
Basic Computer Architecture

Version 2.6

Smruti R. Sarangi

August 25, 2024

This work is licensed under a Creative Commons Attribution-NoDerivs 4.0 International
License. URL: https://creativecommons.org/licenses/by-nd/4.0/deed.en

https://creativecommons.org/licenses/by-nd/4.0/deed.en

List of Trademarks

• AMD is a registered trademark of Advanced Micro Devices, Inc.

• AMD Phenom and ATI are trademarks of Advanced Micro Devices, Inc.

• Arm, Cortex, Neon, Thumb, and TrustZone are registered trademarks of Arm limited (or
its subsidiaries).

• Arm7 and big.LITTLE are trademarks of Arm limited (or its subsidiaries).

• AutoCAD is a registered trademark of Autodesk, Inc.

• Facebook is a registered trademark of Facebook, Inc.

• FORMULA 1 is a registered trademark of Formula One Licensing BV.

• Google is a registered trademark of Google LLC.

• Google Maps is a trademark of Google LLC.

• HP is a registered trademark of Hewlett Packard, Inc.

• IBM, Power, and PowerPC are registered trademarks of International Business Machines
Corporation.

• Intel, Pentium, Intel Xeon Phi, Intel Atom and Itanium are registered trademarks of Intel
Corporation or its subsidiaries.

• Microsoft and Windows are registered trademarks of Microsoft Corporation.

• NVIDIA, CUDA, NVIDIA Tesla, NVIDIA Kepler, NVIDIA Maxwell and NVIDIA Turing
are registered trademarks of NVIDIA Corporation.

• SPARC is a registered trademark of SPARC International, Inc.

• SPEC and SPEC CPU are registered trademarks of the Standard Performance Evaluation
Corporation.

• Tejas Simulator is a trademark of IIT Delhi.

• Qualcomm, Snapdragon, Hexagon, and Adreno are trademarks of Qualcomm incorpo-
rated.

Contents

1 Introduction to Computer Architecture 13

1.1 What is a Computer? . 14

1.2 Structure of a Typical Desktop Computer . 16

1.3 Computers are Dumb Machines . 17

1.4 The Language of Instructions . 18

1.5 Instruction Set Design . 20

1.5.1 Complete - The ISA should be able to Implement all User Programs . . . 20

1.5.2 Concise – Limited Size of the Instruction Set 20

1.5.3 Generic – Instructions should Capture the Common Case 20

1.5.4 Simple – Instructions should be Simple 21

1.6 How to Ensure that an ISA is Complete? . 22

1.6.1 Towards a Universal ISA* . 22

1.6.2 Turing Machine* . 23

1.6.3 Universal Turing Machine* . 27

1.6.4 A Modified Universal Turing Machine* . 28

1.6.5 Single Instruction ISA* . 30

1.6.6 Multiple Instruction ISA* . 31

1.6.7 Summary of Theoretical Results . 32

1.7 Design of Practical Machines . 34

1.7.1 Harvard Architecture . 34

1.7.2 Von Neumann Architecture . 34

1.7.3 Towards a Modern Machine with Registers and Stacks 36

1.8 The Road Ahead . 38

1.8.1 Representing Information . 39

1.8.2 Processing Information . 40

1.8.3 Processing More Information . 41

1.9 Summary and Further Reading . 41

1.9.1 Summary . 41

1.9.2 Further Reading . 42

I Architecture: Software Interface 45

2 The Language of Bits 47

2.1 Logical Operations . 48

2.1.1 Basic Operators . 49

1

© Smruti R. Sarangi 2

2.1.2 Derived Operators . 50

2.1.3 Boolean Algebra . 50

2.1.4 De Morgan’s Laws . 52

2.1.5 Logic Gates . 52

2.1.6 Implementing Boolean Functions . 53

2.1.7 The Road Ahead . 56

2.2 Positive Integers . 57

2.2.1 Ancient Number Systems . 57

2.2.2 Binary Number System . 59

2.2.3 Adding Binary Numbers . 61

2.2.4 Sizes of Integers . 63

2.3 Negative Integers . 65

2.3.1 Sign-Magnitude based Representation . 65

2.3.2 The 1’s Complement Approach . 65

2.3.3 Bias-based Approach . 66

2.3.4 The 2’s Complement Method . 67

2.4 Floating Point Numbers . 74

2.4.1 Fixed Point Numbers . 74

2.4.2 Generic Form of Floating Point Numbers 74

2.4.3 IEEE 754 Format for Representing Floating Point Numbers 77

2.4.4 Denormal Numbers . 79

2.4.5 Double Precision Numbers . 80

2.4.6 Floating Point Mathematics . 81

2.5 Strings . 82

2.5.1 ASCII Format . 82

2.5.2 UTF-8 . 82

2.5.3 UTF-16 and UTF-32 . 82

2.6 Summary and Further Reading . 83

2.6.1 Summary . 83

2.6.2 Further Reading . 85

3 Assembly Language 91

3.1 Why Assembly Language . 91

3.1.1 Software Developer’s Perspective . 91

3.1.2 Hardware Designer’s Perspective . 95

3.2 The Basics of Assembly Language . 96

3.2.1 Machine Model . 96

3.2.2 View of Memory . 97

3.2.3 Assembly Language Syntax . 99

3.2.4 Types of Instructions . 103

3.2.5 Types of Operands . 104

3.3 SimpleRisc . 107

3.3.1 Different Instruction Sets . 107

3.3.2 Model of the SimpleRisc Machine . 108

3.3.3 Register Transfer Instruction – mov . 108

3 © Smruti R. Sarangi

3.3.4 Arithmetic Instructions . 108

3.3.5 Logical Instructions . 110

3.3.6 Shift Instructions – lsl, lsr, asr . 110

3.3.7 Data Transfer Instructions: ld and st . 111

3.3.8 Unconditional Branch Instructions . 111

3.3.9 Conditional Branch Instructions . 112

3.3.10 Functions . 114

3.3.11 Function Call/Return Instructions . 121

3.3.12 The nop Instruction . 123

3.3.13 Modifiers . 124

3.3.14 Encoding the SimpleRisc Instruction Set 125

3.4 Summary and Further Reading . 133

3.4.1 Summary . 133

3.4.2 Further Reading . 135

4 ARM® Assembly Language 139

4.1 The ARM® Machine Model . 139

4.2 Basic Assembly Instructions . 140

4.2.1 Simple Data Processing Instructions . 140

4.2.2 Advanced Data-Processing Instructions 143

4.2.3 Compare Instructions . 146

4.2.4 Instructions that Set CPSR Flags – The ‘S’ Suffix 147

4.2.5 Data Processing Instructions that use CPSR Flags 147

4.2.6 Simple Branch Instructions . 148

4.2.7 Branch and Link Instruction . 150

4.2.8 Conditional Instructions . 152

4.2.9 Load-Store Instructions . 155

4.3 Advanced Features . 157

4.3.1 Arrays . 158

4.3.2 Functions . 160

4.4 Encoding the Instruction Set . 163

4.4.1 Data Processing Instructions . 163

4.4.2 Load-Store Instructions . 167

4.4.3 Branch Instructions . 168

4.5 Summary and Further Reading . 169

4.5.1 Summary . 169

4.5.2 Further Reading . 170

5 x86 Assembly Language 175

5.1 Overview of the x86 Family of Assembly Languages 175

5.1.1 Brief History . 175

5.1.2 Main Features of the x86 ISA . 176

5.2 x86 Machine Model . 177

5.2.1 Integer Registers . 177

5.2.2 Floating Point Registers . 179

© Smruti R. Sarangi 4

5.2.3 View of Memory . 179

5.2.4 Addressing Modes . 182

5.2.5 x86 Assembly Language . 184

5.3 Integer Instructions . 185

5.3.1 Data Transfer Instructions . 185

5.3.2 ALU Instructions . 189

5.3.3 Branch/ Function Call Instructions . 195

5.3.4 Advanced Memory Instructions . 203

5.4 Floating Point Instructions . 207

5.4.1 Data Transfer Instructions . 208

5.4.2 Arithmetic Instructions . 210

5.4.3 Instructions for Special Functions . 211

5.4.4 Compare Instruction . 212

5.4.5 Stack Cleanup Instructions . 214

5.5 Encoding the x86 ISA . 214

5.5.1 High Level View of x86 Instruction Encoding 215

5.6 Summary and Further Reading . 218

5.6.1 Summary . 218

5.6.2 Further Reading . 219

6 RISC-V Assembly Language 225

6.1 RISC-V Machine Model . 226

6.1.1 RISC-V Base ISAs and Extensions . 226

6.1.2 View of Registers . 228

6.2 Integer Instructions . 229

6.2.1 Moving Values to Registers . 229

6.2.2 Add and Subtract Instructions . 231

6.2.3 Multiplication and Division Instructions 232

6.2.4 Logical and Shift Instructions . 234

6.3 Control Transfer Instructions . 235

6.3.1 Conditional Branches . 235

6.3.2 Unconditional Branches . 239

6.3.3 Load and Store Instructions . 241

6.4 Floating Point Instructions . 245

6.4.1 View of Registers . 245

6.4.2 Load and Store Instructions . 247

6.4.3 Floating Point Arithmetic Instructions . 248

6.4.4 Floating Point Conversion Instructions . 249

6.4.5 Floating Point Comparison Instructions 250

6.5 Instruction Encoding . 251

6.5.1 Arithmetic and Data Transfer Instructions 251

6.5.2 Control Flow Instructions . 252

6.5.3 Floating Point Instructions . 254

6.6 Summary and Further Reading . 255

6.6.1 Summary . 255

5 © Smruti R. Sarangi

6.6.2 Further Reading . 257

II Organisation: Processor Design 261

7 Logic Gates, Registers, and Memories 263

7.1 Silicon based Transistors . 264

7.1.1 Doping . 265

7.1.2 P-N Junction . 266

7.1.3 NMOS Transistor . 267

7.1.4 PMOS Transistor . 268

7.1.5 A Basic CMOS based Inverter . 268

7.1.6 NAND and NOR Gates . 269

7.2 Combinational Logic . 271

7.2.1 XOR Gate . 271

7.2.2 Decoder . 271

7.2.3 Multiplexer . 272

7.2.4 Demultiplexer . 274

7.2.5 Encoder . 274

7.2.6 Priority Encoder . 276

7.3 Sequential Logic . 277

7.3.1 SR Latch . 277

7.3.2 The Clock . 279

7.3.3 Clocked SR Latch . 280

7.3.4 Edge Sensitive SR Flip-flop . 281

7.3.5 JK Flip-flop . 282

7.3.6 D Flip-flop . 283

7.3.7 Master-slave D Flip-flop . 283

7.3.8 Metastability . 284

7.3.9 Registers . 285

7.4 Memories . 286

7.4.1 Static RAM (SRAM) . 286

7.4.2 Content Addressable Memory (CAM) . 289

7.4.3 Dynamic RAM (DRAM) . 291

7.4.4 Read Only Memory (ROM) . 293

7.4.5 Programmable Logic Arrays . 295

7.5 Summary and Further Reading . 299

7.5.1 Summary . 299

7.5.2 Further Reading . 300

8 Computer Arithmetic 305

8.1 Addition . 305

8.1.1 Addition of Two 1-bit Numbers . 305

8.1.2 Addition of Three 1-bit Numbers . 306

8.1.3 Ripple Carry Adder . 309

© Smruti R. Sarangi 6

8.1.4 Carry Select Adder . 313

8.1.5 Carry Lookahead Adder . 314

8.2 Multiplication . 319

8.2.1 Overview . 319

8.2.2 Iterative Multiplier . 320

8.2.3 Booth Multiplier . 324

8.2.4 An O(log(n)2) Time Algorithm . 330

8.2.5 Wallace Tree Multiplier . 331

8.3 Division . 333

8.3.1 Overview . 333

8.3.2 Restoring Division . 334

8.3.3 Non-Restoring Division . 338

8.4 Floating Point Addition and Subtraction . 341

8.4.1 Simple Addition with Same Signs . 342

8.4.2 Rounding . 344

8.4.3 Implementing Rounding . 345

8.4.4 Addition of Numbers with Opposite Signs 346

8.4.5 Generic Algorithm for Adding Floating Point Numbers 347

8.5 Multiplication of Floating Point Numbers . 347

8.6 Division of Floating Point Numbers . 349

8.6.1 Simple Division . 349

8.6.2 Goldschmidt Division . 349

8.6.3 Division Using the Newton-Raphson Method 350

8.7 Summary and Further Reading . 353

8.7.1 Summary . 353

8.7.2 Further Reading . 354

9 Processor Design 359

9.1 Design of a Basic Processor . 359

9.1.1 Overview . 359

9.2 Units in a Processor . 361

9.2.1 Instruction Fetch – Fetch Unit . 361

9.2.2 Data Path and Control Path . 363

9.2.3 Operand Fetch Unit . 364

9.2.4 Execute Unit . 369

9.2.5 Memory Access Unit . 372

9.2.6 Register Writeback Unit . 373

9.2.7 The Data Path . 375

9.3 The Control Unit . 376

9.4 Microprogram-Based Processor . 379

9.5 Microprogrammed Data Path . 381

9.5.1 Fetch Unit . 382

9.5.2 Decode Unit . 382

9.5.3 Register File . 383

9.5.4 ALU . 384

7 © Smruti R. Sarangi

9.5.5 Memory Unit . 385

9.5.6 Overview of the Data Path . 385

9.6 Microassembly Language . 386

9.6.1 Machine Model . 386

9.6.2 Microinstructions . 386

9.6.3 Implementing Instructions in the Microassembly Language 390

9.6.4 3-Address Format ALU Instructions . 391

9.6.5 2-Address Format ALU Instructions . 393

9.6.6 The nop Instruction . 395

9.6.7 ld and st instructions . 395

9.6.8 Branch Instructions . 396

9.7 Shared Bus and Control Signals . 401

9.7.1 Control Signals . 402

9.7.2 Functional Unit Arguments . 402

9.8 The Microcontrol Unit . 403

9.8.1 Vertical Microprogramming . 403

9.8.2 Horizontal Microprogramming . 405

9.8.3 Tradeoffs between Horizontal and Vertical Microprogramming 406

9.9 Summary and Further Reading . 407

9.9.1 Summary . 407

9.9.2 Further Reading . 408

10 Principles of Pipelining 411

10.1 A Pipelined Processor . 411

10.1.1 The Notion of Pipelining . 411

10.1.2 Overview of Pipelining . 412

10.1.3 Performance Benefits . 413

10.2 Design of a Simple Pipeline . 414

10.2.1 Splitting the Data Path . 414

10.2.2 Timing . 415

10.2.3 The Instruction Packet . 416

10.3 Pipeline Stages . 417

10.3.1 IF Stage . 417

10.3.2 OF Stage . 417

10.3.3 EX Stage . 418

10.3.4 MA Stage . 419

10.3.5 RW Stage . 419

10.3.6 Putting it All Together . 420

10.4 Pipeline Hazards . 420

10.4.1 The Pipeline Diagram . 420

10.4.2 Data Hazards . 423

10.4.3 Control Hazards . 425

10.4.4 Structural Hazards . 427

10.5 Solutions in Software . 428

10.5.1 RAW Hazards . 428

© Smruti R. Sarangi 8

10.5.2 Control Hazards . 429

10.6 Pipeline with Interlocks . 431

10.6.1 A Conceptual Look at a Pipeline with Interlocks 432

10.6.2 Ensuring the Data-Lock Condition . 435

10.6.3 Ensuring the Branch-Lock condition . 438

10.7 Pipeline with Forwarding . 438

10.7.1 Basic Concepts . 438

10.7.2 Forwarding Paths in a Pipeline . 441

10.7.3 Data Hazards with Forwarding . 444

10.7.4 Implementation of a Pipeline with Forwarding 445

10.7.5 Forwarding Conditions . 450

10.8 Support for Interrupts/ Exceptions* . 455

10.8.1 Interrupts . 455

10.8.2 Exceptions . 456

10.8.3 Precise Exceptions . 456

10.8.4 Saving and Restoring Program State . 459

10.8.5 SimpleRisc Assembly Code of an Interrupt Handler 463

10.8.6 Processor with Support for Exceptions . 463

10.9 Performance Metrics . 463

10.9.1 The Performance Equation . 463

10.9.2 Performance of an Ideal Pipelined Processor 467

10.9.3 Performance of a Non-Ideal Pipeline . 470

10.9.4 Performance of a Suite of Programs . 473

10.9.5 Inter-Relationship between Performance, the Compiler, Architecture, and
Technology . 474

10.10Power and Temperature Issues . 477

10.10.1Overview . 477

10.10.2Dynamic Power . 479

10.10.3Leakage Power . 481

10.10.4Modeling Temperature* . 482

10.10.5The ED2 Metric . 483

10.11Advanced Techniques* . 485

10.11.1Branch Prediction . 485

10.11.2Multiple Issue In-Order Pipeline . 489

10.11.3EPIC and VLIW Processors . 491

10.11.4Out-of-Order Pipelines . 492

10.12Summary and Further Reading . 495

10.12.1Summary . 495

10.12.2Further Reading . 497

III Organisation: System Design 503

11 The Memory System 505

11.1 Overview . 506

9 © Smruti R. Sarangi

11.1.1 Need for a Fast Memory System . 506

11.1.2 Memory Access Patterns . 507

11.1.3 Temporal and Spatial Locality of Instruction Accesses 509

11.1.4 Characterising Temporal Locality . 509

11.1.5 Characterising Spatial Locality . 511

11.1.6 Utilising Spatial and Temporal Locality 512

11.1.7 Exploiting Temporal Locality – Hierarchical Memory System 512

11.1.8 Exploiting Spatial Locality – Cache Blocks 516

11.2 Caches . 517

11.2.1 Overview of a Basic Cache . 517

11.2.2 Cache Lookup and Cache Design . 518

11.2.3 Data read and data write Operations . 526

11.2.4 The insert Operation . 527

11.2.5 The replace Operation . 527

11.2.6 The evict Operation . 530

11.2.7 Putting all the Pieces Together . 530

11.3 The Memory System . 532

11.3.1 Mathematical Model of the Memory System 533

11.3.2 Cache Misses . 535

11.3.3 Reduction of Hit Time and Miss Penalty 537

11.3.4 Summary of Memory System Optimisation Techniques 538

11.4 Virtual Memory . 538

11.4.1 Process – A Running Instance of a Program 539

11.4.2 The “Overlap” and “Size” Problems . 546

11.4.3 Implementation of Virtual Memory with Paging 546

11.4.4 Swap Space . 552

11.4.5 Memory Management Unit (MMU) . 553

11.4.6 Advanced Features of the Paging System 555

11.5 Summary and Further Reading . 556

11.5.1 Summary . 556

11.5.2 Further Reading . 558

12 Multiprocessor Systems 565

12.1 Background . 567

12.1.1 Moore’s Law . 568

12.1.2 Implications of the Moore’s Law . 569

12.2 Software for Multiprocessor Systems . 570

12.2.1 Strong and Loosely Coupled Multiprocessing 570

12.2.2 Shared Memory vs Message Passing . 571

12.2.3 Amdahl’s Law . 576

12.3 Design Space of Multiprocessors . 578

12.4 MIMD Multiprocessors . 579

12.4.1 Logical Point of View . 579

12.4.2 Coherence . 581

12.4.3 Memory Consistency . 583

© Smruti R. Sarangi 10

12.4.4 Physical View of Memory . 593

12.4.5 Shared Caches . 596

12.4.6 Coherent Private Caches . 596

12.4.7 Implementing a Memory Consistency Model* 603

12.4.8 Multithreaded Processors . 608

12.5 SIMD Multiprocessors . 612

12.5.1 SIMD – Vector Processors . 613

12.5.2 Software Interface . 614

12.5.3 A Practical Example using SSE Instructions 616

12.5.4 Predicated Instructions . 618

12.5.5 Design of a Vector Processor . 620

12.6 Interconnection Networks . 620

12.6.1 Overview . 620

12.6.2 Bisection Bandwidth and Network Diameter 622

12.6.3 Network Topologies . 623

12.7 Summary and Further Reading . 630

12.7.1 Summary . 630

12.7.2 Further Reading . 633

13 I/O and Storage Devices 641

13.1 I/O System – Overview . 642

13.1.1 Overview . 642

13.1.2 Requirements of the I/O System . 645

13.1.3 Design of the I/O System . 646

13.1.4 Layers in the I/O System . 649

13.2 Physical Layer – Transmission Sublayer . 650

13.2.1 Single Ended Signalling . 652

13.2.2 Low Voltage Differential Signalling (LVDS) 653

13.2.3 Transmission of Multiple Bits . 654

13.2.4 Return to Zero (RZ) Protocols . 655

13.2.5 Manchester Encoding . 656

13.2.6 Non Return to Zero (NRZ) Protocol . 657

13.2.7 Non Return to Zero (NRZI) Inverted Protocol 658

13.3 Physical Layer – Synchronisation Sublayer . 659

13.3.1 Synchronous Buses . 659

13.3.2 Source Synchronous Bus* . 662

13.3.3 Asynchronous Buses . 663

13.4 Data Link Layer . 667

13.4.1 Framing and Buffering . 667

13.4.2 Error Detection and Correction . 668

13.4.3 Arbitration . 674

13.4.4 Transaction-Oriented Buses . 677

13.4.5 Split Transaction Buses . 679

13.5 Network Layer . 680

13.5.1 I/O Port Addressing . 680

11 © Smruti R. Sarangi

13.5.2 Memory Mapped Addressing . 683

13.6 Protocol Layer . 684

13.6.1 Polling . 685

13.6.2 Interrupts . 686

13.6.3 DMA . 687

13.7 Case Studies – I/O Protocols . 688

13.7.1 PCI Express® . 689

13.7.2 SATA . 691

13.7.3 SCSI and SAS . 691

13.7.4 USB . 694

13.7.5 FireWire Protocol . 697

13.8 Storage . 699

13.8.1 Hard Disks . 701

13.8.2 RAID Arrays . 707

13.8.3 Optical Disks – CD, DVD, Blu-ray . 711

13.8.4 Flash Memory . 716

13.9 Summary and Further Reading . 721

13.9.1 Summary . 721

13.9.2 Further Reading . 724

IV Appendix 729

A Case Studies of Real Processors 731

A.1 ARM® Processors . 731

A.1.1 ARM® Cortex® -M3 . 732

A.1.2 ARM® Cortex® -A8 . 734

A.1.3 ARM® Cortex® -A15 . 736

A.2 AMD® Processors . 739

A.2.1 AMD Bobcat . 739

A.2.2 AMD Bulldozer . 741

A.3 Intel® Processors . 743

A.3.1 Intel® Atom™ . 744

A.3.2 Intel Sandy Bridge . 746

B Graphics Processors 751

B.1 Overview . 751

B.1.1 Graphics Applications . 752

B.1.2 Graphics Pipeline . 753

B.1.3 Fusion of High Performance Computing and Graphics Computing 754

B.2 NVIDIA Tesla Architecture . 754

B.2.1 Work Distribution . 755

B.2.2 GPU Compute Engines . 756

B.2.3 Interconnection Network, DRAM Modules, L2 Caches, and ROPs 756

B.3 Streaming Multiprocessors (SMs) . 757

© Smruti R. Sarangi 12

B.4 Computation on a GPU . 758
B.5 CUDA Programs . 760

1
Introduction to Computer Architecture

Welcome to the exciting world of computer architecture. Computer architecture is the study
of computers. We shall study the basic design principles of computers in this book including
the basic technologies, algorithms, design methodologies and future trends.

The field of computer architecture is a very fast moving field, and every couple of years
there are a plethora of new inventions. Fifty years ago, the existence of computers was almost
unknown to the common man. Computers were visible only in large financial institutions or in
top universities. However, today billions of people all over the world have access to some form
of computing device. They use it actively, and have found a place for it in their daily activities.
Such kind of an epic transformation in the use, and ubiquity of computers has made the field
of computer architecture extremely interesting.

In this chapter, we shall present an overview of computer architecture from an academic
standpoint, and explain the major principles behind today’s computers. We shall observe that
there are two perspectives in computer architecture. We can look at computer architecture
from the point of view of software applications. This point of view is sometimes referred to as
architecture in literature. It is very important for students of computer architecture to study
computer architecture from the viewpoint of a software designer because they need to know
about the expectations of software writers from hardware. Secondly, it is also important for
software writers to know about computer architecture because they can tailor their software
appropriately to make it more efficient. In the case of system software such as operating systems
and device drivers, it is absolutely essential to know the details of the architecture because the
design of such kind of software is very strongly interlinked with low level hardware details.

The other perspective is the point of view of hardware designers. Given the software inter-
face, they need to design hardware that is compatible with it and also implement algorithms
that make the system efficient in terms of performance and power. This perspective is also
referred to as organisation in literature.

13

© Smruti R. Sarangi 14

Definition 1

Architecture The view of a computer presented to software designers.

Organisation The actual implementation of a computer in hardware.

Computer architecture is a beautiful amalgam of software concepts and hardware concepts.
We design hardware to make software run efficiently. Concomitantly, we also design software
keeping in mind the interface and constraints presented by hardware. Both the perspectives
run hand in hand. Let us start out by looking at the generic definition of a computer.

1.1 What is a Computer?

Let us now answer the following questions.

Question 1
What is a computer?
What it can do, and what it cannot do?
How do we make it do intelligent things?

Let us start out with some basic definitions. The first question that we need to answer is –
What is a computer? Well to answer this question, we just need to look all around us. We are
surrounded by computers. Nowadays, computers are embedded in almost any kind of device
such as mobile phones, tablets, mp3 players, televisions, dvd players, and obviously desktops
and laptops. What is common between all of these devices? Well, each one of them has a
computer that performs a specific task. For example, the computer in a mp3 player can play a
song, and the computer in a dvd player can play a movie. It is absolutely not necessary that the
mp3 player and dvd player contain different types of computers. In fact, the odds are high that
both the devices contain the same type of computer. However, each computer is programmed
differently, and processes different kinds of information. An mp3 player processes music files,
and a dvd player processes video files. One can play a song, while the other can play a video.

Using these insights, let us formally define a computer in Definition 2.

Definition 2
A computer is a general purpose device that can be programmed to process information, and
yield meaningful results.

15 © Smruti R. Sarangi

Computer

Program Information
 store

Results

Figure 1.1: A basic computer

Note that there are three important parts to the definition as shown in Figure 1.1 – the
computer, information store, and the program. The computer takes as an input a program,
and in response performs a set of operations on the information store. At the end it yields
meaningful results. A typical program contains a set of instructions that tell the computer
regarding the operations that need to be performed on the information store. The information
store typically contains numbers and pieces of text that the program can use. Let us consider
an example.

Example 1
Here is a snippet of a simple C program.

1: a = 4;

2: b = 6;

3: c = a + b;

4: print c

A computer will produce the output - 10. This C program contains four statements.
Here, each statement can conceptually be treated as an instruction. Each statement instructs
the computer to do something. Statements 1 and 2 instruct the computer to assign the
variables a and b, the values 4 and 6 respectively. Statement 3 instructs the computer to
add a and b, and assign the result to variable c. Finally, statement 4 instructs the computer
to print the value of c (output of the program).

Given the fact that we have defined a computer as a sophisticated device that follows the
instructions in a program to produce an output, let us see how it can be built. Modern day
computers are made of silicon based transistors and copper wires to connect them. How-
ever, it is absolutely not necessary that computers need to be built out of silicon and copper.

© Smruti R. Sarangi 16

Figure 1.2:

Researchers are now looking at building computers with electrons (quantum computers), pho-
tons(optical computers), and even DNA. If we think about it, our own brains are extremely
powerful computers themselves. They are always in the process of converting thoughts(program)
into action(output).

1.2 Structure of a Typical Desktop Computer

Let us now open the lid of a desktop computer, and see what is inside (shown in Figure 1.2).
There are three main parts of a typical desktop computer – CPU (Central Processing Unit),
Main Memory, and Hard Disk. The CPU is also referred to as the processor or simply machine
in common parlance. We will use the terms interchangeably in this book. The CPU is the
main part of the computer that takes a program as input, and executes it. It is the brain of
the computer. The main memory is used to store data that a program might need during its
execution (information store). For example, let us say that we want to recognise all the faces in
an image. Then the image will be stored in main memory. There is some limited storage on the
processor itself. However, we shall discuss this aspect later. When we turn off the power, the
processor and main memory lose all their data. However, the hard disk represents permanent
storage. We do not expect to lose our data when we shut down the system. This is because all
our programs, data, photos, videos, and documents are safely backed up in the hard disk.

Figure 1.3 shows a simplistic block diagram of the three components. Along with these main
components, there are a host of peripheral components that are connected to the computer. For
example, the keyboard and mouse are connected to a computer. They take inputs from the user
and communicate them to programs running on the processor. Similarly, to show the output

17 © Smruti R. Sarangi

Computer

Memory Hard disk

Figure 1.3: Block diagram of a simple computer

of a program, the processor typically sends the output data to a monitor that can graphically
display the result. It is also possible to print the result using a printer. Lastly the computer
can be connected to other computers through the network. A revised block diagram with all
the peripherals is shown in Figure 1.4.

Computer

Memory Hard disk

Keyboard

Mouse

Monitor

Printer

Figure 1.4: Block diagram of a simple computer with peripherals

In this book, we will mainly study the processor. The processor has the central responsibility
of executing programs, communicating with the main memory, hard disk, and peripherals. It is
the only active unit in our entire system. The others are passive and only respond to requests.
They do not have any computational capability of their own.

1.3 Computers are Dumb Machines

Irrespective of the underlying technology, a fundamental concept that we need to understand
is that a computer is fundamentally a dumb machine. Unlike our brains, it is not endowed with
abstract thought, reason, and conscience. At least at the moment, computers cannot take very

© Smruti R. Sarangi 18

sophisticated decisions on their own. All they can do is execute a program. Nonetheless, the
reason computers are so powerful is because they are extremely good at executing programs.
They can execute billions of basic instructions per second. This makes them dumb yet very
fast. A comparison of the computer with the human brain is shown in Table 1.1.

Feature Computer Our Brilliant Brain

Intelligence Dumb Intelligent

Speed of basic calculations Ultra-fast Slow

Can get tired Never After some time

Can get bored Never Almost always

Table 1.1: Computer vs the brain

If we combine the processing power of computers, with intelligent programs written by
the human brain, we have the exquisite variety of software available today. Everything from
operating systems to word processors to computer games is written this way.

The basic question that we need to answer is :

Question 2
How, do we make a dumb machine do intelligent things?

Computers are these tireless machines that can keep on doing calculations very quickly
without ever complaining about the monotonicity of the work. As compared to computers, our
brains are creative, tire easily, and do not like to do the same thing over and over again. To
combine the best of both worlds, our brains need to produce computer programs that specify
the set of tasks that need to be performed in great detail. A computer can then process the
program, and produce the desired output by following each instruction in the program.

Hence, we can conclude that we should use the creative genius of our brains to write pro-
grams. Each program needs to contain a set of basic instructions that a computer can process.
Henceforth, a computer can produce the desired output. An instruction is defined as a basic
command that can be given to a computer.

1.4 The Language of Instructions

We observe that to communicate with a computer, we need to speak its language. This language
consists of a set of basic instructions that the computer can understand. The computer is not
smart enough to process instructions such as, “calculate the distance between New Delhi and
the North Pole”. However, it can do simple things like adding two numbers. This holds for
people as well. For example, if a person understands only Spanish, then there is no point
speaking to her in Russian. It is the responsibility of the person who desires to communicate to
arrange for a translator. Likewise, it is necessary to convert high level thoughts and concepts
to basic instructions that are machine understandable.

19 © Smruti R. Sarangi

Programmers typically write programs in a high level language such as C or Java™. These
languages contain complex constructs such as structures, unions, switch-case statements, classes
and inheritance. These concepts are too complicated for a computer to handle. Hence, it is
necessary to pass a C or C++ program through a dedicated program called a compiler that
can convert it into a sequence of basic instructions. A compiler effectively removes the burden
of creating machine (computer) readable code from the programmer. The programmer can
concentrate only on the high level logic. Figure 1.5 shows the flow of actions. The first step
is to write a program in a high level language (C or C++). Subsequently, the second step
involves compiling it. The compiler takes the high level program as input, and produces a
program containing machine instructions. This program is typically called an executable or
binary. Note, that the compiler itself is a program consisting of basic machine instructions.

Program Executable Output
compile execute

Figure 1.5: Write-compile-execute

Let us now come to the semantics of instructions themselves. The same way that any
language has a finite number of words, the number of basic instructions/rudimentary commands
that a processor can support have to be finite. This set of instructions is typically called the
instruction set. Some examples of basic instructions are: add, subtract, multiply, logical or,
and logical not. Note that each instruction needs to work on a set of variables and constants,
and finally save the result in a variable. These variables are not programmer defined variables;
they are internal locations within the computer. We define the term instruction set architecture
as:

Definition 3
The semantics of all the instructions supported by a processor is known as the instruction
set architecture (ISA). This includes the semantics of the instructions themselves, along
with their operands, and interfaces with peripheral devices.

The instruction set architecture is the way that software perceives hardware. We can think
of it as the list of basic functions that the hardware exports to the external world. It is the,
“language of the computer”. For example, Intel and AMD CPUs use the x86 instruction set,
IBM processors use the PowerPC® instruction set, HP processors use the PA-RISC instruction
set, and the ARM processors use the ARM® instruction set (or variants of it such as Thumb-1
and Thumb-2). It is thus not possible to run a binary compiled for an Intel system on an ARM
based system. The instruction sets are not compatible. However, in most cases it is possible
to reuse the C program. To run a C program on a certain architecture, we need to procure a
compiler for that specific architecture, and then appropriately compile the C program.

© Smruti R. Sarangi 20

1.5 Instruction Set Design

Let us now begin the difficult process of designing an instruction set for a processor. We can
think of an instruction set as a legal contract between software and hardware. Both sides
need to implement their side of the contract. The software part needs to ensure that all the
programs that users write can be successfully and efficiently translated to basic instructions.
Likewise, hardware needs to ensure that all the instructions in the instruction set are efficiently
implementable. On both sides we need to make reasonable assumptions. An ISA needs to have
some necessary properties and some desirable properties for efficiency. Let us first look at a
property, which is absolutely necessary.

1.5.1 Complete - The ISA should be able to Implement all User Programs

This is an absolutely necessary requirement. We want an ISA to be able to represent all
programs that users are going to write for it. For example, if we have an ISA with just an ADD
instruction, then we will not be able to subtract two numbers. To implement loops, the ISA
should have some method to re-execute the same piece of code over and over again. Without
this support for and while loops in C programs will not work. Note that for general purpose
processors, we are looking at all possible programs. However, a lot of processors for embedded
devices have limited functionality. For example, a simple processor that does string processing
does not require support for floating point numbers (numbers with a decimal point). We need
to note that different processors are designed to do different things, and hence their ISAs can
be different. However, the bottom line is that any ISA should be complete in the sense that it
should be able to express all the programs in machine code that a user intends to write for it.

Let us now explore the desirable properties of an instruction set.

1.5.2 Concise – Limited Size of the Instruction Set

We should ideally not have a lot of instructions. We shall see in Chapter 9 that it takes a fairly
non-trivial amount of hardware to implement an instruction. Implementing a lot of instructions
will unnecessarily increase the number of transistors in the processor and increase its complexity.
Consequently, most instruction sets have somewhere between 64 to 1000 instructions. For
example, the MIPS instruction set contains 64 instructions, whereas the Intel x86 instruction
set has roughly a 1000 instructions as of 2012. Note that 1000 is considered a fairly large
number for the number of instructions in an ISA.

1.5.3 Generic – Instructions should Capture the Common Case

Most of the common instructions in programs are simple arithmetic instructions such as add,
subtract, multiply, divide. The most common logical instructions are logical and, or, exclusive-
or, and not. Hence, it makes sense to dedicate an instruction to each of these common opera-
tions.

It is not a good idea to have instructions that implement a very rarely used computation.
For example, it might not make sense to implement an instruction that computes sin−1(x). It
is possible to provide dedicated library functions that compute sin−1(x) using existing mathe-
matical techniques such as Taylor series expansion. Since this function is rarely used by most

21 © Smruti R. Sarangi

programs, they will not be adversely affected if this function takes a relatively long time to
execute.

1.5.4 Simple – Instructions should be Simple

Let us assume that we have a lot of programs that add a sequence of numbers. To design a
processor especially tailored towards such programs, we have several options with regards to
the add instruction. We can implement an instruction that adds two numbers, or we can also
implement an instruction that can take a list of operands, and produce the sum of the list.
There is clearly a difference in complexity here, and we cannot say which implementation is
faster. The former approach requires the compiler to generate more instructions; however, each
add operation executes quickly. The latter approach generates a fewer number of instructions;
but, each instruction takes longer to execute. The former type of ISA is called a Reduced
Instruction Set, and the latter ISA type is called a Complex Instruction Set. Let us give two
important definitions here.

Definition 4
A reduced instruction set computer (RISC) implements simple instructions that have a
simple and regular structure. The number of instructions is typically a small number (64
to 128). Examples: ARM, IBM PowerPC, HP PA-RISC

Definition 5
A complex instruction set computer (CISC) implements complex instructions that are highly
irregular, take multiple operands, and implement complex functionalities. Secondly, the
number of instructions is large (typically 500+). Examples: Intel x86, VAX

The RISC vs CISC debate used to be a very contentious issue till the late nineties. However,
since then designers, programmers, and processor vendors have been tilting towards the RISC
design style. The consensus seems to be go for a small number of relatively simple instructions
that have a regular structure and format. It is important to note that this point is still debat-
able as CISC instructions are sometimes preferable for certain types of applications. Modern
processors typically use a hybrid approach where they have simple, as well as some complicated
instructions. However, under the hood CISC instructions are translated into RISC instructions.
Hence, we believe that the scale tilts slightly more towards RISC instructions. We shall thus
consider it a desirable property to have simple instructions.

Important Point 1
An ISA needs to be complete, concise, generic, and simple. It is necessary to be complete,
whereas the rest of the properties are desirable (and sometimes debatable).

© Smruti R. Sarangi 22

Way Point 1
We have currently considered the following concepts.

• Computers are dumb yet ultra-fast machines.

• Instructions are basic rudimentary commands used to communicate with the processor.
A computer can execute billions of instructions per second.

• The compiler transforms a user program written in a high level language such as C to
a program consisting of basic machine instructions.

• The instruction set architecture(ISA) refers to the semantics of all the instructions
supported by a processor.

• The instruction set needs to be complete. It is desirable if it is also concise, generic,
and simple.

Let us subsequently look at the conditions that ensure the completeness of an ISA. We will
then try to create a concise, simple, and generic ISA in Chapter 3.

1.6 How to Ensure that an ISA is Complete?

This is a very interesting, difficult, and theoretically profound question. The problem of finding
if a given ISA is complete for a given set of programs, is a fairly difficult problem, and is beyond
the scope of the book. The general case is far more interesting. We need to answer the question:

Question 3
Given an ISA, can it represent all possible programs?

