4 4 18
32
Mmov 01001 |I| rd rs2 /imm
— " ——" v =
5 1 4 4 18
32
not 01000 (I rd rs2/ imm
\—V_A—\,J\—\, ‘_\' /\ y >
5 1 4 4 18

Figure 3.16: ¢mp, not, and mov instructions
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Load and Store Instructions

In SimpleRisc the instructions — [d and st — are 2-address instructions. The second operand
points to a memory address. It uses a base-offset addressing mode. There is a base register,
and an integer offset.

For a load instruction, there are three unique pieces of information that need to be encoded:
destination register, base register, and offset. In this case, we propose to use the three address
immediate format. The I bit is set to 1, because we need to specify an offset. The first source
register represents the base register, and the immediate represents the offset. Note that this
encoding follows our principle of regularity and simplicity. Our aim is to reuse the 3-address
register and immediate formats for as many instructions as possible.

Now, let us look at store instructions. Store instructions are slightly special in the sense
that they do not have a destination register. The destination of a store instruction is a memory
location. This information cannot be encoded in the immediate format. However, for reasons
of simplicity, we still want to stick to the formats that we have defined. We need to take a
crucial design decision here by answering Question [5]

Question 5
Should we define a new instruction format for the store instruction?

Let us adjudge this case in the favor of not introducing a new format. Let us try to reuse
the immediate format. The immediate format has four fields — op, rd, rsl, and imm. The
opcode field (op) need not be touched. We can assume that the format of the store instruction
is: st rd, imm(rsl]. In this case, the field rd represents the register to be stored. Like the load
instruction we can keep the base register as rsl, and use the imm field to specify the offset. We
break the pattern we have been following up till now by saving a source register in rd, which
is meant to save a destination register. However, we were compelled to do this at the cost of
not introducing a new instruction format. Such design tradeoffs need to be made continuously.
We have to always balance the twin objectives of elegance and efficiency. It is sometimes not
possible to choose the best of both worlds. In this case, we have gone for efficiency, because
introducing a new instruction format for just one instruction is overkill.

To conclude, figure [3.17| shows the encoding for load and store instructions.

Example 36
Encode the instruction: st r8, 20[r2].

Answer: Let us encode each field of the instruction. We have:

Field | Encoding

st 01111
I 1

r8 1000
T2 0010

20 0001 0100
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32
Id rd, imm[rs1] | 01120]1] rd | rsl imm
\_V_A—\,J\_V_/\_v_/ v
5 1 4 4 18
32
st rd, imm[rs1] [ 011111 rd | rsl imm
——A " v/
5 1 4 4 18

Figure 3.17: Encoding of load and store instructions

Thus, the binary encoding is (spaces added for readability): 01111 1 1000 0010 00 0000
0000 0001 0100. When we convert to hex, we get: 0x7E08001/.

Summary of Instruction Formats

In the last few subsections, we have described a method to encode an instruction into a sequence
of bits (machine code). A compiler can use this method to translate a program written in a
high level language to machine code, and thus create an executable program. It is now the
job of the processor to execute this program by reading the instructions one by one. We have
substantially made our life easy by assuming that each instruction is exactly 4 bytes long. The
processor simply needs to start at the starting address of the program in memory and fetch one
instruction after the other. If an instruction is a branch, then the processor needs to evaluate
the branch condition, and jump to the branch target. The part of the processor that is primarily
concerned about the details of the ISA is the decode logic or the decoder . It is the role of the
decoder to understand and decode an instruction. While designing an encoding for an ISA,
creating a simple and efficient instruction decoder was our prime objective.

Format Definition

branch op (28-32) | of fset (1-27) ‘

register op (28-32) | I (27) | rd (23-26) | rsl (19-22) | rs2 (15-18) ‘
immediate | | op (28-32) | I (27) | rd (23-26) | rs1 (19-22) | imm (1-18) |

op — opcode, of fset — branch offset, I — immediate bit, rd — destination register
rsl — source register 1, rs2 — source register 2, imm — immediate operand

Table 3.11: Summary of instruction formats

To decode a SimpleRisc instruction, the first task is to find the instruction format. We have
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defined three formats — branch, immediate, and register. Let us refer to Table The six
branch format instructions are call, ret, beq, bgt, b, and nop. Recall that we encode both 0 and
1-address format instructions in the branch format.

The opcodes of all the five branch instructions (b, beq, bgt, call, ret) have 1 as their most
significant bit, whereas all other instructions have a 0 in their most significant position. Hence,
for a decoder to find out if an instruction is a branch is very easy. It just needs to take a look
at the three most significant bit of the opcode. It should be 1. Moreover, to find out if an
instruction is a nop, the decoder needs to compare it with 01101, which requires a small circuit.

If an instruction is not in the branch format, then it must be in the immediate or register
format. This can be quickly decided by taking a look at the I bit. If it is 1, then the instruction
is in the immediate format, otherwise it is in the register format. The formats are summarised

in Table B.111

Lessons Learnt

Now that we have designed a small instruction set of our own, looked at sample programs, and
encoded our instructions, we are all set to design a processor for our SimpleRisc ISA. It needs
to decode every single instruction, and execute it accordingly. Before proceeding further, let us
look back at how we designed our ISA, and how should ISAs be designed in general.

1. The first step in designing an ISA is to study the workload that the ISA is being designed
for. In the case of SimpleRisc , we wanted to use it for running general purpose programs.
This meant that SimpleRisc needed to be simple, concise, generic, and complete as out-
lined in Chapter However, for different target workloads, the requirements might be
very different.

2. After studying the workload, we need to next decide on the number of instructions that we
need to have. Unless there are compelling requirements otherwise, it is not advisable to
have more than 64-128 instructions. More than 128 instructions will make the instruction
decoder very complex. It will also complicate the design of the processor.

3. After finalising the number of instructions, we need to finalise the different types of
instructions. If we are designing an ISA for extensive numerical computation, then we
should have many arithmetic operations. If we are designing an ISA for processing text,
then we should have many instructions that can process strings (pieces of text). In the
case of SimpleRisc we devoted 6 instructions to arithmetic operations, 3 instructions to
shift operations, 3 instructions to logical operations, 3 instructions to data transfer, 5
instructions to branch operations, and designated 1 instruction as no-op (no operation).
We chose this distribution because we expect to run a lot of general purpose programs
that will have complex arithmetical and logical constructs. We could have very well gotten
rid of an instruction such as mod and replaced it with a sophisticated branch instruction,
if we wanted to look at programs that will have a lot of branches. These subtle tradeoffs
need to be evaluated thoroughly.

4. Once, we have finalised the broad types of instructions and the distribution of instructions
across these types, we come to the actual instructions themselves. In this case also, we
want to make the common case fast. For example, there is no point in having a division
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instruction in programs that do not have divisions operations. Secondly, we need to decide
the format of each instruction in terms of the number and type of operands. For example,
in SimpleRisc , all our arithmetic operations are in the 3-address format. If there is a
requirement from the side of processor designers that they want to reduce the number of
registers, then we can opt for the 2-address format. Alternatively, if we want to process
a massive amount of information in one go such as add a list of 10 numbers, then we can
even have a 11-address format instruction.

5. Once the format of the instruction is decided, we need to decide on the different ad-
dressing modes. This decision has many ramifications. For example, if we allow the
register-indirect addressing mode in arithmetic instructions, then we need to add addi-
tional hardware to access the memory and fetch the operand values. On the other hand,
if we have a register-only addressing mode for arithmetic instructions, then their imple-
mentation will be fast. However, the flip side is that we will need more registers, and
more dedicated load-store instructions to access memory. This tradeoff needs to be kept
in mind.

6. Once we have designed the set of instructions, we need to decide a proper encoding for
it. The main aim should be to reduce the work of the instruction decoder. It is best to
have a small set of generic instruction formats that the decoder can quickly discern. We
need to balance elegance and efficiency such that the decoder can be simple yet efficient.

3.4 Summary and Further Reading

3.4.1 Summary

Summary 3

1. Assembly language is a textual representation of machine instructions. Fach state-
ment in an assembly language program typically corresponds to one machine instruc-
tion.

2. An assembler is a program that converts an assembly language program to machine
code.

3. An assembly language is specific to an ISA and an assembler.

4. Assembly language is a vital tool for writing efficient programs, and for designing the
core routines of operating systems, and device drivers.

5. Hardware designers learn assembly languages to understand the semantics of an ISA.
It tells them what to build.

6. An assembly language program typically assumes a Von Neumann machine augmented
with a finite set of registers.
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7. A typical GNU assembly file contains a list of sections. Two important sections are
text and data. The text section contains the assembly statements that correspond to
machine code. The data section holds data and constants that the program will need
during its operation.

8. A typical assembly statement contains an optional label to uniquely identify it, an in-
struction with a set of operands, and an optional comment. Instead of an instruction,
it can also contain a directive that is a command to the assembler.

9. There are typically four types of generic assembly instructions:

(a) Data processing instructions — arithmetic and logical

(b) Data transfer instructions — move, load, and store

(¢) Branch instructions — branch, function call, return

(d) Exception generating instructions — transfer control to the operating system

An assembly language for a specific ISA also contains some machine specific instruc-
tions also that are mainly used to set its configuration or invoke some special feature.

10. The semantics of operands is also known as the addressing mode.

11. The main addressing modes are immediate (specify constant in instruction), register-
direct (specify the register’s name in the instruction), register-indirect (a register con-
tains the memory address), and base-offset (the offset is added to the memory location
in the base register).

12. We designed the SimpleRisc assembly language that contains 21 instructions. It is a
complete RISC ISA.

13. We designed an encoding for each SimpleRisc instruction. We broadly defined three
instruction formats
branch Contains a 5 bit opcode and 27 bit offset.

register Encodes a 3-address instruction with two register source operands and one
register destination operand.

immediate Encodes a 3-address instruction that has an immediate as one of the
operands.

In this chapter we have looked at the generic principles underlying different flavors of assembly
language. We constructed a small assembly language of our own for the SimpleRisc ISA, and
proceeded to encode it. This information is sufficient to design a basic processor for SimpleRisc
in Chapter 0] However, we would like to strongly advise the reader to at least study one of
the chapters on real world assembly languages — either ARM (Chapter |4) or x86 (Chapter .
Studying a real language in all its glory will help the reader deepen her knowledge, and she can
appreciate all the tricks that are required to make an ISA expressive.



135 (©) Smruti R. Sarangi

3.4.2 Further Reading

Instruction set design and the study of assembly languages are very old fields. Readers should
refer to classic computer architecture textbooks by Henessey and Patterson [Henessey and
Patterson, 2010], Morris Mano [Mano, 2007], and William Stallings [Stallings, 2010] to get a
different perspective. For other simple instruction sets such as SimpleRisc , readers can read
about the MIPS [Farquhar and Bunce, 2012], and Sparc [Paul, 1993] instruction sets. Their
early variants are simple RISC instruction sets with up to 64 instructions, and a very regular
structure. Along with the references that we provide, there are a lot of excellently written
tutorials and guides on the web for different ISAs.

Since the last 10 years, a trend has started to move towards virtual instruction sets. Pro-
grams compiled for these instruction sets need to be compiled once again on a real machine
such that the virtual instruction set can be translated to a real instruction set. The reasons for
doing so shall be described in later chapters. The Java language uses a virtual instruction set.
Details can be found in the book by Meyer et. al. [Downing and Meyer, 1997]. Readers can
also refer to a highly cited research paper that proposes the LLVA [Adve et al., 2003| virtual
instruction set.

Exercises

Assembly Language Concepts

Ex. 1 — What is the advantage of the register-indirect addressing mode over the memory-
direct addressing mode?

Ex. 2 — When is the base-offset addressing mode useful?

Ex. 3 — Consider the base-scaled-offset addressing mode, which directs the hardware to au-
tomatically multiply the offset by 4. When is this addressing mode useful?

Ex. 4 — Which addressing modes are preferable in a machine with a large number of regis-
ters?

Ex. 5 — Which addressing modes are preferable in a machine with very few registers?

Ex. 6 — Assume that we are constrained to have at the most two operands per instruction.

Design a format for arithmetic instructions such as add and multiply in this setting.

Assembly Programming

Ex. 7 — Write simple assembly code snippets in SimpleRisc to compute the following:
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i)a+b+c
ii)a+b—c/d

iii) (a+0b)x3—c/d
iv) a/b— (cxd)/3
v) (a < 2) — (b> 3) ((< (left shift logical), > (left shift arithmetic))

Ex. 8 — Write a program to load the value Oz FFEDFCO00 into r0. Try to minimise the
number of instructions.

Ex. 9 — Write an assembly program to set the 5 bit of register r0 to the value of the 37

bit of r1. Keep the rest of the contents of r0 the same. The convention is that the LSB is
the first bit, and the MSB is the 32"¢ bit. (Use less than or equal to 5 SimpleRisc assembly
statements)

Ex. 10 — Write a program in SimpleRisc assembly to convert an integer stored in memory
from the little endian to the big endian format.

Ex. 11 — Write a program in SimpleRisc assembly to compute the factorial of a positive
number using an iterative algorithm.

Ex. 12 — Write a program in SimpleRisc assembly to find if a number is prime.
Ex. 13 — Write a program in SimpleRisc assembly to test if a number is a perfect square.
Ex. 14 — Given a 32-bit integer in 13, write a SimpleRisc assembly program to count the

number of 1 to 0 transitions in it.

* Ex. 15 — Write a program in SimpleRisc assembly to find the smallest number that is a
sum of two different pairs of cubes. [Note: 1729 is the Hardy-Ramanujan number. 1729 =
123 +1° = 10° + 9%].

Ex. 16 — Write a SimpleRisc assembly program that checks if a 32-bit number is a palin-
drome. Assume that the input is available in r3. The program should set r4 to 1 if it is a
palindrome, otherwise r4 should contain a 0. A palindrome is a number which is the same
when read from both sides. For example, 1001 is a 4-bit palindrome.

Ex. 17 — Design a SimpleRisc program that examines a 32-bit value stored in 71 and counts
the number of contiguous sequences of 1s. For example, the value:

01110001000111101100011100011111
contains six sequences of 1s. Write the result in r2.

** Ex. 18 — Write a program in SimpleRisc assembly to subtract two 64-bit numbers, where
each number is stored in two registers.

** Ex. 19 — In some cases, we can rotate an integer to the right by n positions (less than or
equal to 31) so that we obtain the same number. For example: a 8-bit number 11011011 can
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be right rotated by 3 or 6 places to obtain the same number. Write an assembly program to
efficiently count the number of ways we can rotate a number to the right such that the result
is equal to the original number.

** Ex. 20 — A number is known as a cubic Armstrong number if the sum of the cubes of
the decimal digits is equal to the number itself. For example, 153 is a cubic Armstrong number
(153 = 13 + 53 + 33). You are given a number in register, 70, and it is known to be between 1
and 1 million. Can you write a piece of assembly code in SimpleRisc to find out if this number
is a cubic Armstrong number. Save 1 in r1 if it is a cubic Armstrong number; otherwise, save

0.

X Ex. 21 — Write a SimpleRisc assembly language program to find the greatest common
divisor of two binary numbers u and v. Assume the two inputs (positive integers) to be available
in 3 and r4. Store the result in r5. [HINT: The gcd of two even numbers v and v is 2 %

ged(u/2,v/2)]

Instruction Set Encoding

Ex. 22 — FEncode the following SimpleRisc instructions:

Design Problems

Ex. 23 — Design an emulator for the SimpleRisc ISA. The emulator reads an assembly pro-
gram line by line, checks each assembly statement for errors, and executes it. Furthermore,
define two assembler directives namely .print, and .encode to print data on the screen. The
.print directive takes a register or memory location as input. When the emulator encounters
the .print directive, it prints the value in the register or memory location to the screen. Sim-
ilarly, when the emulator encounters the .encode directive it prints the 32-bit encoding of the
instruction on the screen. Additionally, it needs to also execute the instruction.
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ARM® Assembly Language

In this chapter, we will study the ARM instruction set. As of 2012, this instruction set is the
most widely used instruction set in smart phones, and tablets. It has more than 90% market
Shar{] in this space. ARM processors are also one of the most popular processors in hard disk
drives, and set top boxes for televisions. Hence, for any student of computer architecture it is
very important to learn about the ARM instruction set because it will prove to be useful in
programming the mobile and handheld devices of the future.

The ARM instruction set is a 32-bit instruction set. This means that the sizes of all registers
are 32 bits, and the size of the memory address is equal to 32 bits. It is a RISC instruction set
with a very regular structure. Each instruction is encoded into a string of exactly 32 bits like
SimpleRisc . All arithmetic and logical operations, use only register operands, and lastly all the
communication between registers and memory happens through two data transfer instructions
— load and store.

4.1 The ARM® Machine Model

ARM assembly language assumes a machine model similar to that explained in Section
for SimpleRisc . For the register file, it assumes that there are 16 registers that are visible to
the programmer at any point of time. All the registers in ARM are 32 bits or 4 bytes wide.

The registers are numbered from r0 to r15. Registers r11...r15 are known by certain
mnemonics also as shown in Table r1l is the frame-pointer. It points to the top of the
activation block. r12 is a scratch register that is not meant to be saved by the caller or the
callee. r13 is the stack pointer. It is important to understand that r11 and r12 are assigned
a special connotation by the GNU compiler collection. They are not assigned special roles by
the ARM ISA.

Most of the ARM code running on processors is actually written in the Thumb-2 ARM ISA. The Thumb-2
ISA is essentially a recoding (or a simpler variant) of the ISA presented in this chapter. Hence, it is necessary
for readers to get a thorough understanding of the material that follows.

139
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Register | Abbrv. Name
rll fp frame pointer
r12 ip intra-procedure-call scratch register
rl3 Sp stack pointer
rl4d Ir link register
r1d pc program counter

Table 4.1: Registers with special names in ARM

Let us differentiate between generic registers and registers with special roles. Registers
r0...712 are generic. The programmer and the compiler can use them in any way they like.
However, the registers r13(sp), r14(Ir) and r15(pc) have special roles. sp is the stack pointer,
Ir is the return address register, and pc is the program counter. In this chapter, we shall use
the little endian version of the ARM ISA, and we shall describe the syntax of the assembly
language used by the GNU ARM Assembler [arm, 2000].

4.2 Basic Assembly Instructions

4.2.1 Simple Data Processing Instructions
Register Transfer Instructions

The simplest type of assembly instructions transfer the value of one register into another, or
store a constant in a register. There are two instructions in this class — mov and mwvn. Their
semantics are shown in Table Note that we always prefix an immediate with ‘#’ in ARM
assembly.

Semantics Example Explanation
mov rl, r2 | rl < r2
mov rl, #3 | rl + 3
mvn rl, r2 | rl < ~ 12
mvnrl, #3 | rl < ~ 3

mov reg, (reg/imm)

mvn reg, (reg/imm)

Table 4.2: Semantics of the move instructions

The register based mov instruction simply moves the contents of r2 to register r1. Alter-
natively, it can store an immediate in a register. In Table the mwvn instruction flips every
bit in the 32-bit register 72, and then transfers the contents of the result to r1. The ~ symbol
represents logical complement. For example, the complement of the 4-bit binary value, 0110,
is 1001. The mov and muvn instructions take two inputs. These instructions are examples of
2-address format instructions in ARM.
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Arithmetic Instructions

The simplest instructions in this class are add, sub, rsb (reverse subtract). Their semantics are
given in Table The second operand can also be an immediate.

Semantics Example Explanation
add reg, reg, (reg/imm) | add rl, r2, r3 | rl + 12 4 3
sub reg, reg, (reg/imm) | sub rl, r2, r3 | rl 12 - 13
rsb reg, reg, (reg/imm) | rsbrl, r2, r3 | rl < r3 - 12

Table 4.3: Semantics of add and subtract instructions

Example 37
Write an ARM assembly program to compute: 445 - 19. Save the result in rl.

Answer: Simple yet suboptimal solution.

mov r1, #4
mov T2, #5
add r3, r1, re
mov T4, #19
sub rl, r3, 14

Optimal solution.

mov r1, #4
add r1, ri, #5
sub r1, r1l, #19

Logical Instructions

Semantics Example Explanation

and reg, reg, (reg/imm) | and rl, r2, r3 | rl + r2 AND r3

eor reg, reg, (reg/imm) | eor rl, r2, r3 | rl < r2 XOR r3

orr reg, reg, (reg/imm) | orr rl, r2,r3 | rl < r2 OR r3

bic reg, reg, (reg/imm) | bic rl, r2,r3 | rl < r2 AND (~ r3)

Table 4.4: Semantics of logical instructions
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ARM’s bitwise logical instructions are shown in Table and computes a bit-wise AND,
eor computes an exclusive OR, orr computes a regular bit-wise OR, and the bic(bit-clear)
instruction clears off the bits in 72 that are specified in r3. Like arithmetic instructions, the
second operand can be an immediate.

Example 38
Write an ARM assembly program to compute: AV B, where A and B are 1 bit Boolean
values. Assume that A =0 and B = 1. Save the result in r0.

Answer:

mov r0, #0x0
orr r0, r0, #0zl
mun r0, T0

Multiplication Instructions

We shall introduce four multiply instructions with varying degrees of complexity. The fun-
damental issue with multiplication is that if we are multiplying two 32-bit numbers, then the
result will require 64 bits. The reason is that the largest unsigned 32-bit number is 232 — 1.
Consequently, when we try to square this number, our result is approximately 24, We would
thus need a maximum of 64 bits.

ARM has two 32-bit multiplication instructions that truncate the result to 32 bits — mul
and mla. They ignore the rest of the bits. mul multiplies the values in two registers and stores
the result in a third register. mla (multiply and accumulate) is in the 4-address format. It
multiplies the values of two registers, and adds the result to the value stored in a third register
(see Table . The advantage of the mla instruction is that it makes it possible to represent
code sequences of the form (d = a+ b*c¢) with one instruction. Such instructions are extremely
useful when it comes to implementing linear algebra kernels such as matrix multiplication.

Semantics Example Explanation

mul reg, reg, reg mul rl, r2, r3 rl < r2 x r3

mla reg, reg, reg, reg mla rl, r2, r3, r4 rl <12 xr3+r4d
smull reg, reg, reg, reg | smull 10, r1, r2, r3 | 11 70 = 12 Xgigpeq 13

64
umull reg, reg, reg, reg | umull r0, r1, r2, r3 | r1 70 < 12 Xynsigned 3

64

Table 4.5: Semantics of multiply instructions

In this chapter, we shall introduce two instructions that store the entire 64-bit result in
two registers. The smull and umull instructions perform signed and unsigned multiplication
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respectively on two 32-bit values to produce a 64-bit result. Their semantics is shown in
Table r0 contains the lower 32 bits, and r1 contains the upper 32 bits.

For all the multiply instructions that we have introduced, all the operands need to be
registers. Secondly, the first source register, should not be the same as the destination register.

Example 39
Compute 123 + 1, and save the result in 3.
Answer:

/* load test values */
mov r0, #12
mov r1, #1

/* perform the logical computation */
mul r4, 70, 70 @ 12*12
mla r3, r4, 70, r1 @ 12*12*12 + 1

Division Instructions

Newer versions of the ARM ISA have introduced two integer division instructions, sdiv and
udiv. The former is used for signed division and the latter is used for unsigned division (see
Table[4.6]). Both of them compute the quotient. The remainder can be computed by subtracting
the product of the dividend and the quotient from the dividend.

Semantics Example Explanation

sdiv reg, reg, reg | sdiv rl, r2, r3 | rl < r2 =+ r3 (signed)
udiv reg, reg, reg | udiv rl, r2, r3 | rl < r2 + r3 (unsigned)

Table 4.6: Semantics of divide instructions

4.2.2 Advanced Data-Processing Instructions

Let us consider the generic format of 3-address data-processing instructions.
instruction <destination register> <register operand 1> <operand 2>
Likewise, the generic format for 2 address data processing instructions is

instruction <register operand 1> <operand 2>

Up till now, we have been slightly quiet about < operand 2 >. It can be a register operand,
an immediate, or a special class of operands called — shifter operands. The first two classes are
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Generic format |

regl| |lsl #shift_amt
"|Isr | |reg2

asr

ror

Examples
| |

<~
Isl #1

[Aoxxo] —~[g1xijoo

Isr #1

(oo ~—“~[g1oia]

asr #1

Ao o] > [Al1oaa]

ﬁﬂoﬂﬂbﬁﬂﬂdlbﬂﬂ

Figure 4.1: Format of shifter operands

intuitive. Let us describe shifter operands in this section. Their generic format is shown in
Figure [4.1]

A shifter operand contains two parts. This first part is a register, and the latter part specifies
an operation to be performed on the value in the register. The ARM instruction set defines
four such operations — sl (logical shift left), Isr (logical shift right), asr (arithmetic shift right),
and ror (rotate right). These operations are collectively called shift and rotate instructions.

Shift and Rotate Instructions

A logical left shift operation is shown in Figure In this example, we are shifting the value
10110 one place to the left. We need to shift in an extra 0 at the LSB position. The final result
is equal to 01100. A left shift operation is present in most programming languages including C
and Java. It is denoted by the following symbol: <. Note that shifting a word (4 byte number)
by k positions to the left is equivalent to multiplying it by 2*. This is in fact a quick way of
multiplying a number by a power of 2.

Let us now consider the right shift operation. Unlike the left shift operation, this operation
comes in two variants. Let us first consider the case of unsigned numbers. Here, we treat a
word as a sequence of 32 bits. In this case, if we shift the bits 1 position to the right, we fill
the MSB with a 0. This operation is known as — logical shift right (see Figure . Note that
shifting a number right by k places is usually the same as dividing it by 2. The right shift
operation in C or Java is >>.

If we consider a signed number, then we need to use the arithmetic right shift (asr) op-
eration. This operation preserves the sign bit. If we shift a number right using asr by one
position, then we fill the MSB with the previous value of the MSB. This ensures that if we shift
a negative number to the right, the number still remains negative. In a four bit number system,
if we shift 1010 to the right by 1 place using asr, then we get 1101. The original number is -6,
and the shifted number is equal to -3. We thus see that arithmetic right shift divides a signed
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number by a power of two. Note that using the right shift operations for odd numbers is tricky.
Let us consider the representation of -5 in a 4-bit number system. It is 1011. After performing
an arithmetic right shift, the result is equal to 1101, which is equal to -3 in decimal. Whether
we consider -5/2 = -3 as a correct answer or not depends on the semantics of the programming
language.

The right rotate operation performs a right shift on the number. However, it fills the MSB
with the number shifted out from the rightmost end. In Figure if we right rotate 10110,
we get 01011. In this case we have moved the previous LSB (0) to the new MSB. Note that ror
(right rotate) by 32 positions gives us the original value. ARM provides a special connotation
for ror #0. It performs a right shift. It moves the value of the carry flag to the MSB, and then
sets the shifted out LSB to the carry flag. This is also referred to as the rrx operation. This
operation does not take any arguments.

Using Shifter Operands

A shifter operand of the form — rl, Isl #2 — means that we shift the value in rl1 by 2 places to
the left. Note that the value in rl is not affected in this process. Likewise, an operand of the
form — rl, Isr r3 — means that we shift the value in rl to the right by the value specified in r3.
We can now use the shifter operand as a valid second operand. See examples and

Example 40
Write ARM assembly code to compute: r1 = r2 / 4. Assume that the number stored in rl1
18 divisible by 4.

Answer:

mov rl, r2, asr #2

Example 41
Write ARM assembly code to compute: 71 = r2 + r8 X 4.

Answer:

add r1, r2, r3, 1sl #2

Addressing Modes

We have now seen different formats of operands. An operand can either be a register, an
immediate, or a shifted register.
We have up till now seen three addressing modes:

1. register addressing mode: Example, r1, r2, r3
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2. immediate addressing mode: Example, #1, #2

3. scaled-register addressing mode: Example, (r1,lsl #2), (rl,lsl r2)

4.2.3 Compare Instructions

ARM has four compare instructions — ecmp, cmn, tst, and teq — in the 2-address format. These
instructions compare the values in the two registers and save some properties of the result of
the comparison in a dedicated internal register called the CPSR register. Other instructions
base their behavior based on the values saved in the CPSR register. This is similar to the flags
register in SimpleRisc .

The CPSR register

The CPSR (Current Program Status Register) maintains some state regarding the execution
of the program. It is a 32-bit register like the other registers, and is usually used implicitly.
In this book, we are concerned with four bits that it stores in the positions [29-32]. They are
N(Negative), Z(Zero), C(Carry), and V(Overflow). These four bits are known as condition code
flags, or simply flags. It is similar to the flags register in SimpleRisc .

There are two sets of instructions that can set CPSR flags. The first set comprises of
compare instructions, and the second set includes flag setting variants of generic instructions.
In either case, the rules for setting the flags are as follows:

N (Negative) This flag is set if the result is a 2’s complement based signed integer. It is set
to 1 if the result is negative, and 0 if it is non-negative.

Z (Zero) This flag is set to 1 if the result is zero. In a comparison operation, if the operands
are equal, then this flag is also set to 1.

C (Carry) e For an addition, the C bit is set to 1 if the result produced a carry. This
can happen when there was an overflow while adding the unsigned numbers. For
example, if we add -1(11113) and -2(11102), then the result is -3(11012), and there
is a carry out at the MSB. Note that there is no real overflow, because -3 can be
represented in the number system. However, if the numbers are treated as unsigned
numbers, then there is an unsigned overflow. Consequently, we can also say that the
carry bit is set if there is an unsigned overflow.

e For a subtraction, the carry bit is set to 0 if there is an unsigned underflow. For
example, if we try to compute 0 — 1, then there is no real overflow /underflow. How-
ever, 00002 — 0001, will lead to an unsigned underflow. This basically means that
when we subtract these two numbers, we will need to borrow a bit. In this case, we
set the C' flag to 0. Otherwise, we set it to 1.

e For logical shift operations, C is equal to the last bit shifted out of the result value.

V (Overflow) V is set to 1 when an actual signed overflow/underflow occurs. Note that in the
rest of the book, we might casually refer to both overflow and underflow as just overflow.
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Compare Instructions

ARM has four compare instructions — ¢mp, cmn, tst and teq. All four of them update the
CPSR flags. Let us consider the cmp instruction. It is a 2-address instruction that takes two
inputs. It essentially subtracts their values and sets the appropriate flags. For example, if the
values are equal, then the zero flag is set. Later instructions can take some decisions based
on these flags. For example, they might decide if they need to branch, or perform a certain
computation based on the value of the zero flag. We show the semantics of all four compare
instructions in Table

Semantics Example Explanation
cmp reg, (reg/imm) | cmp rl, r2 | Set flags after computing (rl - r2)
cmn reg, (reg/imm) | cmn rl, r2 | Set flags after computing (r1 + r2)
(
(

tst reg, (reg/imm) tst rl, r2 | Set flags after computing (r1 AND r2)
teq reg, (reg/imm) | teqrl, r2 | Set flags after computing (r1 XOR r2)

Table 4.7: Semantics of compare instructions

cmn computes the flags after adding the register values, tst computes a bitwise AND of the
two operands and then sets the flags, and teq tests for equality by computing an XOR (exclusive
or) of the operands. For this set of instructions, the second operand can be an immediate also.
Note that the compare instructions, are not the only instructions that can set the flags. Let us
discuss a generic class of instructions that can set the CPSR flags.

4.2.4 Instructions that Set CPSR Flags — The ‘S’ Suffix

Normal instructions such as add and sub do not set the CPSR flags. However, it is possible to
make any data processing instruction set the flags by adding the suffix - ‘s’ - to it. For example,
the adds and subs instructions do the regular jobs of addition and subtraction respectively, and

additionally also set the CPSR flags. The rules for setting the flags are given in Section
Let us now see how we can use these flags.

4.2.5 Data Processing Instructions that use CPSR Flags

There are three simple data processing instructions that use the CPSR flags in their computa-
tion. They are sbc, rsc, and adc.

Let us now motivate this section with an example. Our basic ARM instruction format does
not support 64-bit registers. Consequently, if we desire to implement the long data type that
uses 64 bits, we need to use two registers. Let us assume that one long value is present in
registers, 2, and r1. Here, r2 contains the upper 32 bits, and r1 contains the lower 32 bits.
Let the second long value be present in registers r4, and r3. Let us now try to add these two
long values to produce a 64-bit result, and save it in registers, r6 and r5. See Example
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Example 42
Add two long values stored in 2,71 and r4,r3.

Answer:

adds r5, r1, r3
adc 16, r2, rd

The (adds) instruction adds the values in r1 and r3. ade(add with carry) adds r2, r4, and
the value of the carry flag. This is exactly the same as normal addition.

Example 43| shows how to subtract the values.

Example 43
Subtract two long values stored in r2,r1 and r4,r3.

Answer:

subs r5, r1, r3
sbc r6, r2, rd

subs subtracts the value of 3 from the value in r1. sbc(subtract with carry) subtracts the
value in rd from the value in r2. Additionally, if the previous instruction resulted in a
borrow (carry equal to 0), then it also subtracts the carry bit. This is the same as normal
subtraction.

We list the semantics of the instructions in Table Note that in the case of a subtraction
the carry flag is set to 0, when there is a borrow. The NOT operation flips a 0 to 1, and vice
versa. Lastly, rsc stands for — reverse subtract with carry.

Semantics Example Explanation

adc reg, reg, reg | adc rl, r2, r3 | rl = 12 4 r3 + Carry_Flag

sbe reg, reg, reg | sberl, r2, r3 | rl = r2 - r3 - NOT(Carry_Flag)
rsc reg, reg, reg | rscrl, r2, r3 | rl = r3 - r2 - NOT(Carry_Flag)

Table 4.8: Semantics of adc, sbc, and rsc instructions

4.2.6 Simple Branch Instructions

An ISA with just data processing instructions is very weak. We need branch instructions such
that we can implement if-statements and for-loops. ARM programs primarily use three branch
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instructions to do most of their work. They are: b, beq, bne. Their semantics are given in

Table [4.9
Semantics | Example | Explanation
b label b .foo Jump unconditionally to label .foo
beq label | beq .foo | Branch to .foo if the last flag setting
instruction has resulted in an equal-
ity and (Z flag is 1)
bne label | bne .foo | Branch to .foo if the last flag set-
ting instruction has resulted in an
inequality and (Z flag is 0)
Table 4.9: Semantics of simple branch instructions
Example 44
Write an ARM assembly program to compute the factorial of a positive number (> 1)
stored in r0. Save the result in rl.
Answer:
C
int val = get_input();
int tdx;
int prod = 1;
for (idz = 1; <dz <= wval ;
idzt+) {
prod = prod * idz;
}
ARM assembly
mov r1, #1 /* prod = 1 */
mov 13, #1 /* 4dx =1 */
.loop:
mul r1, r3, r1 /¥ prod = prod * idz */
emp T3, T0 /% compare idz, with the input (num) */
add r3, r3, #1 /* idx ++ */
bne .loop /% loop condition */

Let us now see, how we can use the power of branches to write some powerful programs.
Let us consider the factorial function. In Example [44] we show a small program to compute the
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factorial of a natural number. r3 is a counter that is initialised to 0. We keep on incrementing
it till it matches r0. r1 represents the product. We iteratively multiply the value of r3 with r1.
At the end of the set of iterations, r1 contains the factorial of the value given in r0.

Example 45

Write an assembly program to find out if a natural number stored in r0 is a perfect square.
Save the Boolean result in rl.

Answer:

i|mov r1, #0 /* result initialised to false */
ol mov r2, #1 /* counter */

3 .loop:

4 mul r3, r2, r2

5 cmp r3, r0

6 beq .square

7 add r2, r2, #1

8 cmp r2, r0

9 bne .loop

10

11 b .exit /* number is mot a square */
17| . square:

13 mov r1, #1 /* number is a square */
14| .exit:

Let us show the example of another program to test if a number is a perfect square (see
Example . r1 contains the result of the operation. If the number is a perfect square we set r1
to 1, else we set 71 to 0. The main loop is between lines [3|and [9] Here, we increment the value
of r2 iteratively, and test if its square equals r0. If it does, we jump to .square, set 1 to 1, and
jump to .exit. Here, we print the value (code not shown), and exit the program. We assume a
hypothetical label — .exit — that is present at the end of the program (also shown in the code).
The exit condition of the loop is Line [9] where we consider the result of the comparison of r2
and 70. If 72 is equal to r0, then 70 cannot contain a perfect square because r0 is at least equal
to 2 at the end of any iteration.

4.2.7 Branch and Link Instruction

We can use the simple branch instructions to implement for loops and if statements. However,
we need a stronger variant of the branch instruction to implement function calls. Function calls
are different than regular branches because we need to remember the point in the program that
the function needs to return to. ARM provides the bl (branch-and-link) instruction for this
purpose. The semantics of this instruction is shown in Table
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Semantics | Example | Explanation
bl label bl .foo (1) Jump unconditionally to the function at .foo
(2) Save the next PC (PC + 4) in the Ir register

Table 4.10: Semantics of the branch and link instruction

The bl instruction jumps to the function that begins at the specified label. Note that in the
ARM ISA, there is no special way for designating the start of a function. Any instruction can
in principle be the start of a function. In ARM assembly, the starting instruction of a function
needs to have a label assigned to it. Along with branching to the given label, the bl instruction
also saves the value of the return address, which is equal to the current PC plus 4, into the Ir
register (r14). We need to add 4 over here because the size of an instruction in ARM is exactly
equal to 4 bytes.

Once a function starts executing, it is expected that it will preserve the value of the return
address saved in the Ir register unless it invokes other functions. If a function invokes other
functions, it needs to spill and restore registers as mentioned in Section When we wish
to return from a function, we need to move the value in the Ir register to the pc register (r15).
The PC will point to the instruction at the return address and execution will proceed from that
point.

Example 46
Ezample of an assembly program with a function call.
C
int foo() {
return 2;
}
void main() {
wnt © = 3;
int y =z + foo();
}
ARM assembly
foo:
mov r0, #2

mov pc, lr

main:
mov r1, #3 /¥ ¢ =3 x/
bl foo /* invoke foo */
/* y =x + foo() */
add r2, r0, ri
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Let us take a look at Example In this example, we consider a simple piece of C code
that calls a function foo that returns a constant value of 2. It adds the return value to the
variable x to produce y.

In the equivalent ARM code, we define two labels — foo and main. We assume that execution
starts from the main label. We map = to rl, and set its value equal to 3. Then, we call the
function foo. In it we set the value of register 70 to 2, and return by moving the value in the
Ir register to the PC. When the program returns, it begins execution at the subsequent line in
the main function. The register 0 maintains its value equal to 2 across functions. We add the
value in r1 to the value in 70 to produce the value for y. It is saved in r2.

Nowadays, there is a simpler method is used to return from a function. We can use the bx
instruction that jumps to an address contained in a register (semantics shown in Figure .

Semantics | Example | Explanation
bx reg bx 12 (1) Jump unconditionally to the ad-
dress contained in register, r2

Table 4.11: Semantics of the bx instruction

We can simplify the assembly code in Example [46] as follows.
ARM assembly

foo:
mov r0, #2
bx 1r
main:
mov ril, #3 /* x =3 %/
bl foo /* invoke foo */

/¥ y =x+ foo() */
add r2, r0, ri1

4.2.8 Conditional Instructions

Now, that we have a fairly good idea of basic branch instructions, let us elaborate some special
features of ARM assembly. These features help make the process of coding very efficient. Let
us consider the instructions beq and bne again. We note that they are variants of the basic b
instruction. They are distinguished by their suffixes — eq and ne. The former denotes equality,
and the latter denotes inequality. These suffixes are known as condition codes

ARM Condition Codes

Let us first consider the list of condition codes shown in Table[4.12l There are 16 condition codes
in ARM. Each condition code has a unique number, and suffix. For example, the condition
code with suffix eq has a number equal to 0. Every condition code is associated with a unique
condition. For example, eq is associated with equality. To test if the condition holds, the ARM
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Number | Suffix | Meaning Flag State
0 eq equal Z=1
1 ne not equal Z=0
2 cs/hs | carry set/ unsigned higher or equal | C =1
3 cc/lo | carry clear/ unsigned lower C=0
4 mi negative/ minus N=1
5 pl positive or zero/ plus N =
6 VS overflow V=1
7 ve no overflow V=0
8 hi unsigned higher (C=1) A ((Z=0)
9 Is unsigned lower or equal (C=0vV((Z=1)
10 ge signed greater than or equal N=0
11 1t signed less than N=1
12 gt signed greater than (Z=0)AN(N=0)
13 le signed less than or equal (Z=1)v (N=1)
14 al always
15 - reserved

Table 4.12: Condition codes

processor takes a look at the CPSR flags. The last column in Table shows the values of
the flags that need to be set for the condition to hold.

The eq and ne conditions can be tested by considering the Z(zero) flag alone. The expec-
tation is that an earlier cmp or subs instruction would have set these flags. If the comparison
resulted in an equality, then the Z flag would be set to 1.

As described in Section if a subtraction of unsigned numbers leads to a borrow, then
the carry flag is set to 0. This condition is also known as an unsigned underflow. If there is
no borrow, then the carry flag is set to 1. Consequently, if the comparison between unsigned
numbers concludes that the first number is greater than or equal to the second number, then
the C(carry flag) needs to be set to 1. Likewise, if the carry flag is set to 0, then we can say
that the first operand is smaller than the second operand (unsigned comparison). These two
conditions are captured by the hs and lo condition codes respectively.

The next four condition codes check if a number is positive or negative, and if there has
been an overflow. These conditions can be trivially evaluated by considering the values of
N (negative) and V (overflow) flags respectively. hi denotes unsigned higher. In this case, we
need to additionally test the Z flag. Likewise for Is (unsigned lower or equal), we need to test
the Z flag, along with the C flag.

ARM has four condition codes for signed numbers — ge(>), le(<), gt(>), and lt(<). The ge
condition code simply tests the N flag. It should be equal to 0. This means that a preceding
cmp or subs instruction has subtracted two numbers, where the first operand was greater than
or equal to the second operand. For the gt instruction, we need to consider the Z flag also. In
a similar manner, the less than condition codes — [t and le — work. The conditions for the flags

are given in Table
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Note that for signed numbers, we have not considered the possibility of an overflow in
Table Theorem outlines the precise conditions for detecting an overflow. We
leave the process of augmenting the conditions to consider overflow as an exercise for the
reader. Lastly, the al(always) condition code means that the instruction is not associated with
any condition. It executes according to its default specification. Hence, it is not required to
explicitly specify the al condition since it is the default.

Conditional Variants of Normal Instructions

Condition codes are not just restricted to branches. We can use condition codes with normal
instructions such as add and sub also. For example, the instruction addeq performs an addition
if the Z flag in the flags register is set to true. It means that the last time that the flags
were set (most likely by a emp instruction), the instruction must have concluded an equality.
However, if the last comparison instruction concluded that its operands are unequal, then the
ARM processor treats the addeq instruction as a nop instruction (no operation). We shall see
in Chapter [10] that by using such conditional instructions, we can increase the performance of
an advanced processor. Let us consider an example that uses the addeq instruction.

Example 47

Write a program in ARM assembly to count the number of 1s in a 32-bit number stored in
rl. Save the result in r4.

Answer:

mov r2, #1 /* idx = 1 */
mov T4, #0 /* count = 0 */

/* start the iterations */

.loop:
/* extract the LSB and compare */
and r3, r1, #1
cmp r3, #1

/* increment the counter */
addeq T4, T4, #1

/* prepare for the next iteration */
mov r1, r1, lsr #1
add r2, r2, #1

/* loop condition */
cmp r2, #32
ble .loop
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4.2.9 Load-Store Instructions
Simple Load-Store Instructions

The simplest load and store instructions are Idr and str respectively. Here, is an example.
ldr r1, [rO]

This instruction directs the processor to load the value in register r1, from the memory
location stored in r0, as shown in Figure [£.2]

Idr r1, [rO]

Memory

Register
file

ro
> rl

Figure 4.2: The ldr instruction

Note that in this case, r0, contains the starting address of the data in memory. The Idr
instructions loads 4 bytes in a register. If the value contained in 70 is v, then we need to fetch
the bytes from v to v + 3. These 32 bits (4 bytes), are brought from memory and saved in
register r1.

The str instruction performs the reverse process. It reads the value in a register and saves
it in a memory location. An example is shown in Figure [4.3] Here 70 is known as the base
register.

str r1, [x0]

Load-Store Instructions with an Offset

We can specify load and store instructions with a base register, and an optional offset. Let us
consider:

1dr r1, [rO0, #4]
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strrl, [rO]

Memory

Register
file

ro
rl L

}«

Figure 4.3: The str instruction

Here, the memory address is equal to the value in 70 plus 4. It is possible to specify a
register in place of an immediate operand.

1dr r1, [r0, r2]

The memory address is equal to 70 + r2. In this expression, 70 and r2 refer to the values
stored in them. We can alternatively state the operation in this program as: r1 <« [r0 + r2]
(see the register transfer notation defined in Section [3.2.5)).

Semantics Example Explanation Addressing Mode
ldr reg, [reg] Idr r1, [r0] rl < [r0] register-indirect
ldr reg, [reg, imm)] 1dr r1, [r0, #4] rl « [r0 + 4] base-offset

ldr reg, [reg, reg] Idr r1, [r0, r2] rl « [r0+ r2] base-index

ldr reg, [reg, reg, shift imm] | 1dr r1, [r0, r2, Isl #2] | r1 + [r0+ r2 < 2] | base-scaled-index
str reg, [reg] str rl, [r0] [r0] < rl register-indirect
str reg, [reg, imm)] str rl, [r0, #4] r0+4] < rl base-offset

str reg, [reg, reg] str r1, [r0, r2] r0+12] + rl base-index

str reg, [reg, reg, shift imm] | str rl, [r0, r2, Isl #2] | [r0+ 72 < 2] + r1 | base-scaled-index

Table 4.13: Load and store instruction semantics

Table shows the semantics of different types of load store instructions. The third
column shows the addressing mode. The register r2 in this case is known as the index register
because it contains a value that is added to the base register, and this value can be used as the
index of an array (see Section [4.3.1). Note that some authors call the base-offset mode as also
the displacement addressing mode.
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Load-Store instructions for Bytes and Half~-Words

The ldr and str instructions load/store 4 bytes of data. However, it is possible to also load and
store 1 and 2 bytes of data. 2 bytes is also known as a half-word, where a word is equal to 4
bytes.

Semantics Example Explanation
ldrb reg, [reg, imm] | ldrb rl, [r0, #2] | r1 < [r0+ 2] (1 unsigned byte)
ldrh reg, [reg, imm| | ldrh r1, [0, #2] | r1 < [r0 + 2] (2 unsigned bytes)
ldrsb reg, [reg, imm] | ldrsb rl1, [r0, #2] | r1 « [r0+ 2] (1 signed byte)
ldrsh reg, [reg, imm)] | ldrsh rl, [r0, #2] | 71 < [0+ 2] (2 signed bytes)
strb reg, [reg, imm]| | strb rl, [r0, #2] | [r0+2] < r1 (

strh reg, [reg, imm] | strhrl, [r0, #2] | [r0+2] < r1 (

1 unsigned byte)
2 unsigned bytes)

Table 4.14: Load and store instructions for bytes and half-words in the base-offset addressing
mode

Table shows the load and store instructions for bytes and half words using the base-
offset addressing mode. ldrb loads an unsigned byte to a register. It places the byte in the least
significant 8 bits. The rest of the 24 bits are set to 0. [drh similarly loads an unsigned half-word
(16 bits). ldrsb, and ldrsh load a signed byte and half-word respectively. They extend the sign
of the operand (see Section [2.3.4]) to make it fit in 32 bits. This is done by replicating the MSB.
strb and strh store an unsigned byte in memory. Note that unlike loads, there are no ARM
instructions to extend the sign of the operand while saving it in memory.

4.3 Advanced Features

We are in a good point to take a look at some of the advanced features in the ARM instruction
set. Up till now, we have taken a look at basic instructions that allow us to implement simple
data types in a high level language such as C or Java. We can translate simple programs that
contain integers into assembly code, compute the results of mathematical functions, load and
store values from memory. However, there are other high level features such as functions, arrays,
and structures that are present in high level languages. They shall require special support at
the assembly level for creating efficient implementations.

By no means has the process of programming language development stopped. We expect
that over the next few decades, there will be many new kinds of programming languages. They
will make the process of programming easier for more programmers, and it should be easier to
leverage novel features of futuristic hardware. This would require extra instructions and support
at the level of assembly programs. This is thus an evolving field, and deserves a thorough study.
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4.3.1 Arrays
Array Specific Features

Note that the starting memory location of entry 7 is equal to the base address of the array plus
47 in an array with word (4 byte) sized elements. In a high level language, the programmer
always specifies the index in an array, and relies on the compiler to multiply the index by 4.
ARM assembly provides nice features to multiply ¢ by 4 by using the [sl instruction. This
feature can be embedded in load-store instructions.

ldr r0, [r1, r2, 1lsl #2]

In this case the base address is stored in register, r1, and the offset is equal to 2 <<
2 = 4 xr2. The advantage here is that we do not need a separate instruction to multiply the
index by 4. We have already seen this optimisation in Section However, there are other
optimisations that can make our life easier. Let us consider array accesses in a loop as shown

in Example

Example 48 Convert the following C program to a program to ARM assembly. Assume
that the base address of the array is stored in r0.

o

void addNumbers(int a[100]) {
int idzx;
int sum = 0;
for (idz = 0; idz < 100; idz++){
sum = sum + alidz];

}
}
Answer:

ARM assembly
1| /* base address of array a in r0 */
olmov r1, #0 /* sum = 0 */
smov r2, #0 /* idx = 0 */

4

5 . loop:

6 ldr r3, [r0, r2, 1sl #2]

7 add T2, T2, #1 /* idz ++ */

8 add r1, r1, r3 /* sum += alidz] */
9 cmp T2, #100 /* loop condition */
10 bne .loop

There is a scope for added efficiency here. We note that Lines [6] and [7] form a standard
pattern. Line [6] reads the array entry, and Line [7] increments the index. Almost all sequential
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array accesses follow a similar pattern. Hence, it makes sense to have one instruction that
simplifies this process.

The ARM architecture adds two extra addressing modes for the load and store instructions
to achieve this. They are called pre-indexed and post-indexred with auto-update. In the pre-
indexed addressing mode (with auto-update), the base address is updated first, and then the
effective memory address is computed. In a post-indexed scheme, the base address is updated
after the effective address is computed.

The pre-indexed addressing mode with auto-update is implemented by adding a ‘I
after the address.

sign

Examples of the pre-indexed addressing mode
1dr r3, [r0, #4]! /* 13 = [r0+4]; r0 = r0 + 4%/

ldr r3, [xr0, ri, 1lsl #2]! /* r3 [rO + r1 << 2];

r0 = r0 + r1 << 2; %/

The post-indexed addressing mode is implemented by encapsulating the base address within

‘" and ‘", and writing the offset arguments separated by commas after it.
Examples of the post-indexed addressing mode
ldr r3, [x0], #4 /* r3 = [r0], rO = r0 + 4 %/

1dr r3, [r0], r1, 1sl #2 /* r3 = [r0], r0O = r0 + rl << 2 */

Let us now see, how we can slightly make our addNumbers slightly more intuitive. The

modified ARM code is shown in Example

Example 49
Convert the assembly code shown in Example[{§ to use the post indexed addressing mode.
Answer:

ARM assembly

1| /* base address of array a in r0 */

2 mov T1, #0 /* sum = 0 */

3 add r4, 70, #400 /* address of a[100]*/
4 - loop:

5 ldr r3, [r0], #4

g add r1, r1, r3 /* sum += a[idz] */

7 cmp 70, T4

8 bne .loop

We have eliminated the index variable saved in r2. It is not required anymore. We directly
update the base address in Line [5| For the loop exit condition, we compute the first address
beyond the end of the array in Line [3| We compare the base address with this illegal address
in Line [7] and then if they are unequal we keep iterating.

Example 48| contains 5 lines in the loop, whereas the code in Example [49| contains 4 lines in
the loop. We have thus shown that it is possible to reduce the code size (of the loop) by 20%
using post-indexed addressing, and increase performance too since most cores do not impose
additional time overheads when auto-update addressing modes are used.
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Structures

Implementing structures is very similar to implementing arrays. Let us look at a typical struc-
ture in C.

struct Container {
int a;
int b;
char c;
short int d;
int e;

};

We can treat each structure as an array. Consequently, a structure will have a base address
and each element of the structure will have an offset. Unlike an array, different elements in a
structure can have different sizes, and thus they are not constrained to start with offsets that
are multiples of the word size.

Type Element | Offset
int a 0

int b 4

char ¢ 8
short int | d 10

int e 12

Table 4.15: Elements in the structure and their offsets

Table shows the offsets for different elements within a structure (as generated by the
GNU ARM compiler). We need to note that compilers for the ARM architecture impose
additional constraints. They pad variable addresses, and align them with 2 byte or 4 byte
boundaries as shown in Table The rules for variable alignment are described in detail in
the ARM architecture manual Jarm, 2000|. In a similar fashion it is possible to implement more
high level data structures such as unions and classes. The interested reader is referred to a
book on compilers.

4.3.2 Functions

Let us now use two sophisticated ARM instructions for spilling and restoring registers in the
stack. They can be used to implement both caller saved and callee saved functions.

Instructions for Spilling and Restoring Registers

Let us now describe two instructions to use the stack for saving and restoring a set of registers
—ldmfd and stmfd. These registers load and store multiple registers in a memory region such
as the stack. For brevity, we do not consider generic memory regions in this book. We limit our
discussion to the stack. ldm fd and stm fd instructions take a base register (e.g., stack pointer),
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and set of registers as arguments. They load or store the set of registers in the memory region
pointed to by the base register. Note that the order of the registers does not matter. The
registers are always rearranged in ascending order.

Let us consider an example using the store instruction, stm fd.

stmfd sp!, {r2,r3,r1,r4}

Instruction Semantics

ldmfd sp!, {list of registers } | Pop the stack and assign values to
registers in ascending order. Update
the value of sp.

stmfd sp!, {list of registers } | Push the registers on the stack in
descending order. Update the value
of sp.

Table 4.16: Semantics of the ldm fd and stm fd instructions

The stmfd instruction assumes a downward growing stack, and it also assumes that the
stack pointer points to the starting address of the value at the top of the stack. Recall that
the top of the stack in a downward growing stack is defined as the starting address of the last
value pushed on the stack. In this case the registers are processed in ascending order — r1, 12,
r3, r4d. Secondly memory addresses are also accessed in ascending order. Consequently 1 will
be saved in sp — 16, 72 in sp — 12, r3 in sp — 8, and r4 in sp — 4. Alternatively, we can explain
this instruction by observing that registers are pushed into the stack in descending order. We
use the ‘I” suffix with the base address register to instruct the processor to update the value of
the stack pointer after the execution of the instruction. In this case, we set sp equal to sp — 16.

There is a variant of this instruction that does not set the stack pointer to the starting
address of the memory region used to save registers. An example with this variant is:

stmfd sp, {r2,r3,r1,r4}

Note that this variant is rarely used in practice, especially when the base register is sp.

Similarly, the ldm fd instruction loads a set of values starting at the stack pointer, and then
updates the stack pointer. Akin to the stmfd instruction, we use the ‘!’ suffix to use the base
register auto update feature.

1dmfd sp!, {r2,r3,r1,r4d}
For example, in this case we set r1 = [sp], r2 = [sp+4], r3 = [sp+ 8], and r4d = [sp+12]. In
other words, we iteratively pop the stack and assign the values to registers in ascending order.

The ldm fd instruction also has a variant that does not update the base register. We simply
need to delete the ‘I’ suffix after the base register.

1dmfd sp, {r2,r3,r1l,r4}
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The semantics of these instructions are shown in Table [4.16]
Let us conclude this section with an example. We show a recursive power function in C

that takes two arguments x and n, and computes z".

Example 50

Write a function in C and implement it in ARM assembly to compute ", where x and n
are natural numbers. Assume that x is passed through r0, n through r1, and the return
value is passed back to the original program via r0. Answer:

c
int power(int z, int n) {
if (n == 0)
return 1;
int y = = * power(z, n-1);
return y;
}
When we compile this function to ARM assembly, we get:
ARM assembly
power:
cmp r1, #0 /* compare n with 0 */
moveq 70, #1 /* return 1 */
breq pc, lr /* return */

stmfd sp!, {r4, lr} /* save 74 and lr */

mov T4, T0 /* save T in 14 */

sub r1, r1, #1 /¥n=n-1%/

bl power /* recursively call power */

mul 70, T4, TO /* power(z,n) = x * power(z,n-1) */

ldmfd sp!, {r4, pc} /* restore 74 and return */

We first compare n with 0. If n is equal to 0, then we need to return 1 (Line @) We
subsequently, return from the function. Note the use of the instruction moveq here.