We will need to take recourse to theoretical computer science to answer this question. Casual
readers can skip Sections 1.6.1 to 1.6.6 without any loss in continuity. They can directly proceed
to Section 1.6.7, where we summarise the main results.

1.6.1 Towards a Universal ISA*

Let us try to answer Question 3. Assume that we are given an ISA that contains the basic
instructions add, and multiply. Can we use this ISA to run all possible programs? The answer
is no, because we cannot subtract two numbers using the basic instructions that we have. If we
add the subtract instruction to our repertoire of instructions, can we compute the square root
of a number? Even if we can, is it guaranteed that we can do all types of computations? To
answer such vexing questions we need to first define a universal machine.

23 © Smruti R. Sarangi

Definition 6
A machine that can execute any program is known as a universal machine.

It is a machine that can execute all programs. We can treat each basic action of this machine
as an instruction. Thus the set of actions of a universal machine is its ISA, and this ISA is
complete. Consequently, when we say that an ISA is complete, it is the same as saying that
we can build a universal machine exclusively based on the given ISA. Hence, we can solve the
problem of completeness of an ISA by solving the problem of designing universal machines.
They are dual problems. It is easier to reason in terms of universal machines. Hence, let us
delve into this problem.

Computer scientists started pondering at the design of universal machines at the beginning
of the 20th century. They wanted to know what is computable, and what is not, and the power
of different classes of machines. Secondly, what is the form of a theoretical machine that can
compute the results of all possible programs? These fundamental results in computer science
form the basis of today’s modern computer architectures.

Alan Turing was the first to propose a universal machine that was extremely simple and
powerful. This machine is aptly named after him, and is known as the Turing machine. This is
merely a theoretical entity, and is typically used as a mathematical reasoning tool. It is possible
to create a hardware implementation of a Turing machine. However, this would be extremely
inefficient, and require a disproportionate amount of resources. Nonetheless, Turing machines
form the basis of today’s computers and modern ISAs are derived from the basic actions of a
Turing machine. Hence, it is very essential for us to study its design. Note that we provide
a very cursory treatment in this book. Interested readers are requested to take a look at the
seminal text on the theory of computation by Hopcroft, Motwani and Ulmann [Hopcroft et al.,
2006].

1.6.2 Turing Machine*

The general structure of a Turing machine is shown in Figure 1.6. A Turing machine contains
an infinite tape that is an array of cells. Each cell can contain a symbol from a finite alphabet.
There is a special symbol $ that works as a special marker. A dedicated tape head points to
a cell in the infinite tape. There is a small piece of storage to save the current state among a
finite set of states. This storage element is called a state register.

The operation of the Turing machine is very simple. In each step, the tape head reads the
symbol in the current cell, its current state from the state register, and looks up a table that
contains the set of actions for each combination of symbol and state. This dedicated table is
called a transition function table or action table. Each entry in this table specifies three things –
whether to move the tape head one step to the left or right, the next state, and the symbol that
should be written in the current cell. Thus, in each step, the tape head can overwrite the value
of the cell, change its state in the state register and move to a new cell. The only constraint
is that the new cell needs to be to the immediate left or right of the current cell. Formally, its
format is (state, symbol) → ({L,R}, new state, new symbol). L stands for left, and R stands
for right.

© Smruti R. Sarangi 24

Infinite tape

State register Tape head

L R

Action table

Figure 1.6: A Turing machine

This seemingly abstract and obscure computing device is actually very powerful. Let us
explain with examples. See Examples 2, 3, and 4. In all the cases, we assume that the input is
demarcated by the special marker symbol $.

Example 2
Design a Turing machine to increment a number by 1.

Tape head

$3 4 6 9$ 7

Answer: Each cell contains a single digit. The number is demarcated at both ends by the
special marker $. Lastly, the tape head points to the unit’s digit.

We first define four states (S0, S1): pre-exit and exit. The computation is over when
the Turing machine reaches the exit state. The states S0 and S1 represent the value of the
carry, 0 or 1, respectively. The state register is initialised to S1 since we are incrementing
the number by 1. In other words, we can assume that the starting value of the carry digit
is equal to 1.

At each step, the tape head reads the current digit, d, and the value of the carry, c, from
the state register. For each combination of d, and c, the action table contains the next state
(new value of carry), and the result digit. The tape head always moves to the left. For

25 © Smruti R. Sarangi

example, if (d, c) = (9, 1), then we are effectively adding (9 + 1). The next state is equal to
S1 (output carry), the Turing machine writes 0 in the current cell, and the tape head moves
to the cell on the left.

The only special case arises when the computation is ending. When the tape head en-
counters the $ symbol, then it looks at the value of the carry. If it is equal to 0, then it
leaves the value untouched and moves to the exit state. If it is equal to 1, then it moves to
the pre-exit state, writes 1 to the cell, and moves to the left. Subsequently, it writes $ to
the cell under the tape head, and then moves to the exit state.

Example 3
Design a Turing machine to find out if a string is of the form aaa . . . abb . . . bb.

Answer: Let us define two states (Sa, Sb), and two special states – exit and error. If the
state becomes equal to exit or error, then the computation stops. The Turing machine can
start scanning the input from right to left as Example 2. It starts in state Sb. The action
table is as follows:

(Sb, b) → (L, Sb, b)

(Sb, a) → (L, Sa, a)

(Sb, $) → (L, error, $)

(Sa, b) → (L, error, b)

(Sa, a) → (L, Sa, a)

(Sa, $) → (L, exit, $)

Example 4
Design a Turing machine to find out if a string of characters is a palindrome. A palindrome
is a word that reads the same forward and backwards. Example: civic, rotator, rotor.
Furthermore, assume that each character is either ‘a’ or ‘b’.

Answer: Let us assume that the Turing machine starts at the rightmost character in the
begin state. Let us consider the case when the symbol under the tape head is a in the begin
state. The machine enters the state La(move left, starting symbol is a) and replaces a with
$. Now it needs to see if the leftmost character is a. Hence, the tape head moves towards
the left until it encounters $. It then enters the Rchecka state. It moves one cell to the
right and checks if the symbol is equal to a. If it is a, then the string might be a palindrome.
Otherwise, it is definitely not a palindrome and the procedure can terminate by entering the
error state. The tape head again rewinds by moving all the way to the right and starts at
the cell, which is to the immediate left of the starting cell in the previous round. The same

© Smruti R. Sarangi 26

algorithm is performed iteratively till either an error is encountered or all the symbols are
replaced with $.

If the starting symbol was b, the procedure would have been exactly the same albeit with
a different set of states – Lb and Rcheckb. The action table is shown below.

(begin, $) → (L, exit, $)

(begin, a) → (L,La, $)

(La, a) → (L,La, a)

(La, b) → (L,La, b)

(La, $) → (R,Rchecka, $)

(Rchecka, a) → (R,Rmove, $)

(Rchecka, b) → (R, error, $)

(Rmove, a) → (R,Rmove, a)

(Rmove, b) → (R,Rmove, b)

(Rmove, $) → (L, begin, $)

(begin, b) → (L,Lb, $)

(Lb, a) → (L,Lb, a)

(Lb, b) → (L,Lb, b)

(Lb, $) → (R,Rcheckb, $)

(Rcheckb, a) → (R, error, $)

(Rcheckb, b) → (R,Rmove, $)

In these examples we have considered three simple problems and designed Turing machines
from them. We can immediately conclude that designing Turing machines for even simple
problems is difficult, and cryptic. The action table can contain a lot of states, and quickly blow
out of size. However, the baseline is that it is possible to solve complex problems with this
simple device. It is in fact possible to solve all kinds of problems such as weather modelling,
financial calculations, and solving differential equations with this machine!

Definition 7
Church-Turing thesis: Any real-world computation can be translated into an equivalent com-
putation involving a Turing machine. (source: Wolfram Mathworld)

This observation is captured by the Church-Turing thesis, which basically says that all
functions that are computable by any physical computing device are computable by a Turing
machine. In lay man’s terms, any program that can be computed by deterministic algorithms
on any computer known to man, is also computable by a Turing machine.

This thesis has held its ground for the last half century. Researchers have up till now not
been able to find a machine that is more powerful than a Turing machine. This means that
there is no program that can be computed by another machine, and not by a Turing machine.
There are some programs that might take forever to compute on a Turing machine. However,
they would also take infinite time on all other computing machines. We can extend the Turing
machine in all possible ways. We can consider multiple tapes, multiple tape heads, or multiple
tracks in each tape. It can be shown that each of these machines is as powerful as a simple
Turing machine.

27 © Smruti R. Sarangi

1.6.3 Universal Turing Machine*

The Turing machine described in the Section 1.6.2 is not a universal machine. This is because
it contains an action table, which is specific to the function being computed by the machine.
A true universal machine will have the same action table, symbols, and also the same set of
states for every function. We can make a universal Turing machine, if we can design a Turing
machine that can simulate another Turing machine. This Turing machine will be generic and
will not be specific to the function that is being computed.

Let the Turing machine that is being simulated be called M, and the universal Turing
machine be called U . Let us first create a generic format for the action table of M, and save
it in a designated location on the tape of U . This simulated action table contains a list of
actions, and each action requires the five parameters – old state, old symbol, direction(left or
right), new state, new symbol. We can use a common set of basic symbols that can be the 10
decimal digits (0-9). If a function requires more symbols then we can consider one symbol to be
contained in a set of contiguous cells demarcated by special delimiters. Let such a symbol be
called a simulated symbol. Likewise, the state in the simulated action table can also be encoded
as a decimal number. For the direction, we can use 0 for left, and 1 for right. Thus a single
action table entry might look something like (@1334@34@0@1335@10@). Here the ‘@’ symbol
is the delimiter. This entry is saying that we are moving from state 1334 to 1335 if symbol
34 is encountered. We move left (0), and write a value of 10. Thus, we have found a way of
encoding the action table, set of symbols, and states of a Turing machine designed to compute
a certain function.

Similarly, we can designate an area of the tape to contain the state register ofM. We call
this the simulated state register. Let the tape ofM be given a dedicated space in the tape of
U , and let us call this space the work area.

The organisation is shown in Figure 1.7.

Generic state register Tape head

L R

Generic action table

Simulated action table
Simulated state register

Work area

Figure 1.7: Layout of a universal Turing machine

The tape is thus divided into three parts. The first part contains the simulated action table,
the second part contains the simulated state register, and the last part contains the work area

© Smruti R. Sarangi 28

that contains a set of simulated symbols.
The universal Turing machine(U) has a very simple action table and set of states. The idea

is to find the right entry in the simulated action table that matches the value in the simulated
state register and simulated symbol under the tape head. Then the universal Turing machine
needs to carry out the corresponding action by moving to a new simulated state, and overwriting
the simulated symbol in the work area if required.

The devil is in the details. For doing every basic action, U needs to do tens of tape head
movements. The details are given in Hopcroft, Motwani, and Ulmann [Hopcroft et al., 2006].
However, the conclusion is that we can construct a universal Turing machine.

Important Point 2
It is possible to construct a universal Turing machine that can simulate any other Turing
machine.

Turing Completeness

Since the 1950s, researchers have devised many more types of hypothetical machines with their
own sets of states and rules. Each of these machines have been proven to be at most as powerful
as the Turing machine. There is a generic name for all machines and computing systems that are
as expressive and powerful as a Turing machine. Such systems are said to be Turing complete.
Any universal machine and ISA is thus Turing complete.

Definition 8
Any computing system that is equivalent to a Turing machine is said to be Turing complete.

We thus need to prove that an ISA is complete or universal if it is Turing complete.

1.6.4 A Modified Universal Turing Machine*

Let us now consider a variant of a universal Turing machine (see Figure 1.8) that is more
amenable to practical implementations. Let it have the following features. Note that such a
machine has been proven to be Turing complete.

1. The tape is semi-infinite (extends to infinity in only one direction).

2. The simulated state is a pointer to an entry in the simulated action table.

3. There is one unique entry in the simulated action table for each state. While looking up
the simulated action table, we do not care about the symbol under the tape head.

4. An action directs the tape head to visit a set of locations in the work area, and based
on their values computes a new value using a simple arithmetical function. It writes this
new value into a new location in the work area.

29 © Smruti R. Sarangi

Generic state register Tape head

L R

Generic action table

Simulated action table
Simulated state register

Work area

state pointing to
action table entry

action

1.read

2.compute

3.write

Figure 1.8: A modified universal Turing machine

5. The default next state is the succeeding state in the action table.

6. An action can also arbitrarily change the state if a symbol at a certain location on the
tape is less than a certain value. Changing the state means that the simulated tape head
will start fetching actions from a new area in the simulated action table.

This Turing machine suggests a machine organisation of the following form. There is a large
array of instructions (action table). This array of instructions is commonly referred to as the
program. There is a state register that maintains a pointer to the current instruction in the
array. We can refer to this register as the program counter. It is possible to change the program
counter to point to a new instruction. There is a large work area, where symbols can be stored,
retrieved and modified. This work area is also known as the data area. The instruction table
(program) and the work area (data) were saved on the tape in our modified Turing machine.
In a practical machine, we call this infinite tape as the memory. The memory is a large array
of memory cells, where a memory cell contains a basic symbol. A part of the memory contains
the program, and another part of it contains data.

Definition 9
The memory in our conceptual machine is a semi-infinite array of symbols. A part of it
contains the program consisting of basic instructions, and the rest of it contains data. Data
refers to variables and constants that are used by the program.

Furthermore, each instruction can read a set of locations in the memory, compute a small
arithmetic function on them, and write the results back to the memory. It can also jump to any
other instruction depending on values in the memory. There is a dedicated unit to compute

© Smruti R. Sarangi 30

these arithmetic functions, write to memory, and jump to other instructions. This is called the
CPU(Central Processing Unit). Figure 1.9 shows a conceptual organisation of this machine.

CPU

 Program
counter (PC)

Program Data

Memory

Control
unit

Arithmetic
unit

Instruction

Figure 1.9: A basic instruction processing machine

Interested readers might want to prove the fact that this machine is equivalent to a Turing
machine. It is not very difficult to do so. We need to note that we have captured all aspects
of a Turing machine: state transition, movement of the tape head, overwriting symbols, and
decisions based on the symbol under the tape head. We shall see in Section 1.7.2 that such a
machine is very similar to the Von Neumann machine. Von Neumann machines form the basis
of today’s computers. Readers can also refer to books on computational complexity.

Important Point 3
Figure 1.9 represents a universal machine that can be practically designed.

1.6.5 Single Instruction ISA*

Let us now try to design an ISA for our modified Turing machine. We shall see that it is
possible to have a complete ISA that contains just a single instruction. Let us consider an
instruction that is compatible with the modified Turing machine and has been proven to be
Turing complete.

sbn a, b, c

sbn stands for subtract and branch if negative. Here, a, and b are memory locations. This
instruction subtracts b from a, saves the results in a, and if a < 0, it jumps to the instruction
at location c in the instruction table. Otherwise, the control transfers to the next instruction.
For example, we can use this instruction to add two numbers saved in locations a and b. Note
that exit is a special location at the end of the program.

31 © Smruti R. Sarangi

1: sbn temp, b, 2

2: sbn a, temp, exit

Here, we assume that the memory location temp already contains the value 0. The first
instruction saves −b in temp. Irrespective of the value of the result it jumps to the next
instruction. Note that the identifier (number :) is a sequence number for the instruction. In
the second instruction we compute a = a + b = a − (−b). Thus, we have successfully added
two numbers. We can now use this basic piece of code to add the numbers from 1 to 10. We
assume that the variable counter is initialised to 9, index is initialised to 10, one is initialised
to 1, and sum is initialised to 0.

1: sbn temp, temp, 2 // temp = 0

2: sbn temp, index, 3 // temp = -1 * index

3: sbn sum, temp, 4 // sum += index

4: sbn index, one, 5 // index -= 1

5: sbn counter, one, exit // loop is finished, exit

6: sbn temp, temp, 7 // temp = 0

7: sbn temp, one, 1 // (0 - 1 < 0), hence goto 1

We observe that this small sequence of operations runs a for loop. The exit condition is in
line 5, and the loop back happens in line 7. In each iteration it computes – sum+ = index.

There are many more similar single instruction ISAs that have been proven to be complete
such as subtract and branch if less than equal to, reverse subtract and skip if borrow, and a
computer that has generic memory move operations. The interested reader can refer to the
book by Gilreath and Laplante [Gilreath and Laplante, 2003].

1.6.6 Multiple Instruction ISA*

Writing a program with just a single instruction is very difficult, and programs tend to be very
long. There is no reason to be stingy with the number of instructions. We can make our life
significantly easier by considering a multitude of instructions. Let us try to break up the basic
sbn instructions into several instructions.

Arithmetic Instructions We can have a set of arithmetic instructions such as add, subtract,
multiply and divide.

Move Instructions We can have move instructions that move values across different memory
locations. They should allow us to also load constant values into memory locations.

Branch Instructions We require branch instructions that change the program counter to
point to new instructions based on the results of computations or values stored in memory.

Keeping these basic tenets in mind, we can design many different types of complete ISAs.
The point to note is that we definitely need three types of instructions – arithmetic (data
processing), move (data transfer), and branch (control).

© Smruti R. Sarangi 32

Important Point 4
In any instruction set, we need at least three types of instructions:

1. We need arithmetic instructions to perform operations such as add, subtract, multiply,
and divide. Most instruction sets also have specialised instructions in this category to
perform logical operations such as logical OR and NOT.

2. We need data transfer instructions that can transfer values between memory locations
and can load constants into memory locations.

3. We need branch instructions that can start executing instructions at different points
in the program based on the values of instruction operands.

1.6.7 Summary of Theoretical Results

Let us summarise the main results that we have obtained from our short discussion on theoretical
computer science.

1. The problem of designing a complete ISA is the same as that of designing a universal
machine. A universal machine can run any program. We can map each instruction in
the ISA to an action in this universal machine. A universal machine is the most powerful
computing machine known to man. If a universal machine cannot compute the result of
a program because it never terminates (infinite loop), then all other computing machines
are also guaranteed to fail for this program.

2. Universal machines have been studied extensively in theoretical computer science. One
such machine is the Turing machine named after the father of computer science – Alan
Turing.

3. The Turing machine is a very abstract computing device, and is not amenable to practical
implementations. A practical implementation will be very slow and consume a lot of
resources. However, machines equivalent to it can be much faster. Any such machine,
ISA, and computing system that is equivalent to a Turing machine is said to be Turing
complete.

4. We defined a modified Turing machine that is Turing complete in Section 1.6.4. It has
the structure shown in Figure 1.10. Its main parts and salient features are as follows.

(a) It contains a dedicated instruction table that contains a list of instructions.

(b) It has a program counter that keeps track of the current instruction that is being
executed. The program counter contains a pointer to an entry in the instruction
table.

(c) It has a semi-infinite array of storage locations that can save symbols belonging to
a finite set. This array is known as the memory.

33 © Smruti R. Sarangi

CPU

 Program
counter (PC)

Program Data

Memory

Control
unit

Arithmetic
unit

Instruction

Figure 1.10: A basic processing machine

(d) The memory contains the instruction table (also referred to as the program), and
contains a data area. The data area saves all the variables and constants that are
required by the program.

(e) Each instruction can compute the result of a simple arithmetic function using values
stored at different memory locations. It can then save the result in another memory
location.

(f) The machine starts with the first instruction in the program, and then by default,
after executing an instruction, the machine fetches the next instruction in the in-
struction table.

(g) It is possible for an instruction to direct the machine to fetch a new instruction from
an arbitrary location in the instruction table based on the value stored in a memory
location.

5. A simple one instruction ISA that is compatible with our modified Turing machine, con-
tains the single instruction sbn (subtract the values of two memory locations, and branch
to a new instruction if the result is negative).

6. We can have many Turing complete ISAs that contain a host of different instructions.
Such ISAs will need to have the following types of instructions.

Arithmetic Instructions Add, subtract, multiply and divide. These instructions can
be used to simulate logical instructions such as OR and AND.

Move Instructions Move values across memory locations, or load constants into mem-
ory.

Branch Instructions Fetch the next instruction from a new location in the instruction
table, if a certain condition on the value of a memory location holds.

© Smruti R. Sarangi 34

1.7 Design of Practical Machines

A broad picture of a practical machine has emerged from our discussion in Section 1.6.7. We
have summarised the basic structure of such a machine in Figure 1.10. Let us call this machine
as the concept machine. Ideas similar to our concept machine were beginning to circulate in
the computer science community after Alan Turing published his research paper proposing the
Turing machine in 1936. Several scientists got inspired by his ideas, and started pursuing efforts
to design practical machines.

1.7.1 Harvard Architecture

One of the earliest efforts in this direction was the Harvard Mark-I. The Harvard architecture
is very similar to our concept machine shown in Figure 1.10. Its block diagram is shown in
Figure 1.11. There are separate structures for maintaining the instruction table and the memory.
The former is also known as instruction memory because we can think of it as a specialised
memory tailored to hold only instructions. The latter holds data values that programs need.
Hence, it is known as the data memory. The engine for processing instructions is divided
into two parts – control and ALU. The job of the control unit is to fetch instructions, process
them, and co-ordinate their execution. ALU stands for arithmetic-logic-unit. It has specialised
circuits that can compute arithmetic expressions or logical expressions (AND/OR/NOT etc.).

CPU

Control

ALU

Instruction
 memory

 Data
memory

I/O devices

Figure 1.11: The Harvard architecture

Note that every computer needs to take inputs from the user/programmer and needs to
finally communicate results back to the programmer. This can be done through a multitude of
methods. Today we use a keyboard and monitor. Early computers used a set of switches and
the final result was printed out on a piece of paper.

1.7.2 Von Neumann Architecture

John von Neumann proposed the Von Neumann architecture for general purpose Turing com-
plete computers. Note that there were several other scientists such as John Mauchly and J.
Presper Eckert who independently developed similar ideas. Eckert and Mauchly designed the

35 © Smruti R. Sarangi

first general purpose Turing complete computer(with one minor limitation) called ENIAC (Elec-
tronic Numerical Integrator and Calculator) based on this architecture in 1946. It was used to
compute artillery firing tables for the US army’s ballistic research laboratory. This computer
was later succeeded by the EDVAC computer in 1949, which was also used by the US army’s
ballistics research laboratory.

The basic Von Neumann architecture, which is the basis of ENIAC and EDVAC is shown
in Figure 1.12. This is pretty much the same as our concept machine. The instruction table is
saved in memory. The processing engine that is akin to our modified Turing machine is called
the CPU (central processing unit). It contains the program counter. Its job is to fetch new
instructions, and execute them. It has dedicated functional units to calculate the results of
arithmetic functions, load and store values in memory locations, and compute the results of
branch instructions. Lastly, like the Harvard architecture, the CPU is connected to the I/O
subsystem.

CPU

Control

ALU

 Memory I/O devices

Figure 1.12: Von Neumann architecture

The path breaking innovation in this machine was that the instruction table was stored in
memory. It was possible to do so by encoding every instruction with the same set of symbols
that are normally stored in memory. For example, if the memory stores decimal values, then
each instruction needs to be encoded into a string of decimal digits. A Von Neumann CPU
needs to decode every instruction. The crux of this idea is that instructions are treated as
regular data(memory values). We shall see in later chapters that this simple idea is actually a
very powerful tool in designing elegant computing systems. This idea is known as the stored
program concept.

Definition 10
Stored-program concept: A program is stored in memory and instructions are treated as
regular memory values.

The stored program concept tremendously simplifies the design of a computer. Since mem-
ory data and instructions are conceptually treated the same way, we can have one unified
processing system and memory system that treats instructions and data the same way. From

© Smruti R. Sarangi 36

the point of view of the CPU, the program counter points to a generic memory location whose
contents will be interpreted as that of an encoded instruction. It is easy to store, modify,
and transmit programs. Programs can also dynamically change their behavior during runtime
by modifying themselves and even other programs. This forms the basis of today’s complex
compilers that convert high level C programs into machine instructions. Furthermore, a lot
of modern systems such as the Java virtual machine dynamically modify their instructions to
achieve efficiency.

Lastly, astute readers would notice that a Von Neumann machine or a Harvard machine do
not have an infinite amount of memory like a Turing machine. Hence, strictly speaking they
are not exactly equivalent to a Turing machine. This is true for all practical machines. They
need to have finite resources. Nevertheless, the scientific community has learnt to live with this
approximation.

1.7.3 Towards a Modern Machine with Registers and Stacks

Many extensions to the basic Von-Neumann machine have been proposed in literature. In fact
this has been a hot field of study for the last half century. We discuss three important variants
of Von Neumann machines that augment the basic model with registers, hardware stacks, and
accumulators. The register based design is by far the most commonly used today. However,
some aspects of stack based machines and accumulators have crept into modern register based
processors also. It would be worthwhile to take a brief look at them before we move on.

Von-Neumann Machine with Registers

The term “register machine” refers to a class of machines that in the most general sense contain
an unbounded number of named storage locations called registers. These registers can be
accessed randomly, and all instructions use register names as their operands. The CPU accesses
the registers, fetches the operands, and then processes them. However, in this section, we look
at a hybrid class of machines that augment a standard Von Neumann machine with registers.
A register is a storage location that can hold a symbol. These are the same set of symbols that
are stored in memory. For example, they can be integers.

Let us now try to motivate the use of registers. The memory is typically a very large
structure. In modern processors, the entire memory can contain billions of storage locations.
Any practical implementation of a memory of this size is fairly slow in practice. There is a
general rule of thumb in hardware, “large is slow, and small is fast.” Consequently, to enable
fast operation, every processor has a small set of registers that can be quickly accessed. The
number of registers is typically between 8 and 64. Most of the operands in arithmetic and branch
operations are present in these registers. Since programs tend to use a small set of variables
repeatedly at any point of time, using registers saves many memory accesses. However, it
sometimes becomes necessary to bring in memory locations into registers or writeback values
in registers to memory locations. In those cases, we use dedicated load and store instructions
that transfer values between memory and registers. Most programs have a majority of pure
register instructions. The number of load and store instructions are typically about a third of
the total number of executed instructions.

Let us give an example. Assume that we want to add the cubes of the numbers in the
memory locations b and c, and we want to save the result in the memory location a. A machine

37 © Smruti R. Sarangi

with registers would need the following instructions. Assume that r1, r2, and r3 are the names
of registers. Here, we are not using any specific ISA (the explanation is generic and conceptual).

1: r1 = mem[b] // load b

2: r2 = mem[c] // load c

3: r3 = r1 * r1 // compute b^2

4: r4 = r1 * r3 // compute b^3

5: r5 = r2 * r2 // compute c^2

6: r6 = r2 * r5 // compute c^3

7: r7 = r4 + r6 // compute b^3 + c^3

4: mem[a] = r7 // save the result

Here, mem is an array representing memory. We need to first load the values into registers,
then perform arithmetic computations, and then save the result back in memory. We can
see in this example that we are saving on memory accesses by using registers. If we increase
the complexity of the computations, we will save on even more memory accesses. Thus, our
execution with registers will get even faster. The resulting processor organisation is shown in
Figure 1.13.

CPU

Control

ALU

 Memory I/O devices

Registers

Figure 1.13: Von Neumann machine with registers

Von-Neumann Machine with a Hardware Stack

A stack is a standard data structure that obeys the semantics – last in, first out. Readers are
requested to lookup a book on data structures such as [Lafore, 2002] for more information. A
stack based machine has a stack implemented in hardware.

First, it is necessary to insert values from the memory into the stack. After that arithmetic
functions operate on the top k elements of the stack. These values get replaced by the result
of the computation. For example, if the stack contains the values 1 and 2 at the top. They get
removed and replaced by 3. Note that here arithmetic operations do not require any operands.
If an add operation takes two operands, then they do not need to be explicitly specified. The
operands are implicitly specified as the top two elements in the stack. Likewise, the location
of the result also does not need to be specified. It needs to be inserted at the top of the stack.
Even though, generating instructions for such a machine is difficult and flexibility is an issue,
the instructions can be very compact. Most instructions other than load and store do not
require any operands. We can thus produce very dense machine code. Systems in which the

© Smruti R. Sarangi 38

size of the program is an issue can use a stack based organisation. They are also easy to verify
since they are relatively simpler systems.

A stack supports two operations – push and pop. Push pushes an element to the top of
the stack. Pop removes an element from the top of the stack. Let us now try to compute
w = x+ y/z − u ∗ v using a stack based Von Neumann machine, we have:

1: push u // load u

2: push v // load v

3: multiply // u*v

4: push z // load y

5: push y // load z

6: divide // y/z

7: subtract // y/z - u*v

8: push x // load x

9: add // x + y/z - u*v

10: pop w // store result in w

It is clearly visible that scheduling a computation to work on a stack is difficult. There will
be many redundant loads and stores. Nonetheless, for machines that are meant to evaluate
long mathematical expressions, and machines for which program size is an issue, typically opt
for stacks. There are few practical implementations of stack based machines such as Burroughs
Large Systems, UCSD Pascal, and HP 3000 (classic). The Java language assumes a hypothetical
stack based machine during the process of compilation. Since a stack based machine is simple,
Java programs can virtually run on any hardware platform. When we run a compiled Java
program, then the Java Virtual Machine(JVM) dynamically converts the Java program into
another program that can run on a machine with registers.

Accumulator based Machines

Accumulator based machines use a single register called an accumulator. Each instruction takes
a single memory location as an input operand. For example, an add operation adds the value
in the accumulator to the value in the memory address and then stores the result back in the
accumulator. Early machines in the fifties that could not accommodate a register file used to
have accumulators. Accumulators were able to reduce the number of memory accesses and
speed up the program.

Some aspects of accumulators have crept into the Intel x86 set of processors that are the
most commonly used processors for desktops and laptops as of 2012. For multiplication and
division of large numbers, these processors use the register eax as an accumulator. For other
generic instructions, any register can be specified as an accumulator.

1.8 The Road Ahead

We have outlined the structure of a modern machine in Section 1.7.3, which broadly follows
a Von Neumann architecture, and is augmented with registers. Now, we need to proceed to
build it. As mentioned at the outset, computer architecture is a beautiful amalgam of software

39 © Smruti R. Sarangi

and hardware. Software engineers tell us what to build? Hardware designers tell us how to
build?

Software
engineer

Hardware
designer

Language
 of bits

ARM assembly

x86 assembly

Assembly
language

Software interface

In
st

ru
ct

io
n

se
t

ar
ch

ite
ct

ur
e

Processor Design

Building blocks:
 gates, registers,
 and memories

2

Computer
arithmetic

Processor
design

3

5

4

6 7

8

System design

D
es

ig
n

of
 a

 s
im

pl
e

pr
oc

es
so

r Memory
system

10

 I/O and storage12

Multiprocessors
11

Hardware
designer

Pipelining

9

Figure 1.14: Roadmap of chapters

Let us thus first take care of the requirements of software engineers. Refer to the roadmap
of chapters in Figure 1.14. The first part of the book will introduce computer architecture from
the point of view of system software designers and application developers. Subsequently, we
shall move on to designing processors, and lastly, we shall look at building a full systems of
processors, memory elements, and I/O cum storage devices.

1.8.1 Representing Information

In modern computers, it is not possible to store numbers or pieces of text directly. Today’s
computers are made of transistors. A transistor can be visualised as a basic switch that has two
states – on and off. If the switch is on, then it represents 1, otherwise it represents 0. Every
single entity inclusive of numbers, text, instructions, programs, and complex software needs to
be represented using a sequence of 0s and 1s. We have only two basic symbols that we can use
namely 0 and 1. A variable/value that can either be 0 or 1, is known as a bit. Most computers
typically store and process a set of 8 bits together. A set of 8 bits is known as a byte. Typically,
a sequence of 4 bytes is known as a word.

Definition 11

bit A value that can either be 0 or 1.

byte A sequence of 8 bits.

word A sequence of 4 bytes.

© Smruti R. Sarangi 40

Figure 1.15: Memory – a large array of switches

We can thus visualise all the internal storage structures of a computer such as the memory
or the set of registers as a large array of switches as shown in Figure 1.15. In Chapter 2, we
shall study the language of bits. We shall see that using bits it is possible to express logical
concepts, arithmetic concepts (integer and real numbers), and pieces of text.

This chapter is a prerequisite for the next chapter on assembly language. Assembly
language is a textual representation of an ISA. It is specific to the ISA. Since an instruction
is a sequence of 0s and 1s, it is very difficult to study it in its bare form. Assembly language
gives us a good handle to study the semantics of instructions in an ISA. Chapter 3 introduces
the general concepts of assembly language and serves as a common introduction to the next
two chapters that delve into the details of two very popular real world ISAs – ARM and x86.
We introduce a simple ISA called SimpleRisc in Chapter 3. Subsequently, in Chapter 4 we
introduce the ARM ISA, and in Chapter 5 we briefly cover the x86 ISA. Note that it is not
necessary to read both these chapters. After reading the introductory chapter on assembly
language and obtaining an understanding of the SimpleRisc assembly language, the interested
reader can read just one chapter to deepen her knowledge about a real world ISA. At this point,
the reader should have a good knowledge of what needs to be built.

1.8.2 Processing Information

In this part, we shall actually build a basic computer. Chapter 7 will start out with the
basic building blocks of a processor – logic gates, registers, and memories. Readers who have
already taken a digital design course can skip this chapter. Chapter 8 deals with computer
arithmetic. It introduces detailed algorithms for addition, subtraction, multiplication, and
division for both integers as well as real numbers. Most computers today perform very heavy

41 © Smruti R. Sarangi

numerical computations. Hence, it is necessary to obtain a firm understanding of how numerical
operations are actually implemented, and get an idea of the tradeoffs of different designs.

After these two chapters, we would be ready to actually design a simple processor in Chap-
ter 9. We shall assemble a simple processor part by part, and then look at two broad design
styles – hardwired, and micro-programmed. Modern processors are able to process many in-
structions simultaneously, and have complex logic for taking the dependences across instructions
into account. The most popular technique in this area is known as pipelining. We shall discuss
pipelining in detail in Chapter 10.

1.8.3 Processing More Information

By this point, we would have gotten a fair understanding of how simple processors are designed.
We shall proceed to optimise the design, add extra components, and make a full system that can
support all the programs that users typically want to run. We shall describe three subsystems
–

Memory System We shall see in Chapter 11 that it is necessary to build a fast and efficient
memory system, because it is a prime driver of performance. To build a fast memory
system, we need to introduce many new structures and algorithms.

Multiprocessors Nowadays, vendors are incorporating multiple processors on a single chip.
The future belongs to multiprocessors. The field of multiprocessors is very extensive and
typically forms the core of an advanced architecture course. In this book, we shall provide
a short overview of multiprocessors in Chapter 12.

I/O and Storage In Chapter 13, we shall look at methods to interface with different I/O
devices, especially storage devices such as the hard disk. The hard disk saves all our
programs and data when the computer is powered off, and it also plays a crucial role in
supplying data to our programs during their operations. Hence, it is necessary to study
the structure of the hard disk, and optimise it for performance and reliability.

1.9 Summary and Further Reading

1.9.1 Summary

Summary 1

1. A computer is a dumb device as compared to the human brain. However, it can
perform routine, simple and monotonic tasks, very quickly.

2. A computer is defined as a device that can be programmed to process information.

3. A program consists of basic instructions that need to be executed by a computer.

© Smruti R. Sarangi 42

4. The semantics of all the instructions supported by a computer is known as the in-
struction set architecture (ISA).

5. Ideally, an ISA should be complete, concise, simple, and generic.

6. An ISA is complete, if it is equivalent to an universal Turing machine.

7. A practical implementation of any complete ISA requires:

(a) A memory to hold instructions and data.

(b) A CPU to process instructions and perform arithmetic and logical operations.

(c) A set of I/O devices for communicating with the programmer.

8. Harvard and Von Neumann architectures are practical implementations of complete
ISAs, and are also the basis of modern computers.

9. Modern processors typically have a set of registers, which are a set of named storage
locations. They allow the processor to access data quickly by avoiding time consuming
memory accesses.

10. Some early processors also had a stack to evaluate arithmetic expressions, and had
accumulators to store operands and results.

1.9.2 Further Reading

The field of computer architecture is a very exciting and fast moving field. The reader can
refer to the books by Jan Bergstra [Bergstra and Middelburg, 2012] and Gilreath [Gilreath and
Laplante, 2003] to learn more about the theory of instruction set completeness and classes of
instructions. The book on formal languages by by Hopcroft, Motwani, and Ulmann [Hopcroft
et al., 2006] provides a good introduction to Turing machines and theoretical computer science
in general. To get a historical perspective, readers can refer to the original reports written by
Alan Turing [Carpenter and Doran, 1986] and John von Neumann [von Neumann, 1945].

Exercises

Processor and Instruction Set

Ex. 1 — Find out the model and make of at least 5 processors in devices around you. The
devices can include desktops, laptops, cell phones, and tablet PCs.

Ex. 2 — Make a list of peripheral I/O devices for computers. Keyboards are mice are common
devices. Search for uncommon devices. (HINT: joysticks, game controllers, fax machines)

43 © Smruti R. Sarangi

Ex. 3 — What are the four properties of an instruction set?

Ex. 4 — Design an instruction set for a simple processor that needs to perform the following
operations:

1.Add two registers

2.Subtract two registers

Ex. 5 — Design an instruction set for a simple processor that needs to perform the following
operations:

1.Add two registers

2.Save a register to memory

3.Load a register from memory

4.Divide a value in a register by two

Ex. 6 — Design an instruction set to perform the basic arithmetic operations – add, subtract,
multiply, and divide. Assume that all the instructions can have just one operand.

* Ex. 7 — Consider the sbn instruction that subtracts the second operand from the first
operand, and branches to the instruction specified by the label (third operand), if the result is
negative. Write a small program using only the sbn instruction to compute the factorial of a
positive number.

* Ex. 8 — Write a small program using only the sbn instruction to test if a number is prime.

Theoretical Aspects of an ISA*

Ex. 9 — Explain the design of a modified Turing machine.

Ex. 10 — Prove that the sbn instruction is Turing complete.

Ex. 11 — Prove that a machine with memory load, store, branch, and subtract instructions
is Turing complete.

** Ex. 12 — Find out other models of universal machines from the internet and compare
them with Turing Machines.

Practical Machine Models

Ex. 13 — What is the difference between the Harvard architecture and Von Neumann archi-
tecture?

Ex. 14 — What is a register machine?

Ex. 15 — What is a stack machine?

Ex. 16 — Write a program to compute a+ b+ c− d on a stack machine.

© Smruti R. Sarangi 44

Ex. 17 — Write a program to compute a+ b+ (c− d) ∗ 3 on a stack machine.

Ex. 18 — Write a program to compute (a+ b/c) ∗ (c− d) + e on a stack machine.

** Ex. 19 — Try to search the internet, and find answers to the following questions.

1.When is having a separate instruction memory more beneficial?

2.When is having a combined instruction and data memory more beneficial?

Part I

Architecture: Software Interface

45

2
The Language of Bits

A computer does not understand words or sentences like human beings. It understands only a
sequence of 0s and 1s. We shall see in the rest of this book that it is very easy to store, retrieve
and process billions of 0s and 1s. Secondly, existing technologies to implement computers using
silicon transistors are very compatible with the notion of processing 0s and 1s. A basic silicon
transistor is a switch that can set the output to a logical 0 or 1, based on the input. The
silicon transistor is the basis of all the electronic computers that we have today right from
processors in mobile phones to processors in supercomputers. Some early computers made
in the late nineteenth century processed decimal numbers. They were mostly mechanical in
nature. It looks like for the next few decades, students of computer architecture need to study
the language of 0s and 1s in great detail.

Now, let us define some simple terms. A variable that can be either 0 or 1, is called a bit.
A set of 8 bits is called a byte.

Definition 12
Bit: A variable that can have two values: 0 or 1.

Definition 13
Byte: A sequence of 8 bits.

In this chapter, we shall look at expressing different concepts in terms of bits. The first
question is, “ what can we do with our notion of bits?”. Well it turns out that we can do
everything that we could have done if our basic circuits were able to process normal decimal

47

© Smruti R. Sarangi 48

numbers. We can divide the set of operations into two major types – logical and arithmetic.
Logical operations express concepts of the form, “the red light is on AND the yellow light is on”,
or “the bank account is closed if the user is inactive AND the account is a current account.”
Arithmetic operations refer to operations such as addition, multiplication, subtraction, and
division.

We shall first look at logical operations using bits in Section 2.1. Then, we shall look
at methods to represent positive integers using 0s and 1s in Section 2.2. A representation
of a number using 0s and 1s is also known as a binary representation. We shall then look
at representing negative integers in Section 2.3, representing floating point numbers(numbers
with a decimal point) in Section 2.4, and representing regular text in Section 2.5. Arithmetic
operations using binary values will be explained in detail in Chapter 8.

Definition 14
Representation of numbers or text using a sequence of 0s and 1s is known as a binary
representation.

2.1 Logical Operations

Binary variables (0 or 1) were first described by George Boole in 1854. He used such variables
and their associated operations to describe logic in a mathematical sense. He defined a full
algebra consisting of simple binary variables, along with a new set of operators, and basic
operations. In the honour of George Boole, a binary variable is also known as a Boolean
variable, and an algebraic system of Boolean variables is known as Boolean algebra.

Historical Note 1
George Boole(1815 – 1864) was a professor of mathematics at Queen’s college, Cork, Ire-
land. He proposed his theory of logic in his book – An Investigation of the Laws of Thought,
on Which are Founded the Mathematical Theories of Logic and Probabilities. During his
lifetime, the importance of his work was not recognised. It was only in 1937 that Claude
Shannon observed that it is possible to describe the behavior of electronic digital circuits
using Boole’s system.

Definition 15

Boolean variable A variable that can take only two values – 0 or 1.

Boolean algebra An algebraic system consisting of Boolean variables and some special
operators defined on them.

49 © Smruti R. Sarangi

2.1.1 Basic Operators

A simple Boolean variable can take two values – 0 or 1. It corresponds to two states of a system.
For example, it can represent the fact that a light bulb is off(0) or on(1). It is easy to represent
a Boolean variable in an electronic circuit. If the voltage on a wire is 0, then we are representing
a logical 0. If the voltage is equal to the supply voltage Vdd, then we are representing a logical
1. We shall have an opportunity to read more about electronic circuits in Chapter 7.

Let us consider a simple Boolean variable, A. Let us assume that A represents the fact that
a light bulb is on. If A = 1, then the bulb is on, else it is off. Then the logical complement
or negation of A, represented by A, represents the fact that the bulb is off. If A = 1, then the
bulb is off, otherwise, it is on. The logical complement is known as the NOT operator. Any
Boolean operator can be represented by the means of a truth table, which lists the outputs of
the operator for all possible combinations of inputs. The truth table for the NOT operator is
shown in Table 2.1.

A A

0 1

1 0

Table 2.1: Truth table for the NOT operator

Let us now consider multiple Boolean variables. Let us consider the three bulbs in a typical
traffic light – red, yellow, green. Let their states at a given time t be represented by the Boolean
variables – R, Y, and G – respectively. At any point of time, we want one and only one of the
lights to be on. Let us try to represent the first condition (one light on) symbolically using
Boolean logic. We need to define the OR operator that represents the fact that either of the
operands is equal to 1. For example, A OR B, is equal to 1, if A = 1 or B = 1. Two symbols for
the OR operator are used in literature – ’+’ and ’∨’. In most cases ’+’ is preferred. The reader
needs to be aware that ’+’ is not the same as the addition operator. The correct connotation
for this operator needs to be inferred from the context. Whenever, there is a confusion, we will
revert to the ∨ operator in this book. By default, we will use the ’+’ operator to represent
Boolean OR. Thus, condition 1 is: R + Y + G = 1. The truth table for the OR operator is
shown in Table 2.2.

A B A OR B

0 0 0

0 1 1

1 0 1

1 1 1

Table 2.2: Truth table for the OR operator

Now, let us try to formalise condition 2. This states that only one light needs to be on. We
can alternatively say that it is not possible to find a pair of bulbs that are on together. We

© Smruti R. Sarangi 50

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

Table 2.3: Truth table for the AND operator

need to define a new operator called the AND operator (represented by ’.’ or ’∧’). A AND B
is equal to 1, when both A and B are 1. The truth table for the AND operator is shown in
Table 2.3. Now, R.Y represents the fact that both the red and yellow bulbs are on. This is
not possible. Considering all such pairs, we have condition 2 as: R.Y + R.G+G.Y = 0. This
formula represents the fact that no two pairs of bulbs are on simultaneously.

We thus observe that it is possible to represent complex logical statements using a combi-
nation of Boolean variables and operators. We can say that NOT, AND, and OR, are basic
operators. We can now derive a set of operators from them.

2.1.2 Derived Operators

Two simple operators namely NAND and NOR are very useful. NAND is the logical complement
of AND (truth table in Table 2.4) and NOR is the logical complement of OR (truth table in
Table 2.5).

A B A NAND B

0 0 1

0 1 1

1 0 1

1 1 0

Table 2.4: Truth table for the NAND operator

A B A NOR B

0 0 1

0 1 0

1 0 0

1 1 0

Table 2.5: Truth table for the NOR operator

NAND and NOR are very important operators because they are known as universal oper-
ators. We can use just the NAND operator or just the NOR operator to construct any other
operator. For more details the reader can refer to Kohavi and Jha [Kohavi and Jha, 2009].

Let us now define the XOR operator that stands for exclusive-or. A XOR B is equal to 1,
when A = 1, B = 0, or A = 0, B = 1. The truth table is shown in Table 2.6. They symbol for
XOR is ⊕. The reader can readily verify that A⊕B = A.B+A.B by constructing truth tables.

2.1.3 Boolean Algebra

Given Boolean variables and basic operators, let us define some rules of Boolean algebra.

51 © Smruti R. Sarangi

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

Table 2.6: Truth table for the XOR operator

NOT Operator

Let us look at some rules governing the NOT operator.

1. Definition: 0 = 1, and 1 = 0 – This is the definition of the NOT operator.

2. Double negation: A = A – The NOT of (NOT of A) is equal to A itself.

OR and AND Operators

1. Identity: A + 0 = A, and A.1 = A – If we compute the OR of a Boolean variable, A,
with 0, or AND with 1, the result is equal to A.

2. Annulment: A+ 1 = 1, and A.0 = 0 – If we compute A OR 1, then the result is always
equal to 1. Similarly, A AND 0, is always equal to 0 because the value of the second
operand determines the final result.

3. Idempotence: A+A = A, and A.A = A – The result of computing the OR or AND of
A with itself, is A.

4. Complementarity: A + A = 1, and A.A = 0 – Either A = 1, or A = 1. In either case
A+A will have one term, which is 1, and thus the result is 1. Similarly, one of the terms
in A.A is 0, and thus the result is 0.

5. Commutativity: A.B = B.A, and A + B = B + A – The order of Boolean variables
does not matter.

6. Associativity: A + (B + C) = (A + B) + C, and A.(B.C) = (A.B).C – We are free to
parenthesise expressions containing only OR or AND operators in any way we choose.

7. Distributivity: A.(B + C) = A.B + A.C, and A + B.C = (A + B).(A + C) – We can
use this law to open up a parenthesis and simplify expressions.

We can use these rules to manipulate expressions containing Boolean variables in a variety
of ways. Let us now look at a basic set of theorems in Boolean algebra.

© Smruti R. Sarangi 52

2.1.4 De Morgan’s Laws

There are two De Morgan’s laws that can be readily verified by constructing truth tables for
the LHS and RHS.

A+B = A.B (2.1)

The NOT of (A+B) is equal to the AND of the complements of A and B.

AB = A+B (2.2)

The NOT of (A.B) is equal to the OR of the complements of A and B.

Example 5
Prove the consensus theorem: X.Y +X.Z + Y.Z = X.Y +X.Z.
Answer:

X.Y +X.Z + Y.Z = X.Y +X.Z + (X +X).Y.Z

= X.Y +X.Z +X.Y.Z +X.Y.Z

= X.Y.(1 + Z) +X.Z.(1 + Y)

= X.Y +X.Z

(2.3)

Example 6
Prove the theorem: (X + Z).(X + Y) = X.Y +X.Z.
Answer:

(X + Z).(X + Y) = X.X +X.Y + Z.X + Z.Y

= 0 +X.Y +X.Z + Y.Z

= X.Y +X.Z + Y.Z

= X.Y +X.Z (see Example 5)

(2.4)

2.1.5 Logic Gates

Let us now try to implement circuits to realise complex Boolean formulae. We will discuss
more about this in Chapter 7. We shall just provide a conceptual treatment in this section.
Let us define the term “logic gate” as a device that implements a Boolean function. It can be
constructed from silicon, vacuum tubes, or any other material.

53 © Smruti R. Sarangi

Definition 16
A logic gate is a device that implements a Boolean function.

Given a set of logic gates, we can design a circuit to implement any Boolean function. The
symbols for different logic gates are shown in Figure 2.1.

AND

NOT

NAND

OR NOR

XOR XNOR

A.B A.B

A+B A+B

A B A B

Figure 2.1: List of logic gates

2.1.6 Implementing Boolean Functions

Let us now consider a generic boolean function f(A,B,C . . .). To implement it we need to
create a circuit out of logic gates. Our aim should be to minimise the number of gates to save
area, power, and time. Let us first look at a brute force method of implementing any Boolean
function.

Simple Method

We can construct the truth table of the function, and then try to realise it with an optimal
number of logic gates. The reason we start from a truth table is as follows. In some cases,
the Boolean function that we are trying to implement might not be specified in a concise form.
It might be possible to simplify it significantly. Secondly, using truth tables ensures that the

© Smruti R. Sarangi 54

process can be automated. For example, let us consider the following truth table of some
function, f . We show only those lines that evaluate to 1.

A B C Result

1 1 0 1
1 1 1 1
1 0 1 1

Let us consider the first line. It can be represented by the Boolean function A.B.C. Sim-
ilarly, the second and third lines can be represented as A.B.C and A.B.C respectively. Thus,
the function can be represented as:

f(A,B,C) = A.B.C +A.B.C +A.B.C (2.5)

We see that we have represented the function as an OR function of several terms. This
representation is known as a sum-of-products representation, or a representation in the canonical
form. Each such term is known as a minterm. Note that in a minterm, each variable appears
only once. It is either in its original form or in its complemented form.

Definition 17
Let us consider a Boolean function f with n arguments.

minterm A minterm is an AND function on all n Boolean variables, where each vari-
able appears only once (either in its original form or in its complemented form). A
minterm corresponds to one line in the truth table, whose result is 1.

Canonical representation It is a Boolean formula, which is equivalent to the function
f . It computes an OR operation of a set of minterms.

To summarise, to implement a truth table, we first get a list of minterms that might evaluate
to a logical 1 (true), then create a canonical representation, and then realise it with logic
gates. To realise the canonical representation using logic gates, we need to realise each minterm
separately, and then compute an OR operation.

This process works, but is inefficient. The formula: A.B.C + A.B.C + A.B.C, can be
simplified as A.B + A.B.C. Our simple approach is not powerful enough to simplify this
formula.

Karnaugh Maps

Instead of directly converting the canonical representation into a circuit, let us build a structure
called a Karnaugh map. This is a rectangular grid of cells, where each cell represents one
minterm. To construct a Karnaugh map, let us first devise a method of numbering each
minterm. Let us first represent all minterms such that the order of variables in them is the same
(original or complemented). Second, if a variable is not complemented, then let us represent it

55 © Smruti R. Sarangi

Minterm Representation

A.B.C 000

A.B.C 001

A.B.C 010

A.B.C 100

A.B.C 011

A.B.C 101

A.B.C 110

A.B.C 111

Table 2.7: Representation of minterms

by 1, otherwise, let us represent it by 0. Table 2.7 shows the representation of all the possible
8 minterms in a three variable function.

Now, given the representation of a minterm we use some bits to specify the row in the
Karnaugh map, and the rest of the bits to specify the column. We number the rows and columns
such that adjacent rows or columns differ in the value of only one variable. We treat the last
row, and the first row as adjacent, and likewise, treat the first and last columns as adjacent.
This method of numbering ensures that the difference in representation across any two adjacent
cells (same row, or same column) in the Karnaugh map is in only one bit. Moreover, this also
means that the corresponding minterms differ in the value of only one variable. One minterm
contains the variable in its original form, and the other contains it in its complemented form.

00 01 11 10

0

1

AB
C

Minterm is equal to 1

Minterm is equal to 0

Figure 2.2: Karnaugh Map for f(A,B,C) = A.B.C(110) +A.B.C(111) +A.B.C(101)

Now, let us proceed to simplify or minimise the function. We construct the Karnaugh map
as shown in Figure 2.2 for our simple function f(A,B,C) = A.B.C + A.B.C + A.B.C. We
mark all the cells(minterms) that are 1 using a dark colour. Let us consider the first minterm,
A.B.C. Its associated index is 110. We thus, locate the cell 110 in the Karnaugh map, and
mark it. Similarly, we mark the cells for the other minterms – A.B.C(111), and A.B.C(101).

© Smruti R. Sarangi 56

We see that we have three marked cells. Furthermore, since adjacent cells differ in the value
of only one variable, we can combine them to a single Boolean expression. In Figure 2.2, we
try to combine the cells with indices 110, and 111. They differ in the value of the Boolean
variable, C. After combining them, we have the boolean expression: A.B.C + A.B.C = A.B.
We have thus replaced two minterms by a smaller yet equivalent Boolean expression. We were
able to combine the two adjacent cells, because they represented a logical OR of the Boolean
expressions, which had the variable C in both its original and complemented form. Hence, the
function f gets minimised to A.B +A.B.C.

00 01 11 10

0

1

AB
C

Minterm is equal to 1

Minterm is equal to 0

Figure 2.3: Karnaugh Map for f(A,B,C) = A.B.C(110) +A.B.C(111) +A.B.C(101)

Instead of combining, two cells in the same column, let us try to combine two cells in
the same row as shown in Figure 2.3. In this case, we combine the minterms, A.B.C, and
A.B.C. Since the variable B is present in both its original and complemented forms, we can
eliminate it. Thus, the Boolean expression denoting the combination of the cells is A.C. Hence,
function f is equal to A.C +A.B.C. We can readily verify that both the representations for f
– (A.C + A.B.C) and (A.B + A.B.C), are equivalent and optimal in terms of the number of
Boolean terms.

Note that we cannot arbitrarily draw rectangles in the Karnaugh map. They cannot include
any minterm that evaluates to 0 in the truth table. Secondly, the size of each rectangle needs
to be a power of 2. This is because to remove n variables from a set of m minterms, we need
to have all combinations of the n variables in the rectangle. It thus needs to have 2n minterms.

To minimise a function, we need to draw rectangles that are as large as possible. It is
possible that two rectangles might have an overlap. However, one rectangle should not be a
strict subset of the other.

2.1.7 The Road Ahead

Way Point 2

57 © Smruti R. Sarangi

• Boolean algebra is a symbolic algebra that uses Boolean variables, which can be either
0 or 1.

• The basic Boolean operators are AND, OR, and NOT.

• These operators are associative, commutative, and reflexive.

• NAND, NOR, XOR are very useful Boolean operators.

• De Morgan’s laws help convert an expression with an AND operator, to an expression
that replaces it with an OR operator.

• A logic gate is a physical realisation of a simple Boolean operator or function.

• Our aim is to minimise the number of logic gates while designing a circuit for a
Boolean function.

• One effective way of minimising the number of logic gates is by using Karnaugh maps.

Up till now, we have learnt about the basic properties of Boolean variables, and a simple method
to design efficient circuits to realise Boolean functions. An extensive discussion on Boolean logic
or optimal circuit synthesis is beyond the scope of this book. Interested readers can refer to
seminal texts by Zvi Kohavi [Kohavi and Jha, 2009] and [Micheli, 1994].

Nevertheless, we are at a position to appreciate the nature of Boolean circuits. Up till now,
we have not assigned a meaning to sets of bits. We shall now see that sequences of bits can
represent integers, floating point numbers, and strings(pieces of text). Arithmetic operations
on such sequences of bits are described in detail in Chapter 8.

2.2 Positive Integers

2.2.1 Ancient Number Systems

Ever since man developed higher intelligence, he has faced the need to count. For numbers from
one to ten, human beings can use their fingers. For example, the little finger of the left hand
can signify one, and the little finger of the right hand can signify ten. However, for counting
numbers greater than ten, we need to figure out a way for representing numbers. In the ancient
world, two number systems prevailed – the Roman numerals used in ancient Rome, and the
Indian numerals used in the Indian subcontinent.

The Roman numerals used the characters – I, II . . . X, for the numbers 1 . . . 10 respectively.
However, there were significant issues for representing numbers greater than ten. For example,
to represent 50, 100, 500, and 1000, Romans used the symbols L, C, D, and M respectively. To
represent a large number, the Romans represented it as a sequence of symbols. The number 204
can be represented as CCIV (C + C + IV = 100 + 100 + 4). Hence, to derive the real value
of a number, we need to scan the number from left to right, and keep on adding the values. To
make things further complicated, there is an additional rule that if a smaller number is preceded

© Smruti R. Sarangi 58

by a larger value, then we need to subtract it from the total sum. Note that there is no notion
of negative numbers, and zero in this number system. Furthermore, it is extremely difficult to
represent large numbers, and perform simple operations such as addition and multiplication.

The ancient Indians used a number system that was significantly simpler, and fundamentally
more powerful. The Arabs carried the number system to Europe sometime after seventh century
AD, and thus this number system is popularly known as the Arabic number system. The magic
tricks used by ancient Indian mathematicians are the number ’0’, and the place value system.
The Indian mathematicians used a sequence of ten symbols including zero, as the basic alphabet
for numbers. Figure 2.4 shows ten symbols obtained in the Bakhshali manuscript obtained in
the north west frontier province of modern Pakistan (dated seventh century AD). Each such
symbol is known as a ‘digit’.

Figure 2.4: Numerals from the Bakhshali Manuscript (source Wikipedia®) This article uses
material from the Wikipedia article “Bakhshali Manuscript” [bak,], which is released under
the Creative Commons Attribution-Share-Alike License 3.0 [ccl,]

Every number was represented as a sequence of digits. Each digit represents a number
between zero and nine. The first problem is to represent a number that is greater than nine
by one unit. This is where we use the place value system. We represent it as 10. The left
most number, 1, is said to be in the ten’s place, and the right most number, 0, is in the unit’s
place. We can further generalise this representation to any two digit number of the form, x2x1.
The value of the number is equal to 10 × x2 + x1. As compared to the Roman system, this
representation is far more compact, and can be extended to represent arbitrarily large integers.

A number of the form xnxn−1 . . . x1 is equal to xn × 10n−1 + xn−1 × 10n−1 + . . . + x1 =∑n
i=1 xi10

i−1. Each decimal digit is multiplied with a power of 10, and the sum of the products
is equal to the value of the number. As we have all studied in elementary school, this number
system makes the job of addition, multiplication, and subtraction substantially easier. In this
case, the number ‘10’, is known as the base of the number system.

Historical Note 2
The largest number known to ancient Indian mathematicians was 1053 [ind,].

Let us now ponder about a basic point. Why did the Indians choose ten as the base. They
had the liberty to choose any other number such as seven or eight or nine. The answer can
be found by considering the most basic form of counting again, i.e., with fingers. Since human
beings have ten fingers, they use them to count till one to ten, or from zero to nine. Hence,
they were naturally inclined to use ten as the base.

Let us now move to a planet, where aliens have seven fingers. It would not be surprising
to see them use a base seven number system. In their world, a number of the form, 56, would

59 © Smruti R. Sarangi

actually be 7 × 5 + 6 in our number system. We thus observe that it is possible to generalise
the concept of a base, and it is possible to represent any number in any base. We introduce the
notation 324310, which means that the number 3243 is being represented in base 10.

Example 7
The number 10228 is equal to : 83 + 0 + 2 ∗ 81 + 2 = 53010.

2.2.2 Binary Number System

What if we consider a special case? Let us try to represent numbers in base 2. The number 710
can be represented as 1112, and 1210 is equal to 11002. There is something interesting about
this number system. Every digit is either 0 or 1. As we shall see in Chapters 7 and 8, computers
are best suited to process values that are either 0 or 1. They find it difficult to process values
from a larger set. Hence, representing numbers in base 2 should be a natural fit for computers.
We call this a binary number system (see Definition 18). Likewise, a number system that uses
a base of 10, is known as a decimal number system.

Definition 18

• A number system based on Indian numerals that uses a base equal to 2, is known as
a binary number system.

• A number system based on Indian numerals that uses a base equal to 10, is known as
a decimal number system.

Formally, any number A can be represented as a sequence of n binary digits:

A =

n∑
i=1

xi2
i−1 (2.6)

Here, x1 . . . xn are binary digits (0 or 1). We represent a number as a sum of the powers of 2,
as shown in Equation 2.6. The coefficients of the equation, are the binary digits. For example,
the decimal number 23 is equal to (16 + 4 + 2 + 1) = 1 × 24 + 0 × 23 + 1 × 22 + 1 × 2 + 1.
Thus, its binary representation is 10111.

Let us consider some more examples, as shown in Table 2.8.

© Smruti R. Sarangi 60

Number in decimal Number in binary

5 101

100 1100100

500 111110100

1024 10000000000

Table 2.8: Examples of binary numbers

Example 8
Convert the decimal number 27 to binary.

Answer: 27 = 16︸︷︷︸
1

+ 8︸︷︷︸
1

+ 0︸︷︷︸
0

+ 2︸︷︷︸
1

+ 1︸︷︷︸
1

= 110112

Let us now define two more terms, the most significant bit (MSB), and the least significant
bit (LSB). The LSB is the rightmost bit, and the MSB is the leftmost bit.

Definition 19

• MSB (Most Significant Bit) : The leftmost bit of a binary number. For example the
MSB of 1110 is 1.

• LSB (Least Significant Bit) : The rightmost bit of a binary number. For example the
LSB of 1110 is 0.

Hexadecimal and Octal Numbers

If we have a 32-bit number system, then representing each number in binary will take 32 binary
digits (0/1). For the purposes of explanation, this representation is unwieldy. We can thus
make our representation more elegant by representing numbers in base 8 or base 16. We shall
see that there is a very easy method of converting numbers in base 8, or base 16, to base 2.

Numbers represented in base 8 are known as octal numbers. They are traditionally repre-
sented by adding a prefix, ’0’. The more popular representation is the hexadecimal number
system. It uses a base equal to 16. We shall use the hexadecimal representation extensively in
this book. Numbers in this format are prefixed by ‘0x’. Secondly, the word ‘hexadecimal’ is
popularly abbreviated as ‘hex’. Note that we require 16 hex digits. We can use the digits 0-9
for the first ten digits. The next six digits require special characters. These six characters are
typically – A (10), B(11), C(12), D(13), E(14), and F(15). We can use the lower case versions
of ABCDEF also.

61 © Smruti R. Sarangi

To convert a binary number (A) to a hexadecimal number, or do the reverse, we can use
the following relationship:

A =
n∑

i=1

xi2
i−1

=

n/4∑
j=1

(23 × x4(j−1)+4 + 22 × x4(j−1)+3 + 21 × x4(j−1)+2 + x4(j−1)+1)× 24(j−1)

=

n/4∑
j=1

(23 × x4(j−1)+4 + 22 × x4(j−1)+3 + 21 × x4(j−1)+2 + x4(j−1)+1)︸ ︷︷ ︸
yj

×24(j−1)

=

n/4∑
j=1

yj16
(j−1)

(2.7)

We can thus represent the number (A) in base 16 (hexadecimal notation) by creating groups
of four consecutive binary digits. The first group is comprised of the binary digits x4x3x2x1,
the second group is comprised of x8x7x6x5 and so on. We need to convert each group of 4
binary digits, to represent a hexadecimal digit (yj). Similarly, for converting a number from
hex to binary, we need to replace each hex digit with a sequence of 4 binary digits. Likewise, for
converting numbers from binary to octal and back, we need to consider sequences of 3 binary
digits.

Example 9
Convert 1100010102 to the octal format.
Answer: 110︸︷︷︸

6

001︸︷︷︸
1

010︸︷︷︸
2

→ 0612

Example 10
Convert 110000101011 to the hexadecimal format.
Answer: 1100︸︷︷︸

C

0010︸︷︷︸
2

1011︸︷︷︸
B

→ 0xC2B

2.2.3 Adding Binary Numbers

Adding binary numbers is as simple as adding decimal numbers. For adding decimal numbers,
we start from the rightmost position and add digit by digit. If the sum exceeds 10, then we write
the unit’s digit at the respective position in the result, and carry the value at the ten’s place
to the next position in the result. We can do something exactly similar for binary numbers.

© Smruti R. Sarangi 62

Let us start out by trying to add two 1-bit binary numbers, A and B. Table 2.9 shows
the different combinations of numbers and results. We observe that for two bits, a carry is
generated only when the input operands are both equal to 1. This carry bit needs to be added
to the bits in the higher position. At that position, we need to add three bits – two input
operand bits and a carry bit. This is shown in Figure 2.5. In this figure, the input operand bits
are designated as A and B. The input carry bit is designated as Cin. The result will have two
bits in it. The least significant bit (right most bit) is known as the sum, and the output carry
is referred to as Cout.

Table 2.10 shows the results for the different combinations of input and carry bits.

A B (A+B)2
0 0 00
0 1 01
1 0 01
1 1 11

Table 2.9: Addition of two binary bits

A

B
sumCout

Cin

Figure 2.5: Addition of two binary bits and a carry bit

A B Cin Sum Cout

0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

Table 2.10: A truth table that represents the addition of three bits

63 © Smruti R. Sarangi

Let us now try to add two n-bit binary numbers. Our addition needs to proceed exactly
the same ways as decimal numbers. We add the values at a position, compute the result, and
carry a value to the next (more significant) position. Let us explain with an example (see
Example 11).

Example 11
Add the two binary numbers, 1011 and 0011.
Answer: The process of addition is shown in the figure, and the values of the intermediate
values of the carry bits are shown in shaded boxes. Let us now verify if the result of the
addition is correct. The two numbers expressed in the decimal number system are 11 and 3.
11 + 3 = 14. The binary representation of 14 is 1110. Thus, the computation is correct.

1 0 1 1
0 0 1 1
1 1 1 0

110

2.2.4 Sizes of Integers

Note that up till now we have only considered positive integers. We shall consider negative
integers in Section 2.3. Such positive integers are known as unsigned integers in high level
programming languages such as C or C++. Furthermore, high level languages define three
types of unsigned integers – short (2 bytes), int (4 bytes), long long int (8 bytes). A short
unsigned integer is represented using 16 bits. Hence, it can represent all the integers from 0 to
216− 1 (for a proof, see Example 12). Likewise, a regular 32-bit unsigned integer can represent
numbers from 0 till 232 − 1. The ranges of each data type are given in Table 2.11.

Example 12
Calculate the range of unsigned 2-byte short integers.

Answer: A short integer is represented by 16 bits. The smallest short integer is repre-
sented by 16 zeros. It has a decimal value equal to 0. The largest short integer is represented
by all 1s. Its value, V , is equal to 215 + . . . + 20 = 216 − 1. Hence, the range of unsigned
short integers is 0 to 216 − 1.

© Smruti R. Sarangi 64

Example 13
Calculate the range of an n-bit integer.

Answer: 0 to 2n − 1.

Example 14
We need to represent a set of decimal numbers from 0 till m − 1. What is the minimum
number of binary bits that we require?

Answer: Let us assume that we use n binary bits. The range of numbers that we can
represent is 0 to 2n − 1. We note that 2n − 1 needs to be at least as large as m. Thus, we
have:

2n − 1 ≥ m− 1

⇒ 2n ≥ m

⇒ n ≥ log2(m)

⇒ n ≥ ⌈log2(m)⌉

Hence, the minimum number of bits that we require is ⌈log2(m)⌉.

Data Type Size Range

unsigned short int 2 bytes 0 to 216 − 1

unsigned int 4 bytes 0 to 232 − 1

unsigned long long int 8 bytes 0 to 264 − 1

Table 2.11: Ranges of unsigned integers in C/C++

Important Point 5
For the more mathematically inclined, we need to prove that for a n bit integer, there is a
one to one mapping between the set of n bit binary numbers, and the decimal numbers, 0
to 2n − 1. In other words, every n bit binary number has a unique decimal representation.
We leave this as an exercise for the reader.

65 © Smruti R. Sarangi

2.3 Negative Integers

We represent a negative decimal number by adding a ‘-’ sign before it. We can in principle do
the same with a binary number, or devise a better representation.

Let us consider the generic problem first. For a number system comprising of a set of
numbers, S (both positive and negative), we wish to create a mapping between each number
in S, and a sequence of zeros and ones. A sequence of zeros and ones can alternatively be
represented as an unsigned integer. Thus, putting it formally, we propose to devise a method
for representing both positive and negative integers as a function F : S → N that maps a
set of numbers, S, to a set of unsigned integers, N . Let us define the function SgnBit(u) of
a number, u. It is equal to 1 when u is negative, and equal to 0 when u is positive or zero.
Secondly, unless specified otherwise, we assume that all our numbers require n bits per storage
in the next few subsections.

2.3.1 Sign-Magnitude based Representation

We can reserve a bit for representing the sign of a number. If it is equal to 0, then the number is
positive, else it is negative. This is known as the sign-magnitude representation. Let us consider
an n bit integer. We can use the MSB as the designated signed bit, and use the rest of the
number to represent the number’s magnitude. The magnitude of a number is represented using
n − 1 bits. This is a simple and intuitive representation. In this representation, the range of
the magnitude of a n bit integer is from 0 till 2n−1 − 1. Hence, the number system has a range
equal to ±(2n−1 − 1). Note that there are two zeros – a positive zero(00 . . . 0) and a negative
zero(10 . . . 0).

Formally, the mapping function – F(u) – where u is a number in the range of the number
system, is shown in Equation 2.8.

F(u) = SgnBit(u)× 2n−1+ | u | (2.8)

For example, if we consider a 4-bit number system, then we can represent the number -2 as
10102. Here, the MSB is 1 (represents a negative number), and the magnitude of the number
is 010, which represents 2.

The issues with this system are that it is difficult to perform arithmetic operations such as
addition, subtraction, and multiplication. For example in our 4-bit number system, -2 + 2, can
be represented as 1010 + 0010. If we naively do simple unsigned addition, then the result is
1100, which is actually -6. This is the wrong result. We need to use a more difficult approach
to add numbers.

2.3.2 The 1’s Complement Approach

For positive numbers, let us use the same basic scheme that assigns the MSB to a dedicated
sign bit, which is 0 in this case. Moreover, let the rest of the (n−1) bits represent the number’s
magnitude. For a negative number, -u(u ≥ 0), let us simply flip all the bits of +u. If a bit is
0, we replace it by 1, and vice versa. Note that this operation flips the sign bit also, effectively
negating the number. The number system can represent numbers between ±(2n−1− 1) like the
sign-magnitude system.

© Smruti R. Sarangi 66

Formally, the mapping function F is defined as:

F(u) =

{
u u ≥ 0

∼ (| u |) or (2n − 1− | u |) u < 0
(2.9)

Note that a bitwise complement(∼) is the same as subtracting the number from 11 . . . 1
(2n − 1).

Let us consider some examples with a 4-bit number system. We represent the number 2 as
0010. Here the sign bit is 0, signifying that it is a positive number. To compute -2, we need to
flip each bit. This process yields 1101. Note that the sign bit is 1 now.

The 1’s complement approach also suffers from similar deficiencies as the sign magnitude
scheme. First, there are two representations for zero. There is a positive zero - 0000, and a
negative zero - 1111.

Second, adding two numbers is difficult. Let us try to add 2 and -2. 2 + (-2) = 0010 +
1101. Using simple binary addition, we get 1111, which is equal to 0(negative zero). Hence, in
this case simple binary addition works. However, now let us try to add 1 to -0. We have: -0 +
1 = 1111 + 0001 = 0000. This leads to a mathematical contradiction. If we add one to zero,
the result should be one. However, in this case, it is still zero! This means that we need to
make the process of addition more sophisticated. This will slow down the process of addition
and make it more complex.

2.3.3 Bias-based Approach

Let us adopt a different approach now. Let us assume that the unsigned representation of a
number (F(u)) is given by:

F(u) = u+ bias (2.10)

Here, bias is a constant.
Let us consider several examples using a 4-bit number system. The range of unsigned

numbers is from 0 to 15. Let the bias be equal to 7. Then, the actual range of the number
system is from -7 to +8. Note that this method avoids some pitfalls of the sign-magnitude
and 1’s complement approach. First, there is only one representation for 0. In this case it is
0111. Second, it is possible to use standard unsigned binary addition to add two numbers with
a small modification.

Let us try to add 2 and -2. 2 is represented as +9 or 10012. Likewise, -2, is represented as
+5, or 01012. If we add 2 and -2, we are in effect adding the unsigned numbers 5 and 9. 5 + 9
= 14. This is not the right answer. The right answer should be 0, and it should be represented
as 0111 or +7. Nonetheless, we can get the right answer by subtracting the bias, i.e., 7. 14 - 7
= 7. Hence, the algorithm for addition is to perform simple binary unsigned addition, and then
subtract the bias. Performing simple binary subtraction is also easy (need to add the bias).
Hence, in the case of addition, for two numbers, u and v, we have:

F(u+ v) = F(u) + F(v)− bias (2.11)

However, performing binary multiplication is difficult. The bias values will create issues. In
this case, if the real value of a number is A, we are representing it as A+ bias. If we multiply
A and B naively, we are in effect multiplying A + bias and B + bias. To recover the correct
result, AB, from (A+ bias)× (B + bias) is difficult. We desire an even simpler representation.

67 © Smruti R. Sarangi

2.3.4 The 2’s Complement Method

Here are the lessons that we have learnt from the sign-magnitude, 1’s complement, and bias
based approaches.

1. We need a representation that is simple.

2. We would ideally like to perform signed arithmetic operations, using the same kind of
hardware that is used for unsigned numbers.

3. It is not desirable to have two representations for zero. The number zero, should have a
single representation.

Keeping all of these requirements in mind, the 2’s complement system was designed. To
motivate this number system, let us consider a simple 4-bit number system, and represent the
numbers in a circle. Let us first consider unsigned numbers. Figure 2.6 shows the numbers
presented in a circular fashion. As we proceed clockwise, we increment the number, and as
we proceed anti-clockwise, we decrement the number. This argument breaks at one point as
shown in the figure. This is between 15 and 0. If we increment 15, we should get 16. However,
because of the limited number of bits, we cannot represent 16. We can only capture its four
low order bits which are 0000. This condition is also called an overflow. Likewise, we can also
define the term, underflow, that means that a number is too small to be represented in a given
number system (see Definition 20). In this book, we shall sometimes use the word “overflow”
to denote both overflow as well as underflow. The reader needs to infer the proper connotation
from the context.

Definition 20

overflow An overflow occurs when a number is too large to be represented in a given number
system.

underflow An underflow occurs when a number is too small to be represented in a given
number system.

Let us now take a look at these numbers slightly differently as shown in Figure 2.7. We
consider the same circular order of numbers. However, after 7 we have -8 instead of +8.
Henceforth, as we travel clockwise, we effectively increment the number. The only point of
discontinuity is between 7 and -8. Let us call this point of discontinuity as the “break point”.
This number system is known as the 2’s complement number system. We shall gradually refine
the definition of a 2’s complement number to make it more precise and generic.

Definition 21
The point of discontinuity in the number circle is called the break point.

© Smruti R. Sarangi 68

0000 (0)

0001 (1)

0010 (2)

0100 (4)

0011 (3)

0111 (7)
1000 (8)

0101 (5)

0110 (6)

1100 (12)

1011 (11)

1101 (13)

1001 (9)

1010 (10)

1110 (14)

1111 (15)

Increment

Figure 2.6: Unsigned 4-bit binary numbers

0000 (0)

0001 (1)

0010 (2)

0100 (4)

0011 (3)

0111 (7)
1000 (-8)

0101 (5)

0110 (6)

1100 (-4)

1011 (-5)

1101 (-3)

1001 (-7)

1010 (-6)

1110 (-2)

1111 (-1)

Increment

Figure 2.7: Signed 4-bit binary numbers

69 © Smruti R. Sarangi

Let us now try to understand what we have achieved through this procedure. We have
16 numbers in the circle, and we have assigned each one of them to numbers from -8 to +7.
Each number is represented by a 4-bit value. We observe that incrementing a signed number,
is tantamount to incrementing its unsigned 4-bit representation. For example, -3 is represented
as 1101. If we increment, -3, we get -2, which is represented as 1110. We also observe that 1101
+ 1 = 1110.

Let us now try to formalise the pattern of numbers shown in the circle in Figure 2.7. First,
let us try to give the circular representation a name. Let us call it a Number Circle. In a
number circle, we observe that for numbers between 0 and 7, their representation is the same
as their unsigned representation. The MSB is 0. For numbers between -8 and -1, the MSB is
1. Secondly, the representation of a negative number, -u (u ≥ 0), is the same as the unsigned
representation for 16− u.

Definition 22
The steps for creating a n bit number circle are:

1. We start by writing 0 at the top. Its representation is a sequence of n zeros.

2. We proceed clockwise and add the numbers 1 to (2n−1−1). Each number is represented
by its n bit unsigned representation. The MSB is 0.