However, if n # 0, then we need to make a recursive function call to evaluate x" 1.
We start out by saving register r4, and the return address (Ir) on the stack in Line |6 using
the stmfd instruction. We save the value of r0 in rd because it will get overwritten by the
recursive call to the power function. Subsequently, we decrement r1 that contains the value
of n, and then we call the power function recursively in Line [I(} The result of the power
function is assumed to be present in r0. We multiply this result with the value of x (stored
in r4) in Line[10,

We simultaneously do two operations in Line [11. We load the value of r4, and pc
from the stack. We first read the first operand, r4, which was saved on the stack by the
corresponding stmfd instruction in Line [6, The second operand saved on the stack was
the return address. We read this value and save it in pc. Effectively, we are executing the
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instruction mov pc, Ir, and we are thus returning from the function. Hence, after executing
Line we start executing instructions from the return address of the function.

The ldm and stm instructions can also assume an upward growing stack. The interested
reader can refer to the ARM manual [arm, 2000] for a thorough explanation.

4.4 Encoding the Instruction Set

Let us now see how to convert ARM assembly instructions to a sequence of Os and 1s. Each
ARM instruction is represented using 32 bits. We need to encode the instruction type, values
of conditional fields, register numbers, and immediate operands using these 32 bits only.

Let us take a look at the generic format of ARM instructions. For every instruction we need
to initially encode at least two pieces of information — condition codes (see Table , and the
format of the instruction (data processing, branch, load/store, or others). Table defines
15 conditions on each instruction. It will take 4 bits to represent this information.

Important Point 6

To uniquely encode a set of n elements, we need at least [loga(n)] bits. We can assign
each element a number between 0 and n — 1. We can represent these numbers in the binary
format. The number of bits required is equal to the number of bits needed to represent the
largest number, n— 1. If we have loga(n) bits, then the largest number that we can represent
is 21092(") _1 = n—1. However, logy(n) might be a fraction. Hence, we need to use [loga(n)]
bits.

ARM has four types of instructions — data processing (add/ subtract/ multiply/ compare),
load/store, branch, and miscellaneous. We need 2 bits to represent this information. These
bits determine the type of the instruction. Figure [£.4] shows the generic format for instructions
in ARM.

4 2
—AN—r—

| cond [type]
32 2928 27

Figure 4.4: Generic format of an ARM instruction

4.4.1 Data Processing Instructions

The type field is equal to 00 for data processing instructions. The rest of the 26 bits need to
contain the instruction type, special conditions, and registers. Figure shows the format for
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data processing instructions.

4 2 4q 4 4 12
,_/\_\,_A_\ / A \ / A N7 A \ / A N
[ cond |00 [I[opcode[S| rs rd shifter operand/
32 29 28 2726 25 222120 1716 13| immediate

12 1

Figure 4.5: Format of the data processing instruction

The 26" bit is called the I (immediate) bit. It is similar to the I bit in SimpleRisc . If it is
set to 1, then the second operand is an immediate, otherwise, it is a register. Since ARM has
16 data processing instructions, we require 4 bits to represent them. This information is saved
in bits 22-25. The 215 bit saves the S bit. If it is turned on, then the instruction will set the
CPSR (see Section [4.2.4).

The rest of the 20 bits save the input and output operands. Since ARM has 16 registers,
we require 4 bits to encode a register. Bits 17-20 save the identifier of the first input operand
(rs), which needs to be a register. Bits 13-16 save the identifier of the destination register (rd).

Bits 1-12 are used to save the immediate value or the shifter operand. Let us see how to
make best use of these 12 bits.

Encoding Immediate Values

ARM supports 32-bit immediate values. However, we observe that we have only 12 bits to
encode them. Hence, we cannot possibly encode all the 232 possible values. We need to choose
a meaningful subset of them. The idea is to encode a subset of 32-bit values using 12 bits. The
hardware is expected to decode these 12 bits, and expand them to 32 bits while processing the
instruction.

Now, 12 bits is a rather unwieldy value. Neither is it 1 byte nor is it 2 bytes. Hence, it was
necessary to come up with a very ingenious solution. The idea is to split the 12 bits into two
parts — a 4-bit constant (rot), and an 8 bit payload (payload) (see Figure [4.6).

4 8
Vs A_\/ N\
[ rot | payload |

Figure 4.6: Format of the immediate

Let the actual number that is encoded in these 12 bits be n. We have:

n = payload ror (2 x rot)

The actual number n is obtained by right rotating the payload by 2 times the value in the
rot field. Let us now try to understand the logic of doing so.
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The final number n is a 32-bit value. A naive solution would have been to use the 12 bits to
specify the least significant bits of n. The higher order bits could be 0. However, programmers
tend to access data and memory in terms of bytes. Hence, 1.5 bytes is of no use to us. A better
solution is to have a 1 byte payload and place it in any location in the 32-bit field. The rest
of the 4 bits are used for this purpose. They can encode a number from 0 to 15. The ARM
processor doubles this value to consider all even numbers between 0 and 30. It right rotates
the payload by this amount. The advantage of doing so is that it is possible to encode a wider
set of numbers. For all of these numbers, there are 8 bits that correspond to the payload, and
the rest of the 24 bits are all zeros. The rot bits just determine which 8 bits in a 32-bit field
are occupied by the payload.

Let us consider a set of examples.

Example 51

Encode the decimal number 42.

Answer: 42 in the hex format is 0x2A, or alternatively 0x00 00 00 2A. There is no right
rotation involved. Hence, the immediate field is 0z02A.

Example 52

Encode the number 0x2A 00 00 00.

Answer: This number is obtained by right rotating 0x2A by 8 places. Note that we need
to right rotate by 4 places to move a hex digit by one position. We need to now divide 8 by
2, to get 4. Thus, the encoded format for this number is 0r42A.

Example 53

Encode 0x 00 00 2A 00.

Answer: The first step is to count the number of right rotations. We observe that the
number 0x2A has been rotated to the right by 24 positions. We now proceed to divide 24 by
2 to obtain 12. Thus, the encoded format of the number is 0xC2A.

Example 54

Encode the number 0x 00 02 DC 00 as an ARM immediate.

Answer: The first part is to figure out the payload. The payload is — 10 1101 11 — in
binary. This is equal to 0xB7. The next step is to figure out the rotation. Let us simplify the
task by observing that right rotating by n places is the same as left rotating by 32 —n places.
Let us concentrate on 0xC00. This is equal to 110000000000 in binary. The rightmost 1 is
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now at the 11" position. It has moved 10 places from the 1% position. Thus the number
has been rotated to the left by 10 places. It has been rotated to the right by 22 places.
22/2 =11(0zB). Hence, the encoded number is 0xBB7.

The reader needs to understand that this encoding is supposed to be done by the assembler
or the compiler. The user simply needs to only use values in her assembly code that can be
encoded as an ARM immediate. For example, a number like -1 cannot be encoded as an ARM
immediate. It is OxFF FF FF FF. The payload is greater than 8 bits. Ideally, an instruction of
the form: add r1,r1,# — 1 is wrong. Some assemblers will try to fix the problem by changing
the instruction to sub r1,r1,#1. However, all assemblers are not smart enough to figure this
out. If the user wishes to uses a value that cannot be encoded in ARM’s 12 bit format, then
the user (or the program loader) needs to load it byte by byte in a register, and use the register
as an operand.

Encoding the Shifter Operand

We have 12 bits to encode the shifter operand. Figure [4.7]shows the scheme for encoding it. A
shifter operand is of the form: rt (Isl|lsr|asr|ror) (shift reg/ shift imm.)

5 2 4 :
[ shift imm [shift type| 0 | rt | Shift type
12 87 6 5 4 1 i<l 00
4 2 ) 4 =7 01
" N S — asr 10
shiftreg | [shifttype[ 1 | rt | ror 11
12 98 7 6 5 4 1
(b) (c)

Figure 4.7: Format of the shifter operand

The first four bits (1-4) encode the id of the register r¢t. The next bit determines the nature
of the shift argument (immediate or register). If it is O then the argument is an immediate,
otherwise it is a register. Bits 6 and 7 specify the type of the shift (also see Figure [4.7)(c)).
For example, the type can be Isl (logical shift left). It can also be lsr (logic shift right), asr
(arithmetic shift right), or ror (right rotate). If we are shifting by an immediate value, then
bits 8-12 specify a 32-bit value called a shift immediate. Otherwise, if we are shifting by a value
in a register, then bits 9-12 specify the id of the register.

Let us consider an instruction of the form: add r3,r1,72. In this case, the second operand
is 2. We can think of 2 as actually a shifter operand where it is being left shifted by 0. Hence,
to encode we need to set the shift type to sl (00), set the argument to immediate (0), and set
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the shift immediate to 00000. We thus see that specifying a register as the second argument is
easy. It is a special case of a shifter operand, and we just need to set bits 5-12 as 0.

4.4.2 Load-Store Instructions

A simple load or store instruction can be represented as : (1dr | str) rd, [rs, (immediate/shifter
operand)]. We require additional syntax for pre and post-indexed addressing (see Section [4.3.1)).
The format for the encoding of load and store instructions is shown in Figure

q 2 6 4 4 12
—AN— A, NA—; N—or, A \
[ cond [0 1] I|P|U|B|W|L| rs | rd shifter operand/
32 2928 27 20 1716 13| immediate

12 1

Figure 4.8: Format of the load/store instructions

The semantics of the bits I, P, U, B, W, and L is shown in Table In this case, the
I bit has reverse semantics as compared to the case of data processing instructions. If it is 1,
then the last 12 bits represent a shifter operand, otherwise they represent an immediate value.
P represents the advanced addressing mode — pre or post, and W determines if the advanced
addressing mode is used or a simple addressing mode is used. We can either add the offset from
the base register or we can subtract it from the base register. This is specified by the U bit.
The B bit determines the granularity of the transfer — byte level or word level. Lastly, the L
bit determines if the instruction is a load or a store.

Bit | Value | Semantics
1 0 last 12 bits represent an immediate value
1 last 12 bits represent a shifter operand
p 0 post-indexed addressing
1 pre-indexed addressing
U 0 subtract offset from base
1 add offset to base
0 transfer word
B
1 transfer byte
0 do not use pre or post indexed addressing
W . .
1 use pre or post indexed addressing
L 0 store to memory
1 load from memory

Table 4.17: Semantics of I, P, U, B, W, and L bits

These six bits I PUBW L capture all the different variants of the load and store instructions.
The rest of the format is the same as the data processing instruction other than the encoding of
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immediates. Immediates in memory instructions do not follow the (rot+payload) format. The
12 bit immediate fields represents an unsigned number between 0 and 4095.

We thus observe that like SimpleRisc , the designers of the ARM instruction set have tried
to stick to the same instruction format with minor variations..

Question 6 What is the necessity for having the U bit?

Answer: Negative numbers such as -4 or -8 cannot be represented in ARM’s 12 bit format
for specifying offsets in memory instructions. However, we might need to use addresses with
a negative displacement, especially when they are relative to the frame pointer or the stack
pointer. The U bit allows us to represent an immediate such as -4 as +4. It additionally
instructs the processor to subtract the displacement from the base register.

4.4.3 Branch Instructions

4 3 24
—N—r—A N\
[ cond[101]L] offset |
32 2928 2625 24 1

Figure 4.9: Format of the branch and branch-and-link instructions

Figure shows the format of the branch (b) and the branch-and-link (bl) instructions. If
the L(link) bit is equal to 1, then the instruction is bl, otherwise it is just b. The instruction
contains a 24-bit signed offset. The ARM processor first shifts the offset by 2 bits. This is
because each instruction is 32 bits or 4 bytes long, and additionally the hardware expects in-
structions to be stored at 4 byte boundaries. Therefore, the starting address of each instruction
will contain two zeros in its two least significant positions. Hence, there is no necessity to waste
two bits in the encoding for saving these two zeros. The next step is to extend the sign of this
shifted offset to 32 bits. Lastly, the hardware computes the branch target by adding the shifted
and sign-extended offset to the PC plus 8 bytes.

The interesting thing to note is that we are adding the sign-extended shifted offset to
PC+8, not the PC. We shall see in Chapter [L0] that the reason for doing this is to simplify the
hardware. The format for branches is different from the format used to encode data transfer and
data processing instructions. This is because more bits have used to encode the displacement.
We had followed a similar approach in SimpleRisc also. However, we need to note that having
a new format is not a very bad thing if it is simple as is the case for a branch.
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4.5 Summary and Further Reading

4.5.1 Summary

Summary 4

1. The ARM ISA is a simple 32-bit RISC ISA.

(a) It uses 16 registers r0...r15.

(b) The return address register is known as lr (link register), and it is r14.
(¢) The PC is visible to the programmer. It is register r15.

(d) All the instructions are encoded using 32 bits.

2. Data processing instructions accept register operands, and at most one immediate
operand. They are 3-address instructions.

3. ARM has a set of compare instructions that can set flags in the CPSR register. Ad-
ditionally, it is possible to instruct a standard data processing instruction to set the

CPSR flags by adding the suffix ‘s’ to it.

4. ARM supports conditional instructions that either execute or not depending upon the
values of the CPSR flags. They can be created by appending a condition code to a
reqular data processing or branch instruction. There are 15 such condition codes.
Ezamples of some condition codes are: gt (greater than), and eq (equal).

5. ARM has two variants of branch instructions.

(a) It has simple branch instructions that branch to another instruction.

(b) It has branch-and-link instructions that additionally save the return address in
the link register lr.

6. ARM supports both the base-index and base-offset addressing modes for load and store
instructions. It has additional support for shifting the index register by treating it as
a shifter operand.

7. ARM supports complex addressing modes such as pre-indexed and post-indered ad-
dressing. These addressing modes update the base register.

8. ARM also has support for loading and storing bytes and half-words (2 bytes).
9. The instruction set encoding for data processing instructions is as follows:

(a) Condition code (4 bits)
(b) Instruction type (2 bits)

(c) Second operand: immediate or register (1 bit)
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(d) Opcode (4 bits)

(e) S bit (should the CPSR flags be set) (1 bit)
(f) Source register1 (4 bits)

(9) Destination register (4 bits)

(h) Immediate or shifter operand (12 bits)

10. The data transfer instructions do not have the S bit. They instead have extra bits to
encode the type of load/store instructions, and the addressing mode.

11. The branch instructions have an L bit to specify if the return address needs to be
saved or not. They use PC-relative addressing and have a 24-bit signed offset. Like
SimpleRisc , the hardware assumes that instructions are aligned to 4 byte boundaries,
and treats this offset as a distance in terms of memory words. It thus left shifts the
offset by 2 positions.

4.5.2 Further Reading

We have presented an overview of the major features of ARM’s assembly language. The reader
can refer to ARM’s assembly language manual [arm, 2000] for more details.

We have deliberately left out some advanced features. A subset of ARM cores support
Thumb-1 and Thumb-2 instructions. These instructions are based on a subset of general purpose
instructions and have implicit operands. They are used to decrease the size of compiled code.
Some ARM processors have extensive support for floating point instructions (VFP instruction
set), and SIMD instructions (execute an instruction on multiple integers/floating point numbers
in one go). However, we have not discussed these extensions for the sake of brevity. Some
other sophisticated features of ARM processors are security extensions that prevent malicious
programs or users from stealing data. Since 2013 ARM processors (conforming to the ARMvS-
A architecture) have started using a new 64-bit ARM ISA called A64. The reader can refer
to the books by Joseph Yiu [Yiu, 2011} [Yiu, 2009], William Hohl [Hohl, 2009], and J. R.
Gibson |Gibson, 2011] for a detailed discussion on the ARM instruction set and its latest
extensions. Needless to say the reader can always find up to date documentation at ARM’s
web site http://www.arm. com.

Exercises

Basic ARM Instructions

Ex. 1 — Translate the following code in C to the ARM instruction set using a minimum
number of instructions. Assume the variables a, b, ¢, d and e are 32-bit integers and stored in
r0, 1, 2, r3 and 14 respectively.


http://www.arm.com
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(a) a=atb+c+d+e;

(b) a=b+c;
d=a+b;

(c) a=b+c+d;
a=ata;

(d) a=2*a+b+c+d;

(e) a=b+c+d;
a=3%*a;

Ex. 2 — Translate the following pieces of code from the ARM assembly language to a high
level language. Assume that the variables a, b, ¢, d and e (containing integers) are stored in
the registers r0, r1, 2, r3 and 74 respectively.

(a) |add r0, r0, ri
add r0, r0, r2
add r0, rO, r3

(b) |orr r0, r0, r1, 1sl #1
and rl1, rO, r1, 1lsr #1

(c)|add r0, ri1, r2
rsb r1, r0, r2

(d)|add r0, r1, r2
add r0, r3, r4
add r0, r0, ri

(e) [mov r0 #1, 1sl #3
mov rO, r0O, lsr #1

Ex. 3 — Answer the following:
(a) Write the smallest possible ARM assembly program to load the constant OxEFFFFFF2
into register r0.

(*b) Write the smallest possible ARM assembly program to load the constant OxFFFD67FF
into register r0.

* Ex. 4 — Using valid ARM assembly instructions, load the constant, OxFEOD9FFF, into
register 0. Try do to it with a minimum number of instructions. DO NOT use pseudo-
instructions or assembler directives.

Ex. 5 — Can you give a generic set of ARM instructions or a methodology using which you
can load any 32-bit immediate value into a register? Try to minimise the number of instructions.

Ex. 6 — Convert the following C program to ARM assembly. Store the integer, i, in register
r0. Assume that the starting address of array « is saved in register r1, and the starting address
of array b is saved in register r2.
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int i;

int b[500];

int a[500];

for(i=0; i < 500; i++) {
b[i] = alalill;

}

** Ex. 7T — Consider the instruction, mov Ir, pc. Why does this instruction add 8 to the PC,
and use that value to set the value of I»? When is this behaviour helpful?

Assembly Language Programming

e For all the questions below, assume that two specialised functions, __div and __mod, are
available. The __div function divides the contents of r1 by the contents of 72, and saves
the result in r0. Similarly, the __mod function is used to divide r1 by r2, and save the
remainder in r0. Note that in this case both the functions perform integer division.

Ex. 8 — Write an ARM assembly language program to compute the 2’s complement of a
number stored in r0.

Ex. 9 — Write an ARM assembly language program that subtracts two 64-bit integers stored
in four registers.
Assumptions:

e Assume that you are subtracting A — B

e A is stored in register, r4 and r5. The MSB is in r4, and the LSB is in r5.

o3 is stored in register, 76 and r7. The MSB is in r6, and the LSB is in r7.

ePlace the final result in 78(MSB), and r9(LSB).

Ex. 10 — Write an assembly program to add two 96-bit numbers A and B using the minimum
number of instructions. A is stored in three registers 2, 3 and r4 with the higher byte in r2
and the lower byte in r4. B is stored in registers 5, r6 and 7 with the higher byte in r5 and
the lower byte in r7. Place the final result in r8(higher byte), 9 and r10(lower byte).

Ex. 11 — Write an ARM assembly instruction code to count the number of 1’s in a 32-bit
number.

Ex. 12 — Given a 32-bit integer in 73, write an ARM assembly program to count the number
of 1 to 0 transitions in it.
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* Ex. 13 — Write an ARM assembly program that checks if a 32-bit number is a palindrome.
Assume that the input is available in 73. The program should set r4 to 1 if it is a palindrome,
otherwise r4 should have 0. A palindrome is a number which is the same when read from both
sides. For example, 1001 is a 4-bit palindrome.

Ex. 14 — Design an ARM Assembly Language program that will examine a 32-bit value
stored in r1 and count the number of contiguous sequences of 1s. For example, the value:

01110001000111101100011100011111

contains six sequences of 1s. Write the final value in register r2. Use conditional instructions
as much as possible.

** Ex. 15 — In some cases, we can rotate an integer to the right by n positions (less than
or equal to 31) so that we obtain the same number. For example: an 8-bit number 01010101
can be right rotated by 2, 4, or 6 places to obtain the same number. Write an ARM assembly
program to efficiently count the number of ways we can rotate a number to the right such that
the result is equal to the original number.

Ex. 16 — Write an ARM assembly program to load and store an integer from memory, where
the memory saves it in the big endian format.

Ex. 17 — Write an ARM assembly program to find out if a number is prime using a recursive
algorithm.

* Ex. 18 — Suppose you decide to take your ARM device to some place with a high amount
of radiation, which can cause some bits to flip, and consequently corrupt data. Hence, you
decide to store a single bit checksum, which stores the parity of all the other bits, at the
least significant position of the number (essentially you can now store only 31 bits of data in
a register). Write an ARM assembly program, which adds two numbers taking care of the
checksum. Assume that no bits flip while the program is running.

*Ex. 19 — Let us encode a 16-bit number by using 2 bits to represent 1 bit. We shall
represent logical 0 by 01, and logical 1 by 10. Now let us assume that a 16-bit number is
encoded and stored in a 32-bit register r3. Write a program in ARM assembly to convert it
back into a 16-bit number, and save the result in r4. Note that 00 and 11 are invalid inputs
and indicate an error. The program should set r5 to 1 in case of an error; otherwise, 5 should
be 0.

** Ex. 20 — Write an ARM assembly program to convert a 32-bit number to its 12 bit
immediate form, if possible, with first 4 bits for rotation and next 8 bits for the payload. If the
conversion is possible, set r4 to 1 and store the result in r5, otherwise, r4 should be set to 0.
Assume that the input number is available in register 3.

** Ex. 21 — Suppose you are given a 32-bit binary number. You are told that the number
has exactly one bit equal to 1; the rest of the bits are 0. Provide a fast algorithm to find
the location of that bit. Implement the algorithm in ARM assembly. Assume the input to be
available in r9. Store the result in r10.
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X Ex. 22 — Write an ARM assembly language program to find the greatest common divisor
of two binary numbers v and v. Assume the two inputs (positive integers) to be available in 73
and r4. Store the result in 5. [HINT: The gcd of two even numbers u and v is 2 ged(u/2,v/2)]

ARM Instruction Encoding
Ex. 23 — How are immediate values encoded in the ARM ISA?
Ex. 24 — FEncode the following ARM instructions. Find the opcodes for instructions from
the ARM architecture manual [arm, 2000].
i) add r3, r1, r2
ii) 1dr r1, [r0, r2]
iii) str r0, [rl, r2, Isl #2]

Design Problems

Ex. 25 — Run your ARM programs on an ARM emulator such as the QEMU (www.qgemu.org)
emulator, or arm-elf-run (available at www.gnuarm. com).


www.qemu.org
www.gnuarm.com

x86 Assembly Language

In this chapter, we shall study the basics of the x86 family of assembly languages. They are
primarily used in Intel and AMD processors, which have an overwhelmingly large market share
in the desktop, laptop, and low end server markets. They are steadily making deep inroads
into the middle and high end server markets as well as the smart phone market. Hence, it
is essential for the reader to have a good understanding of this important class of assembly
languages. At this stage we expect the reader to have a basic understanding of assembly
language from Chapter

5.1 Overview of the x86 Family of Assembly Languages

5.1.1 Brief History

Let us start out by noting that x86 is not one language; it is actually a family of assembly
languages with a very interesting history. Intel released the 8086 microprocessor in 1978, and
called it 8086. It was Intel’s first 16-bit microprocessor. This microprocessor proved to be very
successful in the market, and succeeded in displacing other 8-bit competitors at that time. This
motivated Intel to continue this line of processors. Intel then designed the 80186 and 80286
processors in 1982. 80186 was aimed at the embedded processor market, and 80286 was aimed
at desktops. Both of them were fairly successful and helped establish Intel processors firmly in
the desktop market. Those days IBM was the biggest vendor of PCs (personal computers), and
most IBM PCs used Intel processors. The rapid proliferation of PCs led Intel to release two
more processors, 80386 and 80486, in 1985 and 1989 respectively. These were 32-bit processors.
Note that as Intel moved from 8086 to 80486, it continuously added more and more instructions
to the instruction set. However, it also maintained backward compatibility. This means that
any program meant to run on a 8086 machine, could also run on a 80486 machine. Secondly,
it also maintained a consistent assembly language format for this family of processors whose
name ended with “86”. Over time this family of processors came to be known as “x86”.
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Gradually, other companies started using the x86 instruction set. Most notably, AMD
(Advanced Micro Devices) started designing and selling x86 based processors. AMD released
the K5, K6, and K7 processors in the mid nineties based on the 32-bit x86 instruction set. It also
introduced the x86_64 instruction set in 2003, which was a 64-bit extension to the standard 32-
bit x86 Intel ISA. Many other vendors such as VIA, and Transmeta also started manufacturing
x86 based processors starting from 2000.

Each vendor has historically taken the liberty to add new instructions to the base x86
instruction set. For example, Intel has proposed many extensions over the years such as Intel®
MMX™, SSE1, SSE2, SSE3, and SSE4. The number of x86 instructions are more than 900 as of
2012. Similarly, AMD introduced the 3D Now!™instruction set, and VIA introduced its custom
extensions. The rich history of x86 processors has led to many different extensions of the basic
instruction set, and there are numerous assemblers that have their unique syntax. Almost all
x86 vendors today support hundreds of instructions. Current 64-bit Intel processors support
16-bit, and 32-bit code that dates way back to the original 8086.

If we try to classify the entire family tree of x86 ISAs, we can broadly divide them as
16-bit, 32-bit, and 64-bit instruction sets. 16-bit instruction sets are rarely used nowadays. 32-
bit instruction sets are extremely popular in the smart phone, embedded, and laptop/netbook
markets. The 64-bit ISAs (also known as the x86-64 ISA) are mainly meant for workstation class
desktop/laptops and servers. Other than minor syntactic differences the assembly languages
for these instruction sets are mostly the same. Hence, learning one ISA is sufficient. In this
book, we try to strike a compromise between embedded processors, laptops, desktops, smart
phones, and high end servers. We thus focus on the 32-bit x86 ISA because in our opinion it
falls in the middle of the usage spectrum of the x86 ISA. We shall mention the minor syntactic
differences with other flavours of x86 whenever the need arises.

5.1.2 Main Features of the x86 ISA

Before delving into the details of the 32-bit x86 ISA, let us list some of its main features.

1. It is a CISC ISA. Instructions have varying lengths, and operands also do not have a fixed
length.

2. There are at least 300 scalar instructions, and this number is increasing every year.

3. Almost all the instructions can have a memory operand. In fact, most instructions allow
a source, and a destination memory operand.

4. Most of the x86 instructions are in the 2-address format. For example, the assembly
instruction to add two registers eax, and ebx, is add eax, ebr. Here, we add the contents
of the eax, and ebx registers, and save the results in the eax register.

5. x86 has many complicated addressing modes for memory operands. Along with the tradi-
tional base-offset addressing mode, it supports base-index and base-index-offset addressing
modes.

6. It does not have a return address register. Function call and return instructions, save and
retrieve the return address from the stack.
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7. Like ARM and SimpleRisc , x86 has a flags register that saves the outcome of the last

comparison. The flags register is used by conditional branch instructions.

8. Unlike SimpleRisc , x86 instructions do not see an unified view of instruction and data
memory. The x86 memory is segmented. This means that instructions and data reside in
different memory regions (known as segments). x86 machines restrict the segments that

an instruction can access.

It is true that the x86 architecture is a CISC instruction set, and it has hundreds of opcodes
and many addressing modes. Nevertheless, we are sure that at the end of this chapter, the
reader will concur with us that the x86 instruction set is in reality a fairly simple instruction
set, is easy to understand, and is very elegant. A conventional argument supporting the case
of RISC ISAs is that the hardware is simpler, and more efficient. Consequently, in modern
Intel/AMD processors (Pentium® 4 onwards), the x86 instructions are internally translated
into RISC instructions, and the entire processor is essentially a RISC processor. We can thus

get the best of both worlds.