3. We introduce a break point after 2n−1 − 1.

4. Then next number is −2n−1 represented by 1 followed by n− 1 zeros.

5. We then proceed clockwise incrementing both the numbers, and their unsigned repre-
sentations by 1 till we reach 0.

We can generalise the process of creating a number circle, to create a n bit number circle
(see Definition 22). To add a positive number, A, to a number B, we need to proceed A steps
in the clockwise direction from B. If A is negative, then we need to proceed A steps in the anti-
clockwise direction. Note that moving k steps in the clockwise direction is the same as moving
2n − k steps in the anti-clockwise direction. This magical property means that subtracting k
is the same as adding 2n − k. Consequently, every subtraction can be replaced by an addition.
Secondly, a negative number, −u, is located in the number circle by moving | u | steps anti-
clockwise from 0, or alternatively, 2n− | u | steps clockwise. Hence, the number circle assigns
the unsigned representation 2n− | u |, to a negative number of the form −u (u ≥ 0).

Succinctly, a number circle can be described by Equation 2.12. This number system is called
a 2’s complement number system.

F(u) =

{
u 0 ≤ u ≤ 2n−1 − 1

2n− | u | −2n−1 ≤ u < 0
(2.12)

© Smruti R. Sarangi 70

Properties of the 2’s Complement Representation

1. There is one unique representation for 0, i.e., 000 . . . 0.

2. The MSB is equal to the sign bit (SgnBit(u)).
Proof: Refer to the number circle. A negative number’s unsigned representation is
greater than or equal to 2n−1. Hence, its MSB is 1. Likewise all positive numbers are less
than 2n−1. Hence, their MSB is 0.

3. Negation Rule: F(−u) = 2n −F(u)
Proof: If u ≥ 0, then F(−u) = 2n−u = 2n−F(u) according to Equation 2.12. Similarly,
if u < 0, then F(−u) = |u| = 2n − (2n − |u|) = 2n −F(u).

4. Every number in the range [−2n−1, 2n−1 − 1] has a unique representation.
Proof: Every number is a unique point on the number circle.

5. Addition Rule:

F(u+ v) ≡ F(u) + F(v) (2.13)

For the sake of brevity, we define the ≡ operator. (a ≡ b) means that (a mod 2n = b
mod 2n). Recall that the modulo (mod) operator computes the remainder of a division,
and the remainder is assumed to be always non-negative, and less than the divisor. The
physical significance of (mod 2n) is that we consider the n LSB bits. This is always the
case because we have a n bit number system, and in all our computations we only keep
the n LSB bits, and discard the rest of the bits if there are any. In our number circle
representation, if we add or subtract 2n to any point (i.e. move 2n hops clockwise or
anti-clockwise), we arrive at the same point. Hence, a ≡ b implies that they are the same
point on the number circle, or their n LSB bits are the same in their binary representation.

Proof: Let us consider the point u on the number circle. Its binary representation is
F(u). Now, if we move v points, we arrive at u + v. If v is positive, we move v steps
clockwise; otherwise, we move v steps anticlockwise. The binary representation of the
new point is F(u+ v).

We can interpret the movement on the number circle in another way. We start at u. We
move F(v) steps clockwise. If v ≥ 0, then v = F(v) by Equation 2.12, hence we can
conclude that we arrive at u + v. If v < 0, then F(v) = 2n − |v|. Now, moving |v| steps
anticlockwise is the same as moving 2n − |v| steps clockwise. Hence, in this case also we
arrive at u+v, which has a binary representation equal to F(u+v). Since, each step moved
in a clockwise direction is equivalent to incrementing the binary representation by 1, we
can conclude that the binary representation of the destination is equal to: F(u) + F(v).
Since, we only consider, the last n bits, the binary representation is equal to (F(u)+F(v))
mod 2n. Hence, F(u+ v) ≡ F(u) + F(v).

6. Subtraction Rule
F(u− v) ≡ F(u) + (2n −F(v)) (2.14)

Proof: We have:

71 © Smruti R. Sarangi

F(u− v) ≡ F(u) + F(−v) (addition rule)

≡ F(u) + 2n −F(v) (negation rule)
(2.15)

7. Loop Rule: F(u) ≡ 2n + F(u)
Proof: After moving 2n points on the number circle, we come back to the same point.

8. Multiplication Rule: (assuming no overflows)

F(u× v) ≡ F(u)×F(v) (2.16)

Proof: If u and v are positive, then this statement is trivially true. If u and v are
negative, then we have, u = −|u| and v = −|v|:

F(u)×F(v) ≡ (2n −F(|u|))× (2n −F(|v|))
≡ 2n+1 − 2n(F(|u|) + F(|v|) + F(|u|)×F(|v|)
≡ F(|u|)×F(|v|)
≡ F(|u| × |v|)
≡ F(u× v)

(2.17)

Now, let us assume that u is positive and v is negative. Thus, u = |u| and v = −|v|. We
have:

F(u)×F(v) ≡ F(u)× (2n −F(|v|))
≡ 2nF(u)−F(u)×F(|v|)
≡ −F(u)×F(|v|) (loop rule)

≡ −(F(u× |v|)) (u ≥ 0, |v| ≥ 0)

≡ 2n −F(u× |v|) (loop rule)

≡ F(−(u× (|v|))) (negation rule)

≡ F(u× (−|v|))
≡ F(u× v)

(2.18)

Likewise, we can prove the result for a negative u and positive v. We have thus covered
all the cases.

We thus observe that the 2’s complement number system, and the number circle based
method make the process of representing both positive and negative numbers easy. It has a
unique representation for zero. It is easy to compute its sign. We just need to take a look at
the MSB. Secondly, addition, subtraction, and multiplication on signed numbers is as simple
as performing the same operations on their unsigned representations.

© Smruti R. Sarangi 72

Example 15
Add 4 and -3 using a 4-bit 2’s complement representation.

Answer: Let us first try to add it graphically. We can start at 4 and move 3 positions anti-
clockwise. We arrive at 1, which is the correct answer. Let us now try a more conventional
approach. 4 is represented as 0100, -3 is represented as 1101. If we add, 0100 and 1101
using a regular unsigned binary adder, the result is 10001. However, we cannot represent
5 bits in our simple 4-bit system. Hence, the hardware will discard the fifth bit, and report
the result as 0001, which is the correct answer.

Computing the 2’s Complement Representation

Let us now try to explore the methods to compute a 2’s complement representation. For positive
numbers it is trivial. However, for negative numbers of the form, -u (u ≥ 0), the representation
is 2n − u. A simple procedure is outlined in Equation 2.19.

2n − u = (2n − 1− u) + 1

= (∼ u) + 1
(2.19)

According to Equation 2.9, we can conclude that (2n− 1−u) is equivalent to flipping every
bit, or alternatively computing ∼ u. Hence, the procedure for negating a number in the 2’s
complement system, is to first compute its 1’s complement, and then add 1.

The Sign Extension Trick

Let us assume that we want to convert a number’s representation from a 16-bit number system
to a 32-bit number system. If the number is positive, then we just need to prefix it with 16
zeros. Let us consider the case when it is negative. Let the number again be of the form, -u
(u ≥ 0). Its representation in 16 bits is F16(u) = 216 − u. Its representation using 32 bits is
F32(u) = 232 − u.

F32(u) = 232 − u

= (232 − 216) + (216 − u)

= 11 . . . 1︸ ︷︷ ︸
16

00 . . . 0︸ ︷︷ ︸
16

+F16(u)
(2.20)

For a negative number, we need to prepend it with 16 ones. By combining both the results,
we conclude that to convert a number from a 16-bit representation to a 32-bit representation,
we need to prepend it with 16 copies of its sign bit(MSB).

73 © Smruti R. Sarangi

Range of the 2’s Complement Number System

The range of the number system is from −2n−1 to 2n−1−1. There is one extra negative number,
−2n−1.

Checking if a 2’s Complement Addition has Resulted in an Overflow

Let us outline the following theorem for checking if a 2’s complement addition results in an
overflow.

Theorem 2.3.4.1 Let us consider an addition operation, where both the operands are non-
zero. If the signs of the operands are different, then we can never have an overflow. How-
ever, if the signs of the operands are the same, and the result has an opposite sign or is
zero, then the addition has led to an overflow.

Proof: Let us consider the number circle, and an addition operation of the form A + B.
Let us first locate point A. Then, let us move B steps clockwise if B is positive, or B steps
anti-clockwise if B is negative. The final point is the answer. We also note that if we cross the
break point (see Definition 21), then there is an overflow, because we exceed the range of the
number system. Now, if the signs of A and B are different, then we need to move a minimum of
2n−1+1 steps to cross the break point. This is because we need to move over zero (1), the break
point(1), and the set of all the positive numbers (2n−1− 1), or all the negative numbers (2n−1).
Since, we have 1 less positive number, we need to move at least 2n−1 − 1 + 1 + 1 = 2n−1 + 1
steps. Since B is a valid 2’s complement number, and is in the range of the number system, we
have | B |< 2n−1 + 1. Hence, we can conclude that after moving B steps, we will never cross
the break point, and thus an overflow is not possible.

Now, let us consider the case in which the operands have the same sign. In this case, if the
result has an opposite sign or is zero, then we are sure that we have crossed the break point.
Consequently, there is an overflow. It will never be the case that there is an overflow and the
result has the same sign. For this to happen, we need to move at least 2n−1 + 1 steps (cross
over 0, the break point, and all the positive/negative numbers). Like the earlier case, this is
not possible.

Alternative Interpretation of 2’s Complement

Theorem 2.3.4.2 A signed n bit number, A, is equal to (A1...n−1 - An2
n−1). Ai is the ith

bit in A’s 2’s complement binary representation (A1 is the LSB, and An is the MSB). A1...j

is a binary number containing the first j digits of A’s binary 2’s complement representation.

© Smruti R. Sarangi 74

Proof: Let us consider a 4-bit representation. -2 is represented as 11102. The last n−1 digits
are 1102. This is equal to 6 in decimal. The MSB represents 10002 or 8. Indeed -2 = 6 - 8.

If A > 0, then An = 0, and the statement of the theorem is trivially true. Let us consider
the case when A < 0. Here, An = 1. We observe that A1...n = 2n − |A| = 2n + A since A is
negative. Thus, A = A1...n − 2n.

A = A1...n − 2n

= (A1...n−1 +An2
n−1)− 2n

= (A1...n−1 + 2n−1)− 2n (An = 1)

= A1...n−1 − 2n−1

(2.21)

2.4 Floating Point Numbers

Floating Point Numbers are numbers that contain a decimal point. Examples are: 3.923, -4.93,
10.23e-7 (10.23 × 10−7). Note that the set of integers are a subset of the set of floating point
numbers. An integer such as 7 can be represented as 7.0000000. We shall describe a method
to represent floating point numbers in the binary format in this section.

In specific, we shall describe the IEEE 754 [Kahan, 1996] standard for representing floating
point numbers. We shall further observe that representing different kinds of floating point
numbers is slightly complicated, and requires us to consider many special cases. To make our
life easy, let us first slightly simplify the problem and consider representing a set of numbers
known as fixed point numbers.

2.4.1 Fixed Point Numbers

A fixed point number has a fixed number of digits after the decimal point. For example, any
value representing money typically has two digits after the decimal point for most currencies in
the world. In most cases, there is no reason for having more than three digits after the decimal
point. Such numbers can be represented in binary easily.

Let us consider the case of values representing a monetary amount. These values will only
be positive. A value such as 120.23 can be represented in binary as the binary representation
of 12023. Here, the implicit assumption is that there are two digits after the decimal point. It
is easy to add two numbers using this notation. It is also easy to subtract two numbers as long
as the result is positive. However, multiplying or dividing such numbers is difficult.

2.4.2 Generic Form of Floating Point Numbers

Unlike fixed point numbers, there can potentially be many more digits after the decimal point
in floating point numbers. We need a more generic representation. Let us first look at how
we represent floating point numbers in a regular base 10 number system. For simplicity, let us
limit ourselves to positive floating point numbers in this section.

75 © Smruti R. Sarangi

Representing Floating Point Numbers in Base-10

Examples of positive floating point numbers in base 10 are: 1.344, 10.329, and 2.338. Alterna-
tively, a floating point number, A, can be expanded according to Equation 2.22.

A =
n∑

i=−n

xi10
i (2.22)

For example, 1.344 = 1× 100 + 3× 10−1 + 4× 10−2 + 4× 10−3. The coefficient xi can vary
from 0 to 9. Let us try to use the basic idea in this equation to create a similar representation
for floating point numbers in base 2.

Representing Floating Point Numbers in Binary

Let us try to extend the expansion shown in Equation 2.22 to expand positive floating point
numbers in base 2. A is a positive floating point number. We can try to expand A as:

A =

n∑
i=−n

xi2
i (2.23)

Here, xi is either 0 or 1. Note that the form of Equation 2.23 is exactly the same as
Equation 2.22. However, we have changed the base from 10 to 2.

We have negative exponents from -1 to −n, and non-negative exponents from 0 to n. The
negative exponents represent the fractional part of the number, and the non-negative expo-
nents represent the integer part of the number. Let us show a set of examples in Table 2.12.
We show only non-zero co-coefficients for the sake of brevity.

Number Expansion

0.375 2−2 + 2−3

1 20

1.5 20 + 2−1

2.75 21 + 2−1 + 2−2

17.625 24 + 20 + 2−1 + 2−3

Table 2.12: Representation of floating point numbers

We observe that using Equation 2.23, we can represent a lot of floating point numbers ex-
actly. However, there are a lot of numbers such as 1.11, which will potentially require an infinite
number of terms with negative exponents. It is not possible to find an exact representation
for it using Equation 2.23. However, if n is large enough, we can reduce the error between the
actual number and the represented number to a large extent.

Let us now try to represent a positive floating point number in a binary format using
Equation 2.23. There are two parts in a positive floating point number – integer part and
fractional part. We represent the integer part using a standard binary representation. We
represent the fractional part also with a binary representation of the form: x−1x−2 . . . x−n.
Lastly, we put a ’.’ between the integer and fractional parts.

© Smruti R. Sarangi 76

Number Expansion Binary Representation

0.375 2−2 + 2−3 0.011

1 20 1.0

1.5 20 + 2−1 1.1

2.75 21 + 2−1 + 2−2 10.11

17.625 24 + 20 + 2−1 + 2−3 10001.101

Table 2.13: Representation of floating point numbers in binary

Table 2.13 shows the binary representation of numbers originally shown in Table 2.12.

Normal Form

Let us take a look at Table 2.13 again. We observe that there are a variable number of binary
bits before and after the decimal point. We can limit the number of bits before and after the
decimal point to Li and Lf respectively. By doing so, we can have a binary representation for
a floating point number that requires Li + Lf bits – Li bits for the integer part, and Lf bits
for the fractional part. The fractional part is traditionally known as the mantissa, whereas the
entire number (both integer and fraction) is known as the significand. If we wish to devote 32
bits for representing a floating point number, then the largest number that we can represent
is approximately 216 = 65, 536 (if Li = Lf), which is actually a very small number for most
practical purposes. We cannot represent large numbers such as 250.

Let us thus, slightly modify our generic form to expand the range of numbers that we can
represent. We start out by observing that 101110 in binary can be represented as 1.01110× 25.
The number 1.01110 is the significand. As a convention, we can assume that the first binary
digit in the significand is 1, and the decimal point is right after it. Using this notation, we can
represent all floating point numbers as:

A = P × 2X , (P = 1 +M, 0 ≤M < 1, X ∈ Z) (2.24)

Definition 23

Significand It is the part of the floating point number that just contains its digits. The
decimal point is somewhere within the significand. The significand of 1.3829× 103 is
1.3829.

Mantissa It represents the fractional part of the significand. The mantissa of 1.3829×103

is 0.3829.

Z is the set of integers, P is the significand, M is the mantissa, and X is known as the
exponent. This representation is slightly more flexible. It allows us to specify large exponents,

77 © Smruti R. Sarangi

both positive as well as negative. Lastly, let us try to create a generic form for both positive and
floating point numbers by introducing a sign bit, S. We show the resulting form in Equation 2.25
and refer to it as the normal form henceforth.

A = (−1)S × P × 2X , (P = 1 +M, 0 ≤M < 1, X ∈ Z) (2.25)

If S = 0, the number is positive. If S = 1, the number is negative.

2.4.3 IEEE 754 Format for Representing Floating Point Numbers

Let us now try to represent a floating point number using a sequence of 32 bits. We shall
describe the IEEE 754 format, which is the de facto standard for representing floating point
numbers in binary.

Let us start with the normal form as shown in Equation 2.25. We observe that there are three
variables in the equation: S(sign bit), M(mantissa), and X(exponent). Since all significands
have 1 as their first digit, there is no need to explicitly represent it. We can assume that we
have a 1 by default as the MSB of the significand, and we need to just represent the Lf bits of
the mantissa. Secondly, since we are representing all our numbers in binary, the base is 2, and
this can be assumed to be the default value. The IEEE 754 format thus proposes to apportion
32 bits as shown in Figure 2.8.

1 8

Sign(S)Exponent(X) Mantissa(M)

23

Figure 2.8: IEEE 754 format for representing 32-bit floating point numbers

The format allocates 1 bit for the sign bit, 8 bits for the exponent, and 23 bits for the
mantissa. The exponent can be positive, negative or zero. The point to note here is that the
exponent is not represented in the 2’s complement notation. It is represented using the biased
representation (see Section 2.3.3). The exponent(X) is represented by a number, E, where:

E = X + bias (2.26)

In this case, the bias is equal to 127. Thus, if the exponent is equal 10, it is represented
as 137. If the exponent is -20, it is represented as 107. E is an unsigned number between 0
and 255. 0 and 255 are reserved for special values. The valid range for E for normal floating
point numbers is 1 to 254. Thus, the exponent can vary from -126 to 127. We can represent
the normal form for IEEE 754 numbers as:

A = (−1)S × P × 2E−bias, (P = 1 +M, 0 ≤M < 1, 1 ≤ E ≤ 254) (2.27)

Example 16
Find the smallest and largest positive normal floating point numbers.
Answer:

© Smruti R. Sarangi 78

• The largest positive normal floating point number is 1. 11 . . . 1︸ ︷︷ ︸
23

×2127.

1. 11 . . . 1︸ ︷︷ ︸
23

= 1 +
−23∑
i=−1

2i

=

−23∑
i=0

2i

= 21 − 2−23

= 2− 2−23

The result is equal to (2− 2−23)× 2127 = 2128 − 2104.

• The smallest positive normal floating point number is 1.00 . . . 0× 2−126 = 2−126.

Example 17
What is the range of normal floating point numbers.
Answer: ±(2128 − 2104).

Special Numbers

We reserved two values of E, 0 and 255, to represent special numbers.

E M Value

255 0 ∞ if S = 0

255 0 −∞ if S = 1

255 ̸= 0 NAN (Not a number)

0 0 0

0 ̸= 0 Denormal number

Table 2.14: Special floating point numbers

If (E=255), then we can represent two kinds of values: ∞ and NAN (Not a number).
We need to further look at the mantissa(M). If (M = 0), then the number represents ±∞
depending on the sign bit. We can get ∞ as a result of trying to divide any non-zero number
by 0, or as the result of other mathematical operations. The point to note is that the IEEE
754 format treats infinities separately.

If we divide 0/0 or try to compute sin−1(x) for x > 1, then the result is invalid. An invalid
result is known as a NAN. Any mathematical operation involving a NAN has as its result a

79 © Smruti R. Sarangi

NAN. Even NAN −NAN = NAN . If M ̸= 0, then the represented number is a NAN. In this
case the exact value of M is not relevant.

Now, let us take a look at the case, when E = 0. If M is also 0, then the number represented
is 0. Note that there are two 0s in the IEEE 754 format – a positive zero and a negative
zero. Ideally implementations of this format are supposed to treat both the zeros as the same.
However, this can vary depending upon the processor vendor.

The last category of numbers are rather special. They are called denormal numbers. We
shall discuss them separately in Section 2.4.4.

2.4.4 Denormal Numbers

We have seen in Example 16 that the smallest positive normal floating point number is 2−126.
Let us consider a simple piece of code.

f = 2^(-126);

g = f / 2;

if (g == 0)

print ("error");

Sadly, this piece of code will compute g to be 0 as per our current understanding. The reason
for this is that f is the smallest possible positive number that can be represented in our format.
g can thus not be represented, and most processors will round g to 0. However, this leads to a
mathematical fallacy. The IEEE 754 protocol designers thus tried to avoid situations like this
by proposing the idea of denormal numbers. Denormal numbers have a slightly different form
as given by Equation 2.28.

A = (−1)S × P × 2−126, (P = 0 +M, 0 ≤M < 1) (2.28)

Note the differences with Equation 2.25. The implicit value of 1 is not there any more.
Instead of (P = 1 + M), we have (P = 0 + M). Secondly, there is no room to specify any
exponent. This is because E=0. The default exponent is -126. We can view denormal numbers
as an extension of normal floating point numbers on both sides (smaller and larger). Refer to
Figure 2.9.

0

Denormal numbers

Normal FP numbers

Figure 2.9: Denormal numbers on a conceptual number line (not drawn to scale)

© Smruti R. Sarangi 80

Example 18
Find the smallest and largest positive denormal numbers.
Answer:

• The smallest positive denormal number is 0. 00 . . . 0︸ ︷︷ ︸
22

1× 2−126 = 2−149.

• The largest possible denormal number is 0. 11 . . . 1︸ ︷︷ ︸
23

×2−126 = 2−126 − 2−149.

• Note that the largest denormal number (2−126 − 2−149) is smaller than the small-
est positive normal number (2−126). This justifies the choice of 2−126 as the default
exponent for denormal numbers.

Example 19
Find the ranges of denormal numbers.
Answer:

• For positive denormal numbers, the range is [2−149, 2−126 − 2−149].

• For negative denormal numbers, the range is [−(2−126 − 2−149),−2−149].

By using denormal numbers we will not get a wrong answer if we try to divide 2−126 by 2, and
then compare it with 0. Denormal numbers can thus be used as a buffer such that our normal
arithmetic operations do not give unexpected results. In practice, incorporating denormal
numbers in a floating point unit is difficult and they are very slow to process. Consequently,
a lot of small embedded processors do not support denormal numbers. However, most modern
processors running on laptops and desktops have full support for denormal numbers.

2.4.5 Double Precision Numbers

We observe that by using 32 bits, the largest number that we can represent is roughly 2128, which
is approximately 1038. We might need to represent larger numbers, especially while studying
cosmology. Secondly, there are only 23 bits of precision (mantissa is 23 bits long). If we are
doing highly sensitive calculations, then we might need more bits of precision. Consequently,
there is a IEEE 754 standard for double precision numbers. These numbers require 64 bits
of storage. They are represented by the double datatype in C or Java.

64 bits are apportioned as follows:
The mantissa is now 52 bits long. We have 11 bits for representing the exponent. The bias

is equal to 1023, and the range of the exponent is from -1022 to 1023. We can thus represent
many more numbers that are much larger, and we have more bits in the mantissa for added
precision. The format and semantics of ±∞, zero, NAN, and denormal numbers remains the
same as the case for 32 bits.

81 © Smruti R. Sarangi

Field Size(bits)

S 1

E 11

M 52

2.4.6 Floating Point Mathematics

Because of limited precision, floating point formats do not represent most numbers accurately.
This is because, we are artificially constraining ourselves to expressing a generic real number
as a sum of powers of 2, and restricting the number of mantissa bits to 23. It is possible that
some numbers such as 1/7 can be easily represented in one base (base 7), and can have inexact
representations in other bases (base 2). Furthermore, there are a large set of numbers that
cannot be exactly represented in any base. These are irrational numbers such as

√
2 or π. This

is because a floating point representation is a rational number that is formed out of repeatedly
adding fractions. It is a known fact that rational numbers cannot be used to represent numbers
such as

√
2. Leaving theoretical details aside, if we have a large number of mantissa bits, then

we can get arbitrarily close to the actual number. We need to be willing to sacrifice a little bit
of accuracy for the ease of representation.

Floating point math has some interesting and unusual properties. Let us consider the
mathematical expression involving two positive numbers A and B: A + B − A. We would
ideally expect the answer to be non-zero. However, this need not be the case. Let us consider
the following code snippet.

A = 2^(50);

B = 2^(10);

C = (B + A) - A;

Due to the limited number of mantissa bits (23), there is no way to represent 250 + 210. If
the dominant term is 250, then our flexibility is only limited to numbers in the range 250±23.
Hence, a processor will compute A+B equal to A, and thus C will be 0. However, if we slightly
change the code snippet to look like:

A = 2^(50);

B = 2^(10);

C = B + (A - A);

C is computed correctly in this case. We thus observe that the order of floating point
operations is very important. The programmer has to be either smart enough to figure out the
right order, or we need a smart compiler to figure out the right order of operations for us. As
we see, floating point operations are clearly not associative. The proper placement of brackets
is crucial. However, floating point operations are commutative (A+B = B +A).

Due to the inexact nature of floating point mathematics, programmers and compilers need
to pay special attention while dealing with very large or very small numbers. As we have also
seen, if one expression contains both small and large numbers, then the proper placement of
brackets is very important.

© Smruti R. Sarangi 82

2.5 Strings

A string data type is a sequence of characters in a given language such as English. For example,
“test”, is a string of four characters. We need to derive a bitwise representation for it, the same
way we devised a representation for integers. Traditionally, characters in the English language
are represented using the ASCII character set. Hence, we shall describe it first.

2.5.1 ASCII Format

ASCII stands for “American Standard Code for Information Interchange”. It is a format that
assigns a 7 bit binary code for each English language character including punctuation marks.
Most languages that use the ASCII format, use 8 bits to represent each character. One bit(MSB)
is essentially wasted.

The ASCII character set defines 128 characters. The first 32 characters are reserved for
control operations, especially for controlling the printer. For example, the zeroth character
is known as the null character. It is commonly used to terminate strings in the C language.
Similarly, there are special characters for backspace(8), line feed(10), and escape(27). The
common English language characters start from 32 onwards. First, we have punctuation marks
and special characters, then we have 26 capital letters, and finally 26 small letters. We show a
list of ASCII characters along with their decimal encodings in Table 2.15.

Since ASCII can represent only 128 symbols, it is suitable only for English. However, we
need an encoding for most of the languages in the world such as Arabic, Russian, French,
Spanish, Swahili, Hindi, Chinese, Thai, and Vietnamese. The Unicode format was designed for
this purpose. The most popular Unicode standard until recently was UTF-8.

2.5.2 UTF-8

UTF (Universal character set Transformation Format - 8 bit) can represent every character in
the Unicode character set. The Unicode character set assigns a unsigned binary number to each
character of most of the world’s writing systems. UTF-8 encodes 1,112,064 characters defined
in the Unicode character set. It uses 1-6 bytes for this purpose.

UTF-8 is compatible with ASCII. The first 128 characters in UTF-8 correspond to the ASCII
characters. When using ASCII characters, UTF-8 requires just one byte. It has a leading 0.
However, the first byte can contain extra information such as the total number of bytes. This
is encoded by having leading ones followed by a zero in the first byte. For example, if the
first byte is of the form 11100010, then it means that the character contains 3 bytes. Each
continuation byte begins with 10. Most of the languages that use variants of the Roman script
such as French, German, and Spanish require 2 bytes in UTF-8. Greek, Russian (Cyrillic),
Hebrew, and Arabic, also require 2 bytes.

UTF-8 is a standard for the world wide web. Most browsers, applications, and operating
systems are required to support it. It is by far the most popular encoding as of 2012.

2.5.3 UTF-16 and UTF-32

UTF-8 has been superseded by UTF-16, and UTF-32. UTF-16 uses either 2 byte or 4 byte
encodings to represents all the Unicode characters. It is primarily used by Java and the Windows

83 © Smruti R. Sarangi

Character Code Character Code Character Code

a 97 A 65 0 48
b 98 B 66 1 49
c 99 C 67 2 50
d 100 D 68 3 51
e 101 E 69 4 52
f 102 F 70 5 53
g 103 G 71 6 54
h 104 H 72 7 55
i 105 I 73 8 56
j 106 J 74 9 57
k 107 K 75 ! 33
l 108 L 76 # 35
m 109 M 77 $ 36
n 110 N 78 % 37
o 111 O 79 & 38
p 112 P 80 (40
q 113 Q 81) 41
r 114 R 82 * 42
s 115 S 83 + 43
t 116 T 84 , 44
u 117 U 85 . 46
v 118 V 86 ; 59
w 119 W 87 = 61
x 120 X 88 ? 63
y 121 Y 89 @ 64
z 122 Z 90 ∧ 94

Table 2.15: ASCII Character Set

operating system. UTF-32 encodes all characters using exactly 32 bits. It is rarely used since
it is an inefficient encoding.

2.6 Summary and Further Reading

2.6.1 Summary

Summary 2

1. In computer architecture, we represent information using the language of bits. A bit
can either take the value of 0 or 1. A sequence of 8 bits is called a byte.

© Smruti R. Sarangi 84

2. A variable representing a bit is also called a Boolean variable, and an algebra on such
Boolean variables is known as Boolean algebra.

3. (a) The basic operators in Boolean algebra are logical OR, AND, and NOT.

(b) Some derived operators are NAND, NOR, and XOR.

(c) We typically use the De Morgan’s laws (see Section 2.1.4) to simplify Boolean
expressions.

4. Any Boolean expression can be represented in a canonical form as a logical OR of
minterms. It can then be minimised using Karnaugh Maps.

5. We can represent positive integers in a binary representation by using a sequence of
bits. In this case, we represent a number, A, as xnxn−1 . . . x1, where A =

∑n
i=1 xi2

i−1.

6. The four methods to represent a negative integer are:

(a) Sign Magnitude based Method

(b) The 1’s Complement Method

(c) Bias based Method

(d) The 2’s Complement Method

7. The 2’s complement method is the most common. Its main properties are as follows:

(a) The representation of a positive integer is the same as its unsigned representation
with a leading 0 bit.

(b) The representation of a negative integer (−u) is equal to 2n − u, in an n bit
number system.

(c) To convert an m-bit 2’s complement number to an n-bit 2’s complement number,
where n > m, we need to extend its sign by n−m places.

(d) We can quickly compute the 2’s complement of a negative number of the form
−u (u ≥ 0), by computing the 1’s complement of u (flip every bit), and then
adding 1.

(e) Addition, subtraction, and multiplication (ignoring overflows) of integers in the
2’s complement representation can be done by assuming that the respective binary
representations represent unsigned numbers.

8. Floating point numbers in the IEEE 754 format are always represented in their normal
form.

(a) A floating point number, A, is equal to

A = (−1)S × P × 2X

S is the sign bit, P is the significand, and X is the exponent.

85 © Smruti R. Sarangi

(b) We assume that the significand is of the form 1 +M , where 0 ≤ M < 1. M is
known as the mantissa.

9. The salient points of the IEEE 754 format are as follows:

(a) The MSB is the sign bit.

(b) We have a 8 bit exponent that is represented using the biased notation (bias equal
to 127).

(c) We do not represent the leading bit (equal to 1) in the significand. We represent
the mantissa using 23 bits.

(d) The exponents, 0 and 255, are reserved for special numbers – denormal numbers,
NAN, zero, and ±∞.

10. Denormal numbers are a special class of floating point numbers, that have a slightly
different normal form.

A = (−1)S × P × 2−126, (0 ≤ P < 1, P = 0 +M)

11. Floating point arithmetic is always approximate; hence, arithmetic operations can lead
to mathematical contradictions.

12. We represent pieces of text as a contiguous sequence of characters. A character can
either be encoded in the 7 bit ASCII format, or in the Unicode formats that use 1-4
bytes per character.

2.6.2 Further Reading

Boolean algebra is a field of study by itself. Boolean formulae, logic, and operations form
the basis of modern computer science. We touched upon some basic results in this chapter.
The reader should refer to [Kohavi and Jha, 2009] for a detailed discussion on Boolean logic,
Karnaugh Maps, and a host of other advanced techniques to minimise the number of terms
in Boolean expressions. For Boolean logic and algebra, the reader can also consult [Gregg,
1998, Patt and Patel, 2003, Whitesitt, 2010] The next step for the reader is to read more about
the synthesis and optimisation of large digital circuits. The book by Giovanni de Michel [Micheli,
1994] can be a very helpful reference in this regard. Number systems such as 2’s complement
naturally lead to computer arithmetic where we perform complex operations on numbers. The
reader should consult the book by Zimmermann [Brent and Zimmermann, 2010]. For learning
more about the representation of characters, and strings, especially in different languages, we
refer the reader to the unicode standard [uni,].

© Smruti R. Sarangi 86

Exercises

Boolean Logic

Ex. 1 — A, B, C and D are Boolean variables. Prove the following results:

a) A.B +A.B +B.C +B.C = 1

b) (A+B).(A+B).(A+B.D + C) = A.B.D +A.C

c) A.B +B.C = A.C +B

d) A.B +A.B +A.B.C.D = B

Ex. 2 — Construct a circuit to compute the following functions using only NOR gates.

a)A

b)A+B

c)A.B

d)A⊕B

Ex. 3 — Construct a circuit to compute the following functions using only NAND gates.

a)A

b)A+B

c)A.B

d)A⊕B

** Ex. 4 — Prove that any Boolean function can be realised with just NAND or NOR gates.
[HINT: Use the idea of decomposing a function into its set of minterms.]

Ex. 5 — Why are the first and last rows or columns considered to be adjacent in a Karnaugh
Map?

Ex. 6 — Minimise the following Boolean functions using a Karnaugh Map.

a)ABC +ABC +ABC

b)ABCD +ABCD +AD

* Ex. 7 — Consider the Karnaugh map of the function A1⊕A2 . . .⊕An. Prove that it looks
like a chess board. Why cannot we minimise this expression further?

Integer Number Systems

Ex. 8 — Convert the following 8 bit binary numbers in 1’s complement form to decimal.

a) 01111101

87 © Smruti R. Sarangi

b) 10000000

c) 11111111

d) 00000000

e) 11110101

Ex. 9 — Convert the following unsigned numbers (in the given base) to decimal:

a) (243)5

b) (77)8

c) (FFA)16

d) (100)4

e) (55)6

Ex. 10 — Do the following calculations on unsigned binary numbers and write the result as
an unsigned binary number.

a) 1100110101 + 1111001101

b) 110110110 + 10111001

c) 11101110− 111000

d) 10000000− 111

Ex. 11 — What are the pros and cons of the 1’s complement number system?

Ex. 12 — What are the pros and cons of the sign-magnitude number system?

Ex. 13 — What is a number circle? How is it related to the 2’s complement number system?

Ex. 14 — What does the point of discontinuity on the number circle signify?

Ex. 15 — Why is moving k steps on the number circle in a clockwise direction equivalent to
moving 2n - k steps in an anti-clockwise direction? Assume that the number circle contains 2n

nodes.

Ex. 16 — What are the advantages of the 2’s complement notation over other number sys-
tems?

Ex. 17 — Outline a method to quickly compute the 2’s complement of a number.

Ex. 18 — Prove the following result in your own words:

F(u− v) ≡ F(u) + (2n −F(v)) (2.29)

Ex. 19 — Let us define sign contraction to be the reverse of sign extension. What are the
rules for converting a 32-bit number to a 16-bit number by using sign contraction? Can we do
this conversion all the time without losing information?

Ex. 20 — What are the conditions for detecting an overflow while adding two 2’s complement
numbers?

© Smruti R. Sarangi 88

Floating Point Number System

Ex. 21 — Describe the IEEE 754 format.

Ex. 22 — Why do we avoid representing the bit to the left of the decimal point in the
significand?

Ex. 23 — Define denormal numbers. How do they help to extend the range of normal floating
point numbers?

Ex. 24 — In the standard form of a denormal number, why is the exponent term equal to
2−126? Why is it not equal to 2−127?

Ex. 25 — Convert the following floating point numbers into the IEEE 32-bit 754 format.
Write your answer in the hexadecimal format.

a) −1 ∗ (1.75 ∗ 2−29 + 2−40 + 2−45)

b) 52

Ex. 26 — What is the range of positive and negative denormal floating point numbers num-
bers?

Ex. 27 — What will be the output of the following C code snippet assuming that the fractions
are stored in an IEEE 32-bit 754 format:

float a=pow(2,-50);

float b=pow(2,-74);

float d=a;

for(i=0; i<100000; i++)

{

d=d+b;

}

if(d>a)

printf("%d",1);

else

printf("%d",2);

Ex. 28 — We claim that the IEEE 754 format represents real numbers approximately. Is this
statement correct?

* Ex. 29 — Prove that it is not possible to exactly represent
√
2 even if we have an indefinitely

large number of bits in the mantissa.

* Ex. 30 — How does having denormal numbers make floating point mathematics slightly
more intuitive?

* Ex. 31 — What is the correct way for comparing two floating point numbers for equality?

** Ex. 32 — Assume that the exponent e is constrained to lie in the range 0 ≤ e ≤ X with
a bias of q , and the base is b . The significand is p digits in length. Use an IEEE 754 like

89 © Smruti R. Sarangi

encoding. However, you need to devote one digit to store the value to the left of the decimal
point in the significand.

a) What are the largest and smallest positive values that can be written in normal form.

b) What are the largest and smallest positive values that can be written in denormal form.

* Ex. 33 — Most of the floating point numbers cannot be represented accurately in hardware
due to the loss of precision. However, if we choose some other representation, we can represent
certain kinds of floating point numbers without error.

a) Give a representation for storing rational numbers accurately. Devise a normal form for
it.

b) Can other floating point numbers such as
√
2 be represented in a similar way?

Ex. 34 — Design a floating point representation, for a base 3 system on the lines of the IEEE
754 format.

Strings

Ex. 35 — Convert the string “459801” to ASCII. The ASCII representation of 0 is 0x30.
Assume that all the numbers are represented in the ASCII format in sequence.

Ex. 36 — Find the Unicode representation for characters in a non-English language, and
compare it with the ASCII encoding.

Design Problems

Ex. 37 — In this section, we have minimised Boolean expressions using Karnaugh maps.
We solved all our examples manually. This method is not scalable for expressions containing
hundreds of variables. Study automated techniques for minimising Boolean expressions such as
the Quinn-McCluskey tabulation method. Write a program to implement this method.

© Smruti R. Sarangi 90

3
Assembly Language

Assembly language can broadly be defined as a textual representation of machine instructions.
Before building a processor, we need to know about the semantics of different machine instruc-
tions, and a rigorous study of assembly language will be of benefit in this regard. An assembly
language is specific to an ISA and compiler framework; hence, there are many flavors of as-
sembly languages. In this chapter we shall describe the broad principles underlying different
variants of assembly languages, some generic concepts and terms. We will subsequently design
our own assembly language, SimpleRisc . It is a simple RISC ISA with a few instructions.
Subsequently, in Chapter 9, we will design a processor that fully implements this ISA. Thus,
the plan for this chapter is as follows. We shall first convince ourselves of the need for assem-
bly language in Section 3.1 from the point of view of both software developers and hardware
designers. Then we shall proceed to discuss the generic semantics of assembly languages in
Section 3.2. Once, we have a basic understanding of assembly languages, we shall design our
own assembly language, SimpleRisc , in Section 3.3, and then design a method to encode it
using a sequence of 32 bits in Section 3.3.14.