5.2 x86 Machine Model

5.2.1 Integer Registers

rax | eax | _ax |
rbx | ebx [ _bx
rcx | ecx | _¢cx
rdx | edx |_dX

ax [SA[EN
o [BRIBT]
cx
dx

16 bit segment registers

rsp lesp |_SP_| = [es ]
rbp |ebp L bp | [ ss | [ fs |
rsi lesi L.SL_| [ ds | [ g9s |
rdi ledi [ di |
= l«— 64 bits .
l<—— 32 bits —>|
9 16 bits—|
e e+ e rflags | eflags | flags |
ris rip leip [P

Figure 5.1: The x86 register set



(© Smruti R. Sarangi 178

Figure [5.1] shows the x86 register set. The 16 and 32-bit x86 ISAs have 8 general purpose
registers. These registers have an interesting history. The original 8080 microprocessor designed
forty years ago had seven 8-bit general purpose registers namely a, b, ¢, d, e, f and g. In the late
seventies, x86 designers decided to create a 16-bit processor called 8086. They decided to keep
four registers (a, b, ¢, and d), and suffixed them with the x’ tag ('x’ for extended). Thus, the
four general purpose registers got renamed to ax, bx, cx, and dx. Additionally, the designers
of the 8086 machine decided to retain some 16-bit registers namely the stack pointer (sp), and
the register to save the PC (ip). The designers also introduced three extra registers in their
design — bp (base pointer), si (starting index), and di (destination index). The intention of
adding the bp register was to save the value of the stack pointer at the beginning of a function.
Compilers are expected to set sp equal to bp at the end of the function. This operation destroys
the stack frame of the callee function. The registers si, and di are used by the rep instruction
that repeats a certain operation. Typically, a single rep instruction is equivalent to a simple
for loop. Thus, the 8086 processor had eight 16-bit general purpose registers — ax, bx, cx,
dzx, sp, bp, si, and di. It was further possible to access the two bytes (lower and upper) in the
registers ax — dx. For example, the lower byte in the ax register can be addressed as al, and
the upper byte can be addressed as ah. 16-bit x86 instructions can use combinations of 8-bit
and 16-bit operands.

The 8086 processor had two special purpose registers. The first register called ip contained
the PC. The PC is typically not accessible to programmers on x86 machines (unlike the ARM
ISA). The second special purpose register is the flags register that saves the results of the last
comparison (similar to the flags register in ARM and SimpleRisc ). The flags register is used
by subsequent conditional branch instructions to compute the outcome of the branch.

In the might eighties, when Intel decided to extend the 8086 design to support 32-bit
registers, it decided to keep the same set of registers (8 general purpose + ip + flags), and
similar nomenclature. However, it extended their names by adding an ’e’ prefix. Thus in a 32-
bit machine, register eax is the 32-bit version of ax. To maintain backward compatibility with
the 8086, the lower 16 bits of eax can be addressed as ax (if we wish to use 16-bit operands).
Furthermore, the two bytes in ax can be addressed as ah and al (similar to 8086). As shown
in Figure [5.1] the names were changed for all the other registers also. Notably, in a 32-bit
machine, the stack pointer is stored in esp, the PC is stored in eip, and the flags are stored in
the eflags register.

There are many advantages to this strategy. The first is that 8086 code can run on a 32-bit
x86 processor seamlessly. All of its registers are defined in the 32-bit ISA. This is because each
16-bit register is represented by the lower 16 bits of a 32-bit register. Hence, there are no issues
with backward compatibility. Secondly, we do not need to add new registers, because we simply
extend each 16-bit register with 16 additional bits. We refer to the new register with a new
name (16-bit name prefixed with ’e’).

Exactly the same pattern was followed while extending the x86 ISA to create the 64-bit
x86-64 ISA. The first letter was replaced from ’e’ to 'r’ to convert a 32-bit register to a 64-bit
register. For example, the register rax is the 64-bit version of eax. Its lower 32 bits can be
addressed as eax. The connotation of ax, ah, and al remains the same as before. Additionally,
the x86-64 ISA introduced 8 more general purpose registers namely 8 — r15. However, their
subfields cannot be addressed directly. The 64-bit PC is saved in the rip register, and the flags
are stored in the r flags register.
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The eflags register

Let us now quickly discuss the structure of the eflags register. Like ARM and x86, the eflags
register contains a set of fields, where each field or bit indicates the status of execution of the
instruction that last set it. Table lists some of the most commonly used fields in the eflags
register, along with their semantics.

Field | Condition | Semantics

OF Overflow Set on an overflow

CF Carry flag | Set on a carry or borrow

ZF Zero flag | Set when the result is a 0,
or the comparison leads to an
equality

SF Sign flag | Sign bit of the result

Table 5.1: Fields in the eflags register

5.2.2 Floating Point Registers

The floating point instructions in x86 have a dual view of the floating point register file. They
can either see them as normal registers or as a set of registers organised as a stack. Let us
elaborate.

To start out, x86 defines 8 floating point registers named: st0O ... st7. These are 80-bit
registers, The x86 floating point format has a 64-bit mantissa, and a 15-bit exponent. It is thus
more precise than double precision numbers. The registers st0 to st7 are organised as a stack.
Here, st0 is the top of the stack, and st7 is the bottom of the stack as shown in Figure [5.2
Additionally, x86 has a tag register that maintains the status of each register in the stack.
The tag register has 8 fields (1 field for 1 register). Each field contains 2 bits. If the value of
these bits is 00, then the corresponding register contains valid data. If the value is 01, then
the register contains a 0, and if it is 11, then the register is empty. 10 is reserved for special
purposes. We shall refer to the stack of registers, as the floating point stack, or simply the FP
stack.

The registers st0 to st7 are positions on the FP stack. st0 is always the top of the stack,
and st7 is always the bottom of the stack. If we push a data item on to the FP stack, then
the contents of each register get transferred to the register below it. If the stack is full (means
that st7 contains valid data), then a stack overflow occurs. This situation needs to be avoided.
Most floating point instructions operate on data values saved at the top of the stack. They pop
the source operands, and push the destination operand.

5.2.3 View of Memory

Let us now describe the functionality of the segment registers (see Figure [5.1)), and the view
of memory. x86 instructions can have two views of memory. The first view is like ARM and
SimpleRisc , which views memory as one large array of bytes that stores both code and data.
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Figure 5.2: The x86 floating point register stack

This is known as the linear memory model. In comparison, the segmented memory model views
memory as consisting of fixed size segments, where each segment is tailored to store one kind
of data such as code, stack data, or heap data (for dynamically allocated data structures). We
shall not discuss the linear model of memory because we have seen it before in Chapter 3] Let
us discuss the segment registers, and the segmented memory model in this section.

Definition 40

Linear Memory Model A linear memory model views the entire memory as one large
array of bytes that saves both code and data.

Segmented Memory Model A segmented memory model views the memory as a se-
quence of multiple fized size segments. Code, data, and the stack have their own
segments.

The Segmented Memory Model

Let us define the term address space as the set of all memory addresses accessible to a program.
The aim of the segmented memory model is to divide the address space into separate smaller
address spaces. Each address space can be specialised to store a specific type of information
such as code or data.

There are two reasons for using segmentation. The first is historical. In the early days
different parts of a program were physically saved at different locations. The code was saved on
punch cards, and the memory data was stored in DRAM memories. Hence, it was necessary to
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partition the address space among the devices that stored all the information that a program
required (code, static data, dynamic data). This reason is not valid anymore. Nowadays, all
the information a program requires is typically stored at the same place. However, we still
need segmentation to enforce security. Hackers and viruses typically try to change the code of
a program and insert their own code. Thus a normal program can exhibit malicious behaviour
and can corrupt data, or transfer sensitive data to third parties. To ensure added protection,
the code region is saved in a code segment. Most systems do not allow normal store instructions
to modify the code segment. We can similarly partition the data segments for different classes
of data. In Section [11.4.6] we will have a more thorough discussion on this topic.

Segmentation in x86

The 8086 designers had 6 segment registers that stored the most significant 16 bits of the
starting location of the segment. The remaining bits were assumed to be all zeros. The cs
register stored the upper 16 bits of the starting location of the code segment. Similarly, the ds
register stored the upper 16 bits of the starting location for the data segment, and the ss register
stored the corresponding set of bits for the stack segment. The es (extra segment), fs, and
gs registers could be used to store information for additional user defined segments. Till date
all x86 processors have preserved this model (see Figure [5.1)). The contents of instructions are
saved in the code segment, and the data that a program accesses is saved in the data segment.
In most small programs, the stack and data segments are the same. In 8086 processors the
memory address was 20 bits wide. Hence, to obtain the final address also known as the linear
address, the 8086 processor first shifted the contents of the segment register 4 positions to
the left to obtain the starting location of the segment. It then added this address with the
memory address specified by the instruction. We can think of the memory address specified by
an instruction as an offset in the segment, where the starting memory location of the segment
is indicated by the appropriate segment register.

This strategy served the needs of the 8086 designers well. However, this strategy is not
suitable for 32 and 64-bit machines. In this case, the memory addresses are 32 and 64 bits
wide respectively. Thus, the segment registers need to be wider. In the interest of backward
compatibility, designers did not touch the segment registers. They just changed the semantics
of its contents for newer processors. Instead of saving the upper 16 bits of the starting location
of a segment, the registers now contain a segment id. The segment id uniquely identifies a
segment across all the programs running in a system. To get the starting location, 32/64-bit
x86 processors, lookup a segment descriptor table with 13 bits (bits 4 to 16) of the segment
id. 13 bits can specify 8192 entries, which is more than sufficient for all the programs in the
system.

Modern x86 processors have two kinds of segment descriptor tables namely the local de-
scriptor table (LDT), and the global descriptor table (GDT). The LDT is typically local to
a process (running instance of a program) and contains the details of the segments for that
process. The LDT is normally not used nowadays because programs do not use a lot of seg-
ments. In comparison there is only one system level GDT. The GDT can contain up to 8191
entries ( the first entry is reserved). Each entry in the GDT contains the starting address of
the segment, the size of the segment, and the privileges required to access the segment. Every
memory access needs to go through the GDT for fetching the starting address of the segment.
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This unnecessarily lengthens the critical path of a memory request, and creates contention at
the GDT. To make the access to the GDT faster, modern processors have a small structure
called a segment descriptor cache that stores a few entries of the GDT that are relevant to
the currently executing process. The descriptor cache typically stores the details of all the
segments that the frequently running processes use. This strategy ensures that we do not need
to access the GDT on every memory access. The small and fast descriptor cache is sufficient.
After accessing the descriptor cache, or the GDT, x86 processors get the starting address of
the segment. They subsequently generate the memory address by adding the address specified
in the instruction with the starting address of the segment. This address is then passed on to
the memory system.

Definition 41

Process It is defined as the running instance of a program. For example, if we run two
copies of a program, then we create two processes.

LDT (Local Descriptor Table) The LDT is a per process table that saves the descrip-
tion of all the segments that a process uses. The LDT is indexed by a segment id, and
contains the starting address of the segment, and the privileges required to access it.
It is mot used very frequently in modern systems.

GDT (Global Descriptor Table) The GDT is similar to the LDT. However, it is a
system wide table that is shared by all the processes running on a machine.

Now, that we have discussed the view of the register files, and the memory system, let us
describe the addressing modes.

5.2.4 Addressing Modes
Addressing Modes for Specifying Immediates

The best thing about x86 is that there are no size restrictions on immediates. Immediates can be
as large as the size of the register. For example, in a 32-bit system, the size of the immediate can
be as large as 32 bits. Depending upon the assembly language, we can specify immediates in the
hex format (0x...), binary format (e.g., 10101b), or in decimal. Most of the time programmers
prefer the hex or decimal formats. For hexadecimal numbers most assemblers allow us to specify
the number with the standard Ox prefix. Additionally, we can specify a number with the h/H
suffix. For example, 21H is the same as 0x21. For negative numbers, we need to simply put a
‘-’ before the number.

Addressing Modes for Specifying Registers

All registers in x86 are addressed by their names. For example, the general purpose registers
on a 32-bit machine are addressed as eax, ebx ... edi, according to the rules mentioned in
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Section We can use 16-bit register names in 32-bit mode, and we can use 16 and 32-bit
register addressing in 64-bit mode. Note that we cannot do the reverse. For example, we cannot
use 64-bit register names in 32-bit mode.

Addressing Modes for Memory Operands

x86 supports a variety of addressing modes for main memory. In specific, it supports the
register-indirect, base-offset, base-index, and base-index-offset addressing modes as mentioned
in Section In addition, it also supports a new addressing mode called the base-scaled-
index-offset addressing mode that scales the index by a constant factor. Let us elaborate.

feax]
o eax
cs ebx
ebx
ds:| |ecx 1
ecx
ss:| |edx 2 ]
address = + || edz | x + [displacement] (5.1)
es: esp b 4 ~—_———
€ of fset
fs:| |ebp p 8 17
] est N
Lgs 1 |est . scale
) edi
_€dZ h ——
N—— | index _
base

Equation shows the generic format of a memory address in the 32-bit version of x86.
The interesting aspect of x86 memory addressing is that all of these fields are optional. Hence,
it is possible to have a large number of addressing modes.

Let us first consider the addressing modes that require a base register. With the base
register, we can optionally specify a segment register. If we do not specify a segment register,
then the hardware assumes default segments (ds for data, ss for stack, and cs for code). We
can subsequently specify an index. The index is contained in another register (excluding esp).
We can optionally multiply the index with a power of 2 (1, 2, 4, or 8). Lastly, we can specify a
32-bit offset known as the displacement. The memory address is computed using Equation

Now, let us look at addressing modes that do not require a base register. We can just use an
index register and optionally scale it by 1, 2, 4, or 8. For example, we can specify that we want
to access the memory address equal to 2 x ecx. This approach uses the scaled-index addressing
mode. We can optionally add a fixed offset (known as the displacement) to the address.

Lastly, it is possible to specify the entire 32-bit address in the displacement field, and not
specify any register at all. This approach is typically used in the operating system code to
directly operate on memory addresses. Regular assembly programmers need to strictly avoid
such direct memory addressing because most of the time we are not aware of the exact memory
addresses. For example, the starting address of the stack pointer is typically allocated at run
time in modern systems, and tends to vary across runs. Secondly, this is not a portable and
elegant approach. It is only meant for operating system writers.

Let us explain with examples (see Table .
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Definition 42
In the z86 ISA, the fized offset used while specifying the effective address of a memory
operand, is known as the displacement.

Memory operand | Value of the address Addressing mode
(in register transfer notation)
[eax] eax register-indirect
[eax + ecx™2] eax + 2 * ecx base-scaled-index
[eax + ecx*2 - 32] | eax + 2 * ecx - 32 base-scaled-index-offset
[edx - 12] edx - 12 base-offset
[edx*2] edx * 2 scaled-index
[0xFFE13342] 0xFFE13342 memory-direct

Table 5.2: Example of memory operands

5.2.5 x86 Assembly Language

There are various x86 assemblers such as MASM [mas, |, NASM [nas, |, and the GNU assem-
bler [gx8, |. In this book, we shall present code snippets that have been tested with the NASM
assembler. The popular NASM assembler is freely available at [nas, |, and is known to work on
a variety of platforms including Windows® |, Mac OS X, and different flavours of Linux. Note
that we shall mostly avoid using NASM specific features, and we shall keep the presentation of
assembly code very generic. Our assembly codes should be compatible with any assembler that
supports the Intel format for x86 assembly. The only major feature of NASM that we shall use
is that comments begin with a ;’ character.

Let us now describe the structure of an assembly language statement in the Intel format.
Its generic structure is as follows.

Structure of an Assembly Statement
<label>: <assembly instruction> ; <comment>

For an assembly instruction, the label and the comment are optional. Alternatively, we can

just have a label or a comment, or a combination of both in a single line. In our code, we shall

use labels starting with a ’.’. However, labels can start with regular alphabets and other special

characters also. For a detailed description readers can refer to the NASM documentation.
Each x86 assembly instruction has an opcode followed by a set of operands.

x86 Assembly Instruction
<opcode>

<opcode> <operandl>

<opcode> <operandl>, <operand2>
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An overwhelming majority of x86 instructions are in the 0, 1 and 2-address formats. 0-
address format instructions like nop instructions in SimpleRisc do not require any operands.
1-address format instructions have a single source operand. In this case the destination operand
is equal to the source operand. For example, the instruction not eax computes the bitwise
complement of eazx, and saves the result in eaz. In two operand instructions, the first operand
is the first source operand and also the destination operand. The second operand is the second
source operand. For example, add eazx, ebz, adds the contents of eax and ebxr, and subsequently
saves the result in eax.

The source operands can be register, memory, or immediate operands. However, both the
sources cannot be memory operands. Needless to say the destination operand cannot be an
immediate operand. When a single operand is both the source and destination, both the rules

apply.
5.3 Integer Instructions

5.3.1 Data Transfer Instructions

The mov Instruction

Semantics Example Explanation

mov (reg/mem), (reg/mem/imm) | mov eax, ebx | eax <— ebx

Table 5.3: Semantics of the mov instruction

The mov instruction is a very simple yet versatile instruction in the x86 ISA. It moves the
contents of the second operand, into the first operand. The second operand can be a register,
a memory location, or an immediate. The first operand can be a register or a memory location
(Table shows the semantics). The reader needs to note that both the operands cannot be
memory locations.

We thus do not need any dedicated load/store instructions in x86. The mov instruction
can achieve the function of loading and storing memory values because it accepts memory
operands. The mov instruction can also transfer values between registers (similar to SimpleRisc
and ARM). Thus, we have fused the functionality of three RISC instructions into one CISC
instruction. Let us consider some examples.

Example 55
Write an 86 assembly instruction to set the value of ebx to -17.
Answer:

mov ebx, -17
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Example 56
Write an £86 assembly instruction to load ebx with the contents of (esp - eax™} -12).
Answer:

mov ebx, [esp - eax*4 -12]

Example 57
Write an x86 assembly instruction to store the contents of edx in (esp - eax™] -12). An-
swer:

mov [esp - eax*4 -12], edx

movsz, and movzx Instructions

Semantics Example Explanation

movsx reg, (reg/mem) | movsx eax, bx | eax < sign_extend(bx), the second
operand is either 8 or 16 bits
movzx reg, (reg/mem) | movsx eax, bx | eax < zero_extend(bx), the second
operand is either 8 or 16 bits

Table 5.4: Semantics of the movsz, and movzx instructions

The simple mov instruction assumes that the sizes of the operands are the same (16, or
32, or 64 bits). However, sometimes we face the need for saving a smaller register or memory
operand in a larger register. For example, if we save the 16 bit register ax in ebx then we need
we have two options. We can either extend the sign of the input operand, or pad it with Os.
The movsx instruction (see Table copies a smaller register or memory operand to a larger
register and extends its sign. For example, the following code snippet extends the sign of bx
(from 16 to 32 bits), and saves the results in eaz.

movsx eax, bx ; eax = sign_extend(bx)

The movzzx instruction is defined on the same lines. However, instead of performing a sign
extension, it pads the MSB bits with 0s.

movzx eax, bx ; eax = bx (unsigned)
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Semantics Example Explanation

xchg (reg/mem), (reg/mem) | xchg eax, [eax + edi] | swap the contents of eax
and [eax + edi] atomi-
cally

Table 5.5: Semantics of the zchg instruction

The Atomic Exchange (zchg) Instruction

The zchg instruction swaps the contents of the first and second operands. Here, also we cannot
have two memory operands. This instruction ensures that before the operation is done, no
other operation can read temporary values. For example, if we are swapping the values of eax,
and the memory operand [ebz], there might be an intermediate point in the execution where
the contents of eax are updated, but the contents of [ebx] are not updated. The x86 processor
does not allow other threads (sub-programs that share the address space) to read the contents
of [ebz] at this point. It makes other conflicting instructions in other execution threads wait
till the xchg instruction completes. This property is known as atomicity. An instruction is
atomic if it appears to execute instantaneously. Most of the time, atomic instructions such as
xchg are used for implementing data structures that are shared across multiple threads. The
reader should read Chapter [12] for a detailed discussion on parallel software that uses multiple
threads.

Definition 43
An instruction is atomic if it appears to execute instantaneously.

Example 58
Write a function to swap the contents of eax, and [esp).

Answer:

xchg eax, [esp]

push and pop Instructions

The x86 architecture is explicitly aware of the stack. It has two dedicated instructions for
saving and retrieving operands off the stack. The push instruction pushes data on the stack. In
specific, the push instruction can push the contents of a register, memory location, or immediate
on the stack. It has just one source operand. Its operation is shown in Table Conceptually,
it first saves the value of the first operand as a temporary value temp. Then, it decrements the
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Semantics Example | Explanation

push (reg/mem/imm) | push ecx | temp < ecx; esp < esp - 4; [esp] + temp
pop (reg/mem) pop ecx | temp < [esp]; esp < esp + 4; ecx < temp

Table 5.6: Semantics of the push and pop instructions

stack pointer, and transfers the temporary value to the top of the stack. In a 32-bit system,
we decrement the stack pointer by 4. When we are pushing a register, the processor knows its
size based on the name of the register. For example, if the name of the register is ax, its size
is 16 bits, and if the name of the register is eaz, its size is 32 bits. However, if we are pushing
a memory operand or a constant, the assembler cannot determine the size of the operand. We
might be intending to push 2 bytes, 4 bytes, or 8 bytes on the stack. In this case, it is necessary
to indicate the size of the operand to the assembler such that it can generate appropriate binary
code. In the NASM assembler, we specify this information as follows:

push dword [esp]

The modifier dword (double word) represents the fact that we need to push 4 bytes on the
stack. The starting address of the 4 bytes is stored in esp. Table shows the list of modifiers
for different sized data types.

Modifier | Size
byte 8 bits
word 16 bits
dword 32 bits
qword 64 bits

Table 5.7: Modifiers in the NASM assembler

For pushing in the value of immediate values, NASM assumes they are by default 32 bits
long (if we are running NASM in 32-bit mode). We can override this setting by specifying a
size modifier (word,dword,...) in the instruction.

On the same lines we can define a pop instruction as shown in Table Conceptually,
the pop instruction saves the top of the stack in a temporary location. It then proceeds to
increment the stack pointer by 4 (in the case of 32 bits), and then it saves the temporary value
in the destination. The destination can either be a register or a memory location. The push
and pop instructions thus make working with the stack very easy in x86 assembly programs.

Example 59 What is the final value of ebx ?

mov eax, 10
push eax
mov ebx, [esp]
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Answer:

Example 60
What is the final value of ebx ¢

mov ebp, esp
mov eax, 10

mov [esp], eax
push dword [esp]
mov ebx, [ebp-4]

Answer: Note that ebp and esp are initially the same. After we push a value to the stack,
esp gets decremented by 4. Hence, the new location of the top of the stack is equal to ebp—4.
Since we push the value of eax (10) to the top of the stack using the push instruction, the
value of ebx is equal to 10.

Example 61 What is the final value of ebx?

mov eax, 17

push eax

pop dword [esp]

mov dword ebx, [esp]

Answer:

5.3.2 ALU Instructions

Let us now discuss the rich set of ALU instructions that x86 processors support.

Add and Subtract Instructions

Table shows the add and subtract operations that are typically used in x86 processors. The
basic add and subtract instructions add the values of the first and second operands, and treat
the first operand also as the destination operand. They set the carry and overflow fields of
the eflags register. The adc instruction adds its two source operands, and also adds the value
of the carry bit. Similarly, the sbb instruction subtracts the second operand from the first,
and then subtracts the carry bit from the result. We can use the adc and sbb instructions to
add or subtract very large integers (refer to Example |62 and Example . In these examples,
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Semantics Example Explanation

add (reg/mem), (reg/mem/imm) | add eax, ebx | eax < eax + ebx
sub (reg/mem), (reg/mem/imm)
adc (reg/mem), (reg/mem/imm) | adc eax, ebx | eax < eax + ebx + (carry bit)
sbb (reg/mem), (reg/mem/imm) | sbb eax, ebx | eax <— eax - ebx - (carry bit)

sub eax, ebx | eax < eax - ebx

Table 5.8: Semantics of add and subtract instructions

we first operate on the lower bytes. While operating on the higher bytes we need to take the
carry generated by adding or subtracting the lower bytes into account. We use the adc and sbb
instructions respectively for this purpose.

Example 62

Write an 86 assembly program to add two 64-bit numbers. The first number is stored in
the registers ebx, and eax, where ebx stores the higher byte, and eax stores the lower byte.
The second number is stored in edz, and ecx. Save the result in ebx (higher byte), and
eax (lower byte).

Answer:

add eax, ecx
adc ebx, edx

Example 63

Write an 86 assembly program to subtract two 64-bit numbers. The first number is stored
in the registers ebx, and eax, where ebx stores the higher byte, and eax stores the lower
byte. The second number is stored in edx, and ecx. Subtract the second number from the
first number. Save the result in ebx (higher byte), and eax (lower byte).

Answer:

sub eax, ecx
sbb ebx, edx

inc, dec, and neg Instructions

Table shows the semantics of increment (inc), decrement (dec), and negate (neg) instruc-
tions. The inc instruction, adds 1 to the source operand. In this case also the source and
destination operands are the same. Similarly, the dec instruction subtracts 1 from the source
operand, which is also the destination operand. Note that the operand can either be a register
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Semantics Example | Explanation

inc (reg/mem) | inc edx | edx « edx + 1
dec (reg/mem) | dec edx | edx < edx -1
neg (reg/mem) | neg edx | edx < -1 * edx

Table 5.9: Semantics of inc, dec, and neg instructions

or a memory location. The neg instruction computes the negative of the value stored in the
first operand (register or memory). Let us consider an example (see Example .

Example 64
Write an 86 assembly code snippet to compute eax = -1 * (eax + 1).
Answer:

inc eax
neg eax

The Compare(cmp) Instruction

Semantics Example Explanation

cmp (reg/mem), (reg/mem/imm) | cmp eax, [ebx + 4] | compare the values in eax,
and [ebx+4], and set the flags
cmp (reg/mem), (reg/mem/imm) | cmp ecx, 10 compare the contents of ecx
with 10, and set the flags

Table 5.10: Semantics of the ¢mp instructions

Table shows the emp (compare) instruction. It compares two operands and sets the
values of the flags. It performs the comparison by subtracting the value of the second operand
from the first operand. It is conceptually a subtract instruction that does not have a destination
operand.

Multiplication and Division Instructions

Table shows the signed multiplication and division instructions in x86. They are known as
imul and idiv respectively. The unsigned variants of the instructions are known as mul and div.
They have exactly the same semantics as their signed counterparts. The signed instructions
are more generic. Hence, we only discuss their operation in this section.

The imul instruction has three variants. The 1-address format variant has 1 source operand,
which can either be a register or a memory address. This source operand is multiplied with the
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H Semantics ‘ Example ‘ Explanation H
imul (reg/mem) imul ecx edx:eax < eax * ecx
imul reg, (reg/mem) imul ecx, [eax + 4] ecx < ecx * [eax + 4]
imul reg, (reg/mem), imm | imul ecx, [eax + 4], 5 | ecx < [eax + 4] * 5
idiv (reg/mem) idiv ebx Divide (edx:eax) by the con-

tents of ebx; eax contains the
quotient, and edx contains the
remainder.

Table 5.11: Semantics of the imul and idiv instructions

contents of eax. Note that when we multiply two 32-bit numbers, we require at most 64 bits
to save the result (see Section [8.2.1)). Hence, to avoid overflows, the processor saves the results
in the register pair (edzr,eaxr). edzr contains the upper 32 bits, and eax contains the lower 32
bits of the final product. The 2-address format version is similar to other ALU instructions
that we have studied. It multiplies the first and second source operands, and saves the result in
the destination register (which is the first operand). Note that in this variant of the multiply
instruction, the destination is always a register, and the result is truncated to fit in the register.
The imul instruction has another variant that requires 3 operands. Here, it multiplies the
contents of the second and third operands and stores the product in the register specified by
the first operand. For this variant of the ¢mwul instruction, the first operand needs to be a
register, the second operand can be a register or memory location, and the third operand needs
to be an immediate value.

The idiv instruction takes just 1 operand (register or memory). It divides the contents of
the register pair (edz:eaz) by the contents of the operand. It saves the quotient in eax, and the
remainder in edxr. Note that the remainder has the same sign as the dividend. A subtle point
should be noted here. While using a positive dividend that fits in 32 bits, we need to explicitly
set edx to 0, and for a negative dividend that fits in 32 bits, we need to explicitly set edx to -1
(for sign extension).

Let us consider a set of examples.

Example 65
Write an assembly code snippet to multiply 3 with -17, and save the result in eax.

Answer:

mov ebx, 3
imul eax, ebx, -17
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Example 66
Write an assembly code snippet to compute k3, where k is the content of ecx, and save the
result in eax.

Answer:

mov eax, ecxX
imul ecx
imul ecx

Example 67
Write an assembly code snippet to divide -50 by 3. Save the quotient in eax, and remainder
n edx.

Answer:

mov edx, -1
mov eax, -50
mov ebx, 3
idiv ebx

At the end eax contains -16, and edx contains -2.

Logical Instructions

Semantics Example Explanation

and (reg/mem), (reg/mem/imm) | and eax, ebx | eax < eax AND ebx
or (reg/mem), (reg/mem/imm) | or eax, ebx | eax < eax OR ebx
xor (reg/mem), (reg/mem/imm) | xor eax, ebx | eax < eax XOR ebx
not (reg/mem) not eax eax < ~ eax

Table 5.12: Semantics of and, or, xor, and not instructions

Table shows the semantics of four commonly used logical operations. and, or, and xor
instructions have exactly the same format as add and sub instructions, and most of the other
2-address format instructions. They compute the bitwise AND, OR, and exclusive OR of the
first two operands respectively. The not instruction computes the 1’s complement (flips each
bit) of the source operand, which is also the destination operand (format is similar to other
1-address format instructions such as inc, dec, and neg).
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Shift Instructions

Semantics Example | Explanation

sar (reg/mem), imm sar eax, 3 | eax ¢— eax > 3
shr (reg/mem), imm shr eax, 3 | eax < eax > 3
sal/shl (reg/mem), imm | sal eax, 2 | eax < eax < 2

Table 5.13: Semantics of shift instructions

Table shows the semantics of shift instructions. sar (shift arithmetic right) performs
an arithmetic right shift by replicating the sign bit. shr (shift logical right), shifts the first
operand to the right. Instead of replicating the sign bit, it fills the MSB bits with 0s. sal
and shl are the same instruction. They perform a left shift. Recall that we do not have an
arithmetic left shift operation. Let us consider some examples.

Example 68
What is the final value of eax?

mov eax, Oxdeadbeef
sal eax, 4

Answer:

Example 69 What is the final value of eax?

mov eax, Oxdeadbeef
sar eax, 4

Answer:

Example 70 What is the final value of eax ?

mov eax, Oxdeadbeef
shr eax, 4

Answer:
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5.3.3 Branch/ Function Call Instructions

Conditional and Unconditional Branch Instructions

Semantics

Example

Explanation

jmp (label)

jmp .foo

jump to .foo

j {condcode)

j {condcode) .foo

jump to .foo if the (condcode) con-
dition is satisfied

Table 5.14: Semantics of branch instructions

Condition code | Meaning

0 Overflow

no No overflow

b Below (unsigned less than)

nb Not below (unsigned greater than or equal to)
e/z Equal or zero

ne/nz Not equal or not zero

be Below or equal (unsigned less than or equal)
s Sign bit is 1 (negative)

ns Sign bit is 0 (0 or positive)

l Less than (signed less than)

le Less than or equal (signed)

g Greater than (signed)

ge Greater than or equal (signed)

Table 5.15: Condition codes in x86

Table shows the semantics of branch instructions. jmp is an unconditional branch
instruction that branches to a label. The assembler internally replaces the label by the PC of
the label. x86 defines a series of branch instructions with the j prefix. These are conditional
branch instructions. The j prefix is followed by the branch condition. The conditions are shown
in Table For example, the instruction je means jump if equal. If the last comparison has
resulted in an equality, then the processor branches to the label; otherwise, it executes the
next instruction. If the condition is not satisfied, the conditional branch is equivalent to a nop

instruction.

Now that we have introduced branch instructions, we can implement complex algorithms
using loops. Let us look at a couple of examples. We would like to advise the reader at this point
that the best method to learn assembly language is by actually writing assembly programs. No
amount of theoretical reading can substitute for actual practice.
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Example 71
Write a program in x86 assembly to add the numbers from 1 to 10.
Answer:
86 assembly code
iimov eax, 0 ; sum = 0
2lmov ebx, 1 ; idx = 1
3 .loop:
4 add eax, ebx ; sum += idzx
5 inc ebzx ; tdx ++
6 cmp ebxz, 10 ; compare idxz and 10
7 jle .loop ; Jump if idx <= 10

Here, we store the running sum in eax and the index in ebx. In Line[4, we add the
index to the sum. We subsequently, increment the index, and compare it with 10 in Line [0
If it is less than or equal to 10, then we continue iterating. eax contains the final value.

Example 72

Write a program in x86 assembly to test if a number stored in eax is prime. Save the result
in eax. If the number is prime, set eax to 1, otherwise set it to 0. Assume that the number
in eax is greater than 10.

Answer:
86 assembly code

1 mov ebzx, 2 ; starting index

2 mov ecx, eax ; ecx contains the original number
s . loop:

4 mov edz, 0 ; required for correct division
5 1div ebx

6 cmp edz, O ; compare the remainder

7 je .notprime ; mumber ts composite

8 inc ebzx

9 mov eax, ecx ; set the wvalue of eaxz again
10 cmp ebzx, eax ; compare the index and the number
11 Jl .loop
12
13 ; end of the loop
14 mov eax, 1 ; nmumber s prime
15 Jjmp .exit ; exit
16
17| .notprime:
18 mov eax, O
19| .extt:
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In this algorithm, we keep on dividing the input (stored in eax) by a monotonically
increasing index. If the remainder is equal to 0 in any iteration, then the number is com-
posite (non prime). Otherwise, the number is prime. In specific, we perform the division
n Lz’ne@ and jump to the label notprime if the remainder (stored in edx) is 0. Otherwise,
we increment the index in ebx, and keep iterating. Note that in each iteration, we need to
set the values of eax and edx because they are overwritten by the idiv instruction.

Example 73
Write a program in 86 assembly to find the factorial of a number stored in eax. Save your
result in ecx. You can assume that the number is greater than 10.

Answer:
86 assembly code
1 mov ebzx, 2 ; tdz = 2
2 mov ecx, 1 ; prod = 1
3|
4 .loop:
5 tmul ecxz, ebxr ; prod *= idx
6 inc ebzx ; tdx++
7 cmp ebz, eax ; compare num (number) and idz
8 jle .loop ; Jjump to .loop if idx <= num

In Line[3, we initialise the product to 1. Subsequently, we multiply the index with the
product in Line [ We then increment the index, and compare it with the input stored in
eax. We keep on iterating till the index is less than or equal to the input.

Function Call and Return Instructions

Semantics | Example | Explanation

call (label) | call .foo | Push the return address on the
stack. Jump to the label .foo.

ret ret Return to the address saved on the
top of the stack, and pop the entry

Table 5.16: Semantics of the function call and return instructions

Unlike ARM and SimpleRisc , x86 does not have a return address register. The call in-
struction pushes the return address on the stack, and jumps to the beginning of the function
as explained in Table Similarly, the ret instruction jumps to the entry at the top of the
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stack. The entry at the top of the stack needs to contain the return address. The ret instruc-
tion subsequently pops the stack and removes the return address. Let us now consider a set of
examples.

Example 74
Write a recursive function to compute the factorial of a number (> 1) stored in eaz. Save
the result in ebx.

Answer:
86 assembly code

1| factorial:

2 mov ebzx, 1 ; default return value

3 cmp eazx, 1 ; compare num (input) with 1
4 je .return ; return if input is equal to 1
5

6 ; recursive step

7 push eazx ; save input on the stack

s dec eax ;. num——

9 call factorial ; recursive call
10 pop eax ; retrieve input
11 tmul ebz, eax ; prod = prod * num
12
13 . return:
1 ret ; return

In the factorial function, we assume that the input (num) is stored in eax. We first
compare the input with 1. If it is equal to 1, then we return 1 (Lines to . However, if the
input is greater than 1, then we save the input by pushing it to the stack @ Subsequently,
we decrement it and recursively call the factorial function in Line [§ The result of the
recursive call is stored in ebx. To compute the result (in ebx), we multiply ebx with num
(stored in eax) in Line[11]

In Example [74] we pass arguments through registers. We use the stack to only store values
that are overwritten by the callee function. Let us now use the stack to pass arguments to the
factorial function (see Example

Example 75
Write a recursive function to compute the factorial of a number (> 1) stored in eax. Save
the result in ebx. Use the stack to pass arguments.

Answer:
86 assembly code

1

2| factorial:
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3 mov eazx, [esp+{] ; get the walue of eaz from the stack
4 mov ebzx, 1 ; default return value

5 cmp eazx, 1 ; compare num (input) with 1

6 je .return ; return if input is equal to 1
7

8 ; recursive step

9 push eax ; save eax on the stack

10 dec eax ;. num—-—

11 push eax ; push the argument

12 call factorial ; recursive call

13 pop eax ; pop the argument

14 pop eax ; retrieve the wvalue of eazx

15 wmul ebxz, eaxr ; prod = prod * num

16

17| . return:

18 ret ; return

Here, we use the stack to pass arguments. Since the stack pointer gets automatically
decremented by 4 after a function call, the argument eax is available at [esp+4] because we
push it on the stack just before we call the function. To call the factorial function again,
we push eax on the stack, and then pop it out after the function returns.

Let us now assume that we have a lot of arguments. In this case, we need to push and
pop a lot of arguments from the stack. It is possible that we might lose track of the order of
push and pop operations, and bugs might be introduced in our program. Hence, if we have a
lot of arguments, it is a better idea to create space in the stack by subtracting the estimated
size of the activation block from the stack pointer and moving data between the registers and
stack using regular mov instructions. Let us now modify our factorial example to use mov
instructions instead of push and pop instructions (see Example [76]).

Example 76

Write a recursive function to compute the factorial of a number (> 1) stored in eax. Save
the result in ebx. Use the stack to pass arguments. Avoid push and pop instructions.
Answer:

86 assembly code
1| factorial:

2 mov eazx, [esp+{] ; get the walue of eaz from the stack
3 mov ebzx, 1 ; default return value
4 cmp eaz, 1 ; compare num (input) with 1

5 Jjz .return ; return 1if input is equal to 1
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7 ; recursive step

8 sub esp, 8 ; create space on the stack
9 mov [esp+4], eaz ; save the input eaz on the stack
10 dec eax ; num—-—

11 mov [esp], eaz ; push the argument

12 call factorial ; recursive call

13 mov eazx, [esp+{] ; retrieve eax

14 tmul ebz, eazx ; prod = prod * num

15 add esp, 8 ; restore the stack pointer
16|

17 .return:

18 ret ; return

In this example, we have avoided push and pop instructions altogether. We instead
create space on the stack by subtracting 8 bytes from esp in Line[§ We use 4 bytes to save
the input (in eax) for later use. We use the rest of the 4 bytes to send the argument to the
recursive function call. After the function returns, we retrieve the value of eax from the
stack in Line[13. Lastly, we restore the stack pointer in Line[15]

However, this method is also not suitable for large functions in complex programming lan-
guages such as C++. In a lot of C++ functions, we dynamically allocate space on the stack. In
such cases, most of the time, we do not know the size of the activation block (see Section
of a function in advance. Hence, deallocating an activation block becomes difficult. We need
to dynamically keep track of the size of the activation block of the function. This introduces
additional complexity, and additional code. It is a better idea to save the value of esp in a
dedicated register at the beginning of a function. At the end of the function, we can transfer
the saved value in the register to esp. This strategy effectively destroys the activation block.
Most of the time, we use the ebp (base pointer) register to save the value of esp at the beginning
of a function. This register is also referred to as the frame pointer. Now, it is possible that a
called function might follow the same strategy, and overwrite the value of ebp set by the caller.
Thus, in this case, ebp needs to be a callee saved register. If an invoked function overwrites
the value of ebp, it needs to ensure that by the time it returns to the caller, the value of ebp
is restored. By using the base pointer, we do not need to explicitly remember the size of the
activation block. We dynamically allocate data structures on the stack.

Let us augment our running example with this feature (see Example [77)).

Example 77

Write a recursive function to compute the factorial of a number (> 1) stored in eax. Save
the result in ebxr. Use the stack to pass arguments. Awvoid push and pop instructions.
Secondly, use the ebp register to store the value of the stack pointer.

Answer:
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~

19

20

21

22

28

z86

factorial:

mov eaz, [esp+4]

push ebp
mov ebp, esp

mov ebzx, 1
cmp eax, 1
je .return

; recursive step
sub esp, 8

mov [esp+4], eax
dec eaz

mov [esp], eax
call factorial
mov eax, [esp+4]
imul ebx, eax

.return:

; get the value of eax from the stack

; save ebp
; save the stack pointer

; default return value
; compare num (input) with 1
; return 1f input is equal to 1

; create space on the stack
; save input on the stack

5 num—--

; push the argument
; recursive call
; retrieve input
; prod =

mov esp, ebp

pop ebp

ret

assembly code

prod * num

; restore the stack pointer
; restore ebp
; return

Here, we save the old value of ebp on the stack, and set its new value to the stack pointer
in Lines [ and [, respectively. At the end of the function, we restore the values of esp and

ebp in Lines[21] and [23.

Stack Management Instructions — enter and leave

Semantics Example Explanation

enter imm, 0 | enter 32, 0 | push ebp (push the value of ebp on
the stack); mov ebp, esp (save the
stack pointer in ebp); esp < esp -
32

leave leave mov esp, ebp (restore the value of

esp); pop ebp (restore the value of
ebp)

Table 5.17: Semantics of the enter and leave instructions.



(© Smruti R. Sarangi 202

The four extra lines added in Example [77] are fairly generic, and are typically a part of most
large functions. Programmers can add them if they are writing assembly code, or compilers can
add them during automatic code generation. In either case, using the base pointer is a very
convenient mechanism to manage the stack, and to destroy the activation block. Since these
set of instructions are so commonly used, the designers of the x86 ISA decided to dedicate two
specialised instructions for this purpose. The enter instruction pushes the value of ebp on the
stack, and sets its new value to be equal to the stack pointer. Additionally, it is also possible
to set the initial size of the activation block. The first argument takes the size of the activation
block. If we specify 32 as the first argument, then the enter instruction decrements esp by 32.
Note that during the course of execution of the function, the size of the activation block might
continue to vary. The second argument for the enter instruction corresponds to the nesting
level of the function. We shall refrain from discussing it here. Interested readers can refer to
the references mentioned at the end of the chapter. We shall simply use the value of 0 for the
second argument.

The leave instruction performs the reverse set of computations. It first restores the value
of esp, and then the value of ebp (see Table . Note that the leave instruction is meant to
be invoked just before the ret instruction. We can thus augment Example [77] to use the enter
and leave instructions (see Example . Secondly, we can omit the statement that subtracted
8 from esp (Line in Example because this functionality is now built in to the enter
instruction.

Example 78

Write a recursive function to compute the factorial of a number (> 1) stored in eax. Save
the result in ebx. Use the stack to pass arguments. Avoid push and pop instructions. Use
the enter and leave instructions to buffer the values of ebp and esp.

Answer:
86 assembly code
1
2| factorial:
3 mov eax, [espt4] ; get the value of eaxz from the stack
4
5 enter 8, 0 ; save ebp and esp, decrement esp by 8
6|
7 mov ebzx, 1 ; default return value
8 cmp eazx, 1 ; compare num (input) with 1
9 je .return ; return 1f the input is equal to 1
10
11 ; recursive step
12 mov [esp+4], eax ; save tinput on the stack
13 dec eax ;. num——
14 mov [esp], eax ; push the argument
15 call factorial ; recursive call
16 mov eax, [esp+4] ; retrieve input
17 tmul ebz, eazx ; prod = prod * num
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19| . Teturn:
20 leave ; load esp and ebp
21 ret ; return

Lastly, we should mention that x86 processors have a nop instruction that does not do any-
thing at all. It is mainly used for the purpose of ensuring correctness in modern processors (see
Chapter , and for ensuring that blocks of code are aligned to 16 byte or 64 byte boundaries.
We require the latter functionality for better behaviour at the level of the memory system.

5.3.4 Advanced Memory Instructions

String Instructions

Semantics Example Explanation
lea reg, mem lea ebx, [esi + edi*2 + 10] | ebx < esi + edi*2 + 10
stos(b/w/d/q) | stosd [edi] < eax; edi + edi 4 4 * (—1)PF
lods(b/w/d/q) | lodsd eax < lesi]; esi < esi + 4 * (—1)PF
movs(b/w/d/q) | movsd ledi] < [esi] ; esi < esi + 4 *
(—1)PF; edi «+ edi + 4 * (—1)PF

std std DF +1
cld cld DF < 0

DF — Direction Flag

Table 5.18: Semantics of advanced memory instructions

The lea instruction stands for load effective address. It has a register operand, and a memory
operand. The role of the lea instruction is to copy the address of the memory operand (not its
contents) to the register.

Let us now introduce a special set of instructions known as string instructions. We shall
introduce the following instructions: stos, lods, and movs. The stos instruction transfers data
from the eax register to the location specified by the edi register. It comes in four flavours
depending upon the amount of data that we wish to transfer. It uses the ’b’ suffix for 1 byte,
'w’ for 2 bytes, 'd’ for 4 bytes, and 'q’ for 8 bytes. We show an example of the stosd instruction
in Table The stosd instruction transfers the contents of eax (4 bytes) to the memory
address specified by edi. Subsequently, this instruction increments or decrements the contents
of edi by 4 depending on the direction flag. The direction flag (DF) is a field in the flags
register similar to zero, carry, and overflow. If the direction flag is set (equal to 1), then the
stos instruction subtracts the size of the operand from the contents of edi. Conversely, if DF
is equal to 0, then the stos instruction adds the size of the operand to eds.

We introduce two 0-address format instructions namely std and cld to set and reset the
direction flag respectively.
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The lods and movs set of instructions are defined in a similar manner. For example, the
lodsd instruction transfers the contents of the memory location specified by esi to eax. It
subsequently increments or decrements the contents of esi by the size of the operands based
on the value of DF'. The movs instruction combines the functionality of lods and stos. It first
fetches a set of bytes from the memory address stored in esi. Subsequently, it writes the bytes
to the memory address specified by edi. It increments or decrements esi and edi based on the
value of the direction flag.

Trivia 2
The si register (16-bit version of esi) stands for the source index register. Similarly, the di
register stands for the destination index register.

Let us now look at a set of examples.

Example 79 What is the value of ebx ?

lea edi, [esp+4]
mov eax, 21
stosd ; saves eazx in [edi]

mov ebz, [esp+i]

Answer: We save 21 (eax) in the memory address specified in edi by using the stosd
instruction. This memory address is equal to (esp + 4). After executing the stosd instruc-
tion, we load the contents of this memory address into ebx. The result is equal to the value
of eax seen by the stosd instruction, which is 21.

Example 80 What is the value of eax after executing this code snippet?

lea esi, [esp+4]
mov dword [esp+4], 19
lodsd ; eax <-- [esi]

Answer: Note the use of the modifier dword here. We need to use it because we are
saving an immediate to a memory location, and we need to specify its size. The value of
eax is equal to the value stored in [esp+4[, which is 19.
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Example 81 What is the value of eax after executing this code snippet?

mov dword [esp+4], 192
lea esi, [esp+4]

lea edi, [esp+8]
movsd

mov eax, [esp+8]

Answer: The movsd instruction transfer 4 bytes from the memory address specified in esi

to the memory address specified in edi. Since we write 192 to the memory address specified
i esi, we shall read back the same value in the last line.

Instructions with the rep Prefix

The string instructions can additionally increment or decrement the values of esi and edi. We
have not used this feature up till now. Let us use this feature to transfer an array of 10 integers
from one location to another. This feature is very frequently used in modern processors to
transfer large amounts of data between two locations.

Let us first show a conventional solution in Example

Example 82 Write a program to create a copy of a 10 element integer array. Assume that

the starting address of the original array is stored in esi, and the starting address of the
destination array is stored in edi.

Answer:

mov ebzx, O ; inittalise

.loop:
mov edz, [esitebxz*/] ; transfer the contents
mov [edi + ebz*/], edx
inc ebzx ; increment the index
cmp ebz, 10 ; loop condition
Jjne .loop

Example 83 Write a program to create a copy of a 10 element integer array. Assume that
the starting address of the original array is stored in est, and the starting address of the

destination array is stored in edi. Use the movsd instruction.
Answer:
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cld ; DF =0

mov ebz, 0 ; tnitialisation of the loop index
.loop:

movsd ; [edi] <-- [esi]

inc ebzx ,; tncrement the index

cmp ebz, 10 ; loop condition

jne .loop

As compared to Example 82, we reduce the number of instruction in the loop from 5 to

In Example we use the movsd instruction to replace a pair of load/store instructions
with just one instruction. This reduces the number of instructions in the loop from 5 to 4. We
were not able to get a bigger reduction because we still need to update the loop index, and
compute the loop condition.

To make our code look even more elegant, the x86 ISA defines a rep prefix that can used
with any string instruction. The rep prefix instructs the processor to execute a single string
instruction n times, where n is the value stored in the ecx register. Every time the processor
executes the string instruction, it decrements ecx. At the end, the value of ecx becomes 0. Its
semantics is shown in Table

Semantics | Example Explanation
rep inst rep movsd | val < ecx; Execute the movsd in-
struction val times; ecx < 0

Table 5.19: Semantics of rep instructions

Example 84 Write a program to create a copy of a 10 element integer array. Assume that
the starting address of the original array is stored in esi, and the starting address of the

destination array is stored in edi. Use the rep prefiz with the movsd instruction.
Answer:

cld ; DF =0
mov ecx, 10 ; Set the count to 10
rep movsd ; Exzecute movsd 10 times

The rep prefix thus allows us to fold an entire loop into just one instruction as shown in
Example The rep prefix is meant to be used with string instructions for copying large regions
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of data. It makes the code for operating on strings of data very compact and elegant. The
rep instruction has two variants namely repe, and repne. These instructions use an additional
termination condition, along with the value of ecx. Instructions prefixed with repe can also
terminate when the zero flag becomes 0, and an instruction prefixed with repne also terminates
when the zero flag becomes 1.

5.4 Floating Point Instructions

x86 has a large set of floating point instructions. Let us first give a historical perspective. The
early 8086 processor, and many of its successors till the Intel 486 did not have a floating point
unit in the processor. They used a separate co-processor chip called the x87 that provided
floating point capability. However, after the release of Intel 486, the floating point unit has
been an integral part of the x86 architecture. Hence, many features of the floating point ISA
are artefacts of the older era, in which a floating point instruction was essentially a message to
an external processing unit.

One of the direct consequences of such a design strategy is that there are no direct commu-
nication paths between integer registers, and floating point registers. Secondly, it is not possible
to load an immediate into a floating point register by specifying its value in an instruction. We
can only load the value of floating point registers via memory. For example, if we wish to store
a floating point constant in a floating point register, then we need to first load the constant in
memory. Subsequently, we need to issue a floating point load instruction to load the constant
into a floating point register. Figure [5.3] shows a conceptual organisation of the x86 ISA. The
integer instructions use the integer registers, and they have their own processor state. Likewise,
the floating point instructions use their set of registers, and have their own state. Both the
types of instructions, however, share the memory.

Integer FP

registers registers
\ /

Constants

/ Y

Memory

Figure 5.3: Conceptual organisation of the x86 ISA

Let us start by looking at methods to load values into the floating point registers. We
shall refer to the floating point register stack as the FP stack and designate the floating point
registers (st0 ... st7) as reg while describing the semantics of instructions. We shall also
abbreviate floating point as FP for the sake of brevity.
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5.4.1 Data Transfer Instructions

Load Instruction

Semantics | Example Explanation

fld mem fld dword [eax| | Pushes an FP number stored in
[eax] to the FP stack

fid reg fid stl Pushes the contents of st1 to the top

of the stack

fild mem | fild dword [eax| | Pushes an integer stored in [eax] to
the FP stack after converting it to a
32-bit floating point number

Table 5.20: Floating point load instructions

Table [5.20] shows the semantics of the floating point load instructions. The most commonly
used floating point load instruction is the fld instruction. The first variant of the fld instruction
can load a 32-bit floating point value from memory, and push it to the FP stack. We can use
our standard addressing modes with integer registers as described in Section for specifying
an address in memory. The second variant can push the contents of an existing FP register
on the FP stack. We can alternatively use the fild instruction that can read an integer from
memory, convert it to floating point, and push it on the FP stack. Let us consider an example.

Example 85

Push the constant, 2.392, on the FP stack.

Answer: We need to first define the constant 2.392 in the data section. In NASM, we
do this as follows.

section .data
num: dd 2.392

We need to embed this code snippet at the beginning of the assembly file. Here, the
declaration “section .data” means that we are declaring the data section. In the data section,
we further declare a variable, num, that is a double word (32 bits, specified by dd), and its
value 1s 2.392. Let us now push this value to the F'P stack. We need to embed the following
code snippet in the main assembly function.

fld dword [num]

The assembler treats num as a memory address. While generating code, it will replace
it with its actual address. However, in an assembly program, we can seamlessly treat num
as a valid memory address, and its contents can thus be represented as [num]. The fld
instruction in this code snippet loads 32 bits (dword) from num to the top of the FP stack.
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Exchange Instruction

Semantics | Example | Explanation

fxch reg fxch st3 | Exchange the contents of st0 and
st3
fxch fxch Exchange the contents of st0 and
stl

Table 5.21: Floating point exchange instructions

Table shows the format of the floating point exchange instruction, fach. It exchanges
the contents of two floating point registers. The 1-address format fxch instruction exchanges
the contents of the register specified as the first operand and st0. If we do not specify any
operands, then the processor exchanges st0 and stl (the top of the stack, and the entry just
below the top of the stack).

Store Instructions

Semantics | Example Explanation

fst mem | fst dword [eax] [eax] < st0

fst reg fst st4 st4d < st0

fstp mem | fstp dword [eax] | [eax] < st0; pop the FP stack

fist mem | fist dword [eax] | [eax] < int(st0)

fistp mem | fistp dword [eax] | [eax]| < int(st0); pop the FP stack

Table 5.22: Floating point store instructions

Let us now look at the store instructions in Table The format is similar to the
floating point load instructions. We have three variants of the basic fst instruction. The first
variant requires a single memory operand. It stores the contents of st0 in the memory location
specified by the memory operand. The second variant requires a FP register operand and stores
the contents of st0 in the FP register.

The third variant uses the ‘p’ suffix which is a generic suffix and is used by many other
instructions also. The fstp instruction initially saves the value contained in st0 in the memory
location specified by the first operand, and then pops the stack. Since the stack size is limited,
it is often necessary to pop the stack to create more space. When we are storing st0, we are
saving a copy of its contents in main memory. Hence, it makes sense to have a variant of the
fst instruction that can free the entry from the stack by popping it.

x86 has additional support for conversion of floating point values to integers. We can use
the fist instruction that first converts the contents of st0 to a signed integer by rounding it
and then saves it in the location specified by the memory operand. Note that we always use a
modifier (byte/word/dword/qword) for memory operands such that we can specify the number
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of bytes that need to be transferred. The fist instruction also supports the ‘p’ suffix (see the
semantics of the fistp instruction in Table [5.22)).

Example 86
Transfer the contents of st to eax by converting the save FP number to an integer.
Answer:

fist dword[esp]
mov eaz, [esp]

5.4.2 Arithmetic Instructions

Let us now consider arithmetic instructions. The floating point ISA in x86 has rich support
for floating point operations, and is thus extensively used in numerical computing. Let us start
with the basic floating point add instruction, and take a look at all of its variants.

Add Instruction

Semantics Example Explanation

fadd mem fadd dword [eax] | st0 < st0 + [eax]

fadd reg, reg | fadd st0, stl st0 < st0 + st1 (one of the registers
has to be st0)

faddp reg faddp stl stl < stO + st1; pop the FP stack

fiadd mem fiadd dword [eax] | stO < stO + float([eax])

Table 5.23: Floating point add instructions

The semantics of the floating point add instructions is shown in Table The basic fadd
instruction has two variants. The first variant uses a single memory operand. Here, we add
the value of the floating point number contained in the memory location to the contents of st0.
The result is also stored in st0. The second variant of the fadd instruction uses two floating
point registers as arguments. It adds the contents of the second register to the first register.

The fadd instruction follows the same pattern as the floating point load and store instruc-
tions. It accepts the ‘p’ suffix. The faddp instruction typically takes 1 argument, which is a
register. We show an example of the instruction faddp st! in Table [5.23] Here, we add the
contents of st0 to stl, and save the result in st1. Then, we pop the stack. For working with
integers, we can use the fiadd instruction that takes the address of an integer in memory. It
adds this integer to st0, and saves the results in st0.

Subtraction, Multiplication, and Division Instructions

x86 defines subtraction, multiplication, and division instructions that have exactly the same
format as the fadd instructions, and all of its variants as shown in Table Let us just show
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the basic form of each instruction that uses a single memory operand in Table

Semantics | Example Explanation

fsub mem | fsub dword [eax] | st0 < st0O - [eax]
fmul mem | fmul dword [eax] | st0 < st0 * [eax]
fdiv mem | fdiv dword [eax]| | stO <— st0 / [eax]

Table 5.24: Floating point subtract, multiply, and divide instructions

Example 87

Compute the arithmetic mean of two integers stored in eax and ebx. Save the result (in
64 bits) in esp + 4. Assume that the data section contains the integer, 2, in the memory
address two.