Subsequently, in Chapter 4 we shall describe the ARM assembly language that is meant for
ARM based processors, and in Chapter 5, we shall describe the x86 assembly language meant
for Intel/AMD processors. In these two chapters, these machine specific assembly languages
will be covered in great detail. This chapter is introductory, and creates the framework for a
more serious study of different instruction sets and assembly languages.

3.1 Why Assembly Language

3.1.1 Software Developer’s Perspective

A human being understands natural languages such as English, Russian, and Spanish. With
some additional training a human can also understand computer programming languages such
as C or Java. However, a computer is a dumb machine as mentioned in Chapter 1. It is

91

© Smruti R. Sarangi 92

not smart enough to understand commands in a human language such as English, or even a
programming language such as C. It only understands zeros and ones. Hence, to program a
computer it is necessary to give it a sequence of zeros and ones. Indeed some of the early
programmers used to program computers by turning on or off a set of switches. Turning on
a switch corresponded to a 1, and turning it off meant a 0. However, for today’s massive
multi-million line programs, this is not a feasible solution. We need a better method.

Consequently, we need an automatic converter that can convert programs written in high
level languages such as C or Java to a sequence of zeros and ones known as machine code.
Machine code contains a set of instructions known as machine instructions. Each machine
instruction is a sequence of zeros and ones, and instructs the processor to perform a certain
action. A program that can convert a program written in a high level language to machine
code is called a compiler(see Figure 3.1).

Definition 24

• A high level programming language such as C or Java uses fairly complex constructs
and statements. Each statement in these languages typically corresponds to a multi-
tude of basic machine instructions. These languages are typically independent of the
processor’s ISA.

• A compiler is an executable program that converts a program written in a high level
language to a sequence of machine instructions that are encoded using a sequence of
zeros and ones.

Compiler

Program

01001001
10001010
10010010
10001010

Machine code

Figure 3.1: The compilation process

Note that the compiler is an executable program that typically runs on the machine that
it is supposed to generate machine code for. A natural question that can arise is – who wrote
the first compiler? See Trivia 1.

Trivia 1 Who Wrote the First Compiler? If a programmer wrote the compiler in a high
level language such as C or Java, then she must have needed a compiler to compile it into
machine code. However, she did not have a compiler with her at that point of time, because

93 © Smruti R. Sarangi

she was in the process of building one! Since she did not have a compiler, while building the
compiler, how did she ultimately build it? This is an example of a chicken and egg problem.
The classic chicken and egg problem poses a simple yet vexing question – did the chicken
come first or the egg come first? However, the chicken and egg problem has a solution that
can be explained in terms of evolution. Scientists believe that early organisms reproduced
by replication. At some point of time, due to a genetic mutation, an organism started to
lay eggs. These organisms perpetuated, and started reproducing by only laying eggs. They
evolved into all kinds of birds and reptiles, including chickens.

We can explain this conundrum in a similar manner. The early programmers wrote sim-
ple compilers using machine instructions. A primitive compiler is just a sequence of zeros
and ones. The early programmers then used these primitive compilers to compile programs.
A special class of such programs were compilers themselves. They were written in high level
languages and were better in terms of features, functionality and even performance. These
first generation compilers were then used to create second generation compilers, and this
process has continued till date. Nowadays, if a new processor is being developed, then it
is not necessary to follow this procedure. Programmers, use another set of programs called
cross compilers. A cross compiler runs on an existing processor, and produces an executable
using the machine instructions of the new processor that is being developed. Once the new
processor is ready, this program can be moved to the new processor and executed directly. It
is thus possible to develop a large range of software including compilers for processors with
new instruction sets. Hence, most modern day programmers do not have to write programs
using raw machine instructions.

Definition 25
A cross compiler is a program that runs on machine A, and generates machine code for
machine B. It is possible that B has a different ISA.

Given the ubiquity of compilers, almost all programs are written in high level languages and
compilers are used to convert them to machine code. However, there are important exceptions
to this rule. Note that the role of a compiler is two fold. First, it needs to correctly translate a
program in a high level language to machine instructions. Second, it needs to produce efficient
machine code that does not take a lot of space, and is fast. Consequently, algorithms in compilers
have become increasingly complicated over the years. However, it is not always possible to meet
these requirements. For example, in some scenarios, compilers might not be able to produce
code that is fast enough, or has a certain kind of functionality that the programmer desires. Let
us elaborate further. Algorithms in compilers are limited by the amount of analysis that they
can perform on the program. For example, we do not want the process of compilation to be
extremely slow. A lot of the problems in the area of compilers are computationally difficult to
solve and are thus time consuming. Secondly, the compiler is not aware of the broad patterns
in the code. For example, it is possible that a certain variable might only take a restricted set

© Smruti R. Sarangi 94

of values, and on the basis of this, it might be possible to optimise the machine code further. It
is hard for a compiler to figure this out. However, smart programmers can sometimes produce
machine code that is more optimal than a compiler because they are aware of some broad
patterns of execution, and their brilliant brains can outsmart compilers.

Secondly, it is also possible that a processor vendor might add new instructions in their ISA.
In this case, compilers meant for older versions of the processor might not be able to leverage
the new instructions. It will be necessary to add them manually in programs. Continuing this
argument further, we observe that popular compilers such as gcc (GNU compiler collection)
are fairly generic. They do not use all possible machine instructions that a processor provides
while generating machine code. Typically, a lot of the missed out instructions are required
by operating systems and device drivers (programs that interface with devices such as the
printer, and scanner). These software programs require these instructions because they need
low level access to the hardware. Consequently, system programmers have a strong incentive
to occasionally bypass the compiler.

In all of these situations, it is necessary for programmers to manually embed a sequence of
machine instructions in a program. As mentioned, there are two primary reasons for doing so –
efficiency and extra functionality. Hence, from the point of view of system software developers,
it is necessary to know about machine instructions such that they can be more productive in
their job.

Now, our aim is to insulate modern day programmers from the intricate details of zeros
and ones. Ideally, we do not want our programmers to program by manually turning on and
off switches as was done fifty years ago. Consequently, a low level language called assembly
language was developed (see Definition 26). Assembly language is a human readable form
of machine code. Each assembly language statement typically corresponds to one machine
instruction. Furthermore, it eases the burden on the programmer significantly by not forcing
her to remember the exact sequence of zeros/ones that are needed to encode an instruction.

Definition 26

• A low level programming language uses simple statements that correspond to typically
just one machine instruction. These languages are specific to the ISA.

• The term “assembly language” refers to a family of low level programming languages
that are specific to each ISA. They have a generic structure that consists of a sequence
of assembly statements. Typically, each assembly statement has two parts – (1) an
instruction code that is a mnemonic for a basic machine instruction, and (2) and a
list of operands.

From a practical standpoint, it is possible to write stand alone assembly programs and
convert them to executables using a program called an assembler(Definition 27). Alternatively,
it is also possible to embed snippets of assembly code in high level languages such as C or
C++. The latter is more common. A compiler ensures that it is able to compile the combined
program into machine code. The benefits of assembly languages are manifold. Since each

95 © Smruti R. Sarangi

line in assembly code corresponds to one machine instruction, it is as expressive as machine
code. Because of this one to one mapping, we do not sacrifice efficiency by writing programs in
assembly. Secondly, it is a human readable and elegant form of textually representing machine
code. It makes it significantly easier to write programs using it, and it is also possible to cleanly
embed snippets of assembly code in software written in high level languages such as C. The
third advantage of assembly language is that it defines a level of abstraction over and above real
machine code. It is possible that two processors might be compatible with the same variant of
assembly language, but actually have different machine encodings for the same instruction. In
this case, assembly programs will be compatible across both of these processors.

Definition 27
An assembler is an executable program that converts an assembly program into machine
code.

Example 20
The core engines of high performance 3D games need to be optimised for speed as much
as possible [Phelps and Parks, 2004]. Most compilers fail to produce code that runs fast
enough. It becomes necessary for programmers to manually write sequences of machine
instructions.

Example 21
Vranas et. al. [Vranas et al., 2006] describe a high performance computing application
to study the structure of an atomic nucleus. Since the computational requirements are
high, they needed to run their program on a supercomputer. They observed that the core
of the program lies in a small set of functions that are just 1000 lines long. They further
observed that compilers were not doing a good in job in optimising the output machine code.
Consequently, they decided to write the important functions in assembly code, and obtained
record speedups on a supercomputer. Durr et. al. [Durr et al., 2009] subsequently used this
framework to accurately calculate the mass of a proton and a neutron from first principles.
The results were in complete agreement with experimentally observed values.

3.1.2 Hardware Designer’s Perspective

The role of hardware designers is to design processors that can implement all the instructions
in the ISA. Their main aim is to design an efficient processor that is optimal with regards to
area, power efficiency, and design complexity. From their perspective, the ISA is the crucial
link between software and hardware. It answers the basic question for them – “what to build?”

© Smruti R. Sarangi 96

Hence, it is very essential for them to understand the precise semantics of different instruction
sets such that they can design processors for them. As mentioned in Section 3.1.1, it is cum-
bersome to look at instructions as merely a sequence of zeros and ones. They can gain a lot
by taking a look at the textual representation of a machine instruction, which is an assembly
instruction.

An assembly language is specific to an instruction set and an assembler. In this chapter, we
use the assembly language format of the popular GNU assembler [Elsner and Fenlason, 1994]
to explain the syntax of a typical assembly language file. Note that other systems have similar
formats, and the concepts are broadly the same.

3.2 The Basics of Assembly Language

3.2.1 Machine Model

Let us reconsider the basic abstract machine model explained in Chapter 1. We had finished
the chapter by describing a form of the Harvard and Von Neumann machines with registers.
Assembly languages do not see the instruction memory and data memory as different entities.
They assume an abstract Von Neumann machine augmented with registers.

Refer to Figure 3.2 for a pictorial representation of the machine model. The program is
stored in a part of the main memory. The central processing unit (CPU) reads out the program
instruction by instruction, and executes the instructions appropriately. The program counter
keeps track of the memory address of the instruction that a CPU is executing. We typically
refer to the program counter using the acronym – PC. Most instructions are expected to get
their input operands from registers. Recall that every CPU has a fixed number of registers
(typically < 64). However, a large number of instructions, can also get their operands from
the memory directly. It is the job of the CPU to co-ordinate the transfers to and from the
main memory and registers. Secondly, the CPU also needs to perform all the arithmetic/logical
calculations, and liaise with external input/output devices.

CPU

Control

ALU

 Memory I/O devices

Registers

Figure 3.2: The Von Neumann machine with registers

Most flavors of assembly language assume this abstract machine model for a majority of
their statements. However, since another aim of using assembly language is to have more fine
grained and intrusive control of hardware, there are a fair number of assembly instructions that
are cognisant of the internals of the processor. These instructions typically modify the behaviour
of the processor by changing the behaviour of some key internal algorithms; they modify built-in

97 © Smruti R. Sarangi

parameters such as power management settings, or read/write some internal data. Finally, note
that the assembly language does not distinguish between machine independent and machine
dependent instructions.

View of Registers

Every machine has a set of registers that are visible to the assembly programmer. ARM has 16
registers, x86 (32-bit) has 8 registers, and x86 64 (64 bits) has 16 registers. The registers have
names. ARM names them r0 . . . r15, and x86 names them eax, ebx, ecx, edx, esi, edi, ebp, and
esp. A register can be accessed using its name.

In most ISAs, a return address register is used for function calls. Let us assume that a
program starts executing a function. It needs to remember the memory address that it needs to
come back to after executing the function. This address is known as the return address. Before
jumping to the starting address of a function, we can save the value of the return address in
this register. The return statement can simply be implemented by copying the value saved in
the return address register to the PC. The return address register is visible to the programmer
in assembly languages such as ARM and MIPS. However, x86 does not use a return address
register. It uses another mechanism called a stack, which we shall study in Section 3.3.10.

In an ARM processor, the PC is visible to the programmer and it is the last register (r15).
It is possible to read the value of the PC, as well as set its value. Setting the value of the PC
means that we want to branch to a new location within the program. However, in x86, the
program counter is implicit, and is not visible to the programmer.

3.2.2 View of Memory

In Section 1.6.7, we explained the concept of a memory in an abstract machine. The memory can
be thought of as one large array of bytes. Each byte has a unique address, which is essentially
its location in the array. The address of the first byte is 0, the address of the second byte is
1, and so on. Note that the finest granularity at which we can access memory is at the level
of a byte. We do not have a method to uniquely address a given bit. The address is a 32-bit
unsigned integer in 32-bit machines and it is a 64-bit unsigned integer in 64-bit machines.

Now, in a Von Neumann machine, we assume that the program is stored in memory as a
sequence of bytes, and the program counter points to the next instruction that is going to be
executed.

Assuming that memory is one large array of bytes is fine, if all our data items are only one
byte long. However, languages such as C and Java have data types of different sizes – char
(1 byte), short (2 bytes), integer (4 bytes), and long integer (8 bytes). For a multi-byte data
type it is necessary to find a representation for it in memory. There are two possible ways of
representing a multibyte data type in memory – little endian and big endian. Secondly, we also
need to find methods to represent arrays or lists of data in memory.

Little Endian and Big Endian Representations

Let us consider the problem of storing an integer in locations 0-3. Let the integer be 0x87654321.
It can be broken into four bytes – 87, 65, 43, and 21. One option is to store the most significant
byte, 87, in the lowest memory address 0. The next location can store 65, then 43, and then

© Smruti R. Sarangi 98

21. This is called the big endian representation because we are starting from the position of the
most significant byte. In comparison, we can save the least significant byte first in location 0,
and then continue to save the most significant byte in location 3. This representation is called
little endian. Figure 3.3 shows the difference.

87 65 43 21

21 43 65 87

0x87654321

Big endian

Little endian

0 1 2 3

0 1 2 3

Figure 3.3: Big endian and little endian representations

There is as such no reason to prefer one representation over the other. It depends on the
convention. For example, x86 processors use the little endian format. Early versions of ARM
processors used to be little endian. However, now they are bi-endian. This means an ARM
processor can work as both a little endian and a big endian machine depending on the settings
set by the user. Traditionally, IBM® POWER® processors, and Sun® SPARC® processors
have been big endian.

Representing Arrays

An array is a linearly ordered set of objects, where an object can be a simple data type such
as an integer or character, or can be a complex data type also.

int a[100];

char c[100];

Let us consider a simple array of integers, a. If the array has 100 entries, then the total size
of the array in memory is equal to 100× 4 = 400 bytes. If the starting memory location of the
array is loc. Then a[0] is stored in the locations (loc + 0), (loc + 1), (loc + 2), (loc + 3). Note
that there are two methods of saving the data – big endian and little endian. The next array
entry, a[1], is saved in the locations (loc+ 4) . . . (loc+ 7). By continuing the argument further,
we note that the entry a[i] is saved in the locations – (loc+ 4× i) . . . (loc+ 4× i+ 3).

Most programming languages define multidimensional arrays of the form:

int a[100][100];

char c[100][100];

They are typically represented as regular one dimensional arrays in memory. There is a mapping
function between the location in a multidimensional array and an equivalent 1-dimensional
array. Let us consider Example 22. We can extend the scheme to consider multidimensional
arrays of dimensions greater than 2.

99 © Smruti R. Sarangi

Example 22
Consider a multidimensional array: a[100][100]. Map each entry (i, j) to an entry in a
1-D array: b[10000].

Answer: Let us assume that each entry (i, j), is in a (row,column) format. Let us try
to save the array in row-major fashion. We save the first row in contiguous locations, then
the second row and so on. The starting entry of each row is equal to 100× i. Within each
row the offset for column j is equal to j. Thus we can map (i, j) to the entry: (100× i+ j)
in the array b.

We observe that a two-dimensional array can be saved as a one dimensional array by saving
it in row-major fashion. This means that data is saved row wise. We save the first row, then
the second row, and so on. Likewise, it is also possible to save a multidimensional array in
column major fashion, where the first column is saved, then the second column and so on.

Definition 28

row major In this representation, an array is saved row wise in memory.

column major In this representation, an array is saved column wise in memory.

3.2.3 Assembly Language Syntax

In this section, we shall describe the syntax of assembly language. The exact syntax of an
assembly file is dependent on the assembler. Different assemblers can use different syntax, even
though they might agree on the basic instructions, and their operand formats. In this chapter,
we explain the syntax of the GNU family of assembly languages. They are designed for the
GNU assembler, which is a part of the GNU compiler collection (gcc). Like all GNU software,
this assembler and the associated compiler is freely available for most platforms. As of 2012,
the assembler is available at [gnu.org,]. In this section, we shall provide a brief overview of
the format of assembly files. For additional details refer to the official manual of the GNU
assembler [Elsner and Fenlason, 1994]. Note that other assemblers such as NASM, and MASM,
have their own formats. However, the overall structure is not conceptually very different from
what we shall describe in this section.

Assembly Language File Structure

An assembly file is a regular text file, and it has a (.s) suffix. The reader can quickly generate
an assembly file for a C program (test.c), if she has the gcc (GNU Compiler) installed. It can
be generated by issuing the following command.

© Smruti R. Sarangi 100

gcc -S test.c

.file

.text

.data

Assembly file

Figure 3.4: Assembly language file structure

The generated assembly file will be named test.s. GNU assembly files have a very simple
structure, as shown in Figure 3.4. They contain a list of sections. Examples of different sections
are text (actual program), data (data with initialised values), and bss (common data that is
initialised to 0). Each section starts with a section heading, which is the name of the section
prefixed by the ‘.’ symbol. For example, the text section starts with the line “.text”. Thereafter,
there is a list of assembly language statements. Each statement is typically terminated by the
newline character. Likewise, the data section contains a list of data values. An assembly file
begins with the file section that contains a line of the form – “.file <name of the file> ”. When
we are generating an assembly file from a C program using the gcc compiler, the name of the file
in the .file section is typically the same as our original C program (test.c). The text section is
mandatory, and the rest of the sections are optional. There might be one or more data sections.
It is also possible to define new sections using the .section directive. In this book, we primarily
concentrate on the text section because we are interested in learning about the nature of the
instruction set. Let us now look at the format of assembly statements.

Basic Statements

A bare bones assembly language statement specifies an assembly instruction and has two parts
– the instruction and its list of operands, as shown in Figure 3.5. The instruction is a textual
identifier of the actual machine instruction. The list of operands contains the value or location
of each operand. The value of an operand is a numeric constant. It is also known as an
immediate value. The operand locations can either be register locations or memory locations.

Instruction operand 1 operand noperand 2

Figure 3.5: Assembly language statement

101 © Smruti R. Sarangi

Definition 29
In computer architecture, a constant value specified in an instruction is also known as an
immediate.

Now, let us consider an example.

add r3, r1, r2

In this ARM assembly statement, the add instruction is specifying the fact that we wish
to add two numbers and save the result in some pre-specified location. The format of the
add instruction in this case is as follows: < instruction > < destination register > <
operand register 1 > < operand register 2 >. The name of the instruction is add, the des-
tination register is r3, the operand registers are r1 and r2. The detailed steps of the instruction
are as follows:

1. Read the value of register r1. Let us refer to the value as v1.

2. Read the value of register r2. Let us refer to the value as v2.

3. Compute v3 = v1 + v2.

4. Save v3 in register r3

Let us now give an example of two more instructions that work in a similar fashion(see
Example 23).

Example 23
sub r3, r1, r2
mul r3, r1, 3

The sub instructions subtracts two numbers stored in registers, and themul instruction mul-
tiplies a number stored in the register, r1, with the numeric constant, 3. Both the instructions
save the result in the register, r3. Their mode of operation is similar to the add instruction.
Moreover, the arithmetic instructions – add, sub, and mul – are also known as data processing
instructions. There are several other classes of instructions such as data transfer instructions
that load or store values from memory, and control instructions that implement branching.

Generic Statement Structure

The generic structure of an assembly statement is shown in Figure 3.6. It consists of three fields
namely a label (identifier of the instruction), the key (an assembly instruction, or a directive to

© Smruti R. Sarangi 102

the assembler), and a comment. All three of these fields are optional. However, any assembly
statement needs to have at least one of these fields.

A statement can optionally begin with a label. A label is a textual identifier for the state-
ment. In other words, a label uniquely identifies an assembly statement in an assembly file.
Note that we are not allowed to repeat labels in the same assembly file. We shall find labels to
be very useful while implementing branch instructions.

Definition 30
A label in an assembly file uniquely identifies a given point or data item in the assembly
program.

An example of a label is shown in Example 24. Here the name of the label is “label1”, and
it is succeeded by a colon. After the label we have written an assembly instruction and given
it a list of operands. A label can consist of valid alpha-numeric characters [a− z][A−Z][0− 9]
and the symbols ‘.’, ‘ ’, and ‘$’. Typically, we cannot start a label with a digit. After specifying
a label we can keep the line empty, or we can specify a key (part of an assembly statement).
If the key begins with a ‘.’, then it is an assembler directive, which is valid for all computers.
It directs the assembler to perform a certain action. This action can include starting a new
section, or declaring a constant. The directive can also take a list of arguments. If the key
begins with a letter, then it is a regular assembly instruction.

Example 24
label1: add r1, r2, r3

After the label, assembly instruction, and list of operands, it is possible to optionally insert
comments. The GNU assembler supports two types of comments. We can insert regular C or
Java style comments enclosed between /* and */. It is also possible to have a small single line
comment by preceding the comment with the ‘@’ character in ARM assembly.

Example 25

label1: add r1, r2, r3 @ Add the values in r2 and r3

label2: add r3, r4, r5 @ Add the values in r4 and r5

add r5, r6, r7 /* Add the values in r6 and r7 */

Let us not slightly amend our statement regarding labels. It is possible that an assembly
statement only contains a label, and does not contain a key. In this case, the label essentially
points to an empty statement, which is not very useful. Hence, the assembler assumes that in
such a case a label points to the nearest succeeding assembly statement that contains a key.

103 © Smruti R. Sarangi

Label : Directive

Constant

Assembly
instruction

Comment@

Comment/* */

Figure 3.6: Generic Structure of an assembly statement

3.2.4 Types of Instructions

Classification by Functionality

The four major types of instructions are as follows:

1. Data Processing Instructions: Data processing instructions are typically arithmetic
instructions such as add, subtract, and multiply, or logical instructions that compute
bitwise or, and exclusive or. Comparison instructions also belong to this family.

2. Data Transfer Instructions: These instructions transfer values between two locations.
A location can be a register or a memory address.

3. Branch Instructions: Branch instructions help the processor’s control unit to jump
to different parts of the program based on the values of operands. They are useful in
implementing for loops and if-then-else statements.

4. Exception Generating Instructions: These specialised instructions help transfer
control from a user level program to the operating system.

In this book we shall cover data processing, data transfer, and control instructions.

Classification based on the Number of Operands

As mentioned in Section 3.2.3, all assembly language statements in the GNU assembler have
the same structure. They start with the name of the instruction, and are succeeded by a list of
operands. We can classify instructions based on the number of operands that they require. If
an instruction requires n operands, then we typically say that it is in the n-address format. For
example, an instruction that does not require any operands is a 0-address format instruction.
If it requires 3 operands, then it is a 3-address format instruction.

© Smruti R. Sarangi 104

Definition 31
If an instruction requires n operands (including source and destination), then we say that
it is a n-address format instruction.

In ARM most of the data processing instructions are in the 3-address format, and data
transfer instructions are in the 2-address format. However, in x86 most of the instructions are
in the 2-address format. The first question that comes to our mind is what is the logic of having
a 3-address format instruction versus having a 2-address format instruction? There must be
some tradeoff here.

Let us outline some general rules of thumb. If an instruction has more operands then it will
require more bits to represent the instruction. Consequently, we will require more resources to
store, and handle instructions. However, there is a flip side to this argument. Having more
operands will also make the instruction more generic and flexible. It will make the life of
compiler writers and assembly programmers much easier, because it will be possible to do more
things with an instruction that uses more operands. The reverse logic applies to instructions
that take less operands. They take less space to store, and are less flexible. Let us consider an
example. Assume that we are trying to add two numbers, 3 and 5, to produce a result, 8.

An ARM instruction for addition would look like this:

add r3, r1, r2

This instruction adds the contents of registers, r1(3), and r2(5), and saves it in r3(8). However,
an x86 instruction would look like this:

add edx, eax

Here, we assume that edx contains 3, and eax contains 5. The addition is performed, and
the result, 8, is stored back in edx. Thus, in this case the x86 instruction is in the 2-address
format because the destination register is the same as the first source register.

When we describe the details of the ARM and x86 instruction sets in Chapters 4 and 5, we
shall see many more examples of instructions that have different address formats. We will be
able to appreciate the tradeoffs of having different address formats in all their glory.

3.2.5 Types of Operands

Let us now look at the different types of operands. The method of specifying and accessing an
operand in an assembly statement is known as the addressing mode.

Definition 32
The method of specifying and accessing an operand in an assembly statement is known as
the addressing mode.

105 © Smruti R. Sarangi

The simplest way of specifying an operand is by embedding its value in the instruction. Most
assembly languages allow the user to specify the values of integer constants as an operand. This
addressing mode is known as the immediate addressing mode. This method is very useful for
initialising registers or memory locations, or for performing arithmetic operations.

Once the requisite set of constants have been loaded into registers and memory locations,
the program needs to proceed by operating on registers and memory locations. There are
several addressing modes in this space. Before introducing them, let us introduce some extra
terminology in the form of the register transfer notation.

Register Transfer Notation

This notation allows us to specify the semantics of instructions and operands. Let us look at
the various methods to represent the basic actions of instructions.

r1← r2

This expression has two register operands r1, and r2. r1 is the destination register, and r2
is the source register. We are transferring the contents of register r2 to register r1.

We can specify an add operation with a constant as follows:

r1← r2 + 4

We can also specify operations on registers using this notation. We are adding the contents
of r2 and r3 and saving the result in r1.

r1← r2 + r3

It is also possible to represent memory accesses using this notation.

r1← [r2]

In this case the memory address is saved in r2. The processor hardware fetches the memory
address in r2, accesses the location, fetches the contents of the memory location, and saves the
data item in r1. Let us assume that the value in r2 is 100. In this case the processor accesses
memory with address 100, fetches the integer saved in locations (100-103), and saves it in r1.
By default we assume that we are loading and saving integers.

We can also specify a more complicated memory address of the form:

r1← [r2 + 4]

Here, the memory address is equal to the contents of the register r2 plus 4. We fetch the integer
starting at the contents of this memory address, and save it in the register r1.

Generic Addressing Modes for Operands

Let us represent the value of an operand as V . In the subsequent discussion, we use expressions
such as V ← r1. This does not mean that we have a new storage location called V . It basically
means that the value of an operand is specified by the RHS (right hand side). Let us briefly
take a look at some of the most commonly used addressing modes with examples.

© Smruti R. Sarangi 106

immediate V ← imm
Uses the constant imm as the value of the operand.

register V ← r1
In this addressing mode, the processor uses the value contained in a register as the
operand.

register-indirect V ← [r1]
The register saves the address of the memory location that contains the value.

base-offset V ← [r1 + offset]
offset is a constant. The processor fetches the base memory address from r1, adds the
constant offset to it, and accesses the new memory location to fetch the value of the
operand. The offset is also known as the displacement.

base-index V ← [r1 + r2]
r1 is the base register, and r2 is the index register. The memory address is equal to
(r1 + r2).

base-index-offset V ← [r1 + r2 + offset]
The memory address that contains the value is (r1 + r2 + offset), where offset is a
constant.

memory-direct V ← addr
The value is contained in memory starting from address addr. addr is a constant. In this
case the memory address is directly embedded in the instruction.

memory-indirect V ← [[r1]]
The value is present in a memory location, whose address is contained in the memory
location, M . Furthermore, the address of M is contained in the register, r1.

PC-relative V ← [PC + offset]
Here, offset is a constant. The memory address is computed to be PC + offset, where
PC represents the value contained in the PC. This addressing mode is useful for branch
instructions.

Let us introduce a new term called the effective memory address by considering the base-
offset addressing mode. The memory address is equal to the contents of the base register plus
the offset. The computed memory address is known as the effective memory address. We can
similarly define the effective address for other addressing modes in the case of memory operands.
.

Definition 33
The memory address specified by an operand is known as the effective memory address.

107 © Smruti R. Sarangi

3.3 SimpleRisc

In this book, we shall introduce a simple, generic, complete and concise RISC ISA called
SimpleRisc . The assembly language of SimpleRisc has just 21 instructions, and captures most
of the features of full scale assembly languages. We will use SimpleRisc to demonstrate the
flavour of different types of assembly programs, and also design a processor for the SimpleRisc
ISA in Chapter 9. We shall assume that SimpleRisc assembly follows the GNU assembly format,
and we shall only describe the text section in this book.

Before proceeding further, let us take a tour of different instruction sets, and take a look at
their properties.

3.3.1 Different Instruction Sets

In Chapter 1, we looked at properties of different instruction sets including necessary, and
desirable properties. In this book, we shall describe two real instruction sets namely the ARM
instruction set and x86 instruction set. ARM stands for “Advanced RISC Machines”. It is
an iconic company based out of Cambridge, UK. As of 2012, around 90% of mobile devices
including the Apple iPhone, and iPad, run on ARM based processors. Similarly, as of 2012,
more than 90% of the desktops and laptops run on Intel or AMD based x86 processors. ARM
is a RISC instruction set, and x86 is a CISC instruction set.

There are many other instruction sets tailored for a wide variety of processors. Another
popular instruction set for mobile computers is the MIPS instruction set. MIPS based processors
are also used in a wide variety of processors used in automobiles, and industrial electronics.

ISA Type Year Vendor Bits Endianness Registers

VAX CISC 1977 DEC 32 little 16

SPARC
RISC 1986 Sun 32 big 32
RISC 1993 Sun 64 bi 32

PowerPC
RISC 1992 Apple,IBM,Motorola 32 bi 32
RISC 2002 Apple,IBM 64 bi 32

PA-RISC
RISC 1986 HP 32 big 32
RISC 1996 HP 64 big 32

m68000
CISC 1979 Motorola 16 big 16
CISC 1979 Motorola 32 big 16

MIPS
RISC 1981 MIPS 32 bi 32
RISC 1999 MIPS 64 bi 32

Alpha RISC 1992 DEC 64 bi 32

x86
CISC 1978 Intel,AMD 16 little 8
CISC 1985 Intel,AMD 32 little 8
CISC 2003 Intel,AMD 64 64 little 16

ARM
RISC 1985 ARM 32 bi (little default) 16
RISC 2011 ARM 64 bi (little default) 31

Table 3.1: List of instruction sets

© Smruti R. Sarangi 108

For large servers, typically IBM (PowerPC), Sun (now Oracle)(UltraSparc), or HP (PA-
RISC) processors are used. Each of these processor families has its own instruction set. These
instruction sets are typically RISC instruction sets. Most ISAs share simple instructions such
as add, subtract, multiply, shifts, and load/store instructions. However, beyond this simple
set, they use a large number of more specialised instructions. As we shall see in the next few
chapters, choosing the right set of instructions in an ISA is dependent on the target market of
the processor, the nature of the workload, and many design time constraints. Table 3.1 shows
a list of popular instruction sets. The SimpleRisc ISA is conceptually the closest to ARM and
MIPS; however, it has some significant differences also.

3.3.2 Model of the SimpleRisc Machine

SimpleRisc assumes that we have 16 registers numbered r0 . . . r15. The first 14 registers are
general purpose registers, and can be used for any purpose within the program. Register r14
is known as the stack pointer. We shall also refer to it as sp. Register r15 is known as the
return address register, and it will also be referred as ra. We shall discuss sp and ra, when we
discuss how to implement functions in SimpleRisc . Each register is 32 bits wide. We assume
a special internal register called flags, which is not visible to the programmer. It contains two
fields flags.E(equal) and flags.GT (greater than). E is set to 1 if the result of a comparison
is equality, and GT is set to 1 if a comparison concludes that the first operand is greater than
the second operand. The default values of both the fields are 0.

Each instruction is encoded into a 32-bit value, and it requires 4 bytes of storage in memory.
SimpleRisc assumes a memory model similar to the Von Neumann machine augmented with

registers as described in Section 1.7.3. The memory is a large array of bytes. A part of it saves
the program and the rest of the memory is devoted to storing data. We assume that multibyte
data types such as integers are saved in the little endian format.

3.3.3 Register Transfer Instruction – mov

The mov instruction is a 2-address format instruction that can transfer values from one register
to another, or can load a register with a constant. Our convention is to always have the
destination register at the beginning. Refer to Table 3.2. The size of the signed immediate
operand is limited to 16 bits. Hence, its range is between −215 to 215 − 1.

Semantics Example Explanation

mov reg, (reg/imm)
mov r1, r2 r1← r2
mov r1, 3 r1← 3

Table 3.2: Semantics of the mov instruction

3.3.4 Arithmetic Instructions

SimpleRisc has 6 arithmetic instructions – add, sub, mul, div, mod, and cmp. The connotations
of add, sub, and mul are self explanatory (also see Table 3.3). For arithmetic instructions, we
assume that the first operand in the list of operands is the destination register. The second

109 © Smruti R. Sarangi

operand is the first source operand, and the third operand is the second source operand. The
first and second operands need to be registers, whereas the last operand (second source register)
can be an immediate value.

Semantics Example Explanation

add reg, reg, (reg/imm)
add r1, r2, r3 r1← r2 + r3
add r1, r2, 10 r1← r2 + 10

sub reg, reg, (reg/imm) sub r1, r2, r3 r1← r2− r3

mul reg, reg, (reg/imm) mul r1, r2, r3 r1← r2× r3

div reg, reg, (reg/imm) div r1, r2, r3 r1← r2/r3 (quotient)

mod reg, reg, (reg/imm) mod r1, r2, r3 r1← r2 mod r3 (remainder)

cmp reg, (reg/imm) cmp r1, r2 set flags

Table 3.3: Semantics of arithmetic instructions in SimpleRisc

Example 26
Write assembly code in SimpleRisc to compute: 31 * 29 - 50, and save the result in r4.
Answer:

SimpleRisc
mov r1, 31

mov r2, 29

mul r3, r1, r2

sub r4, r3, 50

The div instruction divides the first source operand by the second source operand, computes
the quotient, and saves it in the destination register. For example it will compute 30/7 to be
4. The mod instruction computes the remainder of a division. For example, it will compute
30 mod 7 as 2.

Example 27
Write assembly code in SimpleRisc to compute: 31 / 29 - 50, and save the result in r4.
Answer:

SimpleRisc
mov r1, 31

mov r2, 29

div r3, r1, r2

sub r4, r3, 50

The cmp instruction is a 2-address instruction that takes two source operands. The first
source operand needs to be a register, and the second one can be an immediate or a register. It

© Smruti R. Sarangi 110

compares both the operands by subtracting the second from the first. If the operands are equal,
or in other words the result of the subtraction is zero, then it sets flags.E to 1. Otherwise
flags.E is set to 0. If the first operand is greater than the second operand, then the result of
the subtraction will be positive. In this case, the cmp instruction sets flags.GT to 1, otherwise
it sets it to 0. We will require these flags when we implement branch instructions.

3.3.5 Logical Instructions

SimpleRisc has three logical instructions – and, or, and not. and and or are 3-address instruc-
tions. They compute the bitwise AND and OR of two values respectively. The not instruction
is a 2-address instruction that computes the bitwise complement of a value. Note that the
source operand of the not instruction can be an immediate or a register. Refer to Table 3.4.

Semantics Example Explanation

and reg, reg, (reg/imm) and r1, r2, r3 r1← r2 ∧ r3

or reg, reg, (reg/imm) or r1, r2, r3 r1← r2 ∨ r3

not reg, (reg/imm) not r1, r2 r1←∼ r2

∧ bitwise AND, ∨ bitwise OR, ∼ logical complement

Table 3.4: Semantics of logical instructions in SimpleRisc

Example 28
Compute (a ∨ b). Assume that a is stored in r0, and b is stored in r1. Store the result in
r2.
Answer:

SimpleRisc
or r3, r0, r1

not r2, r3

3.3.6 Shift Instructions – lsl, lsr, asr

SimpleRisc has three types of shift instructions lsl (logical shift left), lsr (logical shift right),
and asr (arithmetic shift right). Each of these instructions are in the 3-address format. The
first source operand points to the source register, and the second source operand contains the
shift amount. The second operand can either be a register or an immediate value.

The lsl instruction shifts the value in the first source register to the left Similarly, lsr, shifts
the value in the first source register to the right. Note that it is a logical right shift. This means
that it fills all the MSB positions with zeros. In comparison, asr, performs an arithmetic right
shift. It fills up all the MSB positions with the value of the previous sign bit. Semantics of shift
instructions are shown in Table 3.5.

111 © Smruti R. Sarangi

Semantics Example Explanation

lsl reg, reg, (reg/imm)
lsl r3, r1, r2 r3← r1≪ r2 (shift left)
lsl r3, r1, 4 r3← r1≪ 4 (shift left)

lsr reg, reg, (reg/imm)
lsr r3, r1, r2 r3← r1 ≫ r2 (shift right logical)
lsr r3, r1, 4 r3← r1 ≫ 4 (shift right logical)

asr reg, reg, (reg/imm)
asr r3, r1, r2 r3← r1≫ r2 (arithmetic shift right)
asr r3, r1, 4 r3← r1≫ 4 (arithmetic shift right)

Table 3.5: Semantics of shift instructions in SimpleRisc

3.3.7 Data Transfer Instructions: ld and st

SimpleRisc has two data transfer instructions – load(ld) and store(st). The load instructions
loads values from memory into registers, and the store instruction saves values in registers to
memory locations. Examples and semantics are shown in Table 3.6.

Semantics Example Explanation

ld reg, imm[reg] ld r1, 12[r2] r1← [r2 + 12]

st reg, imm[reg] st r1, 12[r2] [r2 + 12]← r1

Table 3.6: Semantics of load-store instructions in SimpleRisc

Let us consider the load instruction: ld r1, 12[r2]. Here, we are computing the memory
address as the sum of the contents of r2 and the number 12. The ld instructions accesses this
memory address, fetches the stored integer and stores it in r1. We assume that the computed
memory address points to the first stored byte of the integer. Since we assume a little endian
representation, the memory address contains the LSB. The details are shown in Figure 3.7(a).

The store operation does the reverse. It stores the value of r1 into the memory address (r2
+ 12). Refer to Figure 3.7(b).

3.3.8 Unconditional Branch Instructions

SimpleRisc has one unconditional branch instruction, b, which makes the program counter jump
to the address corresponding to a label in the code. It takes a single operand, which is a label
in the program. Its semantics is shown in Table 3.7.