Answer:

; load the inputs to the FP stack
mov [esp], eax

mov [esp+4], ebz

fild dword [esp]

fild dword[esp + 4]

; compute the arithmetic mean
fadd st0, stl1
fdiv dword [two]

; save the result (converted to 64 bits) to [esp+4]
; use the quword identifier
fstp quword [esp + 4]

5.4.3 Imstructions for Special Functions

Semantics | Example | Explanation
fabs fabs st0 < |st0]
fsqrt fsqrt st0 < v/st0
fcos fcos st0 < cos(st0)
fsin fsin st0 <+ sin(st0)

Table 5.25: Floating point instructions for special functions
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The greatness of the x86 ISA is that it supports trigonometric functions, and complex
mathematical operations such as the square root, and log operations (not covered in this book).
Table shows the x86 instructions for computing the values of special functions. The fabs
function computes the absolute value of st0, the fsgrt function computes the square root, the
fcos and fsin functions compute the sine and cosine of the value stored in st0 respectively. All
of these instructions use st0 as their default operand, and also write the result back to st0.

Example 88
Compute the geometric mean of two integers stored in eax and ebx. Save the result (in 6}
bits) in esp + 4.

Answer:

; load the inputs to the FP stack
mov [esp], eax

mov [esp+4], ebzx

fild dword [esp]

fild dword[esp + 4]

; compute the geometric mean
fmul st0, stl

fsqrt

; save the result (converted to 64 bits) to [esp+4]
; use the quword identifier
fstp quword [esp + 4]

5.4.4 Compare Instruction

Semantics Example Explanation

fcomi reg, reg | fcomi st0, st1 | compare st0 and stl, and set the
eflags register (first register has to
be st0)

fcomip reg, reg | fcomi st0, st1 | compare st0 and stl, and set the
eflags register; pop the FP stack

Table 5.26: Floating point compare instructions

The x86 ISA has many compare instructions. In this section, we shall present only one
compare instruction called fcomi that compares two floating point values saved in registers,
and sets the eflags register. Table shows the semantics of the fcomi instruction with and
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without the ‘p’ suffix. Once, the eflags register is set, we can use regular branch instructions for
implementing control flow within the program. Note that in x86 we need to use the condition
codes for unsigned comparison in this case. Most of the time programmers make the mistake
of using the condition codes for signed comparison such as I, le, g, or ge for testing the results
of floating point comparison. This leads to wrong results. We should instead use the a (above)
and b (below) condition codes.

Let us now consider an example (Example that computes the value of sin(26), and veri-
fies if it is equal to 2sin(f)cos(f). The readers should recall from their high school trigonometry
class that both these expressions are actually equal, and one can be derived from the other.
Example [89| experimentally verifies this fact for any given value of . We compute the value of
sin(26) and 2sin(0)cos(#), and compare them using fcomi. Note that floating point arithmetic
is approximate (see Section. Hence, the correct way to compare floating point numbers is
to first subtract them, compute the absolute value of the difference, and compare the difference
with a threshold. The threshold is typically a small number (10~° in our case). If the difference
is less than a threshold, we can infer equality.

Example 89

Compare sin(20) and 2sin(f)cos(0). Verify that they have the same value for any given
value of 0. Assume that theta is stored in the data section at the label theta, and the
threshold for floating point comparison is stored at label threshold. Save the result in eax
(1 if equal, and 0 if unequal).

Answer:

; compute sin(2*theta), and save in [esp]
fld dword [thetal]

fadd st0O ; stO = theta + theta

fsin

fstp dword [esp]

; compute (2+*sin(theta)*cos(theta))
fld dword [thetal]

fst sti

fsin

fxch

fcos ; stO = cos(theta)

fmul st1 ; stO = sin(theta) * cos (theta)
fadd st0 ; st0 = 2 * st0

; compute the modulus of the difference
fld dword [esp] ; load (sin(2*theta))
fsub st0, stl

fabs

; compare
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fld dword [threshold]
fcomi st0, stl ; compare
ja .equal

mov eax, 0

Jjmp .exit

.equal:
mov eax, 1

.exrt:

After the end of a function, it is time to clean up the floating point registers, and stack
such that another function can use them. Let us conclude this section by taking a look at the
cleanup instructions.

5.4.5 Stack Cleanup Instructions

Semantics | Example | Explanation

ffree reg ffree st4 | Free st4

finit finit Reset the status of the FP unit in-
cluding the FP stack and registers

Table 5.27: Floating point stack cleanup instructions

Table shows two instructions for cleaning up the FP stack. The ffree instruction
sets the status of the register specified as an operand to empty. Using ffree to free all the
registers is a quick solution. For freeing the entire stack we need to invoke the f free instruction
iteratively. For deleting the entire FP stack, a cleaner solution is to use the finit instruction
that does not take any arguments. It resets the FP unit, frees all the registers, and resets the
stack pointer. The finit instruction ensures that an unrelated function can start from a clean
state.

5.5 Encoding the x86 ISA

We have taken a look at a wide variety of x86 instructions, addressing modes, and instruction
formats. It is truly a CISC instruction set. However, the process of encoding is more regular.
Almost all the instructions follow a standard format. In the case of ARM and SimpleRisc , we
described the process of encoding instructions in great detail. We shall refrain from doing this
here for the sake of brevity. Secondly, an opcode in x86 typically has a variety of modes, and
prefixes. We do not want to digress from the main theme of this book by describing x86 in
such level of detail. Let us start out by looking at the broad structure of an encoded machine
instruction.
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5.5.1 High Level View of x86 Instruction Encoding

Figure shows the structure of an encoded instruction in binary.

| Prefix | Opcode |ModR/M| SIB |Disp|acement Immediate

1-4 bytes 1-3 bytes 1 byte 1byte 1/2/4 bytes 1/2/4 bytes
(optional) (optional) (optional) (optional)  (optional)

Figure 5.4: x86 binary instruction format

The first set of 1-4 bytes are used to encode the prefix of the instruction. The rep prefix is
one such example of a prefix. There are many other kinds of prefixes that can be encoded in
the first group of 1-4 bytes.

The next 1-3 bytes are used for encoding the opcode. Recall that the entire x86 ISA has
hundreds of instructions. Secondly, the opcode also encodes the format of operands. For
example, the add instruction can either have its first operand as a memory operand, or have
its second operand as a memory operand. This information is also a part of the opcode.

The next two bytes are optional. The first byte is known as the ModR/M byte, which
specifies the address of the source and destination registers, and the second byte is known as
the SIB (scale-index-base) byte. This byte records the parameters for the base-scaled-index
and base-scaled-index-offset addressing modes. A memory address might optionally have a
displacement (also referred to as the offset in this book) that can be as large as 32 bits. We
can thus optionally have 4 more bytes in an instruction to record the value of the displacement.
Lastly, some x86 instructions accept an immediate as an operand. The immediate can also be
as large as 32 bits. Hence, the last field, which is again optional, is used to specify an immediate
operand.

Let us now discuss the ModR/M and SIB bytes in more detail.

ModR /M Byte
The ModR/M byte has three fields as shown in Figure

2 3 3

Mod| Reg | R/M

Figure 5.5: The ModR/M byte

The two MSB bits of the ModR/M byte contain the Mod field. The Mod field indicates
the addressing mode of the instruction. It can take 4 values as shown in Table

The Mod field indicates the addressing mode of one of the operands. It can either be a
register or a memory operand. If it is a memory operand, then we have three options. We
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Mod bits | Semantics

00 We use the register indirect addressing mode for one of the
operands. When R/M = 100, we use the base-scaled-index
addressing mode, and there is no displacement. The ids
of the scale, index, and base are specified in the SIB byte. Register | Code
When R/M = 101, the memory address only consists of the eax 000
displacement. The rest of the values of the R/M bits specify ecw 001
the id of the base register as shown in Table edx 010
Other than the case of R/M=101, the rest of the combina- ebx 011
tions of the R/M bits are not associated with a displacement esp 100
(assumed to be 0). ebp 101

01 We use a single byte signed displacement. If R/M = 100, esi 110
then we get the ids of the base and index registers from the edi 111
SIB byte.

10 We use a 4 byte signed displacement. If R/M = 100, then Table 5.29:
we get the ids of the base and index registers from the SIB Register encoding
byte.

11 Register direct addressing mode.

Table 5.28: Semantics of the Mod field

can either have no displacement (Mod = 00), a 8 bit displacement (Mod = 01), or a 32-bit
displacement (Mod=10). If it is a register operand, then the Mod field has a value of 11.

The important point to note is that for all the memory address modes, if the R/M bits are
equal to 100, then we need to use the information in the SIB byte for computing the effective
memory address.

The Reg field encodes the second operand if it is a register. Since both the operands cannot
be memory operands, we use the Mod and R/M bits for encoding one of the operands that
might be a memory operand (source or destination), and use the Reg field for encoding the
other operand, which has to be a register. The encoding for the registers is shown in Table [5.29

For floating point instructions, the default register operand is always st0. Some instructions
accept another FP register operand. For such instructions, we use register direct addressing
(Mod = 11). We use the R/M bits for specifying the id of the additional FP register. We use 3
bits to encode the index of the register. For example, st0 is encoded as 000, and st6 is encoded
as 110. For the rest of the instructions that either assume default operands, or have a single
memory operand, we use the same format as defined for integer instructions.

SIB Byte

The SIB byte is used to specify the base and index registers (possibly with scaling). For
example, it can be used to encode memory operands of the form [eax + ecx™4]. Recall that
to use the SIB byte it is essential to set the Mod field in the ModR/M register to 100. This
indicates to the processor that the SIB byte follows the ModR/M byte.

The structure of the SIB byte is shown in Figure [5.6
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Figure 5.6: The SIB byte

The SIB byte has three fields — scale, index, and base. The effective memory address (before
considering the displacement) is equal to base +index x scale. The base and index fields point
to integer registers. Both of them are 3 bits each (can encode up to 8 registers), and use the
encoding shown in Table The two MSB bits are used to specify the scale. We can have
four values for the scale in x86 instructions namely 1 (00), 2 (01), 4 (10), and 8 (11).

Rules for Encoding Memory Operands

Note that some rules need to be followed while encoding memory operands. The esp register
cannot be an index, and if the value of the Mod field is 00, then ebp cannot be a valid base
register. Recall that if we set the R/M bits to 101 (id of ebp), when the Mod field is 00, then
the memory address is only a displacement. Or, in other words we can use memory direct
addressing here by directly specifying its address.

If (Mod = 00), then in the SIB byte ebp cannot be a valid base register. If we specify the
base register as ebp in the SIB byte, then the processor calculates the effective memory address
based on the value of the scale and the index.

Example 90
Encode the instruction add ebx, [edx + ecx™2 + 32]. Assume that the opcode for the add
instruction s 0x03.
Answer: Let us calculate the value of the ModR/M byte. In this case, our displacement
fits within 8 bits. Hence, we can set the Mod bits equal to 01 (corresponding to an 8 bit
displacement). We need to use the SIB byte, because we have a scale, and an index. Thus,
we set the R/M bits to 100. The destination register is ebx. Its code is 011 (according to
Table[5.29). Thus, the ModR/M byte is 01011100 (equal to 0z5C).

Now, let us calculate the value of the SIB byte. The scale is equal to 2. This is encoded
as 01. The indez is ecx (001), and the base is edx (010). Hence, the SIB byte is: 01 001
010 = 4A. The last byte is the displacement, which is equal to 0x20.

Thus, the encoding of the instruction is| 03 5C 4A 20| in hex.
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5.6 Summary and Further Reading

5.6.1 Summary

Summary 5

1. The 286 ISA is a family of CISC instruction sets that is primarily used by Intel and
AMD processors.

(a) The original 86 ISA used by 8086 processors used a 16-bit ISA.
(b) Since the mid eighties, x86 processors have moved to the 32-bit ISA.

(c) Finally, since 2003, most of the high end x86 architectures have moved to the
64-bit ISA.

(d) The basic structures of all the ISAs is the same. There are minor differences in
the syntazx.

2. The 8 basic registers of the 16-bit 86 ISA are — ax, bx, cx, dx, sp, bp, si, and di.
We use the ‘e’ prefix in 32-bit mode, and the ‘r’ prefix in 64-bit mode.

3. Additionally, the 16-bit 86 ISA has the ip register to save the program counter, and
the flags register to save the results of the last comparison, and other fields that
instructions may use.

4. The x86 ISA predominantly uses instructions in the 2-address format. The first
operand is typically both the source, and the destination. Secondly, one of the operands
can be a memory operand. It is thus possible to fetch the value of a memory location,
operate on it, and write it back to memory, in the same instruction.

5. x86 processes see a segmented memory model. The entire memory space is partitioned
into different segments. Instructions reside in the code segment by default, and data
resides in the data or stack segments by default. It is in general mot possible for
instructions to access segments that they typically are not meant for. For example, it is
in general not possible for a store instruction to change the contents of an instruction
in the code segment.

(a) In the 16-bit mode, the top 16 bits of the starting address of each segment are
stored in a segment register.

(b) The effective memory address specified by a memory instruction is added to the
address contained in the segment register (after left shifting it by 4 positions) to
compute the actual memory address.

(c) Inlater ISAs (32 and 64-bit mode), the contents of segment registers are looked up
in segment descriptor tables (referred to as the LDT and GDT) for obtaining the
starting address of segments. To speed up memory accesses, processors typically
use a small memory structure known as a segment descriptor cache that keeps
the most recently used entries.
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0. =86 integer instructions:

(a) The mov instruction is one of the most versatile instructions. It can move values
between two registers, or between registers and memory addresses. It can also be
used to load immediates in registers or memory locations.

(b) x86 defines a host of other arithmetic, and branch instructions.

(c) String instructions are a unique feature of the 186 ISA. They can be used to
transfer large amounts of data between memory locations. To compress an entire
loop of string instructions into one instruction, we typically use the rep prefic
that repeats a given instruction n times, where n is the value stored in the ecx
register.

7. The x86 floating point registers can either be accessed as normal registers (st0 ... st7),
or as values on a floating point stack. Most of the floating point instructions operate
on st0, which is the top of the stack.

8. There is no direct way to load tmmediates into the FP registers. We need to first
load them into memory, and then load them to the floating point stack. =86 has
instructions for computing complex mathematical operations (such as square Toot),
and trigonometric functions directly.

9. Encoding the z86 instruction set is relatively simpler, since the encoded form has a
very reqular structure.
(a) We can optionally use 1-4 bytes to encode the prefi.
(b) The opcode’s encoding requires 1-3 bytes.

(¢) We can optionally use two additional bytes known as the ModR /M and SIB bytes
to encode the address of operands (both register and memory).

(d) If the memory operand uses a displacement (offset), then we can add 1-4 bytes
for encoding the displacement after the SIB byte.

(e) Lastly, the ©86 ISA accepts 32-bit immediate values. Hence, we can use the last
1-4 bytes to specify the value of an immediate operand if required.

5.6.2 Further Reading

The most accurate source of information is the x86 developer manuals released by Intel on their
website [int, , INTEL, 2010].

For the sake of brevity, we have only discussed the popularly used instructions. However,
there are many instructions in the x86 ISA that might prove to be useful in a specific set of
scenarios, which we have not covered in this book. Intel’s software developer manuals are always
the best places to find this information. Secondly, we have only discussed the basic x86 ISA.
The reader should definitely look at the extensions to the x86 ISA such as the MMX™, SSE, and
3d Now! (by AMD) extensions. These extensions add vector instructions, which can operate on
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arrays of data. These instructions are used in graphics, games, and scientific applications. The
Intel AVX instruction set is the latest addition in the long line of x86 ISAs. It introduces 512
bit registers that can contain multiple integers. The interested reader should definitely take a
look at this instruction set and try to write programs with it. In this book, we shall show an
example using the SSE instruction set in Section

The reader can additionally refer to books that describe the x86 instruction set in great
detail, and have a wealth of solved examples. The following books [Cavanagh, 2013, Das,
2010, Kumar, 2003| are useful references in this regard.

Exercises

x86 Machine Model

Ex. 1 — What are the advantages of the segmented addressing mode? Why do modern x86
processors need the LDT and GDT tables?

Ex. 2 — Explain the memory addressing modes in x86.
Ex. 3 — Describe the floating point registers and the floating point stack in x86.

* Ex. 4 — We can specify an entire 32-bit immediate in a single instruction in x86. Recall
that this was not possible in ARM and SimpleRisc . What are the advantages and disadvantages
of having this feature in the ISA?

* Ex. 5 — We claim that using a stack based architecture makes the software very portable.
It does not need to be aware of the number and semantics of registers in an ISA. Comment on
this statement, and try to find other reasons for preferring a stack based machine.

** Ex. 6 — Given an arithmetic expression containing floating point operands, how can we
evaluate it using a floating point stack? What should be the order of loading and operating
on operands? [HINT: A regular arithmetic operation such as — (1 + 2.5) * 3.9 — is called an
infix expression. To evaluate expressions using a stack, we need to convert it into a postfix
expression of the form — 1 2.5 + 3.9 *. Here, we first push 1 and 2.5 on the stack, add the
result, push 3.9 on the stack, and multiply the first two entries. The reader should read more
about postfix expressions in textbooks on discrete mathematics.]

Assembly Programming using Integer Instructions

Ex. 7 — Write x86 assembly code snippets to compute the following:
i)a+b+ec
ii) a+b—c/d
iii) (a+b)*x3—c/d
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iv) a/b— (cxd)/3
v) (a < 2)— (b>3)

Ex. 8 — Write an assembly program to convert an integer stored in memory from the little
endian to the big endian format.

Ex. 9 — Compute the factorial of a positive number using an iterative algorithm.
Ex. 10 — Compute the factorial of a positive number using a recursive algorithm.
Ex. 11 — Write an assembly program to find if a number is prime.

Ex. 12 — Write an assembly program to test if a number is a perfect square.

Ex. 13 — Write an assembly program to test if a number is a perfect cube.

Ex. 14 — Given a 32-bit integer, count the number of 1 to 0 transitions in it.

Ex. 15 — Write an assembly program that checks if a 32-bit number is a palindrome. A
palindrome is a number which is the same when read from both sides. For example, 1001 is a
4-bit palindrome.

Ex. 16 — Write an assembly program to examine a 32-bit value stored in eaxz and count the
number of contiguous sequences of 1s. For example, the value:

01110001000111101100011100011111

contains six sequences of 1s. Write the final value in register ebzx.
Ex. 17 — Write an assembly program to count the number of 1’s in a 32-bit number.

* Ex. 18 — Write an assembly program to find the smallest number that is a sum of two
different pairs of cubes. [Note: 1729 is known as the Hardy-Ramanujan number. 1729 =
123 + 13 =103 + 93].

% Ex. 19 — In some cases, we can rotate an integer to the right by n positions (less than or
equal to 31) so that we obtain the same number. For example: a 8-bit number 01010101 can
be right rotated by 2, 4, or 6 places to obtain the same number. Write an assembly program to
efficiently count the number of ways we can rotate a number to the right such that the result
is equal to the original number.

% Ex. 20 — Write an assembly language program to find the greatest common divisor of
two binary numbers u and v. Assume the two inputs (positive integers) to be available in eax
and ebz. Store the result in ecz. [HINT: The ged of two even numbers v and v is 2xged(u/2,v/2)]

Ex. 21 — Write an assembly program that uses string instructions to set the value of a range
of memory addresses to 0. Reduce the code size by using the rep prefix.
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Assembly Programming using Floating Point Instructions

Ex. 22 — How do you load and store floating point numbers?

Ex. 23 — Write an assembly program to find the roots of the equation 22 — 2 —1 = 0. Recall

that the roots of a quadratic equation of the form az? + bz + ¢ are equal to =bEvb-—dac V2Z;2_4ac.
Ex. 24 — Verify the following trigonometric identities for random values of 6 using assembly

programs. Use the rdrand instruction that loads a random 32-bit integer into a register.

S. No. | Identity
1 sin?(0) + cos?(0) = 1
2 sin (5 — 6) = cos(6)
3 cos(0 + ¢) = cos(0)cos(p) — sin(0)sin(¢p)
4 sin(f) + sin(¢) = 2sin (9+¢) cos <%)
Ex. 25 — Assume that we have two arrays of 10 floating point numbers, where the starting

addresses of the arrays are stored in eax and ebx respectively. Find the arithmetic mean
(AM), geometric mean (GM), and harmonic mean (HM) using assembly routines. Verify that
AM >GM > HM.

* Ex. 26 — Let us compute the value of the constant e using an assembly program. Use the
following mathematical expression.
1

11
RTRERR T

11
=ittty 10!

1!

** Ex. 27 — For random values of 6 show that the following identity holds:

93 6°

x86 ISA Encoding

Ex. 28 — What are the values of the SIB and ModR/M bytes for the instruction, mov eaz,
[eazx + ebz*4]?

Ex. 29 — What are the values of the SIB, ModR /M, and displacement bytes for the instruc-
tion, mov eaz, [eax + ebx*] + 327

Ex. 30 — What is the value of the ModR/M byte when we need to specify a memory address
that does not have any base or index registers? Assume that the value of the reg field is 000.

* Ex. 31 — Assume that we have an instruction that has two operands: eax and [ebp]. How
do we encode it (specify the values of the relevant bytes)?
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* Ex. 32 — What are the values of the SIB and ModR/M bytes for the instruction, mov eaz,
[ebx*/]?

Design Problems

Ex. 33 — Write an x86 assembly emulator that can read an assembly file, and execute each
assembly instruction one by one.

Ex. 34 — Use the GNU compiler to generate an assembly file for a test program written in
C using the command, gcc -S -masm=intel.
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RISC-V Assembly Language

In this chapter, we will introduce the RISC-V assembly language, which is newer than ARM
and x86. The ISA has a very interesting history. There are both legal and technical reasons
for designing a new RISC ISA as late as 2010. Recall that ISA design was considered to be a
dead area long before. Furthermore, a massive SW-HW ecosystem is needed to sustain an ISA,
which is hard to design from scratch. Nevertheless, there was a requirement in 2010 for a RISC
ISA that could be freely used by everybody and incorporated a lot of the technical know-how
that had been generated in the past two decades of computer architecture research.

Any modern ISA should be compatible with all kinds of devices starting from IoT devices
to mobile phones to laptops to servers. Many of these devices didn’t exist when conventional
ISAs were designed. This means that it should have 32, 64 and 128-bit variants, support a
relatively larger number of registers, and have extensive support for atomics and floating point
numbers.

Let us understand the situation that prevailed in 2010. Designing a simple RISC processor
had become relatively very easy. The architectures were well understood, EDA tools were
reasonably mature and enough computational power was available to even amateur designers.
Hence, putting together a small RISC core became feasible for fabless companies and academic
groups. It is important to note that circa 2010, there was a widespread consensus that RISC is
the way to go for new cores and x86-like CISC ISAs were not an option. This is because of the
1000+ instructions in CISC ISAs and the resulting decoding complexity. Decoders are power
hungry and given that these ISAs were meant to run on low-power embedded systems, a CISC
ISA was not a feasible option.

However, just designing a RISC processor is not enough. It needs to be fabricated as
well. A lot of fabs increased their capacity at that time and it also became possible to design
reasonably high-performance chips at older technology nodes. Hence, fabrication became quite
inexpensive. Along with these technology-level tailwinds, many fabless companies rapidly came
up in different parts of the world. They either wanted to design their bespoke processors or
wanted to integrate their custom cores with third-party accelerators in SoCs. They always had

225
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an option to use or modify existing RISC cores designed by ARM and MIPS or design their own
processors that are compatible with their ISAs. The advantage of using existing technologies is
that their toolchain can be used. This includes the compilers, operating systems, libraries and
binutils.

Despite so much of software support, many processor developers decided to forego the
advantages of using existing ISAs primarily for legal reasons. There were a fair amount of
restrictions and licensing requirements for using such legacy ISAs while even designing new
processors from scratch. Furthermore, licensing their cores and using them in SoCs was also
proving to be an expensive proposition to many developers. There was thus a need to create a
new ISA from scratch and also create the full ecosystem to support it. The idea was to have
extremely lenient licensing requirements such that the barrier to entry is reduced to a minimum.

In 2010, the RISC-V project began in Berkeley. It was initially supported by various aca-
demic groups. Later on the RISC-V technical documents were released under a Creative Com-
mons license in 2015. Currently, the RISC-V foundation maintains this ISA and publishes
regular updates.

6.1 RISC-V Machine Model

6.1.1 RISC-V Base ISAs and Extensions

RISC-V is not actually one instruction set but it is a collection of instruction sets that incremen-
tally build on top of each other. There are a set of baseline versions (common cores). Developers
build on top of a common core by adding extensions. Given that the philosophy of RISC-V is
to run on all kinds of machines, the notion of having different core ISAs and extensions aligns
with it well. Let us look at the common base ISAs and extensions in Table [6.1]

Name | Description

ISA base versions
RV32 32-bit ISA
RV32E | 32-bit ISA (embedded version)
RV64 64-bit ISA
RVG64E | 64-bit ISA (embedded version)
RV128 | 128-bit ISA

Extensions

embedded version

base integer ISA

integer multiplication/division instructions
atomic instructions

single-precision floating point
double-precision floating point

vector instructions

<gmEz—o

Table 6.1: RISC-V base versions and extensions

RISC-V has three base versions: RV32, RV64 and RV128. The term “RV” is a short form
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of RISC-V. The numbers 32, 64 and 128 indicate the bit width, respectively. The ‘E’ suffix
has a special place. It indicates the embedded version that uses a reduced number of registers.
For example, RV32E assumes only 16 integer registers as opposed to 32 integer registers in the
regular version. It is important to note that unlike other ISAs (such as ARM Thumb), the
instruction sizes remain the same. This simplifies compiler and processor design.

Let us now focus on the extensions. Most versions of the ISAs support basic integer instruc-
tions. They are thus named RV32I, RV64I and RV128I, respectively. Then, there are a bunch of
extensions that can be added based on users’ requirements. The list of extensions has become
quite large as of 2024 (around 20-30). Most of the common ones correspond to floating point
instructions, atomic operations, cryptographic primitives, memory barriers, etc. For example,
RV32IMA means that integer instructions (I), multiplication/ division instructions (M) and
atomic instructions (A) are supported.

These extensions themselves can have version numbers: a major version number and a
minor version number. This is because the specifications keep changing as the ISAs are under
development. For example, RV32I1p3 means that the major version number is 1 and the minor
version is 3. The separator ‘p’ is used to separate the major and minor version numbers.

The extensions can be grouped into packages the same way we bundle together add-ons
in flight or hotel deals. The ‘G’ suffix that represents general-purpose computing, combines
the base integer instruction set, additional integer instructions, floating point instructions and
basic synchronization primitives. This is considered to be an essential set of instructions in a
multi-core setup. RV32G is thus a general-purpose RISC-V ISA. It is so happening that the
number of extensions is continuously increasing and we are running out of letters !!!

This is why the ‘Z’ series was introduced, where the extension name (suffix) should start
with ‘Z’ and be followed by a word that describes the extension. For example, ‘Zfa’ refers to
additional floating point instructions.

Let us now recall the fact that the embedded version of RISC-V does not reduce the in-
struction width; it instead reduces the number of available registers by 50%. On the lines of
ARM Thumb, RISC-V does have a compressed format. In this case, the ISA specifier is ‘C’.
In such contexts, most often we use the ISA RV32GC (general-purpose and compressed). The
compressed instructions have the following limitations.

e The width of the instructions is 16 bits.

e Every compressed 16-bit instruction corresponds to a 32-bit RV32 instruction.

They access a limited number of registers (typically limited to 8 registers in the 16-bit
version).

Limited opcode support.

Immediate values that can be encoded are also commensurately smaller.

Akin to any other compressed ISA, they lead to reduced code size, better usage of the
i-cache and lower power consumption in terms of fetching and decoding instructions.
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32, 64 and 128-bit Formats

The greatness of RISC-V is that regardless of the width of the data path, the instruction size
(or width) remains the same, i.e., 32 bits. This makes the process of compilation and decoding
the instructions easy. The only thing that varies across the three different ISA formats is the
set of supported instructions, the register width and the size of the memory address.

However, there are some exceptions to this general rule. There are some RISC-V instructions
whose size can be more than 32 bits. The restriction here is that the size needs to be a multiple
of 16 bits — it cannot be an arbitrary size. We have already seen the C-format instructions that
are 16 bits in length. However, we can have longer formats: 48 or 64 bits. Such instructions
(at the moment) are not a part of the standard set of instructions, but there are extensions
that require these longer instructions. Some of these extensions are vector instructions, bit-
manipulation instructions and cryptographic extensions. The instruction format has bits to
indicate if the instruction is longer than 32 bits or not. The current version of the standard
(v20240411) [ris, | can theoretically support instruction lengths up to 176 bits.