Semantics Example Explanation

b label b .foo branch to .foo

Table 3.7: Semantics of unconditional branch instructions in SimpleRisc

Let us explain its operation with the help of a simple example, as shown below.

© Smruti R. Sarangi 112

ld r1, 12[r2]

r1
r2

Register
 file

Memory

12

st r1, 12[r2]

r1
r2

Register
 file

Memory

12

(a) (b)

Figure 3.7: Load and store operations in SimpleRisc

add r1, r2, r3

b .foo

...

...

.foo:

add r3, r1, r4

In this example, we add the values of r2, and r3, and then save the result in r1. After that,
the processor jumps to the code pointed to by the label, .foo. It proceeds to execute the code
after the label, .foo. It starts out by executing the instruction add r3, r1, r4. It then proceeds
to execute subsequent instructions.

3.3.9 Conditional Branch Instructions

SimpleRisc has two conditional branch instructions – beq and bgt. Real world instruction
sets typically have more branch instructions. Nonetheless, at the cost of code size, these two
instructions are sufficient for implementing all types of branches.

The beq instruction stands for “branch if equal”. This means that if any preceding cmp
instruction has set the E flag, then the PC will branch to the label specified in this instruction.
Otherwise, the branch is said to fail, and the processor will proceed to execute the instruction
after the branch. Similarly, the bgt instruction stands for “branch if greater than”. This branch
instruction bases its outcome on the value of the GT flag. It if is set to 1, then it branches to the
label specified in the branch instruction, otherwise the processor executes the next instruction
after the branch. Refer to Table 3.8.

113 © Smruti R. Sarangi

Semantics Example Explanation

beq label beq .foo branch to .foo if flags.E = 1

bgt label bgt .foo branch to .foo if flags.GT = 1

Table 3.8: Semantics of ranch instructions in SimpleRisc

Example 29
Write an iterative program to compute the factorial of a number stored in r0. Assume that
the number is greater than 2. Save the result in r1.
Answer: Let us first take a look at a small C program to compute the factorial of the
variable num.

C
int prod = 1;

int idx;

for(idx = num; idx > 1; idx --) {

prod = prod * idx

}

Let us now try to convert this program to SimpleRisc .

SimpleRisc
mov r1, 1 /* prod = 1 */

mov r2, r0 /* idx = num */

.loop:

mul r1, r1, r2 /* prod = prod * idx */

sub r2, r2, 1 /* idx = idx - 1 */

cmp r2, 1 /* compare (idx, 1) */

bgt .loop /* if (idx > 1) goto .loop*/

Example 30 Write an assembly program to find out if the number stored in r1 is a prime
number. Assume that it is greater than 3. Save the Boolean result in r0.
Answer:

SimpleRisc
mov r2, 2

.loop:

mod r3, r1, r2 @ divide number by r2

cmp r3, 0 @ compare the result with 0

beq .notprime @ if the result is 0, not prime

add r2, r2, 1 @ increment r2

cmp r1, r2 @ compare r2 with the number

© Smruti R. Sarangi 114

bgt .loop @ iterate if r2 is smaller

mov r0, 1 @ number is prime

b .exit @ exit

.notprime:

mov r0, 0 @ number is not prime

.exit:

Example 31 Write an assembly program to find the least common multiple (LCM) of two
positive numbers stored in r1 and r2. Save the result in r0.
Answer:

SimpleRisc
@ let the numbers be A(r1) and B(r2)

@ iterate

mov r3, 1 @ idx = 1

mov r4, r1 @ L = A

.loop:

mod r5, r4, r2 @ tmp = L % b

cmp r5, 0 @ compare mod with 0

beq .lcm @ LCM found (L is the LCM)

add r3, r3, 1 @ increment idx

mul r4, r1, r3 @ L = A * idx

b .loop

.lcm:

mov r0, r4 @ result is equal to L

3.3.10 Functions

Now, that we have seen generic instructions, operands, and addressing modes, let us come
to one of the most advanced features in high level programming languages that makes their
structure extremely modular namely functions (also referred to as subroutines or procedures
in some languages). If the same piece of code is used at different points in a program, then it
can be encapsulated in a function. The following example shows a function in C to add two
numbers.

115 © Smruti R. Sarangi

int addNumbers(int a, int b) {

return (a+b);

}

Calling and Returning from Functions

Let us now go over the basic requirements to implement a simple function. Let us assume
that an instruction with address A calls a function foo. After executing function foo, we need
to come back to the instruction immediately after the instruction at A. The address of this
instruction is A + 4 (if we assume that the instruction at A is 4 bytes long). This process is
known as returning from a function, and the address (A+ 4) is known as the return address.

Definition 34
Return address: It is the address of the instruction that a process needs to branch to after
executing a function.

Thus, there are two fundamental aspects of implementing a function. The first is the process
of invoking or calling a function, and the second aspect deals with returning from a function.

Let us consider the process of calling a function in bit more detail. A function is essentially
a block of assembly code. Calling a function is essentially making the PC point to the start
of this block of code. We have already seen a method to implement this functionality when
we discussed branch instructions. We can associate a label with every function. The label
should be associated with the first instruction in a function. Calling a function is as simple as
branching to the label at the beginning of a function. However, this is only a part of the story.
We need to implement the return functionality as well. Hence, we cannot use an unconditional
branch instruction to implement a function call.

Let us thus propose a dedicated function call instruction that branches to the beginning of a
function, and simultaneously saves the address that the function needs to return to (referred to
as the return address). Let us consider the following C code, and assume that each C statement
corresponds to one line of assembly code.

a = foo(); /* Line 1 */

c = a + b; /* Line 2 */

In this small code snippet, we use a function call instruction to call the foo function. The
return address is the address of the instruction in Line 2. It is necessary for the call instruction to
save the return address in a dedicated storage location such that it can be retrieved later. Most
RISC instruction sets (including SimpleRisc) have a dedicated register known as the return
address register to save the return address. The return address register gets automatically
populated by a function call instruction. When we need to return from a function, we need to
branch the address contained in the return address register. In SimpleRisc , we devote register
15 to save the return address, and refer to it as ra.

What happens if foo calls another function? In this case, the value in ra will get overwritten.
We will look at this issue later. Let us now consider the problem of passing arguments to a
function, and getting return values back.

© Smruti R. Sarangi 116

Passing Arguments and Return Values

Assume that a function foo invokes a function foobar. foo is called the caller, and foobar is
called the callee. Note that the caller-callee relationships are not fixed. It is possible for foo
to call foobar, and also possible for foobar to call foo in the same program. The caller and
callee are decided for a single function call based on which function is invoking the other.

Definition 35

caller A function, foo, that has called another function, foobar.

callee A function, foobar, that has been called by another function, foo.

Both the caller and the callee see the same view of registers. Consequently, we can pass
arguments through the registers, and likewise pass the return values through registers also.
However, there are several issues in this simple idea as we enumerate below (Assume that we
have 16 registers).

1. A function can take more than 16 arguments. This is more than the number of general
purpose registers that we have. Hence, we need to find a extra space to save the arguments.

2. A function can return a large amount of data, for example, a large structure in C. It
might not be possible for this piece of data to fit in registers.

3. The callee might overwrite registers that the caller might require in the future.

We thus observe that passing arguments and return values through registers works only
for simple cases. It is not a very flexible and generic solution. Nonetheless, there are two
requirements that emerge from our discussion.

Space Problem We need extra space to send and return more arguments.

Overwrite Problem We need to ensure that the callee does not overwrite the registers of the
caller.

To solve both the problems, we need to take a deeper look at how functions really work.
We can think of a function – foo – as a black box to begin with. It takes a list of arguments
and returns a set of values. To perform its job, foo can take one nano-second, or one week,
or even one year. foo might call other functions to do its job, send data to I/O devices, and
access memory locations. Let us visualise the function, foo, in Figure 3.8.

To summarise, a generic function processes the arguments, reads and writes values from
memory and I/O devices if required, and then returns the result. Regarding memory and I/O
devices, we are not particularly concerned at this point of time. There is a large amount of
memory available, and space is not a major constraint. Reading and writing I/O devices is also

117 © Smruti R. Sarangi

Arguments foo
Return values

Read/write
memory

Read/write
I/O devices

Figure 3.8: Function foo as a black box.

typically not associated with space constraints. The main issue is with registers, because they
are in short supply.

Let us solve the space problem first. We can transfer values through both registers and
memory. For simplicity, if we need to transfer a small amount of data, we can use registers,
otherwise we can transfer them through memory. Similarly, for return values, we can transfer
values through memory. We are not limited by space constraints if we use memory to transfer
data. However, this approach suffers from lack of flexibility. This is because there has to be
strict agreement between the caller and the callee regarding the memory locations to be used.
Note that we cannot use a fixed set of memory locations, because it is possible for the callee to
recursively call itself.

recursive function call
foobar() {

...

foobar();

...

}

An astute reader might argue that it is possible for the callee to read the arguments from
memory and transfer them to some other temporary area in memory and then call other func-
tions. However, such approaches are not elegant and not very efficient also. We shall look at
more elegant solutions later.

Hence, at this point, we can conclude that we have solved the space problem partially. If
we need to transfer a few values between the caller and the callee or vice versa, we can use
registers. However, if the arguments/return values do not fit in the set of available registers,
then we need to transfer them through memory. For transferring data through memory, we
need an elegant solution that does not require a strict agreement between the caller and the
callee regarding the memory locations used to transfer data. We shall consider such solutions
in Section 3.3.10.

Definition 36
The notion of saving registers in memory and later restoring them is known as register
spilling.

© Smruti R. Sarangi 118

To solve the overwrite problem, there are two solutions. The first is that the caller can
save the set of registers it requires in a dedicated location in memory. It can later retrieve its set
of registers after the callee finishes, and returns control to the caller. The second solution is for
the callee to save and restore the registers that it will require. Both the approaches are shown
in Figure 3.9. This method of saving the values of registers in memory, and later retrieving
them is known as spilling.

Save registers

Restore registers

Callee

Caller

Save registers

Restore registers

Callee

Caller

(a) (b)Caller saved Callee saved

Figure 3.9: Caller saved and callee saved registers

Here, we have the same problem again. Both the caller and the callee need to have a strict
agreement on the locations in memory that need to be used. Let us now try to solve both the
problems together.

The Stack

We simplified the process of passing arguments to and from a function, and saving/restoring the
registers using dedicated locations in memory. However, this solution was found to be inflexible
and it can be quite complex to implement for large real world programs. To simplify this idea,
let us find a pattern in function calls.

A typical C or Java program starts with the main function. This function then calls other
functions, which might in turn call other functions, and finally the execution terminates when
the main function exits. Each function defines a set of local variables and performs a com-
putation on these variables and the function arguments. It might also call other functions.
Finally, the function returns a value and rarely a set of values (structure in C). Note that after
a function terminates, the local variables, and the arguments are not required anymore. Hence,
if some of these variables or arguments were saved in memory, we need to reclaim the space.
Secondly, if the function has spilled registers, then these memory locations also need to be freed
after it exits. Lastly, we note that if the callee calls another function, then it will need to save
the value of the return address register in memory. We will need to free this location also after
the function exits.

119 © Smruti R. Sarangi

It is best to save all of these pieces of information contiguously in a single region of memory.
This is known as the activation block of the function. Figure 3.10 shows the memory map of
the activation block.

Activation block

Arguments

Return address

Register spill area

Local variables

Figure 3.10: Activation block

The activation block contains the arguments, return address, register spill area (for both
caller saved and callee saved schemes), and the local variables. Once a function terminates, it
is possible to get rid of the activation block entirely. If a function wants to return some values,
then it can either do so using registers. However, if it wants to return a large structure, then
it can write it into the activation block of the caller. The caller can supply a location within
its activation block where this data can be written. We shall see that it is possible to do this
more elegantly. Prior to explaining how this can be done, we need to look at how to arrange
activation blocks in memory.

We can have one memory region where all the activation blocks are stored in contiguous
regions. Let us consider an example. Let us assume that function foo calls function foobar,
which in turn calls foobarbar. Figure 3.11(a) - (d) show the state of memory at four points –
(a) just before calling foobar, (b) just before calling foobarbar, (c) after calling foobarbar, (d)
just after foobarbar returns.

We observe that there is a last in first out behavior in this memory region. The function
that was invoked the last is the first function to finish. Such kind of a last in-first out structure
is traditionally known as a stack in computer science. Hence, the memory region dedicated to
saving activation blocks is known as the stack. Traditionally, the stack has been considered
to be downward growing (growing towards smaller memory addresses). This means that the
activation block of the main function starts at a very high location and new activation blocks
are added just below (towards lower addresses) existing activation blocks. Thus the top of the
stack is actually the smallest address in the stack, and the bottom of the stack is the largest
address. The top of the stack represents the activation block of the function that is currently
executing, and the bottom of the stack represents the initial main function.

© Smruti R. Sarangi 120

Stack
foo foo

foobar

foo

foobar

foobarbar

foo

foobar

(a) (b) (c) (d)

Figure 3.11: The state of the stack after several function calls

Definition 37
The stack is a memory region that saves all the activation blocks in a program.

• It is traditionally considered to be downward growing.

• Before calling a function, we need to push its activation block to the stack.

• When a function finishes execution, we need to pop its activation block off the stack.

Definition 38
The stack pointer register maintains a pointer to the top of the stack.

Most architectures save a pointer to the top of the stack in a dedicated register called the
stack pointer. This register is r14 in SimpleRisc . It is also called sp. Note that for a lot of
architectures, the stack is a purely software structure. For them, the hardware is not aware
of the stack. However, for some architectures such as x86, hardware is aware of the stack and
uses it to push the return address or the values of other registers. However, even in this case
the hardware is not aware of the contents of each activation block. The structure is decided
by the assembly programmer or the compiler. In all cases, the compiler needs to explicitly add
assembly instructions to manage the stack.

Creating a new activation block for the callee involves the following steps.

1. Decrement the stack pointer by the size of the activation block.

121 © Smruti R. Sarangi

2. Copy the values of the arguments.

3. Initialise any local variables by writing to their corresponding memory locations if re-
quired.

4. Spill any registers (store to the activation block) if required.

It is necessary to destroy the activation block upon returning from a function. This can be
trivially done by adding the size of the activation block to the stack pointer.

By using a stack, we have solved all of our problems. The caller and the callee cannot
overwrite each other’s local variables. The local variables are saved in the activation blocks,
and two activation blocks do not overlap. Along with variables it is possible to stop the callee
from overwriting the caller’s registers by explicitly inserting instructions to save registers in the
activation blocks. There are two methods of achieving this – caller-saved scheme and callee-
saved scheme. Secondly, there is no need to have an explicit agreement regarding the memory
area that will be used to pass arguments. The stack can be used for this purpose. The caller
can simply push the arguments on the stack. These arguments will get pushed into the callee’s
activation block, and the callee can easily use them. Similarly, while returning from a function
the callee can pass return values through the stack. It needs to first destroy its activation block
by decrementing the stack pointer, and then it can push the return values on the stack. The
caller will be aware of the semantics of the callee, and thus after the callee returns it can assume
that its activation block has been effectively enlarged by the callee. The additional space is
consumed by the return values.

3.3.11 Function Call/Return Instructions

SimpleRisc has two instructions for functions – call and ret. The call instructions takes a single
argument – the label of the first instruction of the function. It transfers control to the label
and saves the return address in register ra. The ret instructions transfers the contents of ra
to the PC. It is a 0-address instruction because it does not require any operands. Table 3.9
shows the semantics of these instructions. In Table 3.9, we assume that the address method
provides the address of the first instruction of the foo function. Secondly, the return address is
equal to PC + 4 because we assume that each instruction is 4 bytes long. call and ret can be
thought of as branch instructions because they change the value of the PC. However, they are
not dependent on any condition such as the value stored in a register. Hence, these instructions
can conceptually be considered to be unconditional branch instructions.

Semantics Example Explanation

call label call .foo ra← PC + 4 ; PC ← address(.foo);

ret ret PC ← ra

Table 3.9: Semantics of function call/return instructions in SimpleRisc

© Smruti R. Sarangi 122

Example 32
Write a function in SimpleRisc that adds the values in registers r0, and r1, and saves the
result in r2.
Answer:

SimpleRisc
.foo:

add r2, r0, r1

ret

Example 33
Write a function, foo, in SimpleRisc that adds the values in registers r0, and r1, and saves
the result in r2. Then write another function that invokes this function. The invoking
function needs to first set r0 to 3, r1 to 5, and then invoke foo. After foo returns, it needs
to add 10 to the result of foo, and finally save the sum in r3.
Answer:

SimpleRisc
.foo:

add r2, r0, r1

ret

.main:

mov r0, 3

mov r1, 5

call .foo

add r3, r2, 10

Example 34
Write a recursive function to compute the factorial of 10 that is initially stored in r0. Save
the result in r1.
Answer: Let us first take a look at a small C program to compute the factorial of the
variable num.

C
int factorial(int num) {

if (num <= 1) return 1;

return num * factorial(num - 1);

}

void main() {

123 © Smruti R. Sarangi

int result = factorial(10);

}

Let us now try to convert this program to SimpleRisc .

SimpleRisc
.factorial:

cmp r0, 1 /* compare (1,num) */

beq .return

bgt .continue

b .return

.continue:

sub sp, sp, 8 /* create space on the stack */

st r0, [sp] /* push r0 on the stack */

st ra, 4[sp] /* push the return address register */

sub r0, r0, 1 /* num = num - 1 */

call .factorial /* result will be in r1 */

ld r0, [sp] /* pop r0 from the stack */

ld ra, 4[sp] /* restore the return address */

mul r1, r0, r1 /* factorial(n) = n * factorial(n-1) */

add sp, sp, 8 /* delete the activation block */

ret

.return:

mov r1, 1

ret

.main:

mov r0, 10

call .factorial

This example uses the stack to save and restore the value of r0. In this case, the caller
saves and restores its registers.

3.3.12 The nop Instruction

Let us now add an instruction called nop that does nothing. Unlike other instructions, we do not
need a table explaining the semantics of the instruction, because it does absolutely nothing!!!

Question 4 Why on earth would we add an instruction that does not do anything?

© Smruti R. Sarangi 124

We will justify the need to have a nop instruction in our portfolio of instructions in Chap-
ter 10. We shall see that it is important to have an instruction that does not do anything
to ensure correctness in execution. Let us for the time being bear with this extra instruction
that does not seem to have any purpose. The reader will definitely appreciate the need for this
instruction in Chapter 10, when we discuss pipelining.

3.3.13 Modifiers

Let us now consider the problem of loading a 32-bit constant into a register. The following
code snippet shows us how to load the constant 0xFB12CDEF .

/* load the upper two bytes */

mov r0, 0xFB12

lsl r0, r0, 16

/* load the lower two bytes with 0x CD EF */

mov r1, 0xCDEF

lsl r1, r1, 16

lsr r1, r1, 16 /* top 16 bits are zeros */

/* load all the four bytes */

add r0, r0, r1

This problem requires 6 instructions. The reader needs to note that loading constants is a
common operation in programs. Hence, let us devise a mechanism to speedup the process, and
load a constant in a register in two operations. Most assemblers provide directives to directly
load constants. Nevertheless, these directives need to get translated into a basic sequence of
assembly instructions. Thus directives do not fundamentally solve of our problem of loading
constants into registers of memory locations efficiently.

We shall achieve this by using modifiers. Let us assign a modifier, ‘u’, or ‘h’, to an ALU
instruction other than shift instructions. By default, we assume that when we load a 16-bit
immediate into a 32-bit register, the processor automatically performs sign extension. This

125 © Smruti R. Sarangi

means that it sets each of the 16 MSB bits to the sign of the immediate. This preserves the
value of the immediate. For example, if our immediate is equal to -2, then its hexadecimal
representation is 0x FF FE. If we try to store it in a register, then in effect, we are storing –
0x FF FF FF FE.

Let us have two additional modes. Let us add the suffix ‘u’ to an instruction to make
it interpret the immediate as an unsigned number. For example, the instruction movu r0, 0x
FEAB, will load 0x 00 00 FE AB into register r0. This suffix allows us to specify 16-bit unsigned
immediate values. Secondly, let us add the suffix ‘h’ to an instruction to instruct it to load the
16-bit immediate into the upper half of a register. For example, movh r0, 0x FEAB, effectively
loads 0x FE AB 00 00, into r0. We can use modifiers with all ALU instructions, with the
exception of shift instructions.

Let us now consider the previous example of loading a 32-bit constant into a register. We
can implement it with two instructions as follows:

movh r0, 0xFB12 /* r0 = 0xFB 12 00 00 */

addu r0, r0, 0xCDEF /* r0 = r0 + 0x00 00 CD EF */

By using modifiers, we can load constants in 2 instructions, rather than 6 instructions.
Furthermore, it is possible to create generic routines using modifiers that can set the value of
any single byte in a 4 byte register. These routines will require a lesser number of instructions
due to the use of modifiers.

3.3.14 Encoding the SimpleRisc Instruction Set

Let us now try to encode each instruction to a 32-bit value. We observe that we have instructions
in 0,1,2 and 3 address formats. Secondly, some of the instructions take immediate values. Hence,
we need to divide 32 bits into multiple fields. Let us first try to encode the type of instruction.
Since there are 21 instructions, we require 5 bits to encode the instruction type. The code for
each instruction is shown in Table 3.10. We can use the five most significant bits in a 32-bit
field to specify the instruction type. The code for an instruction is also known as its opcode.

Definition 39
An opcode is a unique identifier for each machine instruction.

Now, let us try to encode each type of instruction starting from 0-address instructions.

Encoding 0-Address Instructions

The two 0-address instructions that we have are ret, and nop. The opcode is specified by the
five most significant bits. In this case it is equal to 10100 for ret, and 10010 for b (refer to
Table 3.10). Their encoding is shown in Figure 3.12. We only need to specify the 5 bit opcode
in the MSB positions. The rest of the 27 bits are not required.

© Smruti R. Sarangi 126

Instruction Code Instruction Code Instruction Code

add 00000 not 01000 beq 10000

sub 00001 mov 01001 bgt 10001

mul 00010 lsl 01010 b 10010

div 00011 lsr 01011 call 10011

mod 00100 asr 01100 ret 10100

cmp 00101 nop 01101

and 00110 ld 01110

or 00111 st 01111

Table 3.10: List of instruction opcodes

opcode

5

32

Figure 3.12: Encoding the ret instruction

Encoding 1-Address Instructions

The 1-address instructions that we have are call, b, beq, and bgt. In SimpleRisc assembly, they
take a label as an argument. While encoding the instruction we need to specify the address of
the label as the argument. The address of a label is the same as the address of the instruction
that it is pointing to. If the line after the label is empty, then we need to consider the next
assembly statement that has an instruction.

These four instructions require 5 bits for their opcode. The remaining 27 bits can be used for
the address. Note that a memory address is 32 bits long. Hence, we cannot cover the address
space with 27 bits. However, we can make two key optimisations. The first is that we can
assume PC-relative addressing. We can assume that the 27 bits specify an offset (both positive
and negative) with respect to the current PC. The branch statements in modern programs are
generated because of for/while loops or if-statements. For these constructs the branch target is
typically within a range of several hundred instructions. If we have 27 bits to specify the offset,
and we assume that it is a 2’s complement number, then the maximum offset in any direction
(positive or negative) is 226. This is more than sufficient for almost all programs.

There is another important observation to be made. An instruction takes 4 bytes. If
we assume that all instructions are aligned to 4-byte boundaries, then all starting memory
addresses of instructions will be a multiple of 4. Hence, the least two significant binary digits
of the address will be 00. There is no reason for wasting bits in trying to specify them. We can
assume that the 27 bits specify the offset of the address of the memory word (in units of 4-byte
memory words) that contains the instruction. With this optimisation, the offset from the PC
in terms of bytes becomes 29 bits. This number should suffice for even the largest programs.

127 © Smruti R. Sarangi

Just in case, there is a pathological example, in which the branch target is more than 228 bytes
away, then the assembler needs to chain the branches such that one branch will call another
branch and so on. However, this would be a very rare case. The encoding for these instructions
is shown in Figure 3.13.

opcode

5

32

offset

27

op offset

Figure 3.13: Encoding of 1-address instructions(branch format)

Note that the 1-address instruction format finds a use for the unused bits in the 0-address
format. We can think of the 0-address format for the ret instruction as a special case of the
1-address format. Let us refer to the 1-address format as the branch format. Let us name
the fields in this format. Let us call the opcode portion of the format as op, and the offset as
offset. The op field contains the bits in positions 28-32, and the offset field contains the bits
in positions 1-27.

Encoding 3-Address Instructions

Let us consider 3-address instructions first, and then look at other types of instructions. The
3-address instructions in SimpleRisc are add, sub, mul, div, mod, and, or, lsl, lsr, and asr.

Let us consider a generic 3-address instruction. It has a destination register, one input
source register, and a second source operand that can either be a register or an immediate. We
need to devote one bit to find out if the second source operand is a register or an immediate.
Let us call this the I bit and specify it just after the opcode in the instruction. If I = 1, then
the second source operand is an immediate. If I = 0, the second source operand is a register.

Let us now consider the case of 3-address registers that have their second source operand as
a register(I = 0). Since we have 16 registers, we require 4 bits to uniquely specify each register.
Register ri can be encoded as the unsigned 4-bit binary equivalent of i. Hence, to specify the
destination register and two input source registers, we require 12 bits. The structure is shown in
Figure 3.14. Let us call this instruction format as the register format. Like the branch format
let us name the different fields – op (opcode, bits: 28-32), I (immediate present, bits:27), rd
(destination register, bits: 23-26), rs1 (source register 1, bits: 19-22), and rs2 (source register
2, bits:15-18).

Now, if we assume that the second source operand is an immediate, then we need to set I
to 1. Let us calculate the number of bits we have left for specifying the immediate. We have
already devoted 5 bits for the opcode, 1 bit for the I bit, 4 bits for the destination register, and
4 bits for the first source register. In all, we have expended 14 bits. Hence, out of 32 bits, we
are left with 18 bits, and we can use them to specify the immediate.

We propose to divide the 18 bits into two parts – 2 bits (modifier) + 16 bits (constant part

© Smruti R. Sarangi 128

opcode

5

32

0 dest reg src reg1 src reg2

4 4 4

op I

1

rd rs1 rs2

Figure 3.14: Encoding 3-address instructions with register operands (register format)

of the immediate). The two modifier bits can take three values – 00 (default), 01 (‘u’), and 10
(‘h’). The remaining 16 bits are used to specify a 16-bit 2’s complement number when we are
using default modifiers. For the u and h modifiers, we assume that the 16-bit constant in the
immediate field is an unsigned number. In the rest of this book, we assume that the immediate
field is 18 bits long with a modifier part, and a constant part. The processor internally expands
the immediate to a 32-bit value, in accordance with the modifiers.

This encoding is shown in Figure 3.15. Let us call this instruction format as the immediate
format. Like the branch format let us name the different fields – op (opcode, bits: 28-32), I
(immediate present, bits:27), rd (destination register, bits: 23-26), rs1 (source register 1, bits:
19-22), and imm (immediate, bits:1-18).

opcode

32

1 dest reg src reg1 immediate

185 4 4

op I

1

rd rs1 imm2

modifier bits

Figure 3.15: Encoding 3-address instructions with an immediate source operand (immediate
format)

Example 35
Encode the instruction: sub r1, r2, 3.

Answer: Let us encode each field of the instruction. We have:

Field Encoding Field Encoding

sub 00001 r2 0010
I 1 3 11
r1 0001

129 © Smruti R. Sarangi

Thus, the binary encoding is (spaces added for readability): 00001 1 0001 0010 00 0000
0000 0000 0011. When we convert to hex, we get: 0x0C480003.

Encoding cmp, not, and mov

The cmp instruction has two source operands. The second source operand can be a register or
an immediate. We will use the standard 3-address register or immediate formats for encoding
the cmp instruction. The destination register field will remain empty. See Figure 3.16. One
of our aims in designing the encoding is to keep things as simple and regular as possible
such that the processor can decode the instruction very easily. We could have designed a
separate encoding for a 2-address instruction such as cmp. However, the gains would have been
negligible, and by sticking to a fixed format, the processor’s instruction decode logic becomes
more straightforward.

The not and mov instructions have one destination register, and one source operand. This
source operand can be either an immediate or a register. Hence, we can treat the source
operand of these instructions as the second source operand in the 3-address format, and keep
the field for the first source register empty for both of these instructions. The format is shown
in Figure 3.16.

00101

5

32

rs1

4 4

rs2 / imm

18

cmp

01001

5

32

rd

4 4

rs2 / imm

18

mov

01000

5

32

4 4

rs2/ imm

18

not

I

I

I rd

1

1

1

Figure 3.16: cmp, not, and mov instructions

© Smruti R. Sarangi 130

Load and Store Instructions

In SimpleRisc the instructions – ld and st – are 2-address instructions. The second operand
points to a memory address. It uses a base-offset addressing mode. There is a base register,
and an integer offset.

For a load instruction, there are three unique pieces of information that need to be encoded:
destination register, base register, and offset. In this case, we propose to use the three address
immediate format. The I bit is set to 1, because we need to specify an offset. The first source
register represents the base register, and the immediate represents the offset. Note that this
encoding follows our principle of regularity and simplicity. Our aim is to reuse the 3-address
register and immediate formats for as many instructions as possible.

Now, let us look at store instructions. Store instructions are slightly special in the sense
that they do not have a destination register. The destination of a store instruction is a memory
location. This information cannot be encoded in the immediate format. However, for reasons
of simplicity, we still want to stick to the formats that we have defined. We need to take a
crucial design decision here by answering Question 5.

Question 5
Should we define a new instruction format for the store instruction?

Let us adjudge this case in the favor of not introducing a new format. Let us try to reuse
the immediate format. The immediate format has four fields – op, rd, rs1, and imm. The
opcode field (op) need not be touched. We can assume that the format of the store instruction
is: st rd, imm[rs1]. In this case, the field rd represents the register to be stored. Like the load
instruction we can keep the base register as rs1, and use the imm field to specify the offset. We
break the pattern we have been following up till now by saving a source register in rd, which
is meant to save a destination register. However, we were compelled to do this at the cost of
not introducing a new instruction format. Such design tradeoffs need to be made continuously.
We have to always balance the twin objectives of elegance and efficiency. It is sometimes not
possible to choose the best of both worlds. In this case, we have gone for efficiency, because
introducing a new instruction format for just one instruction is overkill.

To conclude, figure 3.17 shows the encoding for load and store instructions.

Example 36
Encode the instruction: st r8, 20[r2].

Answer: Let us encode each field of the instruction. We have:

Field Encoding

st 01111
I 1
r8 1000
r2 0010
20 0001 0100

131 © Smruti R. Sarangi

01110

5

32

rs1

4 4 18

ld rd, imm[rs1] 1

1

rd imm

01111

5

32

rs1

4 4 18

st rd, imm[rs1] 1

1

rd imm

Figure 3.17: Encoding of load and store instructions

Thus, the binary encoding is (spaces added for readability): 01111 1 1000 0010 00 0000
0000 0001 0100. When we convert to hex, we get: 0x7E080014.

Summary of Instruction Formats

In the last few subsections, we have described a method to encode an instruction into a sequence
of bits (machine code). A compiler can use this method to translate a program written in a
high level language to machine code, and thus create an executable program. It is now the
job of the processor to execute this program by reading the instructions one by one. We have
substantially made our life easy by assuming that each instruction is exactly 4 bytes long. The
processor simply needs to start at the starting address of the program in memory and fetch one
instruction after the other. If an instruction is a branch, then the processor needs to evaluate
the branch condition, and jump to the branch target. The part of the processor that is primarily
concerned about the details of the ISA is the decode logic or the decoder . It is the role of the
decoder to understand and decode an instruction. While designing an encoding for an ISA,
creating a simple and efficient instruction decoder was our prime objective.

Format Definition

branch op (28-32) offset (1-27)

register op (28-32) I (27) rd (23-26) rs1 (19-22) rs2 (15-18)

immediate op (28-32) I (27) rd (23-26) rs1 (19-22) imm (1-18)

op → opcode, offset → branch offset, I → immediate bit, rd → destination register

rs1 → source register 1, rs2 → source register 2, imm → immediate operand

Table 3.11: Summary of instruction formats

To decode a SimpleRisc instruction, the first task is to find the instruction format. We have

© Smruti R. Sarangi 132

defined three formats – branch, immediate, and register. Let us refer to Table 3.10. The six
branch format instructions are call, ret, beq, bgt, b, and nop. Recall that we encode both 0 and
1-address format instructions in the branch format.

The opcodes of all the five branch instructions (b, beq, bgt, call, ret) have 1 as their most
significant bit, whereas all other instructions have a 0 in their most significant position. Hence,
for a decoder to find out if an instruction is a branch is very easy. It just needs to take a look
at the three most significant bit of the opcode. It should be 1. Moreover, to find out if an
instruction is a nop, the decoder needs to compare it with 01101, which requires a small circuit.

If an instruction is not in the branch format, then it must be in the immediate or register
format. This can be quickly decided by taking a look at the I bit. If it is 1, then the instruction
is in the immediate format, otherwise it is in the register format. The formats are summarised
in Table 3.11.

Lessons Learnt

Now that we have designed a small instruction set of our own, looked at sample programs, and
encoded our instructions, we are all set to design a processor for our SimpleRisc ISA. It needs
to decode every single instruction, and execute it accordingly. Before proceeding further, let us
look back at how we designed our ISA, and how should ISAs be designed in general.

1. The first step in designing an ISA is to study the workload that the ISA is being designed
for. In the case of SimpleRisc , we wanted to use it for running general purpose programs.
This meant that SimpleRisc needed to be simple, concise, generic, and complete as out-
lined in Chapter 1. However, for different target workloads, the requirements might be
very different.

2. After studying the workload, we need to next decide on the number of instructions that we
need to have. Unless there are compelling requirements otherwise, it is not advisable to
have more than 64-128 instructions. More than 128 instructions will make the instruction
decoder very complex. It will also complicate the design of the processor.

3. After finalising the number of instructions, we need to finalise the different types of
instructions. If we are designing an ISA for extensive numerical computation, then we
should have many arithmetic operations. If we are designing an ISA for processing text,
then we should have many instructions that can process strings (pieces of text). In the
case of SimpleRisc we devoted 6 instructions to arithmetic operations, 3 instructions to
shift operations, 3 instructions to logical operations, 3 instructions to data transfer, 5
instructions to branch operations, and designated 1 instruction as no-op (no operation).
We chose this distribution because we expect to run a lot of general purpose programs
that will have complex arithmetical and logical constructs. We could have very well gotten
rid of an instruction such as mod and replaced it with a sophisticated branch instruction,
if we wanted to look at programs that will have a lot of branches. These subtle tradeoffs
need to be evaluated thoroughly.

4. Once, we have finalised the broad types of instructions and the distribution of instructions
across these types, we come to the actual instructions themselves. In this case also, we
want to make the common case fast. For example, there is no point in having a division

133 © Smruti R. Sarangi

instruction in programs that do not have divisions operations. Secondly, we need to decide
the format of each instruction in terms of the number and type of operands. For example,
in SimpleRisc , all our arithmetic operations are in the 3-address format. If there is a
requirement from the side of processor designers that they want to reduce the number of
registers, then we can opt for the 2-address format. Alternatively, if we want to process
a massive amount of information in one go such as add a list of 10 numbers, then we can
even have a 11-address format instruction.

5. Once the format of the instruction is decided, we need to decide on the different ad-
dressing modes. This decision has many ramifications. For example, if we allow the
register-indirect addressing mode in arithmetic instructions, then we need to add addi-
tional hardware to access the memory and fetch the operand values. On the other hand,
if we have a register-only addressing mode for arithmetic instructions, then their imple-
mentation will be fast. However, the flip side is that we will need more registers, and
more dedicated load-store instructions to access memory. This tradeoff needs to be kept
in mind.

6. Once we have designed the set of instructions, we need to decide a proper encoding for
it. The main aim should be to reduce the work of the instruction decoder. It is best to
have a small set of generic instruction formats that the decoder can quickly discern. We
need to balance elegance and efficiency such that the decoder can be simple yet efficient.

3.4 Summary and Further Reading

3.4.1 Summary

Summary 3

1. Assembly language is a textual representation of machine instructions. Each state-
ment in an assembly language program typically corresponds to one machine instruc-
tion.

2. An assembler is a program that converts an assembly language program to machine
code.

3. An assembly language is specific to an ISA and an assembler.

4. Assembly language is a vital tool for writing efficient programs, and for designing the
core routines of operating systems, and device drivers.

5. Hardware designers learn assembly languages to understand the semantics of an ISA.
It tells them what to build.

6. An assembly language program typically assumes a Von Neumann machine augmented
with a finite set of registers.

© Smruti R. Sarangi 134

7. A typical GNU assembly file contains a list of sections. Two important sections are
text and data. The text section contains the assembly statements that correspond to
machine code. The data section holds data and constants that the program will need
during its operation.

8. A typical assembly statement contains an optional label to uniquely identify it, an in-
struction with a set of operands, and an optional comment. Instead of an instruction,
it can also contain a directive that is a command to the assembler.

9. There are typically four types of generic assembly instructions:

(a) Data processing instructions – arithmetic and logical

(b) Data transfer instructions – move, load, and store

(c) Branch instructions – branch, function call, return

(d) Exception generating instructions – transfer control to the operating system

An assembly language for a specific ISA also contains some machine specific instruc-
tions also that are mainly used to set its configuration or invoke some special feature.

10. The semantics of operands is also known as the addressing mode.

11. The main addressing modes are immediate (specify constant in instruction), register-
direct (specify the register’s name in the instruction), register-indirect (a register con-
tains the memory address), and base-offset (the offset is added to the memory location
in the base register).

12. We designed the SimpleRisc assembly language that contains 21 instructions. It is a
complete RISC ISA.

13. We designed an encoding for each SimpleRisc instruction. We broadly defined three
instruction formats

branch Contains a 5 bit opcode and 27 bit offset.

register Encodes a 3-address instruction with two register source operands and one
register destination operand.

immediate Encodes a 3-address instruction that has an immediate as one of the
operands.

In this chapter we have looked at the generic principles underlying different flavors of assembly
language. We constructed a small assembly language of our own for the SimpleRisc ISA, and
proceeded to encode it. This information is sufficient to design a basic processor for SimpleRisc
in Chapter 9. However, we would like to strongly advise the reader to at least study one of
the chapters on real world assembly languages – either ARM (Chapter 4) or x86 (Chapter 5).
Studying a real language in all its glory will help the reader deepen her knowledge, and she can
appreciate all the tricks that are required to make an ISA expressive.