We need to note that at the moment (in 2024) such extensions are in different stages of
ratification. For example, there is discussion of ratifying a more general set of 48-bit and 64-bit
instructions. Similarly, the 128-bit format of the ISA is also not fully finalized yet. In other
words, the standards are not fully frozen yet.

Such debates during the course of ISA design are very common. There is always a pull
between the RISC and CISC sides. The RISC side wants regularity and elegance, whereas the
CISC side wants more instructions and more complexity.

Important Point 7 The RISC-V ISA is a RISC ISA. It is however not small and simple
like SitmpleRisc. Instead it has a base set of instructions, a set of extensions, 48 and 64-bit
instruction lengths (may get fully frozen in the future) and different ISA variants including
a compressed 16-bit form. This sounds more like “CISC”. However, there is still a lot of
reqularity in the ISA: there are a few instructions formats, instructions are mostly 32 bits
in length and the base ISA is very “RISC like”. Such trade-offs are inevitable in designing
any modern ISA that needs to support a wide range of devices: embedded processors to
supercomputers.

6.1.2 View of Registers

RV32I contains 32 registers that are each 32-bits wide. The registers are named x0 to x31.
20 is hardwired to zero (refer to Table . There is a dedicated pc register that exposes the
program counter. The architecture per se does not define a fixed calling convention. However,
over time a convention has emerged and developers are mostly using the calling convention
shown in Table Note that saved registers are preserved across function calls (callee saved),
whereas temporary registers (caller saved) are not preserved.

RISC-V uses a standard memory addressing model (similar to other RISC machines). It
started out being a little-endian ISA, but now big-endian and bi-endian modes are also sup-
ported.
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Register | Mnemonic | Description

z0 Z€ero Hard-wired to zero

xl ra Return address

x2 Sp Stack pointer

x3 gp Global pointer

x4 tp Thread pointer (thread-local storage)
b — 7 t0-2 Temporary registers

x8 s0/fp Saved register/frame pointer

9 sl Saved register

10— 11 | a0-1 Function arguments/return values
x12 — 17 | a2-7 Function arguments

18 — 27 | s2-11 Saved registers

228 — 31 | t3-6 Temporary registers

Table 6.2: RISC-V registers and their assembler mnemonics

Given the machine model, let us now explain the instructions supported by the RV32I ISA.
Note that this is our fourth chapter on low-level assembly languages. Hence, the treatment will
be brief.

6.2 Integer Instructions

While describing the semantics of instructions, we use the same convention as ARM and Sim-
pleRisc . rsl is the first source register, rs2 is the second source register, rd is the destination
register and ¢mm represents an immediate value. In some cases, we may require to use a third
source register rs3.

6.2.1 Moving Values to Registers

Semantics FExample Explanation
addi rd, rsl, imm | addi x1, x0,5 | x1+ 0+ 5
add rd, rsl, rs2 add x1, x2, x3 | x1 < x2 + x3

Table 6.3: Loading values into registers

The most basic operation in any assembly language is to load a value into a register. We
typically transfer the contents from another register or from the immediate field of an instruc-
tion. We need a counterpart of the mov instruction in RISC-V. The relevant instructions are
shown in Table RISC-V does not have a dedicated mov instruction; instead, we add an
immediate to the zero register and store the result in the destination register.

Specifically, the addi instruction can be used to load a signed 12-bit immediate to the
destination register. In this case, its usage is somewhat unconventional. As the example shows,
the immediate is added to the contents of 20 (zero register), which is hardwired to 0. Effectively,
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the immediate gets transferred to the destination register. An advantage of such a mechanism
is that we need not have a dedicated mov instruction. The add instruction and its variants
can be used to load immediates. Similarly, we can set the immediate to 0 and transfer the
contents of the source register to the destination register. This simulates a regular register mov
instruction. We can alternatively use the regular add instruction to achieve this. We can set
the second register operand to zero. The net effect is that the contents are transferred to the
destination register. The add instruction otherwise does the same as its counterparts in ARM
and SimpleRisc .

Loading Values Directly into Registers

A major issue with the addi instruction is that the immediate is limited to 12 bits. Loading a
full 32-bit value thus requires several instructions. RISC-V therefore provides the lui instruction
that loads a 20-bit immediate into the upper 20 bits of a register — the immediate is effectively
left-shifted by 12 positions. The semantics of this instruction is shown in Table (also refer

to Example .

Semantics | Example Explanation
lui rd, imm | lui x1, 5 xl < 5 << 12
li rd, imm | i x1, 0xABCD1234 | x1 < 0xABCD1234

Table 6.4: Loading values directly into registers

Example 91
Write a RISC-V assembly program to add 409932 + 409823.
Answer:
.main:
lut to, 100 # 10 = 4096 * 100 = 409600
addi tOo, t0, 332 # tO0 = tO0 + 332
lut t1, 100 # t1 = 4096 * 100 = 409600
addt t1, t1, 223 # t1 = t1 + 223
add t2, t0, ti1 # t2 = to + ti

It is evident from Example that loading a 32-bit value into a register requires two in-
structions. Even though the ISA has this limitation, most RISC-V assemblers support the
assembler directive [i that directly loads a 32-bit value into a register. The assembler replaces
the directive with two assembly instructions: addi and lui. The code in Example can be
compressed using the [i assembler directive (refer to Example .
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Example 92
Write a RISC-V assembly program to add 409932 + 409823 using the li assembler directive.
Answer:

.maimn:
L1 t0, 409932 # t0 = 409932
L1 t1, 409823 # t1 = 409823
add t2, tOo, ti1 # t2 = t0 + t1

6.2.2 Add and Subtract Instructions

Semantics Example Explanation
add rd, rsl, rs2 add x1, x2, x3 | x1 + x2 + x3
addi rd, rsl, imm | addi x1,x2,5 | x1 + x2+ 5
sub rd, rsl, rs2 sub x1, x2, x3 | x1 + x2-x3

Table 6.5: Arithmetic instructions: add and subtract

Table [6.5 shows the general form of the add and sub instructions in RISC-V. They have the
same general format as SimpleRisc add and sub instructions, respectively. The generic format
is inst rd, rs1, rs2/imm.

Example 93
Write a RISC-V assembly program to compute 4 + 5 - 19.
Answer:

addt tO, zero, 4
addt t1, zero, 5
add t2, to, ti1

adds t2, t2, -19

load 4 into tO

load 5 into ti

t2 = to0 + ti
subtract 19 from t2

®H R OR R

Example 94
Write an assembly program to swap two numbers stored in x1 and x2.

Answer:
add 3, z0, =zl # 3 = x1
add z1, =0, z2 # xl = z2

add z2, z0, x3 # z2 z3 (old =z1)
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6.2.3 Multiplication and Division Instructions

Semantics Example Explanation

mul rd, rsl, rs2 | mul x1, x2, x3 | x1 + x2 X x3

div rd, rsl, rs2 | div x1, x2, x3 | x1 + x2 / x3

rem rd, rsl, rs2 | rem x1, x2, x3 | x1 < rem (x2 / x3)

Table 6.6: Multiplication and division instructions

Table shows the multiplication and division instructions. They are a part of the ‘M’
extension. The reason for including them in an extension is to enable the creation of really
low-end and low-power implementations that do not require such instructions.

The multiplication instruction has some complications. The product requires 64 bits, which
means that it will not fit in a single register. The default implementation thus places the lower
32 bits in the destination register. However, sometimes there is a need to store the full 64-bit
product — this will require two registers. The default mul instruction computes the lower 32
bits. The mulh and mulhu instructions can next be used to store the upper 32 bits for signed
x signed and unsigned x unsigned multiplication, respectively. Even though we require two
separate instructions now, micro-architectures can fuse them dynamically. They can identify
two consecutive multiplication instructions where one instruction computes the lower 32 bits and
the next instruction computes the upper 32 bits. This sequence can be identified dynamically
and a single multiplication will only be required.

Example 95
Write an assembly program to multiply 3 with -17 and save the result in t3.

Answer:
addt t1, zero, 3 # t1 = 3
addi t2, zero, -17 # t2 = -17
mul t3, ti, t2 # t3 = t1 * t2
Example 96

Compute 123 + 1 and save the result in t4.

Answer:

# load the registers with required wvalues
addt t1, zero, 1 # t1 = 1
addi t2, zero, 12 # t2 12
addt t3, zero, 12 # t3 12
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#perform the arithmetic operations

mul t3, t2, t2 # t3 = 12 * 12
mul t3, t3, t2 # t3 = 12 * 12 * 12
add t4, t3, ti # 1273 + 1

The division instruction div is comparatively simpler. In the RV32 variant, it requires 32-
bit dividends and divisors. The quotient is stored in the destination register. The rounding is
towards zero. Let us explain rounding using a few examples.

Division operation | Quotient | Remainder

We see that rounding towards zero also means that the sign of the remainder is the same
as the sign of the dividend. The remainder instruction works on similar lines. It computes the
remainder of the division operation (rounding towards zero).

Akin to the multiplication operations, the division and remainder operation work in the
same manner. When they are issued back to back, micro-architectures are expected to fuse
them. They compute a single division operation and store the results in two registers — one
register for the quotient and one for the remainder, respectively.

This is an example of a scenario where the ISA has deliberately been under-designed. Instead
of having an instruction that stores to two 32-bit registers, the programmer or compiler are
expected to invoke these instructions consecutively. It is the job of the hardware to dynamically
identify such sequences and fuse them. This transfers the responsibility of ensuring efficiency
to hardware at the cost of keeping the ISA simple.

Example 97
Write a RISC-V assembly program to divide -50 by 3. Store the quotient in t2 and
remainder in t3.

Answer:
addt t0, zero, -50 to = -50
addi t1, zero, 3 t1 = 3

div t2, to, tl1
rem t3, tOo, tl1

quotient in t2

W R R

remainder in t3
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Semantics Example Explanation

and rd, rsl, rs2 and x1, x2, x3 | x1 + x2 AND x3
andi rd, rsl, imm | andi x1, x2, 6 | x1 < x2 AND 6
or rd, rsl, rs2 or x1, x2, x3 x1 < x2 OR x3
ori rd, rsl, imm ori x1, x2, 9 x1 + x2 OR 9
xor rd, rsl, rs2 xor x1, x2, x3 | x1 + x2 XOR x3
xori rd, rsl, imm | xori x1, x2, 7 | x1 + x2 XOR 7

sll rd, rsl, rs2 sll x1, x2, x3 x1 ¢+ x2 << x3
srl rd, rsl, rs2 srl x1, x2, x3 | x1 + x2 >> x3
sra rd, rsl, rs2 sra x1, x2, x3 | x1 < x2 >>> x3

slli rd, rsl, imm slli x1, x2, 3 x] ¢+ x2 << 3
srli rd, rs1, imm | srli x1, x2, 3 x1l < x2>>3
srai rd, rsl, imm | srai x1, x2, 3 | x1 < x2 >>> 3

Table 6.7: Logical and shift instructions

6.2.4 Logical and Shift Instructions

Table shows a list of the some of the prominent logical and shift instructions. The primary
logical instructions are and, or and xor. We can attach an ‘i’ suffix to these instructions to
accept an immediate value as the second source operand. The format is otherwise the same as
the add and sub instructions.

Example 98
Write a RISC-V assembly program to compute the bitwise OR of A and B. Let A =4 and
B=1.

Answer:

addi t1, zero, 4 # t1 =1
ort t2, ti1, 1 # bitwise OR of 4 and 1

Akin to other ISAs, RISC-V has three shift instructions: shift left logical (sil), shift right
logical (srl) and shift right arithmetic (sra). They have their variants where the second source
is an immediate. They are slli, srit and srai, respectively.

Example 99
Write RISC-V assembly code to compute 50/4.

Answer:
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50
50/4

addt t0, zero, 50 # tO
srat t1, tOo, 2 # t1

Example 100

Write RISC-V assembly code to compute t1 = t2 + t3 x 4.

Answer:
addi t3, zero, 5 # t3 = 5
addi t2, zero, 7 # t2 = 7
slls t4, t3, 2 # t4 = t3 * 4
add t1, t2, t4 # t1 = t2 + t3 * 4

6.3 Control Transfer Instructions

6.3.1 Conditional Branches

Unlike SimpleRisc and ARM, RISC-V does not have a flags register that stores the result of
the last comparison. The arguments for the comparison are typically specified directly in the
branch instruction itself along with the branch target.

Set-less-than (slt) Instruction

However, sometimes there is a need to store the result of a comparison. RISC-V thus provides
a flexible mechanism to achieve this. In a conventional RISC ISA, the flags register is implicit,
whereas it is more explicit in RISC-V. Such a class of instructions is shown in Table

Semantics Example Explanation

slt rd, rsl, rs2 slt x1, x2, x3 | if (x2 < x3) set x1 to 1

slti rd, rs1, imm | slt x1, x2, 5 | if (x2 < 5) set x1 to 1

sltu rd, rsl, rs2 slt x1, x2, x3 | if (X2 <unsigned x3) set x1 to 1
sltui rd, rs1, imm | slt x1, x2, 5 | if (X2 <ynsigned 5) set x1 to 1

Table 6.8: The slt family of instructions. The destination register is by default set to 0.

Table shows the slt family of instructions. They compare the values of two registers, or
a register and an immediate. If the first source operand is less than the second source operand,
then the destination register’s value is set to 1. Otherwise, it remains 0. The conditional branch
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instructions can then directly compare this register with zero and decide the outcome of the
branch instruction: taken or not-taken.

Example 101

Write RISC-V assembly code to set t2 if 2 < 5.

Answer:
addr t0, zero, 2 # to = 2
addr t1, zero, &5 # t1 = 5
slt t2, to, ti1 # t2 = (to < t1)

Example 102

Answer:

Add two long 64-bit values stored in (t1,t0) and (t3,t2). Store the result in (t5,t4).

addi t2, zero,
addi t3, zero,
addi tO0, zero,
addi t1, zero,

# add <t5,t4> =
add t4, t0, t2
add t5, t1, t3
sltu t6, t4, tO

add t5, t5, t6

2
1
0

# initialize the registers

1

<tl1,t0> + <t3,t2>
# add lower 32 bits
# add upper 32 bits
# t6 stores the carry

# add the carry

Branch Instructions

Semantics

Example

Explanation

beq rsl, rs2, label

beq x1, x2, .foo

Branch to the . foo label if x1 = x2

bne rsl, rs2, label

bne x1, x2, .foo

Branch to the .foo label if x1 # x2

bge rsl, rs2, label

bge x1, x2, .foo

Branch to the .foo label if x1 > x2

blt rsl, rs2, label

blt x1, x2, .foo

Branch to the .foo label if x1 < x2

bgeu rsl, rs2, label

bgeu x1, x2, .foo

Similar to bge, considers unsigned values.

bltu rsl, rs2, label

bltu x1, x2, .foo

Similar to blt, considers unsigned values.

Table 6.9: Conditional branch Instructions
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The conditional branch instructions in RISC-V are shown in Table [6.90 The instructions

take two register arguments and compare them. The result of the comparison is immediately
used to decide the direction of the branch.

Table shows the beq, bne, bge and blt instructions that have their usual meanings. The
third argument is a label that represents the branch target. Along with these signed comparison
instructions, RISC-V has comparison instructions to compare unsigned integers: bgeu and bltu.
Recall that ARM also has similar instructions that are implemented with the help of custom
flags.

Example 103
Write a RISC-V assembly program to compute the factorial of a positive number (> 1)
stored in al. Save the result in a0.

Answer:
.maimn:
addt a0, zero, 1 # prod = 1
addir t0, zero, 1 # index = 1
.loop:
mul a0, a0, tO # prod = prod * tndecx
addi tOo, to, 1 # wndex ++
bge al, t0, .loop # loop condition
# a0 stores the factorial

Example 104
Write an assembly program to add the numbers from 1 to 10. Store the result in s0.

Answer:

.maimn:
addt tO, zero, 1 # initialize t0 to 1
addi s0, zero, O # result (s0) = 0
addt t1, zero, 10 # loop end wvalue

.loop:
add sO0, sO, tO # add to the result
addi tOo, to, 1 # 2ncrement the counter
bge t1, t0, .loop # loop condition

# s0 has the sum
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Example 105
Write an assembly program to test if a number stored in al is prime or not. Save the

Answer:
# input in al, return wvalue in a0
.maimn:
addi tO0, zero, 2 # starting divisor
.loop:
rem t1, al, tO # find the remainder (t1)
beq t1, zero, .notPrime
addt tO0, tO, 1 # increment the divisor
bne t0, al, .loop # loop back
addi a0, zero, 1 # number <s prime
jal z0, .end
.notPrime:
addt a0, zero, O
.end:

# a0 contains the result

Example 106

Write an assembly program to find the number of ones in a 32-bit number stored in al.

Answer:
.main:

addr t0, zero, # counter, t0 = 0

addr t1, zero, # maxzimum possible ones

addr t2, zero, 1 # t2 = 1

addi a0, zero, # will contain the result (a0 = 0)
.loop:

andt t3, al, 1 # check the LSB of the argument al

srti al, al, 1 # shift the argument by 1 step

beq t3, t2, # jump to .4inc if the LSB s 1
.lret:

addr tOo, tOo, 1 # 2ncrement the counter
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beq t1, t0, .end # extt the loop
jal zero, .loop # loop back
.inc:
addi a0, a0, 1 # increment the count of 1s
jal zero, .lret # resume the next iteration
.end:
# a0 contains the result

Example 107
Write an assembly program to check if a natural number stored in al is a perfect square or
not. Save the Boolean result in a0.

Answer:
.main:
# input number in al
add? al, zero, 101
addi a0, zero, O # assuming result (a0) = false
addi: t1, zero, 1 # counter (t0) = 1
.loop:
mul t2, ti1, ti # square -> compare
beq t2, al, .square # It is a square
addr t1, t1, 1 # increment the counter
blt al, t2, .end
jal zero, .loop # loop back
.square:
addi a0, a0, 1 # result = 1
.end:
# result in a0

6.3.2 Unconditional Branches

The unconditional branch/jump instructions of RISC-V are shown in Table The most
commonly used instruction is jal — it functions both as a function call instruction as well as
a regular unconditional jump instruction. In both cases, the control jumps to the PC pointed
to by the label. Akin to other ISAs, while encoding the instruction, the label is translated to
a PC-relative offset. The jump can take place within a region of & 1 MB. The jal instruction
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Semantics Example Explanation

jal rd, label jal x1, func Jump to the func label and store the
return address in x1

jalr rd, rsl, offset | jalr x1, x2, 20 | Jump to the address z2 4+ 20 and
store the return address in z1

Table 6.10: Jump instructions in x86

additionally stores the return address (pc+4) in the first source register (1 in the example).
Note that if the first source register is equal to 20 (zero), then the return address is not stored.
jal in this case acts as a regular unconditional jump that does not store the return address.

The jalr instruction augments jal with one additional register argument. Consider the
example: jalxl, 2, 20. In this case, we add the offset 20 to the contents of 2 and jump to
the resulting address. The return address is stored in z1. Similar to jal, we do not store the
return address if the first source register is 0. The jalr instruction can be used to implement
a function return instruction. All that we have to do is to jump to the PC whose value is 0(ra)
(contents of the register ra + 0).

Example 108
Write a RISC-V assembly program that has a function call.

Answer:
Listing 6.1: C code

int foo() {

return 2;
}
void main () {

int ¢ = 3;

int y = z + foo();
}
Listing 6.2: RISC-V code

. foo: #callee

addi a0, zero, 2 # a0 = 2

jalr zero, 0(ra) # return inst.
.main:

addt sO0, zero, 3 # s0 = 3

jal ra, . foo # jump to . foo

add s1, s0, a0 #y =z + foo()
# s1 contains the result
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Example 109
Write a RISC-V assembly program to compute " and store the result in a0. x is passed
through al and n s passed through a2.

Answer:
.power:
addi a0, zero, 1 # a0 will contain the result
add t1, zero, a2 # t1 = n
beq t1, zero, .end # check (n == 0)
.loop:
mul a0, a0, al # result *=
add? t1, ti, -1 # decrement n

bne ti, zero, .loop

jalr zero, 0(ra) # return
.maimn:
addi al, zero, 7 # x =7
add?t a2, zero, 3 #n = 3
jal ra, .power # call the power function

# the result 2s in a0

6.3.3 Load and Store Instructions

Semantics Example Explanation

lw rd, imm(rsl) | lw x1, 32(sp) | x1 < mem[sp + 32]
sw rs2, imm(rsl) | sw x1, 32(sp) | mem|[sp+32] + x1
la rd, label la x1, pi x1 « address(pi)

Table 6.11: Load and store instructions. Note that la is an assembler directive.

Table shows the load and store instructions in RISC-V. We only show the 32-bit versions
of these instructions. The lw instruction loads 32-bit values from memory that is specified in
the base-offset format. On similar lines, the sw instruction stores the value of a register to
memory. Note that the store instruction takes two register source operands, and it has its
separate format. The store operation has always been an exception in such respects. RISC-
V defines a special format for it, which accepts two register-based source operands and an
immediate.
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Example 110

Write an assembly program to load a0 with the contents of the memory address
sp—s0x4—12.

Answer:

.maimn:
slli s0, sO, 2
add s0, sO, 12
sub t0, sp, sO
lw a0, 0(t0)

sO0 = s0 * 4

s0 = s0 + 12

t0 = sp - sO

load the wvalue of mem[t0] in a0

H oW W W

Example 111
Write an assembly program to create a copy of a 10-element array. Assume the start-
ing address of the original array is stored in al and that of destination array is stored in a2.

Answer:
.main:
addt t1, zero, O # counter(ti) = 0
addtr t2, zero, 10 # number of i1terations
.loop:
lw to, 0(al) # load an element from the source array
sw to, 0(a2) # store an element in the destination array
addi al, al, 4 # get the address of the next element: src array
addi a2, a2, 4 # destination array
add? t1, t1, 1 # 2ncrement the counter

bne ti1, t2, .loop # loop back

Example 112
Write a RISC-V assembly program to compute the sum of the elements in a 10-element
array. Assume that the base address of the array is stored in al. Store the result in a0.

Answer:

Listing 6.3: C code
void addNumbers (int a[10]) {
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int idx;
int sum = 0;
for (idz = 0; 4dxz < 10; ddz++){
sum = sum + alidz];
}
F
Listing 6.4: RISC-V code
.main:
addt t0, zero, O # i2ndex = 0
addi a0, zero, O # result = 0
addi t1, zero, 10 # limet = 10
.loop:

*

lw t2, 0(al) load an element in t2
add a0, a0, t2 # update the result

3

addi al, al, 4
addi tOo, tOo, 1
bne t0, ti, .loop

traverse the array
index ++

H*

# result in a0

Example 113
Write a RISC-V assembly program to compute the factorial of a number (stored in al)
using recursion. Store the result in a0.

Answer:
. fact:
# check tf n (in al) is 0 or 1
addi t1, zero, 1 # t1 = 1
bge t1, al, .ltomne # if (al == 1) jump to .ltone

# nmneed to make a recursive call
add t0, al, zero # t0 = a1l (=n)
addi al, al, -1 # al = n - 1

# store the state

addi sp, sp, -8 # sp = sp - 8
sw ra, 0(sp) # store ra and tO
sw t0, 4(sp) # on the stack

# recursive call
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jal ra, . fact

# restore the state of the stack
lw t0, 4(sp)

lw ra, 0(sp)

addi sp, sp, 8

# compute the result

mul a0, a0, tO # fac(n) = n * fac(n-1)
jalr zero, 0(ra) # return
.ltone:
addi a0, zero, 1 # result 2s 1
jalr zero, 0(ra) # return
.main:
addi al, zero, 5 # compute 5!
jal ra, . fact # Call the factorial function

# result in a0

The [a Assembler Directive

There is often a need to load values to memory before a program starts to execute. A need arises
when we use built-in constants and initialize global or static variables. Using the /i instruction,
it is always possible to load 32-bits to a given memory address. However, it is possible to design
a more elegant solution that in practice will translate to multiple assembly instructions. It will
nevertheless make the job of the assembly programmer much easier. The la directive achieves
this.

Let us consider an example. A constant val needs to be defined as a label. The specific way
of defining it is as follows: wval: .word 17. A 32-bit integer constant requires the .word directive
and a floating point constant requires the . float directive. It is then succeeded by the value of
the constant.

The la directive can be used to load the address of a constant into a register. Subsequently,
a regular load instruction can be used to read the value of the constant (refer to Example [114)).
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Example 114

Define a constant val that is initialized to 17. Store its value in register sO after loading it
from memory.

Answer:

val: .word 17

la t1, wval
lw sO, 0(t1)

6.4 Floating Point Instructions

Let us now look at the floating point instructions in RISC-V. In 2017, the ‘F’ and ‘D’ extensions
were introduced for single precision and double precision floating point operations, respectively.
This part of the instruction set is quite conventional and is similar to other RISC ISAs. Floating
point numbers are stored in the regular IEEE 754 format.

6.4.1 View of Registers

The RISC-V floating point model has 32 floating point registers. Their names range from f0
to f31. Unlike integer registers, no register is hardwired to 0. There is however a register usage
convention (akin to integer registers).

Register | Mnemonic | Description

f0-7 ft0-7 Temporary registers

£8-9 fs0-1 Saved registers

f10-11 fa0-1 Arguments/return values
f12-17 fa2-7 Function arguments
f18-27 fs2-11 Saved registers

28-31 ft8-11 Temporary registers

It is not possible to directly load an immediate into a floating point register. Like x86,
floating point registers can only be initialized by loading values from memory.

Floating Point Control and Status Register

There is an additional special register called the floating point control and status register (fesr),
whose structure is shown in Figure Its lower 8 bits encode important information. The
first 5 bits starting from the LSB store exceptional conditions encountered since these bits were
last reset. This is known as the f flags field. The rest of the 3 bits store the rounding mode.
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31

8 7

5 4 3 2 1 0

Reserved

Rounding Mode (frm) |Accrued Exceptions (fflags)

24

3 NV | Dz | oF | UF |NX
1 1 1 1 1

Figure 6.1: RISC-V fesr register

Accrued Exception Flags (fflags)

Mnemonic | Explanation

NV Invalid operation
DZ Divide by zero
OF Overflow

UF Underflow

NX Inexact

Table 6.12: Accrued exception flags

The fflags field stores five flags, which are also known as the accrued exception flags. The
first four flags — invalid operation, divide by zero, overflow and underflow — have their standard
meanings. Let us discuss the fifth flag (inexact) that we have not encountered before. This is
set when the result cannot exactly be stored in a floating point register and some rounding was
required. Next, let us discuss the different rounding modes. They are stored in bits 6-8 of the

fesr.

Rounding Modes

Rounding Mode | Mnemonic | Meaning

000 RNE Round to nearest, prefer even LSBs

001 RTZ Round towards zero.

010 RDN Round down (towards -00).

011 RUP Round up (towards +00).

100 RMM Round to nearest, prefer the number with the max-
imum magnitude

101 Invalid. Reserved for future use.

110 Invalid. Reserved for future use.

111 DYN Selects a rounding mode dynamically (stored in the
frm field of the fesr)

Table 6.13: Encoding the rounding mode

RISC-V instructions can use a static rounding mode (encoded in the instruction) or a
dynamic rounding mode (encoded in the fesr’s frm field). The default rounding mode is RNE.
We round the result to the nearest value that can be represented in the IEEE 754 format. If the
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real value is between two representable values, then the result is rounded to the value that has
an even LSB. The next rounding mode is RTZ, which is round towards zero. It is equivalent
to truncation where the bits that cannot be fit in the format are simply removed. The next
two rounding modes are self-evident: RDN (round towards —oo or the floor function) and RUP
(round towards +oo or the ceiling function).

The RMM rounding mode is similar to RNE. However, if the result is between two repre-
sentable values, then we round towards the number that has the higher magnitude (away from
zero). The next two values are not used at the moment. Finally, the DYN mode selects a
rounding mode dynamically (stored in the frm field of the fesr).

6.4.2 Load and Store Instructions

Semantics Example Explanation
flw rd, imm(rsl) | flw {1, 48(sp) | f1 <— mem[48 + sp]
fsw rs2, imm(rsl) | fsw 1, 48(sp) | mem[48 + sp] < f1

Table 6.14: Single precision load and store instructions

Let us now look at the basic floating point load and store instructions in Table They
load and store values from memory, respectively. They do not perform type conversion. The
feut instruction and its variants can be used to perform type conversion, as we shall see later.