135 © Smruti R. Sarangi

3.4.2 Further Reading

Instruction set design and the study of assembly languages are very old fields. Readers should
refer to classic computer architecture textbooks by Henessey and Patterson [Henessey and
Patterson, 2010], Morris Mano [Mano, 2007], and William Stallings [Stallings, 2010] to get a
different perspective. For other simple instruction sets such as SimpleRisc , readers can read
about the MIPS [Farquhar and Bunce, 2012], and Sparc [Paul, 1993] instruction sets. Their
early variants are simple RISC instruction sets with up to 64 instructions, and a very regular
structure. Along with the references that we provide, there are a lot of excellently written
tutorials and guides on the web for different ISAs.

Since the last 10 years, a trend has started to move towards virtual instruction sets. Pro-
grams compiled for these instruction sets need to be compiled once again on a real machine
such that the virtual instruction set can be translated to a real instruction set. The reasons for
doing so shall be described in later chapters. The Java language uses a virtual instruction set.
Details can be found in the book by Meyer et. al. [Downing and Meyer, 1997]. Readers can
also refer to a highly cited research paper that proposes the LLVA [Adve et al., 2003] virtual
instruction set.

Exercises

Assembly Language Concepts

Ex. 1 — What is the advantage of the register-indirect addressing mode over the memory-
direct addressing mode?

Ex. 2 — When is the base-offset addressing mode useful?

Ex. 3 — Consider the base-scaled-offset addressing mode, which directs the hardware to au-
tomatically multiply the offset by 4. When is this addressing mode useful?

Ex. 4 — Which addressing modes are preferable in a machine with a large number of regis-
ters?

Ex. 5 — Which addressing modes are preferable in a machine with very few registers?

Ex. 6 — Assume that we are constrained to have at the most two operands per instruction.
Design a format for arithmetic instructions such as add and multiply in this setting.

Assembly Programming

Ex. 7 — Write simple assembly code snippets in SimpleRisc to compute the following:

© Smruti R. Sarangi 136

i) a+ b+ c

ii) a+ b− c/d

iii) (a+ b) ∗ 3− c/d

iv) a/b− (c ∗ d)/3
v) (a≪ 2)− (b≫ 3) ((≪ (left shift logical), ≫ (left shift arithmetic))

Ex. 8 — Write a program to load the value 0xFFEDFC00 into r0. Try to minimise the
number of instructions.

Ex. 9 — Write an assembly program to set the 5th bit of register r0 to the value of the 3rd

bit of r1. Keep the rest of the contents of r0 the same. The convention is that the LSB is
the first bit, and the MSB is the 32nd bit. (Use less than or equal to 5 SimpleRisc assembly
statements)

Ex. 10 — Write a program in SimpleRisc assembly to convert an integer stored in memory
from the little endian to the big endian format.

Ex. 11 — Write a program in SimpleRisc assembly to compute the factorial of a positive
number using an iterative algorithm.

Ex. 12 — Write a program in SimpleRisc assembly to find if a number is prime.

Ex. 13 — Write a program in SimpleRisc assembly to test if a number is a perfect square.

Ex. 14 — Given a 32-bit integer in r3, write a SimpleRisc assembly program to count the
number of 1 to 0 transitions in it.

* Ex. 15 — Write a program in SimpleRisc assembly to find the smallest number that is a
sum of two different pairs of cubes. [Note: 1729 is the Hardy-Ramanujan number. 1729 =
123 + 13 = 103 + 93].

Ex. 16 — Write a SimpleRisc assembly program that checks if a 32-bit number is a palin-
drome. Assume that the input is available in r3. The program should set r4 to 1 if it is a
palindrome, otherwise r4 should contain a 0. A palindrome is a number which is the same
when read from both sides. For example, 1001 is a 4-bit palindrome.

Ex. 17 — Design a SimpleRisc program that examines a 32-bit value stored in r1 and counts
the number of contiguous sequences of 1s. For example, the value:

01110001000111101100011100011111

contains six sequences of 1s. Write the result in r2.

** Ex. 18 — Write a program in SimpleRisc assembly to subtract two 64-bit numbers, where
each number is stored in two registers.

** Ex. 19 — In some cases, we can rotate an integer to the right by n positions (less than or
equal to 31) so that we obtain the same number. For example: a 8-bit number 11011011 can

137 © Smruti R. Sarangi

be right rotated by 3 or 6 places to obtain the same number. Write an assembly program to
efficiently count the number of ways we can rotate a number to the right such that the result
is equal to the original number.

** Ex. 20 — A number is known as a cubic Armstrong number if the sum of the cubes of
the decimal digits is equal to the number itself. For example, 153 is a cubic Armstrong number
(153 = 13 + 53 + 33). You are given a number in register, r0, and it is known to be between 1
and 1 million. Can you write a piece of assembly code in SimpleRisc to find out if this number
is a cubic Armstrong number. Save 1 in r1 if it is a cubic Armstrong number; otherwise, save
0.

*** Ex. 21 — Write a SimpleRisc assembly language program to find the greatest common
divisor of two binary numbers u and v. Assume the two inputs (positive integers) to be available
in r3 and r4. Store the result in r5. [HINT: The gcd of two even numbers u and v is 2 ∗
gcd(u/2, v/2)]

Instruction Set Encoding

Ex. 22 — Encode the following SimpleRisc instructions:

i) sub sp, sp, 4

ii) mov r4, r5

iii) addu r4, r4, 3

iv) ret

v) ld r0, [sp]

vi) st r4, 8[r9]

Design Problems

Ex. 23 — Design an emulator for the SimpleRisc ISA. The emulator reads an assembly pro-
gram line by line, checks each assembly statement for errors, and executes it. Furthermore,
define two assembler directives namely .print, and .encode to print data on the screen. The
.print directive takes a register or memory location as input. When the emulator encounters
the .print directive, it prints the value in the register or memory location to the screen. Sim-
ilarly, when the emulator encounters the .encode directive it prints the 32-bit encoding of the
instruction on the screen. Additionally, it needs to also execute the instruction.

© Smruti R. Sarangi 138

4
ARM® Assembly Language

In this chapter, we will study the ARM instruction set. As of 2012, this instruction set is the
most widely used instruction set in smart phones, and tablets. It has more than 90% market
share1 in this space. ARM processors are also one of the most popular processors in hard disk
drives, and set top boxes for televisions. Hence, for any student of computer architecture it is
very important to learn about the ARM instruction set because it will prove to be useful in
programming the mobile and handheld devices of the future.

The ARM instruction set is a 32-bit instruction set. This means that the sizes of all registers
are 32 bits, and the size of the memory address is equal to 32 bits. It is a RISC instruction set
with a very regular structure. Each instruction is encoded into a string of exactly 32 bits like
SimpleRisc . All arithmetic and logical operations, use only register operands, and lastly all the
communication between registers and memory happens through two data transfer instructions
– load and store.

4.1 The ARM® Machine Model

ARM assembly language assumes a machine model similar to that explained in Section 3.2.1
for SimpleRisc . For the register file, it assumes that there are 16 registers that are visible to
the programmer at any point of time. All the registers in ARM are 32 bits or 4 bytes wide.

The registers are numbered from r0 to r15. Registers r11 . . . r15 are known by certain
mnemonics also as shown in Table 4.1. r11 is the frame-pointer. It points to the top of the
activation block. r12 is a scratch register that is not meant to be saved by the caller or the
callee. r13 is the stack pointer. It is important to understand that r11 and r12 are assigned
a special connotation by the GNU compiler collection. They are not assigned special roles by
the ARM ISA.

1Most of the ARM code running on processors is actually written in the Thumb-2 ARM ISA. The Thumb-2
ISA is essentially a recoding (or a simpler variant) of the ISA presented in this chapter. Hence, it is necessary
for readers to get a thorough understanding of the material that follows.

139

© Smruti R. Sarangi 140

Register Abbrv. Name

r11 fp frame pointer

r12 ip intra-procedure-call scratch register

r13 sp stack pointer

r14 lr link register

r15 pc program counter

Table 4.1: Registers with special names in ARM

Let us differentiate between generic registers and registers with special roles. Registers
r0 . . . r12 are generic. The programmer and the compiler can use them in any way they like.
However, the registers r13(sp), r14(lr) and r15(pc) have special roles. sp is the stack pointer,
lr is the return address register, and pc is the program counter. In this chapter, we shall use
the little endian version of the ARM ISA, and we shall describe the syntax of the assembly
language used by the GNU ARM Assembler [arm, 2000].

4.2 Basic Assembly Instructions

4.2.1 Simple Data Processing Instructions

Register Transfer Instructions

The simplest type of assembly instructions transfer the value of one register into another, or
store a constant in a register. There are two instructions in this class – mov and mvn. Their
semantics are shown in Table 4.2. Note that we always prefix an immediate with ‘#’ in ARM
assembly.

Semantics Example Explanation

mov reg, (reg/imm)
mov r1, r2 r1 ← r2
mov r1, #3 r1 ← 3

mvn reg, (reg/imm)
mvn r1, r2 r1 ← ∼ r2
mvn r1, #3 r1 ← ∼ 3

Table 4.2: Semantics of the move instructions

The register based mov instruction simply moves the contents of r2 to register r1. Alter-
natively, it can store an immediate in a register. In Table 4.2, the mvn instruction flips every
bit in the 32-bit register r2, and then transfers the contents of the result to r1. The ∼ symbol
represents logical complement. For example, the complement of the 4-bit binary value, 0110,
is 1001. The mov and mvn instructions take two inputs. These instructions are examples of
2-address format instructions in ARM.

141 © Smruti R. Sarangi

Arithmetic Instructions

The simplest instructions in this class are add, sub, rsb (reverse subtract). Their semantics are
given in Table 4.3. The second operand can also be an immediate.

Semantics Example Explanation

add reg, reg, (reg/imm) add r1, r2, r3 r1 ← r2 + r3

sub reg, reg, (reg/imm) sub r1, r2, r3 r1 ← r2 - r3

rsb reg, reg, (reg/imm) rsb r1, r2, r3 r1 ← r3 - r2

Table 4.3: Semantics of add and subtract instructions

Example 37
Write an ARM assembly program to compute: 4+5 - 19. Save the result in r1.

Answer: Simple yet suboptimal solution.

mov r1, #4

mov r2, #5

add r3, r1, r2

mov r4, #19

sub r1, r3, r4

Optimal solution.

mov r1, #4

add r1, r1, #5

sub r1, r1, #19

Logical Instructions

Semantics Example Explanation

and reg, reg, (reg/imm) and r1, r2, r3 r1 ← r2 AND r3

eor reg, reg, (reg/imm) eor r1, r2, r3 r1 ← r2 XOR r3

orr reg, reg, (reg/imm) orr r1, r2, r3 r1 ← r2 OR r3

bic reg, reg, (reg/imm) bic r1, r2, r3 r1 ← r2 AND (∼ r3)

Table 4.4: Semantics of logical instructions

© Smruti R. Sarangi 142

ARM’s bitwise logical instructions are shown in Table 4.4. and computes a bit-wise AND,
eor computes an exclusive OR, orr computes a regular bit-wise OR, and the bic(bit-clear)
instruction clears off the bits in r2 that are specified in r3. Like arithmetic instructions, the
second operand can be an immediate.

Example 38
Write an ARM assembly program to compute: A ∨B, where A and B are 1 bit Boolean
values. Assume that A = 0 and B = 1. Save the result in r0.

Answer:

mov r0, #0x0

orr r0, r0, #0x1

mvn r0, r0

Multiplication Instructions

We shall introduce four multiply instructions with varying degrees of complexity. The fun-
damental issue with multiplication is that if we are multiplying two 32-bit numbers, then the
result will require 64 bits. The reason is that the largest unsigned 32-bit number is 232 − 1.
Consequently, when we try to square this number, our result is approximately 264. We would
thus need a maximum of 64 bits.

ARM has two 32-bit multiplication instructions that truncate the result to 32 bits – mul
and mla. They ignore the rest of the bits. mul multiplies the values in two registers and stores
the result in a third register. mla (multiply and accumulate) is in the 4-address format. It
multiplies the values of two registers, and adds the result to the value stored in a third register
(see Table 4.5). The advantage of the mla instruction is that it makes it possible to represent
code sequences of the form (d = a+ b∗ c) with one instruction. Such instructions are extremely
useful when it comes to implementing linear algebra kernels such as matrix multiplication.

Semantics Example Explanation

mul reg, reg, reg mul r1, r2, r3 r1 ← r2 × r3

mla reg, reg, reg, reg mla r1, r2, r3, r4 r1 ← r2 × r3 + r4

smull reg, reg, reg, reg smull r0, r1, r2, r3 r1 r0︸ ︷︷ ︸
64

← r2 ×signed r3

umull reg, reg, reg, reg umull r0, r1, r2, r3 r1 r0︸ ︷︷ ︸
64

← r2 ×unsigned r3

Table 4.5: Semantics of multiply instructions

In this chapter, we shall introduce two instructions that store the entire 64-bit result in
two registers. The smull and umull instructions perform signed and unsigned multiplication

143 © Smruti R. Sarangi

respectively on two 32-bit values to produce a 64-bit result. Their semantics is shown in
Table 4.5. r0 contains the lower 32 bits, and r1 contains the upper 32 bits.

For all the multiply instructions that we have introduced, all the operands need to be
registers. Secondly, the first source register, should not be the same as the destination register.

Example 39
Compute 123 + 1, and save the result in r3.
Answer:

/* load test values */

mov r0, #12

mov r1, #1

/* perform the logical computation */

mul r4, r0, r0 @ 12*12

mla r3, r4, r0, r1 @ 12*12*12 + 1

Division Instructions

Newer versions of the ARM ISA have introduced two integer division instructions, sdiv and
udiv. The former is used for signed division and the latter is used for unsigned division (see
Table 4.6). Both of them compute the quotient. The remainder can be computed by subtracting
the product of the dividend and the quotient from the dividend.

Semantics Example Explanation

sdiv reg, reg, reg sdiv r1, r2, r3 r1 ← r2 ÷ r3 (signed)

udiv reg, reg, reg udiv r1, r2, r3 r1 ← r2 ÷ r3 (unsigned)

Table 4.6: Semantics of divide instructions

4.2.2 Advanced Data-Processing Instructions

Let us consider the generic format of 3-address data-processing instructions.

instruction <destination register> <register operand 1> <operand 2>

Likewise, the generic format for 2 address data processing instructions is

instruction <register operand 1> <operand 2>

Up till now, we have been slightly quiet about < operand 2 >. It can be a register operand,
an immediate, or a special class of operands called – shifter operands. The first two classes are

© Smruti R. Sarangi 144

reg1 , lsl
lsr
asr
ror

#shift_amt
reg2

10110
lsl #1

01100

10110
lsr #1

01011

Generic format

10110
asr #1

11011

10110
ror #1

01011

Examples

Figure 4.1: Format of shifter operands

intuitive. Let us describe shifter operands in this section. Their generic format is shown in
Figure 4.1.

A shifter operand contains two parts. This first part is a register, and the latter part specifies
an operation to be performed on the value in the register. The ARM instruction set defines
four such operations – lsl (logical shift left), lsr (logical shift right), asr (arithmetic shift right),
and ror (rotate right). These operations are collectively called shift and rotate instructions.

Shift and Rotate Instructions

A logical left shift operation is shown in Figure 4.1. In this example, we are shifting the value
10110 one place to the left. We need to shift in an extra 0 at the LSB position. The final result
is equal to 01100. A left shift operation is present in most programming languages including C
and Java. It is denoted by the following symbol: ≪. Note that shifting a word (4 byte number)
by k positions to the left is equivalent to multiplying it by 2k. This is in fact a quick way of
multiplying a number by a power of 2.

Let us now consider the right shift operation. Unlike the left shift operation, this operation
comes in two variants. Let us first consider the case of unsigned numbers. Here, we treat a
word as a sequence of 32 bits. In this case, if we shift the bits 1 position to the right, we fill
the MSB with a 0. This operation is known as – logical shift right (see Figure 4.1). Note that
shifting a number right by k places is usually the same as dividing it by 2k. The right shift
operation in C or Java is ≫.

If we consider a signed number, then we need to use the arithmetic right shift (asr) op-
eration. This operation preserves the sign bit. If we shift a number right using asr by one
position, then we fill the MSB with the previous value of the MSB. This ensures that if we shift
a negative number to the right, the number still remains negative. In a four bit number system,
if we shift 1010 to the right by 1 place using asr, then we get 1101. The original number is -6,
and the shifted number is equal to -3. We thus see that arithmetic right shift divides a signed

145 © Smruti R. Sarangi

number by a power of two. Note that using the right shift operations for odd numbers is tricky.
Let us consider the representation of -5 in a 4-bit number system. It is 1011. After performing
an arithmetic right shift, the result is equal to 1101, which is equal to -3 in decimal. Whether
we consider -5/2 = -3 as a correct answer or not depends on the semantics of the programming
language.

The right rotate operation performs a right shift on the number. However, it fills the MSB
with the number shifted out from the rightmost end. In Figure 4.1, if we right rotate 10110,
we get 01011. In this case we have moved the previous LSB (0) to the new MSB. Note that ror
(right rotate) by 32 positions gives us the original value. ARM provides a special connotation
for ror #0. It performs a right shift. It moves the value of the carry flag to the MSB, and then
sets the shifted out LSB to the carry flag. This is also referred to as the rrx operation. This
operation does not take any arguments.

Using Shifter Operands

A shifter operand of the form – r1, lsl #2 – means that we shift the value in r1 by 2 places to
the left. Note that the value in r1 is not affected in this process. Likewise, an operand of the
form – r1, lsr r3 – means that we shift the value in r1 to the right by the value specified in r3.
We can now use the shifter operand as a valid second operand. See examples 40, and 41.

Example 40
Write ARM assembly code to compute: r1 = r2 / 4. Assume that the number stored in r1
is divisible by 4.

Answer:

mov r1, r2, asr #2

Example 41
Write ARM assembly code to compute: r1 = r2 + r3 × 4.

Answer:

add r1, r2, r3, lsl #2

Addressing Modes

We have now seen different formats of operands. An operand can either be a register, an
immediate, or a shifted register.

We have up till now seen three addressing modes:

1. register addressing mode: Example, r1, r2, r3

© Smruti R. Sarangi 146

2. immediate addressing mode: Example, #1, #2

3. scaled-register addressing mode: Example, (r1, lsl #2), (r1, lsl r2)

4.2.3 Compare Instructions

ARM has four compare instructions – cmp, cmn, tst, and teq – in the 2-address format. These
instructions compare the values in the two registers and save some properties of the result of
the comparison in a dedicated internal register called the CPSR register. Other instructions
base their behavior based on the values saved in the CPSR register. This is similar to the flags
register in SimpleRisc .

The CPSR register

The CPSR (Current Program Status Register) maintains some state regarding the execution
of the program. It is a 32-bit register like the other registers, and is usually used implicitly.
In this book, we are concerned with four bits that it stores in the positions [29-32]. They are
N(Negative), Z(Zero), C(Carry), and V(Overflow). These four bits are known as condition code
flags, or simply flags. It is similar to the flags register in SimpleRisc .

There are two sets of instructions that can set CPSR flags. The first set comprises of
compare instructions, and the second set includes flag setting variants of generic instructions.
In either case, the rules for setting the flags are as follows:

N (Negative) This flag is set if the result is a 2’s complement based signed integer. It is set
to 1 if the result is negative, and 0 if it is non-negative.

Z (Zero) This flag is set to 1 if the result is zero. In a comparison operation, if the operands
are equal, then this flag is also set to 1.

C (Carry) • For an addition, the C bit is set to 1 if the result produced a carry. This
can happen when there was an overflow while adding the unsigned numbers. For
example, if we add -1(11112) and -2(11102), then the result is -3(11012), and there
is a carry out at the MSB. Note that there is no real overflow, because -3 can be
represented in the number system. However, if the numbers are treated as unsigned
numbers, then there is an unsigned overflow. Consequently, we can also say that the
carry bit is set if there is an unsigned overflow.

• For a subtraction, the carry bit is set to 0 if there is an unsigned underflow. For
example, if we try to compute 0− 1, then there is no real overflow/underflow. How-
ever, 00002 − 00012 will lead to an unsigned underflow. This basically means that
when we subtract these two numbers, we will need to borrow a bit. In this case, we
set the C flag to 0. Otherwise, we set it to 1.

• For logical shift operations, C is equal to the last bit shifted out of the result value.

V (Overflow) V is set to 1 when an actual signed overflow/underflow occurs. Note that in the
rest of the book, we might casually refer to both overflow and underflow as just overflow.

147 © Smruti R. Sarangi

Compare Instructions

ARM has four compare instructions – cmp, cmn, tst and teq. All four of them update the
CPSR flags. Let us consider the cmp instruction. It is a 2-address instruction that takes two
inputs. It essentially subtracts their values and sets the appropriate flags. For example, if the
values are equal, then the zero flag is set. Later instructions can take some decisions based
on these flags. For example, they might decide if they need to branch, or perform a certain
computation based on the value of the zero flag. We show the semantics of all four compare
instructions in Table 4.7.

Semantics Example Explanation

cmp reg, (reg/imm) cmp r1, r2 Set flags after computing (r1 - r2)

cmn reg, (reg/imm) cmn r1, r2 Set flags after computing (r1 + r2)

tst reg, (reg/imm) tst r1, r2 Set flags after computing (r1 AND r2)

teq reg, (reg/imm) teq r1, r2 Set flags after computing (r1 XOR r2)

Table 4.7: Semantics of compare instructions

cmn computes the flags after adding the register values, tst computes a bitwise AND of the
two operands and then sets the flags, and teq tests for equality by computing an XOR (exclusive
or) of the operands. For this set of instructions, the second operand can be an immediate also.
Note that the compare instructions, are not the only instructions that can set the flags. Let us
discuss a generic class of instructions that can set the CPSR flags.

4.2.4 Instructions that Set CPSR Flags – The ‘S’ Suffix

Normal instructions such as add and sub do not set the CPSR flags. However, it is possible to
make any data processing instruction set the flags by adding the suffix - ‘s’ - to it. For example,
the adds and subs instructions do the regular jobs of addition and subtraction respectively, and
additionally also set the CPSR flags. The rules for setting the flags are given in Section 4.2.3.
Let us now see how we can use these flags.

4.2.5 Data Processing Instructions that use CPSR Flags

There are three simple data processing instructions that use the CPSR flags in their computa-
tion. They are sbc, rsc, and adc.

Let us now motivate this section with an example. Our basic ARM instruction format does
not support 64-bit registers. Consequently, if we desire to implement the long data type that
uses 64 bits, we need to use two registers. Let us assume that one long value is present in
registers, r2, and r1. Here, r2 contains the upper 32 bits, and r1 contains the lower 32 bits.
Let the second long value be present in registers r4, and r3. Let us now try to add these two
long values to produce a 64-bit result, and save it in registers, r6 and r5. See Example 42.

© Smruti R. Sarangi 148

Example 42
Add two long values stored in r2,r1 and r4,r3.

Answer:

adds r5, r1, r3

adc r6, r2, r4

The (adds) instruction adds the values in r1 and r3. adc(add with carry) adds r2, r4, and
the value of the carry flag. This is exactly the same as normal addition.

Example 43 shows how to subtract the values.

Example 43
Subtract two long values stored in r2,r1 and r4,r3.

Answer:

subs r5, r1, r3

sbc r6, r2, r4

subs subtracts the value of r3 from the value in r1. sbc(subtract with carry) subtracts the
value in r4 from the value in r2. Additionally, if the previous instruction resulted in a
borrow (carry equal to 0), then it also subtracts the carry bit. This is the same as normal
subtraction.

We list the semantics of the instructions in Table 4.8. Note that in the case of a subtraction
the carry flag is set to 0, when there is a borrow. The NOT operation flips a 0 to 1, and vice
versa. Lastly, rsc stands for – reverse subtract with carry.

Semantics Example Explanation

adc reg, reg, reg adc r1, r2, r3 r1 = r2 + r3 + Carry Flag

sbc reg, reg, reg sbc r1, r2, r3 r1 = r2 - r3 - NOT(Carry Flag)

rsc reg, reg, reg rsc r1, r2, r3 r1 = r3 - r2 - NOT(Carry Flag)

Table 4.8: Semantics of adc, sbc, and rsc instructions

4.2.6 Simple Branch Instructions

An ISA with just data processing instructions is very weak. We need branch instructions such
that we can implement if-statements and for-loops. ARM programs primarily use three branch

149 © Smruti R. Sarangi

instructions to do most of their work. They are: b, beq, bne. Their semantics are given in
Table 4.9.

Semantics Example Explanation

b label b .foo Jump unconditionally to label .foo

beq label beq .foo Branch to .foo if the last flag setting
instruction has resulted in an equal-
ity and (Z flag is 1)

bne label bne .foo Branch to .foo if the last flag set-
ting instruction has resulted in an
inequality and (Z flag is 0)

Table 4.9: Semantics of simple branch instructions

Example 44
Write an ARM assembly program to compute the factorial of a positive number (> 1)
stored in r0. Save the result in r1.
Answer:

C
int val = get_input();

int idx;

int prod = 1;

for (idx = 1; idx <= val ;

idx++) {

prod = prod * idx;

}

ARM assembly
mov r1, #1 /* prod = 1 */

mov r3, #1 /* idx = 1 */

.loop:

mul r1, r3, r1 /* prod = prod * idx */

cmp r3, r0 /* compare idx, with the input (num) */

add r3, r3, #1 /* idx ++ */

bne .loop /* loop condition */

Let us now see, how we can use the power of branches to write some powerful programs.
Let us consider the factorial function. In Example 44, we show a small program to compute the

© Smruti R. Sarangi 150

factorial of a natural number. r3 is a counter that is initialised to 0. We keep on incrementing
it till it matches r0. r1 represents the product. We iteratively multiply the value of r3 with r1.
At the end of the set of iterations, r1 contains the factorial of the value given in r0.

Example 45
Write an assembly program to find out if a natural number stored in r0 is a perfect square.
Save the Boolean result in r1.
Answer:

1 mov r1, #0 /* result initialised to false */

2 mov r2, #1 /* counter */

3 .loop:

4 mul r3, r2, r2

5 cmp r3, r0

6 beq .square

7 add r2, r2, #1

8 cmp r2, r0

9 bne .loop

10

11 b .exit /* number is not a square */

12 .square:

13 mov r1, #1 /* number is a square */

14 .exit:

Let us show the example of another program to test if a number is a perfect square (see
Example 45). r1 contains the result of the operation. If the number is a perfect square we set r1
to 1, else we set r1 to 0. The main loop is between lines 3 and 9. Here, we increment the value
of r2 iteratively, and test if its square equals r0. If it does, we jump to .square, set r1 to 1, and
jump to .exit. Here, we print the value (code not shown), and exit the program. We assume a
hypothetical label – .exit – that is present at the end of the program (also shown in the code).
The exit condition of the loop is Line 9, where we consider the result of the comparison of r2
and r0. If r2 is equal to r0, then r0 cannot contain a perfect square because r0 is at least equal
to 2 at the end of any iteration.

4.2.7 Branch and Link Instruction

We can use the simple branch instructions to implement for loops and if statements. However,
we need a stronger variant of the branch instruction to implement function calls. Function calls
are different than regular branches because we need to remember the point in the program that
the function needs to return to. ARM provides the bl (branch-and-link) instruction for this
purpose. The semantics of this instruction is shown in Table 4.10.

151 © Smruti R. Sarangi

Semantics Example Explanation

bl label bl .foo (1) Jump unconditionally to the function at .foo
(2) Save the next PC (PC + 4) in the lr register

Table 4.10: Semantics of the branch and link instruction

The bl instruction jumps to the function that begins at the specified label. Note that in the
ARM ISA, there is no special way for designating the start of a function. Any instruction can
in principle be the start of a function. In ARM assembly, the starting instruction of a function
needs to have a label assigned to it. Along with branching to the given label, the bl instruction
also saves the value of the return address, which is equal to the current PC plus 4, into the lr
register (r14). We need to add 4 over here because the size of an instruction in ARM is exactly
equal to 4 bytes.

Once a function starts executing, it is expected that it will preserve the value of the return
address saved in the lr register unless it invokes other functions. If a function invokes other
functions, it needs to spill and restore registers as mentioned in Section 3.3.10. When we wish
to return from a function, we need to move the value in the lr register to the pc register (r15).
The PC will point to the instruction at the return address and execution will proceed from that
point.

Example 46
Example of an assembly program with a function call.

C
int foo() {

return 2;

}

void main() {

int x = 3;

int y = x + foo();

}

ARM assembly
foo:

mov r0, #2

mov pc, lr

main:

mov r1, #3 /* x = 3 */

bl foo /* invoke foo */

/* y = x + foo() */

add r2, r0, r1

© Smruti R. Sarangi 152

Let us take a look at Example 46. In this example, we consider a simple piece of C code
that calls a function foo that returns a constant value of 2. It adds the return value to the
variable x to produce y.

In the equivalent ARM code, we define two labels – foo andmain. We assume that execution
starts from the main label. We map x to r1, and set its value equal to 3. Then, we call the
function foo. In it we set the value of register r0 to 2, and return by moving the value in the
lr register to the PC. When the program returns, it begins execution at the subsequent line in
the main function. The register r0 maintains its value equal to 2 across functions. We add the
value in r1 to the value in r0 to produce the value for y. It is saved in r2.

Nowadays, there is a simpler method is used to return from a function. We can use the bx
instruction that jumps to an address contained in a register (semantics shown in Figure 4.11).

Semantics Example Explanation

bx reg bx r2 (1) Jump unconditionally to the ad-
dress contained in register, r2

Table 4.11: Semantics of the bx instruction

We can simplify the assembly code in Example 46 as follows.

ARM assembly
foo:

mov r0, #2

bx lr

main:

mov r1, #3 /* x = 3 */

bl foo /* invoke foo */

/* y = x + foo() */

add r2, r0, r1

4.2.8 Conditional Instructions

Now, that we have a fairly good idea of basic branch instructions, let us elaborate some special
features of ARM assembly. These features help make the process of coding very efficient. Let
us consider the instructions beq and bne again. We note that they are variants of the basic b
instruction. They are distinguished by their suffixes – eq and ne. The former denotes equality,
and the latter denotes inequality. These suffixes are known as condition codes

ARM Condition Codes

Let us first consider the list of condition codes shown in Table 4.12. There are 16 condition codes
in ARM. Each condition code has a unique number, and suffix. For example, the condition
code with suffix eq has a number equal to 0. Every condition code is associated with a unique
condition. For example, eq is associated with equality. To test if the condition holds, the ARM

153 © Smruti R. Sarangi

Number Suffix Meaning Flag State

0 eq equal Z = 1

1 ne not equal Z = 0

2 cs/hs carry set/ unsigned higher or equal C = 1

3 cc/lo carry clear/ unsigned lower C = 0

4 mi negative/ minus N = 1

5 pl positive or zero/ plus N = 0

6 vs overflow V = 1

7 vc no overflow V = 0

8 hi unsigned higher (C = 1) ∧ (Z = 0)

9 ls unsigned lower or equal (C = 0) ∨ (Z = 1)

10 ge signed greater than or equal N = 0

11 lt signed less than N = 1

12 gt signed greater than (Z = 0) ∧ (N = 0)

13 le signed less than or equal (Z = 1) ∨ (N = 1)

14 al always

15 – reserved

Table 4.12: Condition codes

processor takes a look at the CPSR flags. The last column in Table 4.12 shows the values of
the flags that need to be set for the condition to hold.

The eq and ne conditions can be tested by considering the Z(zero) flag alone. The expec-
tation is that an earlier cmp or subs instruction would have set these flags. If the comparison
resulted in an equality, then the Z flag would be set to 1.

As described in Section 4.2.3, if a subtraction of unsigned numbers leads to a borrow, then
the carry flag is set to 0. This condition is also known as an unsigned underflow. If there is
no borrow, then the carry flag is set to 1. Consequently, if the comparison between unsigned
numbers concludes that the first number is greater than or equal to the second number, then
the C(carry flag) needs to be set to 1. Likewise, if the carry flag is set to 0, then we can say
that the first operand is smaller than the second operand (unsigned comparison). These two
conditions are captured by the hs and lo condition codes respectively.

The next four condition codes check if a number is positive or negative, and if there has
been an overflow. These conditions can be trivially evaluated by considering the values of
N(negative) and V (overflow) flags respectively. hi denotes unsigned higher. In this case, we
need to additionally test the Z flag. Likewise for ls (unsigned lower or equal), we need to test
the Z flag, along with the C flag.

ARM has four condition codes for signed numbers – ge(≥), le(≤), gt(>), and lt(<). The ge
condition code simply tests the N flag. It should be equal to 0. This means that a preceding
cmp or subs instruction has subtracted two numbers, where the first operand was greater than
or equal to the second operand. For the gt instruction, we need to consider the Z flag also. In
a similar manner, the less than condition codes – lt and le – work. The conditions for the flags
are given in Table 4.12.

© Smruti R. Sarangi 154

Note that for signed numbers, we have not considered the possibility of an overflow in
Table 4.12. Theorem 2.3.4.1 outlines the precise conditions for detecting an overflow. We
leave the process of augmenting the conditions to consider overflow as an exercise for the
reader. Lastly, the al(always) condition code means that the instruction is not associated with
any condition. It executes according to its default specification. Hence, it is not required to
explicitly specify the al condition since it is the default.

Conditional Variants of Normal Instructions

Condition codes are not just restricted to branches. We can use condition codes with normal
instructions such as add and sub also. For example, the instruction addeq performs an addition
if the Z flag in the flags register is set to true. It means that the last time that the flags
were set (most likely by a cmp instruction), the instruction must have concluded an equality.
However, if the last comparison instruction concluded that its operands are unequal, then the
ARM processor treats the addeq instruction as a nop instruction (no operation). We shall see
in Chapter 10 that by using such conditional instructions, we can increase the performance of
an advanced processor. Let us consider an example that uses the addeq instruction.

Example 47
Write a program in ARM assembly to count the number of 1s in a 32-bit number stored in
r1. Save the result in r4.
Answer:

mov r2, #1 /* idx = 1 */

mov r4, #0 /* count = 0 */

/* start the iterations */

.loop:

/* extract the LSB and compare */

and r3, r1, #1

cmp r3, #1

/* increment the counter */

addeq r4, r4, #1

/* prepare for the next iteration */

mov r1, r1, lsr #1

add r2, r2, #1

/* loop condition */

cmp r2, #32

ble .loop

155 © Smruti R. Sarangi

4.2.9 Load-Store Instructions

Simple Load-Store Instructions

The simplest load and store instructions are ldr and str respectively. Here, is an example.

ldr r1, [r0]

This instruction directs the processor to load the value in register r1, from the memory
location stored in r0, as shown in Figure 4.2.

ldr r1, [r0]

r0
r1

Register
 file

Memory

Figure 4.2: The ldr instruction

Note that in this case, r0, contains the starting address of the data in memory. The ldr
instructions loads 4 bytes in a register. If the value contained in r0 is v, then we need to fetch
the bytes from v to v + 3. These 32 bits (4 bytes), are brought from memory and saved in
register r1.

The str instruction performs the reverse process. It reads the value in a register and saves
it in a memory location. An example is shown in Figure 4.3. Here r0 is known as the base
register.

str r1, [r0]

Load-Store Instructions with an Offset

We can specify load and store instructions with a base register, and an optional offset. Let us
consider:

ldr r1, [r0, #4]

© Smruti R. Sarangi 156

str r1, [r0]

r0
r1

Register
 file

Memory

Figure 4.3: The str instruction

Here, the memory address is equal to the value in r0 plus 4. It is possible to specify a
register in place of an immediate operand.

ldr r1, [r0, r2]

The memory address is equal to r0 + r2. In this expression, r0 and r2 refer to the values
stored in them. We can alternatively state the operation in this program as: r1 ← [r0 + r2]
(see the register transfer notation defined in Section 3.2.5).

Semantics Example Explanation Addressing Mode
ldr reg, [reg] ldr r1, [r0] r1 ← [r0] register-indirect
ldr reg, [reg, imm] ldr r1, [r0, #4] r1 ← [r0 + 4] base-offset
ldr reg, [reg, reg] ldr r1, [r0, r2] r1 ← [r0 + r2] base-index
ldr reg, [reg, reg, shift imm] ldr r1, [r0, r2, lsl #2] r1 ← [r0 + r2≪ 2] base-scaled-index

str reg, [reg] str r1, [r0] [r0] ← r1 register-indirect
str reg, [reg, imm] str r1, [r0, #4] [r0 + 4] ← r1 base-offset
str reg, [reg, reg] str r1, [r0, r2] [r0 + r2] ← r1 base-index
str reg, [reg, reg, shift imm] str r1, [r0, r2, lsl #2] [r0 + r2≪ 2] ← r1 base-scaled-index

Table 4.13: Load and store instruction semantics

Table 4.13 shows the semantics of different types of load store instructions. The third
column shows the addressing mode. The register r2 in this case is known as the index register
because it contains a value that is added to the base register, and this value can be used as the
index of an array (see Section 4.3.1). Note that some authors call the base-offset mode as also
the displacement addressing mode.

157 © Smruti R. Sarangi

Load-Store instructions for Bytes and Half-Words

The ldr and str instructions load/store 4 bytes of data. However, it is possible to also load and
store 1 and 2 bytes of data. 2 bytes is also known as a half-word, where a word is equal to 4
bytes.

Semantics Example Explanation

ldrb reg, [reg, imm] ldrb r1, [r0, #2] r1 ← [r0 + 2] (1 unsigned byte)

ldrh reg, [reg, imm] ldrh r1, [r0, #2] r1 ← [r0 + 2] (2 unsigned bytes)

ldrsb reg, [reg, imm] ldrsb r1, [r0, #2] r1 ← [r0 + 2] (1 signed byte)

ldrsh reg, [reg, imm] ldrsh r1, [r0, #2] r1 ← [r0 + 2] (2 signed bytes)

strb reg, [reg, imm] strb r1, [r0, #2] [r0 + 2] ← r1 (1 unsigned byte)

strh reg, [reg, imm] strh r1, [r0, #2] [r0 + 2] ← r1 (2 unsigned bytes)

Table 4.14: Load and store instructions for bytes and half-words in the base-offset addressing
mode

Table 4.14 shows the load and store instructions for bytes and half words using the base-
offset addressing mode. ldrb loads an unsigned byte to a register. It places the byte in the least
significant 8 bits. The rest of the 24 bits are set to 0. ldrh similarly loads an unsigned half-word
(16 bits). ldrsb, and ldrsh load a signed byte and half-word respectively. They extend the sign
of the operand (see Section 2.3.4) to make it fit in 32 bits. This is done by replicating the MSB.
strb and strh store an unsigned byte in memory. Note that unlike loads, there are no ARM
instructions to extend the sign of the operand while saving it in memory.

4.3 Advanced Features

We are in a good point to take a look at some of the advanced features in the ARM instruction
set. Up till now, we have taken a look at basic instructions that allow us to implement simple
data types in a high level language such as C or Java. We can translate simple programs that
contain integers into assembly code, compute the results of mathematical functions, load and
store values from memory. However, there are other high level features such as functions, arrays,
and structures that are present in high level languages. They shall require special support at
the assembly level for creating efficient implementations.