The key idea in RISC-V is the same as in x86, which is that floating point immediates
cannot be directly loaded into registers. Their contents need to be stored in memory first and
then the 32-bit floating point value can be loaded into a floating point register. In this sense,
this part of the ISA is less powerful than its integer counterpart. However, this does not cause
much of a performance loss in practice because most of the time we do not face the need for
loading floating point immediates, other than while loading built-in constants such as 7w and e.
In this case, we can use the assembler pseudoinstruction la to store the contents of the constant
to memory and then load the address of the starting memory address to a register (refer to
Example . The floating point load and store instructions otherwise are quite similar to
their integer counterparts in RISC-V.

Example 115
Load the value of a constant val into a floating point register fsl.

Answer:

val: .float 3.14

.main:
la al, wal
flw fs1, 0(al)
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Semantics Example Explanation
fadd.s rd, rs1, rs2 | fadd.s f1, f2, f3 | f1 « 2 + {3
fsub.s rd, rs1, rs2 | fsub.s fl1, f2, f3 | fl1 < f2 - {3
fmul.s rd, rsl, rs2 | fmul.s f1, f2, £3 | f1 + 2 x 3
fdiv.s rd, rsl, rs2 | fdiv.s f1, f2, 3 | f1 + 2 + 3

fmin.s rd, rsl, rs2

fmin.s f1, 2, £3

f1 < min(f2 , £3)

fmax.s rd, rsl, rs2

fmax.s f1, 2, {3

f1 «+ max(f2 , £3)

fsqrt.s rd, rsl

fsqrt.s f1, f2

f1 « V12

Table 6.15: Floating point arithmetic instructions

6.4.3 Floating Point Arithmetic Instructions

Table shows the floating point arithmetic instructions. They are of the form (inst).s. The
“.8” suffix corresponds to single precision floating point instructions. The “.d” suffix corresponds
to double precision floating point instructions. The instructions fadd.s, fsub.s, fmul.s, fdiv.s,
fmin.s, fmax.s and fsqrt.s have their usual meanings. Note that we do not have variants
that accept immediates directly as source operands. In the case of floating point instructions,
the immediates can only be loaded using flw instructions or converted from integers. Refer to

Example

Example 116
Compute \/T + e+ 7 X e, and store the result in fa0.

Answer:

# declare the constants
pi: .float 3.14
e: .float 2.72

.main:

# load them into floating point registers
la al, p<
flw fs1, 0(al)

la a2, e
flw fs2, 0(a2)

fadd.s ft1, fs1, fs2
fmul.s ft2, fs1, fs2
fadd.s ft3, ft1, ft2

# pi + e
# pi * e
# pi + e + p1 X e

fsqrt.s fa0, ft3 # sqrt (pt + e + pixke)

To support operations such as dot products, matrix multiplication, and similar operations,
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Semantics Example Explanation
fmadd.s rd, rsl, rs2, rs3 | fmadd.s f1, 2, 3, f4 | f1 « 2 * {3 + {4
fmsub.s rd, rsl, rs2, rs3 | fmsub.s f1, 2, £3, f4 | f1 < 2 * 3 - {4

Table 6.16: Fused addition and subtraction instructions

RISC-V supports a few fused arithmetic instructions such as the fused addition and subtraction
operations (refer to Table[6.16]). The fused add instruction (fmadd.s) takes three register source
operands as arguments. It multiplies the first two and adds the product to the third. On similar
lines, the fused subtract instruction subtracts the third source operand from the product of the
first two register-based source operands.

6.4.4 Floating Point Conversion Instructions

Semantics Example Explanation
fevt.s.w rd, rsl | fevt.s.w f1, x5 | f1 « (float) x5
fevt.w.s rd, rsl | fevt.w.s x5, f1 | x5 < (int) f1

Table 6.17: Floating point < integer conversion instructions

Example 117
Compute m X e + 4, and store the result in fa0. Convert the result to an integer and store
the result in a0.

Answer:

pi: .float 3.14
e: .float 2.72

.main:
la al, p< # load p2
flw fs1, 0(al)

la a2, e # load e
flw fs2, 0(a2)

addi tl1, zero, 4 # load 4.0 in a register
fevt.s.w ft1, ti

fmadd.s ft0o, fs1, fs2, fti # pt * e + 4
fcvt.w.s a0, ftO # convert to int

Table shows the floating point to integer conversion (and vice versa) instructions. The
fevt.s.w instruction proves to be very helpful. It can be used to convert integer immediates to
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Semantics Example Explanation
fit.s rd, rsl, rs2 | flt.s s, £2, f3 | if (f2 < £3) set sl to 1
fle.s rd, rsl, rs2 | fle.s sl, £2, f3 | if (f2 < 3) set s1 to 1

feq.s rd, rsl, rs2

feq.s s1, 2, £3

if (f2 == 13) set sl to 1

Table 6.18: Floating point comparison instructions

floating point numbers, whenever we wish to multiply a floating point number with a multiplier
of the form 2.0 or 3.0.

6.4.5 Floating Point Comparison Instructions

Comparing floating point numbers is not the same as comparing integers. They cannot be
directly given as arguments to conditional branch instructions. In this case, the status of the
comparison needs to be stored in an integer register. This register can then be compared with
the zero register using a regular conditional branch instruction.

Table [6.18] shows the three floating point comparison instructions that store the result in
an integer register. Let us explore their usage using an example (Example [118]).

Example 118
First, initialize a0 = 0, then set a0 = 17 if e < m.

Answer:
pi: .float 3.14
e: .float 2.72
.main:
la al, p1 # load p1
flw fs1, 0(al)
la a2, e # load e
flw fs2, 0(a2)
add a0, zero, zero # a0 = 0
flt.s to, fs2, fsi # compare pi and e
beq tO0, zero, .end # 1f (t0 == 0) jump to .end
addi a0, zero, 17 # a0 = 17 because t0 ==
.end:
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6.5 Instruction Encoding

6.5.1 Arithmetic and Data Transfer Instructions

RISC-V has four core non-branch instruction formats: R, I, S and U. These are for 32-bit
instructions. RISC-V assemblers and compilers further align these instructions to 4-byte (32-
bit) boundaries. Figure shows a visual representation of these four formats and Table
shows examples of instructions in each format.

funct7 rs2 rs1i funct3 rd opcode (R-Type)
| - —~ | W —~ P ~r JH_J‘ —r I — J
(5) (3) (8)
imm rs1 funct3|  rd opcode (I-Type )
- —~—— P ~ I —N ~r I ~r s
) 3 &
imm[11..5] rs2 rs1 funct3| imm[4..0]| opcode (S-Type)

\ . v

——

) GO
opcode (U-Type)

v |- »

B G

rd

Figure 6.2: RISC-V instruction formats: R, I, S and U formats

Format | Structure Instructions
R rd, rsl, rs2 add, sub, mul, div, rem, and, or, xor, sll, srl, sra, slt,
sltu
1 rd, rsl, imm | addi, andi, ori, xori, slli, srli, srai, slti, sltiu
rd, imm(rsl) | lw, jalr
S rs2, imm(rsl) | sw
U rd, imm lui

Table 6.19: Instructions belonging to each of the four arithmetic RISC-V formats

Let us now take a deep look at each of these four instruction formats. The first 7 bits are
reserved for the opcodes in all the formats. This means that we can support a maximum of
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128 instructions in the ISA; moreover, finding the opcode is also quite easy (first 7 bits). The
reason that this is important is because minimizing the decoder’s complexity is a key goal of
ISA design. Given that all the opcode bits are in the same positions across the formats, finding
the opcode and consequently the type of the instruction is easy.

The next 5 bits are used to store the id of the destination register rd in the R, I and U
formats. S-type instructions do not have a destination register. For example, the sw instruction,
which is an S-type instruction, does not have a destination register. It however has two source
registers and an immediate. Instead of changing the positions of the source registers in the
S-type instruction format, the ISA designers made the right decision to use the bits for the
destination register to store a part of the immediate. Hence, the first 5 bits of the immediate
are stored at the corresponding positions.

Next, let us consider U-type instructions (such as [ui). We can use the remaining 20 bits
to store the 20-bit immediate. We don’t need to store any more information. Such instructions
have only two arguments. The destination register rd and the 20-bit immediate.

The rest of the three formats (R, I and S) store a 3-bit field funct3. It is used to hierar-
chically organize the instructions and to also support more instructions. In RISC-V, a single
opcode can correspond to multiple instructions. For example, the opcodes of the add, slt and
zor instructions are the same: 0110011. They are differentiated by the values of the funct3
field. We can thus support more instructions than 128. However, that is not the main aim here.
We can group similar instructions such that they are processed by the hardware in the same
manner. They will still have differences between them such as add and xor. However, most of
the processing can remain the same given that both are R-type instructions.

The next 5 bits store the rsl field (first source register) in all three formats (R, I and S).
Subsequently, differences arise. I-type instructions need to store a 12-bit immediate. They don’t
have a second source register (rs2). They thus use the remaining 12 bits to store the immediate.
All immediates are sign-extended before being used in hardware unless the instruction has a
‘u’ suffix (for unsigned). The R and S-type instructions store the second source register rs2 in
the next 5 bits.

Let us now consider the last 7 bits in the R and S formats. R-type instructions have another
opcode extender called funct7? (in addition to funct3). It serves the same purpose as funct3.
The aim is to increase the number of instructions and also create a grouping of instructions
based on their similarity. It is possible for two instructions to have the same opcode and funct3
fields, yet have a different funct7? field. Consider add and sub. They have the same opcode
(0110011) and same funct3 (000); however, their funct7 fields are different — 0000000 and
0100000, respectively.

In contrast, S-type instructions store the remaining 7 immediate bits in the uppermost (most
significant) 7 positions. Recall that we had already stored 5 immediate bits in the positions
at which other formats store the id of the destination register (rd). This is a very reasonable
decision because the explicit aim is to ensure that the same field is stored at the same set of
positions across the formats — it is very easy for the decoder to extract it.

6.5.2 Control Flow Instructions

Let us now look at the instruction formats for encoding control flow instructions. There are
two formats in this space: the B and J formats. Refer to Figure [6.3] and Table [6.20
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12| imm[10..5] rs2 rs1 funct3| imm[..][11| opcode (B-Type)
« ~r I ~ I —~ I —N ~ I ~r J
e GO &
20 imm[10..1] 11 imm[19..12] rd opcode (J-Type )
Figure 6.3: The B and J formats

Format | Structure Instructions

B rsl, rs2, imm | beq, bne, blt, bge, bltu, bgeu

J rd, rsl, imm | jal

Table 6.20: Instructions that are encoded in the B and J formats

All the conditional instructions like beq, bne and blt are implemented using the B format.
Recall that such instructions take two source registers. They are compared and then based on
the results of the comparison, a taken/not-taken decision is made. The instruction uses PC
offset-based addressing, where the offset is encoded in the immediate field.

The immediate is encoded in a special manner in the B format. The offset needs to be a
multiple of 2 (limitation of the ISA). This means that its LSB is 0. Given that this bit is fixed,
there is no need to represent it. In other words the 0" bit is set to 0 and thus need not be
represented. The format thus stores the rest of the 4 bits in the first 5-bit field. Note that as
compared to the S format, the immediate bits 4..1 are stored in exactly the same positions. This
makes extracting these bits very easy and there is consequently no need to design additional
decoder hardware to handle these bits differently in the B format. Given that the 0% bit is not
stored, its corresponding position can be used to store the 11" bit.

The rest of the immediate bits are stored in the most significant bit positions. The most
significant 7 bits store the 12" bit and the bits 10..5. We thus store 13 immediate bits: 12 of
them are explicitly stored and the least significant immediate bit is assumed to be 0. This format
can thus encode an offset between -4096 and 4095 (~ + 4 KB). This offset is sign-extended and
added to the PC.

Next, consider the J format. It takes a single destination register and a 20-bit immediate
as its arguments. The immediate here encodes an offset that is a multiple of 2 (akin to the B
format). There is no need to store the LSB, which is set to 0. Like the B format, there is a need
to store 20 bits. The order of storing the bits from the most significant position to the least
significant position is as follows: bit 20, bits 10..1, bit 11, bits 19..12. Given that we encode
21 bits in this format (20 explicitly and 1 implicitly), we can represent an offset range that is
within +1 M B of the current PC.
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6.5.3 Floating Point Instructions

LOAD-FP

imm

opcode

y |

STORE-FP
imm[11..5] rs2 rs1 width | imm[4..0]| opcode
—_— V- ~ J U . JW_J‘ —c I —— J
) O &)

Figure 6.4: Encoding the flw and fsw instructions

Figure[6.4shows the encoding of the flw and fsw instructions. flw instructions are encoded
in the I format. The funct3 instruction is replaced with the width field (amount of data that
is loaded). Similarly, the fsw instruction is encoded using the S format. The only change is
that the funct3 field is replaced with the width.

functb

fmt

rs2

rsi

rm

rd

opcode

J\_W__JL

g

——— S
() @ By ) )

Figure 6.5: Encoding of floating point arithmetic instructions

Figure shows the encoding format of floating point arithmetic instructions (variation of
the R format). All such instructions take one floating point destination register and one or two
source registers as inputs. The format is the same for all variants. The rm field encodes the
rounding mode and the fmt field represents the precision (32-bit, 64-bit, 16-bit, 128-bit).

The opcode field is typically the same for all common floating point arithmetic instructions.
The functb field stores the code for the specific type of instruction. For instructions like fqrt
that do not have the second source register, the rs2 field is set to 0.

The same format is also used by the floating point conversion instructions (fcvt.w.s and
fevt.saw).

This format is also used by floating point comparison instructions. The rm field in this case
stores the following comparison conditions: EQ, LT and LE. The funct5 field stores a code
for floating point comparison (FCM P).
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Figure 6.6: Encoding of fused multiply and add instructions

Figure shows the encoding format of the fmadd and fmsub instructions. Instead of the

functb field, the third source register rs3 is stored in its place. The rest remains the same.

6.6 Summary and Further Reading

6.6.1 Summary

Summary 6

. The RISC-V ISA refers to a family of instruction sets. The basic ISA is RV32 (32-

bit). There are 64-bit and 128-bit variants as well that are currently under different
stages of development. They are named RV64 and RV128, respectively.

. The ISA has a modular structure. Different sets of instructions can be added to it

depending upon the use case. Each such module is known as an “extension”.

. Some popular extensions are as follows: integer (default), embedded, atomic instruc-

tions, single and double-precision floating point arithmetic, and vector arithmetic.

. There is a compressed instruction set (suffix ‘C’) that is similar in principle to ARM

Thumb.

. There are 32 integer registers. The zeroth integer register (z0 or zero) is hardwired

to 0. There is an elaborate usage convention that most assembly programmers are
expected to follow.

. The usage convention distinguishes between temporary registers (caller saved), callee

saved registers and function arguments/return values.

. The integer registers are named x0...x31. They additionally can be addressed using

their mnemonics t0 — 6 (temporary), sO — 12 (callee saved), a0 — 7 (arguments and
return values), ra (return address), sp (stack pointer), gp (global pointer) and zero.
Addressing registers by their mnemonics is preferred.

. For example, the integer register t3 is the third temporary register that is the same as

x28.




(© Smruti R. Sarangi 256

9. The RISC-V ISA is a RISC ISA that accepts 12-bit immediates in arithmetic in-
structions and 20-bit immediates in branch instructions and the load-upper-immediate
nstruction.

10. There is no dedicated move-immediate instruction in the ISA. Instead, the way to load
an immediate is to use the addi instruction to add the 12-bit immediate to the register
zero. The upper 20 bits can then be set by the lui (load upper immediate) instruction.

11. Akin to other RISC ISAs, RISC-V supports all the standard arithmetic and logical
instructions including some unsigned variants.

12. There is no dedicated flags register that stores the result of the last comparison.
Instead, branch instructions take two register arguments. They directly compare them
and depending upon the branch condition, jump to the label specified in the instruction.

13. The jal and jalr instructions are used to jump to a different location and store the
return address in the first source register. If the register is zero, then the return
address is not saved. The jal instruction can be used to implement the classical call
instruction while the jalr instruction can be used to implement the return instruction.

14. There are two important assembler directives that translate to multiple RISC-V in-
structions at runtime. They are li (load 32-bit immediate) and la (load the address
of a constant defined in the assembly file into a register).

15. RISC-V has 32 floating point registers numbered fO... f31. No floating point register
is hardwired to 0. They also have a usage convention and are also known by their
mnemonics. These mnemonics have a similar pattern: ft0—11, fa0—7 and fsO0—12.

16. The floating point control status register (fcsr) is used to control the behavior of
floating point instructions. It stores the rounding mode and floating point exceptions
seen after the last time this register was reset (divide-by-zero, overflow, etc.).

17. There is no direct way of loading a floating point immediate into a register in RISC-V.
In RISC-V, an immediate is associated with a label, and it is assumed to be stored
in memory before the execution of the code starts. The address of the label (or the
immediate) can be loaded to a register using the assembler directive la. Subsequently,
the flw instruction can be used to load the corresponding floating point value. The
fsw instruction can be used to store floating point values.

18. All single-precision floating point arithmetic instructions operate in a manner that
is more or less similar to their integer counterparts. They have the “s” suffiz. For
example, the floating point add instruction is named fadd.s.

19. Another way of loading or storing immediate values is using the floating point con-
version instructions: fcvt.w.s and fcut.s.w.
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20. Floating point comparison instructions have an integer destination register and two
floating point source registers. The hardware compares the source registers based on
the type of the comparison that needs to be performed, and then the Boolean result is
stored in the destination register.

21. RISC-V has six different instruction formats: 4 integer formats (R, I, S and U) and
2 branch formats (B and J ).

22. Most arithmetic instructions that do not have immediates use the R format. The I
format is used for instructions that use an immediate such as the addi instruction or
the lw (load) instruction. Store instructions are encoded using the S format and the
lui instruction uses the U format.

23. All the conditional branch instructions use the B format. The B format admits a
12-bit immediate with an additional and implicit LSB bit that is hardwired to 0. jal is
a J-type instruction that has a single destination register and a 20-bit immediate (the
LSB is not specified because it is 0). Effectively, the B format has a 13-bit immediate
and the J format has a 21-bit immediate.

24. Floating point instructions use the I format for flw and S format for fsw instructions,
respectively. The rest of the instructions primarily rely on minor variations of the R
format.

6.6.2 Further Reading

The most definitive resource for understanding the RISC-V ISA is its official manual]ris, | that
can be downloaded from https://riscv.org/. The site hosts two kinds of specifications: un-
privileged specification and privileged specification. The privileged specification is for writing
system software and operating systems. All the RISC-V specifications undergo active develop-
ment and periodically new versions are released. A GitHub repository tracks the development
of these specifications. It is accessible at https://github.com/riscv/. Readers can addition-
ally refer to two classic books|Waterman, 2016, |[Patterson and Waterman, 2017] to learn more
about the RISC-V ISA.

Readers should also read a few classical papers [Chen and Patterson, 2016, Greengard,
2020, Asanovi¢ and Patterson, 2014, Mezger et al., 2022] to understand the history of RISC-V.
This will give them a perspective of the developmental history of RISC-V and how this ISA
came about in an era when instruction set development was considered to be an already solved
problem that did not warrant further attention.

The next port of call can be papers that critically investigate the RISC-V ISA. The following
references [Frolov et al., 2021, Kanter, 2016, [Singh and Sarangi, 2021] will prove to be useful.
They critique some design choices of the RISC-V ISA and compare it with other RISC and
CISC ISAs (particularly reference [Singh and Sarangi, 2021]). In this context, readers should
consider the formal specifications of RISC-V |Bourgeat et al., 2021] if they are considering
implementing the ISA or designing a machine-accurate emulator for it.

Next, let us consider performance and implementation-related aspects. Researchers can
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look at architecture simulators that simulate RISC-V instructions and their vector extensions
such as the simulator released by Ramirez et al. [Ramirez et al., 2020]. The next logical step
is to study RISC-V processors such as BOOMv2 [Celio et al., 2017], RISC-V 2 [Patsidis et al.,
2020] and the processor in reference [Stangherlin and Sachdev, 2022|. RISC-V processors are
also being designed to operate in high-radiation environments like outer space. Many space
research organizations are creating their bespoke RISC-V processors [Wessman et al., 2021].

Exercises

RISC-V Assembly Programming

Ex. 1 — Solve all the exercises listed at the end of the chapter on the ARM assembly language
using RISC-V.

RISC-V Assembly Concepts

Ex. 2 — Why does RISC-V not have a mov instruction? What is the advantage of making
this choice?

Ex. 3 — How does the assembler implement the [i directive (pseudoinstruction)?

* Ex. 4 — RISC-V does not have a flags register. However, it stores some information in
the fcsr register. Why is this required?

Ex. 5 — Explain the different rounding modes in RISC-V.

Ex. 6 — Why is it not a good idea to have instructions to load floating point immediates
directly into registers (similar to addi and lui for integers)?

* Ex. 7 — How does the assembler implement the la directive?

Ex. 8 — What is the advantage of maintaining the positions of the fields across the different
RISC-V instruction encoding formats?

* Ex. 9 — How do the opcode, funct3, funct5 and funct7 fields help in implementing RISC-
V extensions?

Ex. 10 — What is the advantage of making it easy to extract the sign bit of the immediate
in the different formats, especially the B and J formats?
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Design Problems

Ex. 11 — Extend the RISC-V assembler available on the author’s website to support the
following extensions: double precision, vector, SIMD and cryptographic operations.

Ex. 12 — Cross-compile a piece of C code using the RISC-V and ARM cross compilers.
Use the -03 gcc optimization. Next, run them on the Qemu emulation engine. Compare the
performance and find the reasons for the differences.
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Part 11

Organisation: Processor Design

261






Logic Gates, Registers, and Memories

We are ready to design a real computer now. Before we start, let us quickly take a glance at
some of the main requirements and constraints for designing a computer as described in the
last few chapters.

Way Point 3

o A computer needs a central processing unit, set of registers, and a large amount of
memory.

o A computer needs to support a complete, concise, generic, and simple instruction set.

o SimpleRisc is a representative instruction set. To implement it, we need to primarily
have support for logical operations, arithmetic computations, register and memory
accesses.

Figure [7.1] shows a plan for the next few chapters. In this chapter, we shall look at design-
ing simple circuits for logical operations, registers, and basic memory cells. We shall consider
arithmetic units such as adders, multipliers, and dividers in Chapter [§, and subsequently com-
bine the basic elements to form advanced elements such as the central processing unit, and an
advanced memory system in Chapters [9] [I0} and

Before, we proceed further, let us warn the reader that this chapter is meant to give a brief
introduction to the design and operation of logic circuits. This chapter takes a cursory look at
digital logic, and focuses on introducing the broad ideas. A rigorous treatment of digital logic
is beyond the scope of this book. The interested reader is referred to seminal texts on digital
logic |[Taub and Schilling, 1977, Lin, 2011, Wakerly, 2000]. This chapter is primarily meant for

263
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Figure 7.1: Plan for the next few chapters

two types of readers. The first type of readers are expected to have taken an introductory course
on digital logic, and they can use this chapter to refresh their knowledge. The second category of
readers are presumed to have little or no background in digital electronics. We provide enough
information for them to appreciate the nuances of digital circuits, and their operation. They
can use this knowledge to understand the circuits required to perform computer arithmetic,
and implement complex processors.

For implementing logical operations such as bitwise AND, OR, shifts, and register /memory
cells, we typically use silicon based circuits today. Note that this was not always the case. The
earliest computers in the 19" century were made from mechanical parts. Till the sixties, they
were made of vacuum tubes. It is only after the discovery of the transistor and integrated circuit
technology that computer processors started getting manufactured using silicon. However, this
might be a passing trend. It is perfectly possible in the future that we will have computers
made of other materials.

7.1 Silicon based Transistors

Silicon is the 14" element in the periodic table. It has four valence electrons and belongs to
the same group as carbon and germanium. However, it is less reactive than both.

Over 90% of the earth’s crust consists of silicon based minerals. Silicon dioxide is the
primary constituent of sand, and quartz. It is abundantly available, and is fairly inexpensive
to manufacture.

Silicon has some interesting properties that make it the ideal substrate for designing circuits
and processors. Let us consider the molecular structure of silicon. It has a dense structure,
where each silicon atom is connected to four other silicon atoms, and the tightly connected set
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of silicon atoms are bound together to form a strong lattice. Other materials notably, diamond,
have a similar crystalline structure. Silicon atoms are thus more tightly packed than most
metals.

Due to the paucity of free electrons, silicon does not have very good electrical conduction
properties. In fact it is midway between a good conductor, and an insulator. It is thus known
as a semiconductor. It is possible to slightly modify its properties by adding some impurities
in a controlled manner. This process is called doping.

Definition 44
A semiconductor has an electrical conductivity, which is midway between a good conductor
and an insulator.

7.1.1 Doping

Typically, two types of impurities are added to silicon to modify its properties: n-type and p-
type. N-type impurities typically consist of group V elements in the periodic table. Phosphorus
is the most common n-type dopant. Arsenic is also occasionally used. The effect of adding a
group V dopant with five valence electrons is that an extra electron gets detached from the
lattice, and is available for conducting current. This process of doping effectively increases the
conductivity of silicon.

Likewise, it is possible to add a group III element such as boron or gallium to silicon to
create p-type doped silicon. This produces the reverse effect. It creates a void in the lattice.
This void is also referred to as a hole. A hole denotes the absence of an electron. Like electrons,
holes are free to move. Holes can also help in conducting current. Electrons have a negative
charge, and holes are conceptually associated with a positive charge.

Now that we have created two kinds of semiconductor materials — n-type and p-type. Let
us see what happens if we connect them to form a p-n junction.

Definition 45

o A n-type semiconductor has group V impurities such as phosphorus and arsenic. Its
primary charge carriers are electrons.

o A p-type semiconductor has group III impurities such as boron and gallium. Its pri-
mary charge carriers are holes. Holes have an effective positive charge.

e A p-n junction is formed when we place a p-type and n-type semiconductor side by
side.
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Figure 7.2: A P-N junction

7.1.2 P-N Junction

Let us consider a p-n junction as shown in Figure The p-type region has an excess of holes
and the n-type region has an excess of electrons. At the junction, some of the holes cross over
and move to the n region because they are attracted by electrons. Similarly, some electrons
cross over and get amassed on the side of the p region. This migration of holes and electrons
is known as diffusion. The area around the junction that witnesses this migration is known
as the depletion region. However, due to the migration of electrons and holes, an electric field
is produced in the opposite direction of migration in the depletion region. This electric field
induces a current known as the drift current. At steady state, the drift and diffusion currents
balance each other, and thus there is effectively no current flow across the junction.

Now, let us see what will happen if we connect both sides of the p-n junction to a voltage
source such as a battery. If we connect the p side to the positive terminal, and the n side to
the negative terminal, then this configuration is known as forward bias. In this case, holes flow
from the p side of the junction to the n side, and electrons flow in the reverse direction. The
junction thus conducts current.

If we connect the p side to the negative terminal and the n side to the positive terminal,
then this configuration is known as reverse bias. In this case, holes and electrons are pulled
away from the junction. Thus, there is no current flow across the junction and the p-n junction
in this case does not conduct electricity.

A simple p-n junction as described is known as a diode. It conducts current in only one
direction, i.e., when it is in forward bias.

Definition 46
A diode is an electronic device typically made of a single p-n junction that conducts current
i only one direction.
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Figure 7.3: NMOS transistor

7.1.3 NMOS Transistor

Now, let us connect two p-n junctions to each other as shown in Figure [7.3|(a). This structure is
known as an NMOS (Negative Metal-Oxide-Semiconductor) transistor. In this figure there is a
central substrate of p type doped silicon. There are two small regions on both sides that contain
n type doped silicon. These regions are known as the drain and source respectively. Note that
since the structure is totally symmetric, any of these two regions can be designated as the
source or the drain. The region in the middle of the source and drain is known as the channel.
On top of the channel there is a thin insulating layer typically made of silicon dioxide(SiO2)
and it is covered by a metallic or polysilicon based conducting layer. This is known as the gate.

There are thus three terminals of a typical NMOS transistor — source, drain and gate. Each
of them can be connected to a voltage source. We now have two options for the gate voltage —
logical 1 (V4 volts) or logical 0 (0 volts). If the voltage at the gate is logical 1 (Vg volts), then
the electrons in the channel get attracted towards the gate. In fact, if the voltage at the gate
is larger that a certain threshold voltage (typically 0.15 V in current technologies), then a low
resistance conducting path forms between the drain an