By no means has the process of programming language development stopped. We expect
that over the next few decades, there will be many new kinds of programming languages. They
will make the process of programming easier for more programmers, and it should be easier to
leverage novel features of futuristic hardware. This would require extra instructions and support
at the level of assembly programs. This is thus an evolving field, and deserves a thorough study.

© Smruti R. Sarangi 158

4.3.1 Arrays

Array Specific Features

Note that the starting memory location of entry i is equal to the base address of the array plus
4i in an array with word (4 byte) sized elements. In a high level language, the programmer
always specifies the index in an array, and relies on the compiler to multiply the index by 4.
ARM assembly provides nice features to multiply i by 4 by using the lsl instruction. This
feature can be embedded in load-store instructions.

ldr r0, [r1, r2, lsl #2]

In this case the base address is stored in register, r1, and the offset is equal to r2 <<
2 = 4 ∗ r2. The advantage here is that we do not need a separate instruction to multiply the
index by 4. We have already seen this optimisation in Section 4.2.2. However, there are other
optimisations that can make our life easier. Let us consider array accesses in a loop as shown
in Example 48.

Example 48 Convert the following C program to a program to ARM assembly. Assume
that the base address of the array is stored in r0.

C
void addNumbers(int a[100]) {

int idx;

int sum = 0;

for (idx = 0; idx < 100; idx++){

sum = sum + a[idx];

}

}

Answer:
ARM assembly

1 /* base address of array a in r0 */

2 mov r1, #0 /* sum = 0 */

3 mov r2, #0 /* idx = 0 */

4

5 .loop:

6 ldr r3, [r0, r2, lsl #2]

7 add r2, r2, #1 /* idx ++ */

8 add r1, r1, r3 /* sum += a[idx] */

9 cmp r2, #100 /* loop condition */

10 bne .loop

There is a scope for added efficiency here. We note that Lines 6 and 7 form a standard
pattern. Line 6 reads the array entry, and Line 7 increments the index. Almost all sequential

159 © Smruti R. Sarangi

array accesses follow a similar pattern. Hence, it makes sense to have one instruction that
simplifies this process.

The ARM architecture adds two extra addressing modes for the load and store instructions
to achieve this. They are called pre-indexed and post-indexed with auto-update. In the pre-
indexed addressing mode (with auto-update), the base address is updated first, and then the
effective memory address is computed. In a post-indexed scheme, the base address is updated
after the effective address is computed.

The pre-indexed addressing mode with auto-update is implemented by adding a ‘!’ sign
after the address.

Examples of the pre-indexed addressing mode
ldr r3, [r0, #4]! /* r3 = [r0+4]; r0 = r0 + 4*/

ldr r3, [r0, r1, lsl #2]! /* r3 = [r0 + r1 << 2];

r0 = r0 + r1 << 2; */

The post-indexed addressing mode is implemented by encapsulating the base address within
‘[’ and ‘]’, and writing the offset arguments separated by commas after it.

Examples of the post-indexed addressing mode
ldr r3, [r0], #4 /* r3 = [r0], r0 = r0 + 4 */

ldr r3, [r0], r1, lsl #2 /* r3 = [r0], r0 = r0 + r1 << 2 */

Let us now see, how we can slightly make our addNumbers slightly more intuitive. The
modified ARM code is shown in Example 49.

Example 49
Convert the assembly code shown in Example 48 to use the post indexed addressing mode.
Answer:

ARM assembly
1 /* base address of array a in r0 */

2 mov r1, #0 /* sum = 0 */

3 add r4, r0, #400 /* address of a[100]*/

4 .loop:

5 ldr r3, [r0], #4

6 add r1, r1, r3 /* sum += a[idx] */

7 cmp r0, r4

8 bne .loop

We have eliminated the index variable saved in r2. It is not required anymore. We directly
update the base address in Line 5. For the loop exit condition, we compute the first address
beyond the end of the array in Line 3. We compare the base address with this illegal address
in Line 7, and then if they are unequal we keep iterating.

Example 48 contains 5 lines in the loop, whereas the code in Example 49 contains 4 lines in
the loop. We have thus shown that it is possible to reduce the code size (of the loop) by 20%
using post-indexed addressing, and increase performance too since most cores do not impose
additional time overheads when auto-update addressing modes are used.

© Smruti R. Sarangi 160

Structures

Implementing structures is very similar to implementing arrays. Let us look at a typical struc-
ture in C.

struct Container {

int a;

int b;

char c;

short int d;

int e;

};

We can treat each structure as an array. Consequently, a structure will have a base address
and each element of the structure will have an offset. Unlike an array, different elements in a
structure can have different sizes, and thus they are not constrained to start with offsets that
are multiples of the word size.

Type Element Offset

int a 0

int b 4

char c 8

short int d 10

int e 12

Table 4.15: Elements in the structure and their offsets

Table 4.15 shows the offsets for different elements within a structure (as generated by the
GNU ARM compiler). We need to note that compilers for the ARM architecture impose
additional constraints. They pad variable addresses, and align them with 2 byte or 4 byte
boundaries as shown in Table 4.15 The rules for variable alignment are described in detail in
the ARM architecture manual [arm, 2000]. In a similar fashion it is possible to implement more
high level data structures such as unions and classes. The interested reader is referred to a
book on compilers.

4.3.2 Functions

Let us now use two sophisticated ARM instructions for spilling and restoring registers in the
stack. They can be used to implement both caller saved and callee saved functions.

Instructions for Spilling and Restoring Registers

Let us now describe two instructions to use the stack for saving and restoring a set of registers
– ldmfd and stmfd. These registers load and store multiple registers in a memory region such
as the stack. For brevity, we do not consider generic memory regions in this book. We limit our
discussion to the stack. ldmfd and stmfd instructions take a base register (e.g., stack pointer),

161 © Smruti R. Sarangi

and set of registers as arguments. They load or store the set of registers in the memory region
pointed to by the base register. Note that the order of the registers does not matter. The
registers are always rearranged in ascending order.

Let us consider an example using the store instruction, stmfd.

stmfd sp!, {r2,r3,r1,r4}

Instruction Semantics

ldmfd sp!, {list of registers } Pop the stack and assign values to
registers in ascending order. Update
the value of sp.

stmfd sp!, {list of registers } Push the registers on the stack in
descending order. Update the value
of sp.

Table 4.16: Semantics of the ldmfd and stmfd instructions

The stmfd instruction assumes a downward growing stack, and it also assumes that the
stack pointer points to the starting address of the value at the top of the stack. Recall that
the top of the stack in a downward growing stack is defined as the starting address of the last
value pushed on the stack. In this case the registers are processed in ascending order – r1, r2,
r3, r4. Secondly memory addresses are also accessed in ascending order. Consequently r1 will
be saved in sp− 16, r2 in sp− 12, r3 in sp− 8, and r4 in sp− 4. Alternatively, we can explain
this instruction by observing that registers are pushed into the stack in descending order. We
use the ‘!’ suffix with the base address register to instruct the processor to update the value of
the stack pointer after the execution of the instruction. In this case, we set sp equal to sp− 16.

There is a variant of this instruction that does not set the stack pointer to the starting
address of the memory region used to save registers. An example with this variant is:

stmfd sp, {r2,r3,r1,r4}

Note that this variant is rarely used in practice, especially when the base register is sp.

Similarly, the ldmfd instruction loads a set of values starting at the stack pointer, and then
updates the stack pointer. Akin to the stmfd instruction, we use the ‘!’ suffix to use the base
register auto update feature.

ldmfd sp!, {r2,r3,r1,r4}

For example, in this case we set r1 = [sp], r2 = [sp+4], r3 = [sp+8], and r4 = [sp+12]. In
other words, we iteratively pop the stack and assign the values to registers in ascending order.
The ldmfd instruction also has a variant that does not update the base register. We simply
need to delete the ‘!’ suffix after the base register.

ldmfd sp, {r2,r3,r1,r4}

© Smruti R. Sarangi 162

The semantics of these instructions are shown in Table 4.16.
Let us conclude this section with an example. We show a recursive power function in C

that takes two arguments x and n, and computes xn.

Example 50
Write a function in C and implement it in ARM assembly to compute xn, where x and n
are natural numbers. Assume that x is passed through r0, n through r1, and the return
value is passed back to the original program via r0. Answer:

C
int power(int x, int n) {

if (n == 0)

return 1;

int y = x * power(x, n-1);

return y;

}

When we compile this function to ARM assembly, we get:

ARM assembly
1 power:

2 cmp r1, #0 /* compare n with 0 */

3 moveq r0, #1 /* return 1 */

4 bxeq pc, lr /* return */

5

6 stmfd sp!, {r4, lr} /* save r4 and lr */

7 mov r4, r0 /* save x in r4 */

8 sub r1, r1, #1 /* n = n - 1 */

9 bl power /* recursively call power */

10 mul r0, r4, r0 /* power(x,n) = x * power(x,n-1) */

11 ldmfd sp!, {r4, pc} /* restore r4 and return */

We first compare n with 0. If n is equal to 0, then we need to return 1 (Line 3). We
subsequently, return from the function. Note the use of the instruction moveq here.

However, if n ̸= 0, then we need to make a recursive function call to evaluate xn−1.
We start out by saving register r4, and the return address (lr) on the stack in Line 6 using
the stmfd instruction. We save the value of r0 in r4 because it will get overwritten by the
recursive call to the power function. Subsequently, we decrement r1 that contains the value
of n, and then we call the power function recursively in Line 10. The result of the power
function is assumed to be present in r0. We multiply this result with the value of x (stored
in r4) in Line 10.

We simultaneously do two operations in Line 11. We load the value of r4, and pc
from the stack. We first read the first operand, r4, which was saved on the stack by the
corresponding stmfd instruction in Line 6. The second operand saved on the stack was
the return address. We read this value and save it in pc. Effectively, we are executing the

163 © Smruti R. Sarangi

instruction mov pc, lr, and we are thus returning from the function. Hence, after executing
Line 11, we start executing instructions from the return address of the function.

The ldm and stm instructions can also assume an upward growing stack. The interested
reader can refer to the ARM manual [arm, 2000] for a thorough explanation.

4.4 Encoding the Instruction Set

Let us now see how to convert ARM assembly instructions to a sequence of 0s and 1s. Each
ARM instruction is represented using 32 bits. We need to encode the instruction type, values
of conditional fields, register numbers, and immediate operands using these 32 bits only.

Let us take a look at the generic format of ARM instructions. For every instruction we need
to initially encode at least two pieces of information – condition codes (see Table 4.12), and the
format of the instruction (data processing, branch, load/store, or others). Table 4.12 defines
15 conditions on each instruction. It will take 4 bits to represent this information.

Important Point 6
To uniquely encode a set of n elements, we need at least ⌈log2(n)⌉ bits. We can assign
each element a number between 0 and n− 1. We can represent these numbers in the binary
format. The number of bits required is equal to the number of bits needed to represent the
largest number, n−1. If we have log2(n) bits, then the largest number that we can represent
is 2log2(n)−1 = n−1. However, log2(n) might be a fraction. Hence, we need to use ⌈log2(n)⌉
bits.

ARM has four types of instructions – data processing (add/ subtract/ multiply/ compare),
load/store, branch, and miscellaneous. We need 2 bits to represent this information. These
bits determine the type of the instruction. Figure 4.4 shows the generic format for instructions
in ARM.

cond
32 29

type
2728

4 2

Figure 4.4: Generic format of an ARM instruction

4.4.1 Data Processing Instructions

The type field is equal to 00 for data processing instructions. The rest of the 26 bits need to
contain the instruction type, special conditions, and registers. Figure 4.5 shows the format for

© Smruti R. Sarangi 164

data processing instructions.

cond
32 29

 0 0
2728

4 2

I
26

4

shifter operand/
immediate25 22

S
21

4

rs
20 17

rd

4

16 13

12

12 1

opcode

Figure 4.5: Format of the data processing instruction

The 26th bit is called the I (immediate) bit. It is similar to the I bit in SimpleRisc . If it is
set to 1, then the second operand is an immediate, otherwise, it is a register. Since ARM has
16 data processing instructions, we require 4 bits to represent them. This information is saved
in bits 22-25. The 21st bit saves the S bit. If it is turned on, then the instruction will set the
CPSR (see Section 4.2.4).

The rest of the 20 bits save the input and output operands. Since ARM has 16 registers,
we require 4 bits to encode a register. Bits 17-20 save the identifier of the first input operand
(rs), which needs to be a register. Bits 13-16 save the identifier of the destination register (rd).

Bits 1-12 are used to save the immediate value or the shifter operand. Let us see how to
make best use of these 12 bits.

Encoding Immediate Values

ARM supports 32-bit immediate values. However, we observe that we have only 12 bits to
encode them. Hence, we cannot possibly encode all the 232 possible values. We need to choose
a meaningful subset of them. The idea is to encode a subset of 32-bit values using 12 bits. The
hardware is expected to decode these 12 bits, and expand them to 32 bits while processing the
instruction.

Now, 12 bits is a rather unwieldy value. Neither is it 1 byte nor is it 2 bytes. Hence, it was
necessary to come up with a very ingenious solution. The idea is to split the 12 bits into two
parts – a 4-bit constant (rot), and an 8 bit payload (payload) (see Figure 4.6).

rot payload

4 8

Figure 4.6: Format of the immediate

Let the actual number that is encoded in these 12 bits be n. We have:

n = payload ror (2× rot)

The actual number n is obtained by right rotating the payload by 2 times the value in the
rot field. Let us now try to understand the logic of doing so.

165 © Smruti R. Sarangi

The final number n is a 32-bit value. A naive solution would have been to use the 12 bits to
specify the least significant bits of n. The higher order bits could be 0. However, programmers
tend to access data and memory in terms of bytes. Hence, 1.5 bytes is of no use to us. A better
solution is to have a 1 byte payload and place it in any location in the 32-bit field. The rest
of the 4 bits are used for this purpose. They can encode a number from 0 to 15. The ARM
processor doubles this value to consider all even numbers between 0 and 30. It right rotates
the payload by this amount. The advantage of doing so is that it is possible to encode a wider
set of numbers. For all of these numbers, there are 8 bits that correspond to the payload, and
the rest of the 24 bits are all zeros. The rot bits just determine which 8 bits in a 32-bit field
are occupied by the payload.

Let us consider a set of examples.

Example 51
Encode the decimal number 42.
Answer: 42 in the hex format is 0x2A, or alternatively 0x00 00 00 2A. There is no right
rotation involved. Hence, the immediate field is 0x02A.

Example 52
Encode the number 0x2A 00 00 00.
Answer: This number is obtained by right rotating 0x2A by 8 places. Note that we need
to right rotate by 4 places to move a hex digit by one position. We need to now divide 8 by
2, to get 4. Thus, the encoded format for this number is 0x42A.

Example 53
Encode 0x 00 00 2A 00.
Answer: The first step is to count the number of right rotations. We observe that the
number 0x2A has been rotated to the right by 24 positions. We now proceed to divide 24 by
2 to obtain 12. Thus, the encoded format of the number is 0xC2A.

Example 54
Encode the number 0x 00 02 DC 00 as an ARM immediate.
Answer: The first part is to figure out the payload. The payload is – 10 1101 11 – in
binary. This is equal to 0xB7. The next step is to figure out the rotation. Let us simplify the
task by observing that right rotating by n places is the same as left rotating by 32−n places.
Let us concentrate on 0xC00. This is equal to 110000000000 in binary. The rightmost 1 is

© Smruti R. Sarangi 166

now at the 11th position. It has moved 10 places from the 1st position. Thus the number
has been rotated to the left by 10 places. It has been rotated to the right by 22 places.
22/2 = 11(0xB). Hence, the encoded number is 0xBB7.

The reader needs to understand that this encoding is supposed to be done by the assembler
or the compiler. The user simply needs to only use values in her assembly code that can be
encoded as an ARM immediate. For example, a number like -1 cannot be encoded as an ARM
immediate. It is 0xFF FF FF FF. The payload is greater than 8 bits. Ideally, an instruction of
the form: add r1, r1,#− 1 is wrong. Some assemblers will try to fix the problem by changing
the instruction to sub r1, r1,#1. However, all assemblers are not smart enough to figure this
out. If the user wishes to uses a value that cannot be encoded in ARM’s 12 bit format, then
the user (or the program loader) needs to load it byte by byte in a register, and use the register
as an operand.

Encoding the Shifter Operand

We have 12 bits to encode the shifter operand. Figure 4.7 shows the scheme for encoding it. A
shifter operand is of the form: rt (lsl|lsr|asr|ror) (shift reg/ shift imm.)

rt

4

4 1
0

57 6
shift type

12 8
shift imm

25

rt

4

4 1
1

57 6
shift type

12 8
shift reg

24

9

Shift type

lsl

lsr
asr

ror

00
01
10
11

(a)

(b) (c)

Figure 4.7: Format of the shifter operand

The first four bits (1-4) encode the id of the register rt. The next bit determines the nature
of the shift argument (immediate or register). If it is 0 then the argument is an immediate,
otherwise it is a register. Bits 6 and 7 specify the type of the shift (also see Figure 4.7(c)).
For example, the type can be lsl (logical shift left). It can also be lsr (logic shift right), asr
(arithmetic shift right), or ror (right rotate). If we are shifting by an immediate value, then
bits 8-12 specify a 32-bit value called a shift immediate. Otherwise, if we are shifting by a value
in a register, then bits 9-12 specify the id of the register.

Let us consider an instruction of the form: add r3, r1, r2. In this case, the second operand
is r2. We can think of r2 as actually a shifter operand where it is being left shifted by 0. Hence,
to encode we need to set the shift type to lsl (00), set the argument to immediate (0), and set

167 © Smruti R. Sarangi

the shift immediate to 00000. We thus see that specifying a register as the second argument is
easy. It is a special case of a shifter operand, and we just need to set bits 5-12 as 0.

4.4.2 Load-Store Instructions

A simple load or store instruction can be represented as : (ldr | str) rd, [rs, (immediate/shifter
operand)]. We require additional syntax for pre and post-indexed addressing (see Section 4.3.1).
The format for the encoding of load and store instructions is shown in Figure 4.8.

cond
32 29

0 1
2728

4 2

I

6

shifter operand/
immediate

4

rs
20 17

rd

4

16 13

12

12 1

P U B W L

Figure 4.8: Format of the load/store instructions

The semantics of the bits I, P, U, B, W, and L is shown in Table 4.17. In this case, the
I bit has reverse semantics as compared to the case of data processing instructions. If it is 1,
then the last 12 bits represent a shifter operand, otherwise they represent an immediate value.
P represents the advanced addressing mode – pre or post, and W determines if the advanced
addressing mode is used or a simple addressing mode is used. We can either add the offset from
the base register or we can subtract it from the base register. This is specified by the U bit.
The B bit determines the granularity of the transfer – byte level or word level. Lastly, the L
bit determines if the instruction is a load or a store.

Bit Value Semantics

I
0 last 12 bits represent an immediate value
1 last 12 bits represent a shifter operand

P
0 post-indexed addressing
1 pre-indexed addressing

U
0 subtract offset from base
1 add offset to base

B
0 transfer word
1 transfer byte

W
0 do not use pre or post indexed addressing
1 use pre or post indexed addressing

L
0 store to memory
1 load from memory

Table 4.17: Semantics of I, P, U, B, W, and L bits

These six bits IPUBWL capture all the different variants of the load and store instructions.
The rest of the format is the same as the data processing instruction other than the encoding of

© Smruti R. Sarangi 168

immediates. Immediates in memory instructions do not follow the (rot+payload) format. The
12 bit immediate fields represents an unsigned number between 0 and 4095.

We thus observe that like SimpleRisc , the designers of the ARM instruction set have tried
to stick to the same instruction format with minor variations..

Question 6 What is the necessity for having the U bit?
Answer: Negative numbers such as -4 or -8 cannot be represented in ARM’s 12 bit format
for specifying offsets in memory instructions. However, we might need to use addresses with
a negative displacement, especially when they are relative to the frame pointer or the stack
pointer. The U bit allows us to represent an immediate such as -4 as +4. It additionally
instructs the processor to subtract the displacement from the base register.

4.4.3 Branch Instructions

offset
32 29 2628

4 3

L
25 24

101
1

24

cond

Figure 4.9: Format of the branch and branch-and-link instructions

Figure 4.9 shows the format of the branch (b) and the branch-and-link (bl) instructions. If
the L(link) bit is equal to 1, then the instruction is bl, otherwise it is just b. The instruction
contains a 24-bit signed offset. The ARM processor first shifts the offset by 2 bits. This is
because each instruction is 32 bits or 4 bytes long, and additionally the hardware expects in-
structions to be stored at 4 byte boundaries. Therefore, the starting address of each instruction
will contain two zeros in its two least significant positions. Hence, there is no necessity to waste
two bits in the encoding for saving these two zeros. The next step is to extend the sign of this
shifted offset to 32 bits. Lastly, the hardware computes the branch target by adding the shifted
and sign-extended offset to the PC plus 8 bytes.

The interesting thing to note is that we are adding the sign-extended shifted offset to
PC+8, not the PC. We shall see in Chapter 10 that the reason for doing this is to simplify the
hardware. The format for branches is different from the format used to encode data transfer and
data processing instructions. This is because more bits have used to encode the displacement.
We had followed a similar approach in SimpleRisc also. However, we need to note that having
a new format is not a very bad thing if it is simple as is the case for a branch.

169 © Smruti R. Sarangi

4.5 Summary and Further Reading

4.5.1 Summary

Summary 4

1. The ARM ISA is a simple 32-bit RISC ISA.

(a) It uses 16 registers r0 . . . r15.

(b) The return address register is known as lr (link register), and it is r14.

(c) The PC is visible to the programmer. It is register r15.

(d) All the instructions are encoded using 32 bits.

2. Data processing instructions accept register operands, and at most one immediate
operand. They are 3-address instructions.

3. ARM has a set of compare instructions that can set flags in the CPSR register. Ad-
ditionally, it is possible to instruct a standard data processing instruction to set the
CPSR flags by adding the suffix ‘s’ to it.

4. ARM supports conditional instructions that either execute or not depending upon the
values of the CPSR flags. They can be created by appending a condition code to a
regular data processing or branch instruction. There are 15 such condition codes.
Examples of some condition codes are: gt (greater than), and eq (equal).

5. ARM has two variants of branch instructions.

(a) It has simple branch instructions that branch to another instruction.

(b) It has branch-and-link instructions that additionally save the return address in
the link register lr.

6. ARM supports both the base-index and base-offset addressing modes for load and store
instructions. It has additional support for shifting the index register by treating it as
a shifter operand.

7. ARM supports complex addressing modes such as pre-indexed and post-indexed ad-
dressing. These addressing modes update the base register.

8. ARM also has support for loading and storing bytes and half-words (2 bytes).

9. The instruction set encoding for data processing instructions is as follows:

(a) Condition code (4 bits)

(b) Instruction type (2 bits)

(c) Second operand: immediate or register (1 bit)

© Smruti R. Sarangi 170

(d) Opcode (4 bits)

(e) S bit (should the CPSR flags be set) (1 bit)

(f) Source register1 (4 bits)

(g) Destination register (4 bits)

(h) Immediate or shifter operand (12 bits)

10. The data transfer instructions do not have the S bit. They instead have extra bits to
encode the type of load/store instructions, and the addressing mode.

11. The branch instructions have an L bit to specify if the return address needs to be
saved or not. They use PC-relative addressing and have a 24-bit signed offset. Like
SimpleRisc , the hardware assumes that instructions are aligned to 4 byte boundaries,
and treats this offset as a distance in terms of memory words. It thus left shifts the
offset by 2 positions.

4.5.2 Further Reading

We have presented an overview of the major features of ARM’s assembly language. The reader
can refer to ARM’s assembly language manual [arm, 2000] for more details.

We have deliberately left out some advanced features. A subset of ARM cores support
Thumb-1 and Thumb-2 instructions. These instructions are based on a subset of general purpose
instructions and have implicit operands. They are used to decrease the size of compiled code.
Some ARM processors have extensive support for floating point instructions (VFP instruction
set), and SIMD instructions (execute an instruction on multiple integers/floating point numbers
in one go). However, we have not discussed these extensions for the sake of brevity. Some
other sophisticated features of ARM processors are security extensions that prevent malicious
programs or users from stealing data. Since 2013 ARM processors (conforming to the ARMv8-
A architecture) have started using a new 64-bit ARM ISA called A64. The reader can refer
to the books by Joseph Yiu [Yiu, 2011, Yiu, 2009], William Hohl [Hohl, 2009], and J. R.
Gibson [Gibson, 2011] for a detailed discussion on the ARM instruction set and its latest
extensions. Needless to say the reader can always find up to date documentation at ARM’s
web site http://www.arm.com.

Exercises

Basic ARM Instructions

Ex. 1 — Translate the following code in C to the ARM instruction set using a minimum
number of instructions. Assume the variables a, b, c, d and e are 32-bit integers and stored in
r0, r1, r2, r3 and r4 respectively.

http://www.arm.com

171 © Smruti R. Sarangi

(a) a=a+b+c+d+e;

(b) a=b+c;
d=a+b;

(c) a=b+c+d;
a=a+a;

(d) a=2*a+b+c+d;

(e) a=b+c+d;
a=3*a;

Ex. 2 — Translate the following pieces of code from the ARM assembly language to a high
level language. Assume that the variables a, b, c, d and e (containing integers) are stored in
the registers r0, r1, r2, r3 and r4 respectively.

(a) add r0, r0, r1

add r0, r0, r2

add r0, r0, r3

(b) orr r0, r0, r1, lsl #1

and r1, r0, r1, lsr #1

(c) add r0, r1, r2

rsb r1, r0, r2

(d) add r0, r1, r2

add r0, r3, r4

add r0, r0, r1

(e) mov r0 #1, lsl #3

mov r0, r0, lsr #1

Ex. 3 — Answer the following:

(a) Write the smallest possible ARM assembly program to load the constant 0xEFFFFFF2
into register r0.

(*b) Write the smallest possible ARM assembly program to load the constant 0xFFFD67FF
into register r0.

* Ex. 4 — Using valid ARM assembly instructions, load the constant, 0xFE0D9FFF, into
register r0. Try do to it with a minimum number of instructions. DO NOT use pseudo-
instructions or assembler directives.

Ex. 5 — Can you give a generic set of ARM instructions or a methodology using which you
can load any 32-bit immediate value into a register? Try to minimise the number of instructions.

Ex. 6 — Convert the following C program to ARM assembly. Store the integer, i, in register
r0. Assume that the starting address of array a is saved in register r1, and the starting address
of array b is saved in register r2.

© Smruti R. Sarangi 172

int i;

int b[500];

int a[500];

for(i=0; i < 500; i++) {

b[i] = a[a[i]];

}

** Ex. 7 — Consider the instruction, mov lr, pc. Why does this instruction add 8 to the PC,
and use that value to set the value of lr? When is this behaviour helpful?

Assembly Language Programming

• For all the questions below, assume that two specialised functions, div and mod, are
available. The div function divides the contents of r1 by the contents of r2, and saves
the result in r0. Similarly, the mod function is used to divide r1 by r2, and save the
remainder in r0. Note that in this case both the functions perform integer division.

Ex. 8 — Write an ARM assembly language program to compute the 2’s complement of a
number stored in r0.

Ex. 9 — Write an ARM assembly language program that subtracts two 64-bit integers stored
in four registers.

Assumptions:

•Assume that you are subtracting A−B

•A is stored in register, r4 and r5. The MSB is in r4, and the LSB is in r5.

•B is stored in register, r6 and r7. The MSB is in r6, and the LSB is in r7.

•Place the final result in r8(MSB), and r9(LSB).

Ex. 10 — Write an assembly program to add two 96-bit numbers A and B using the minimum
number of instructions. A is stored in three registers r2, r3 and r4 with the higher byte in r2
and the lower byte in r4. B is stored in registers r5, r6 and r7 with the higher byte in r5 and
the lower byte in r7. Place the final result in r8(higher byte), r9 and r10(lower byte).

Ex. 11 — Write an ARM assembly instruction code to count the number of 1’s in a 32-bit
number.

Ex. 12 — Given a 32-bit integer in r3, write an ARM assembly program to count the number
of 1 to 0 transitions in it.

173 © Smruti R. Sarangi

* Ex. 13 — Write an ARM assembly program that checks if a 32-bit number is a palindrome.
Assume that the input is available in r3. The program should set r4 to 1 if it is a palindrome,
otherwise r4 should have 0. A palindrome is a number which is the same when read from both
sides. For example, 1001 is a 4-bit palindrome.

Ex. 14 — Design an ARM Assembly Language program that will examine a 32-bit value
stored in r1 and count the number of contiguous sequences of 1s. For example, the value:

01110001000111101100011100011111

contains six sequences of 1s. Write the final value in register r2. Use conditional instructions
as much as possible.

** Ex. 15 — In some cases, we can rotate an integer to the right by n positions (less than
or equal to 31) so that we obtain the same number. For example: an 8-bit number 01010101
can be right rotated by 2, 4, or 6 places to obtain the same number. Write an ARM assembly
program to efficiently count the number of ways we can rotate a number to the right such that
the result is equal to the original number.

Ex. 16 — Write an ARM assembly program to load and store an integer from memory, where
the memory saves it in the big endian format.

Ex. 17 — Write an ARM assembly program to find out if a number is prime using a recursive
algorithm.

* Ex. 18 — Suppose you decide to take your ARM device to some place with a high amount
of radiation, which can cause some bits to flip, and consequently corrupt data. Hence, you
decide to store a single bit checksum, which stores the parity of all the other bits, at the
least significant position of the number (essentially you can now store only 31 bits of data in
a register). Write an ARM assembly program, which adds two numbers taking care of the
checksum. Assume that no bits flip while the program is running.

* Ex. 19 — Let us encode a 16-bit number by using 2 bits to represent 1 bit. We shall
represent logical 0 by 01, and logical 1 by 10. Now let us assume that a 16-bit number is
encoded and stored in a 32-bit register r3. Write a program in ARM assembly to convert it
back into a 16-bit number, and save the result in r4. Note that 00 and 11 are invalid inputs
and indicate an error. The program should set r5 to 1 in case of an error; otherwise, r5 should
be 0.

** Ex. 20 — Write an ARM assembly program to convert a 32-bit number to its 12 bit
immediate form, if possible, with first 4 bits for rotation and next 8 bits for the payload. If the
conversion is possible, set r4 to 1 and store the result in r5, otherwise, r4 should be set to 0.
Assume that the input number is available in register r3.

** Ex. 21 — Suppose you are given a 32-bit binary number. You are told that the number
has exactly one bit equal to 1; the rest of the bits are 0. Provide a fast algorithm to find
the location of that bit. Implement the algorithm in ARM assembly. Assume the input to be
available in r9. Store the result in r10.

© Smruti R. Sarangi 174

*** Ex. 22 — Write an ARM assembly language program to find the greatest common divisor
of two binary numbers u and v. Assume the two inputs (positive integers) to be available in r3
and r4. Store the result in r5. [HINT: The gcd of two even numbers u and v is 2∗gcd(u/2, v/2)]

ARM Instruction Encoding

Ex. 23 — How are immediate values encoded in the ARM ISA?

Ex. 24 — Encode the following ARM instructions. Find the opcodes for instructions from
the ARM architecture manual [arm, 2000].

i) add r3, r1, r2

ii) ldr r1, [r0, r2]

iii) str r0, [r1, r2, lsl #2]

Design Problems

Ex. 25 — Run your ARM programs on an ARM emulator such as the QEMU (www.qemu.org)
emulator, or arm-elf-run (available at www.gnuarm.com).

www.qemu.org
www.gnuarm.com

5
x86 Assembly Language

In this chapter, we shall study the basics of the x86 family of assembly languages. They are
primarily used in Intel and AMD processors, which have an overwhelmingly large market share
in the desktop, laptop, and low end server markets. They are steadily making deep inroads
into the middle and high end server markets as well as the smart phone market. Hence, it
is essential for the reader to have a good understanding of this important class of assembly
languages. At this stage we expect the reader to have a basic understanding of assembly
language from Chapter 3.

5.1 Overview of the x86 Family of Assembly Languages

5.1.1 Brief History

Let us start out by noting that x86 is not one language; it is actually a family of assembly
languages with a very interesting history. Intel released the 8086 microprocessor in 1978, and
called it 8086. It was Intel’s first 16-bit microprocessor. This microprocessor proved to be very
successful in the market, and succeeded in displacing other 8-bit competitors at that time. This
motivated Intel to continue this line of processors. Intel then designed the 80186 and 80286
processors in 1982. 80186 was aimed at the embedded processor market, and 80286 was aimed
at desktops. Both of them were fairly successful and helped establish Intel processors firmly in
the desktop market. Those days IBM was the biggest vendor of PCs (personal computers), and
most IBM PCs used Intel processors. The rapid proliferation of PCs led Intel to release two
more processors, 80386 and 80486, in 1985 and 1989 respectively. These were 32-bit processors.
Note that as Intel moved from 8086 to 80486, it continuously added more and more instructions
to the instruction set. However, it also maintained backward compatibility. This means that
any program meant to run on a 8086 machine, could also run on a 80486 machine. Secondly,
it also maintained a consistent assembly language format for this family of processors whose
name ended with “86”. Over time this family of processors came to be known as “x86”.

175

© Smruti R. Sarangi 176

Gradually, other companies started using the x86 instruction set. Most notably, AMD
(Advanced Micro Devices) started designing and selling x86 based processors. AMD released
the K5, K6, and K7 processors in the mid nineties based on the 32-bit x86 instruction set. It also
introduced the x86 64 instruction set in 2003, which was a 64-bit extension to the standard 32-
bit x86 Intel ISA. Many other vendors such as VIA, and Transmeta also started manufacturing
x86 based processors starting from 2000.

Each vendor has historically taken the liberty to add new instructions to the base x86
instruction set. For example, Intel has proposed many extensions over the years such as Intel®

MMX™, SSE1, SSE2, SSE3, and SSE4. The number of x86 instructions are more than 900 as of
2012. Similarly, AMD introduced the 3D Now!™instruction set, and VIA introduced its custom
extensions. The rich history of x86 processors has led to many different extensions of the basic
instruction set, and there are numerous assemblers that have their unique syntax. Almost all
x86 vendors today support hundreds of instructions. Current 64-bit Intel processors support
16-bit, and 32-bit code that dates way back to the original 8086.

If we try to classify the entire family tree of x86 ISAs, we can broadly divide them as
16-bit, 32-bit, and 64-bit instruction sets. 16-bit instruction sets are rarely used nowadays. 32-
bit instruction sets are extremely popular in the smart phone, embedded, and laptop/netbook
markets. The 64-bit ISAs (also known as the x86-64 ISA) are mainly meant for workstation class
desktop/laptops and servers. Other than minor syntactic differences the assembly languages
for these instruction sets are mostly the same. Hence, learning one ISA is sufficient. In this
book, we try to strike a compromise between embedded processors, laptops, desktops, smart
phones, and high end servers. We thus focus on the 32-bit x86 ISA because in our opinion it
falls in the middle of the usage spectrum of the x86 ISA. We shall mention the minor syntactic
differences with other flavours of x86 whenever the need arises.

5.1.2 Main Features of the x86 ISA

Before delving into the details of the 32-bit x86 ISA, let us list some of its main features.

1. It is a CISC ISA. Instructions have varying lengths, and operands also do not have a fixed
length.

2. There are at least 300 scalar instructions, and this number is increasing every year.

3. Almost all the instructions can have a memory operand. In fact, most instructions allow
a source, and a destination memory operand.

4. Most of the x86 instructions are in the 2-address format. For example, the assembly
instruction to add two registers eax, and ebx, is add eax, ebx. Here, we add the contents
of the eax, and ebx registers, and save the results in the eax register.

5. x86 has many complicated addressing modes for memory operands. Along with the tradi-
tional base-offset addressing mode, it supports base-index and base-index-offset addressing
modes.

6. It does not have a return address register. Function call and return instructions, save and
retrieve the return address from the stack.

177 © Smruti R. Sarangi

7. Like ARM and SimpleRisc , x86 has a flags register that saves the outcome of the last
comparison. The flags register is used by conditional branch instructions.

8. Unlike SimpleRisc , x86 instructions do not see an unified view of instruction and data
memory. The x86 memory is segmented. This means that instructions and data reside in
different memory regions (known as segments). x86 machines restrict the segments that
an instruction can access.

It is true that the x86 architecture is a CISC instruction set, and it has hundreds of opcodes
and many addressing modes. Nevertheless, we are sure that at the end of this chapter, the
reader will concur with us that the x86 instruction set is in reality a fairly simple instruction
set, is easy to understand, and is very elegant. A conventional argument supporting the case
of RISC ISAs is that the hardware is simpler, and more efficient. Consequently, in modern
Intel/AMD processors (Pentium® 4 onwards), the x86 instructions are internally translated
into RISC instructions, and the entire processor is essentially a RISC processor. We can thus
get the best of both worlds.

5.2 x86 Machine Model

5.2.1 Integer Registers

eax

ebx

ecx

edx

esp

ebp

esi

edi

ax

bx

cx

dx

sp

bp

si

di

rax

rbx

rcx

rdx

rsp

rbp

rsi

rdi

r8

r9

r15

ax

bx

cx

dx

64 bits
32 bits

16 bits
ah al

bh bl

ch

dh

cl

dl

cs

ss

ds

es

gs

fs

16 bit segment registers

eflags

eip

flags

ip

rflags

rip

64 bits
32 bits

16 bits

Figure 5.1: The x86 register set

© Smruti R. Sarangi 178

Figure 5.1 shows the x86 register set. The 16 and 32-bit x86 ISAs have 8 general purpose
registers. These registers have an interesting history. The original 8080 microprocessor designed
forty years ago had seven 8-bit general purpose registers namely a, b, c, d, e, f and g. In the late
seventies, x86 designers decided to create a 16-bit processor called 8086. They decided to keep
four registers (a, b, c, and d), and suffixed them with the ’x’ tag (’x’ for extended). Thus, the
four general purpose registers got renamed to ax, bx, cx, and dx. Additionally, the designers
of the 8086 machine decided to retain some 16-bit registers namely the stack pointer (sp), and
the register to save the PC (ip). The designers also introduced three extra registers in their
design – bp (base pointer), si (starting index), and di (destination index). The intention of
adding the bp register was to save the value of the stack pointer at the beginning of a function.
Compilers are expected to set sp equal to bp at the end of the function. This operation destroys
the stack frame of the callee function. The registers si, and di are used by the rep instruction
that repeats a certain operation. Typically, a single rep instruction is equivalent to a simple
for loop. Thus, the 8086 processor had eight 16-bit general purpose registers – ax, bx, cx,
dx, sp, bp, si, and di. It was further possible to access the two bytes (lower and upper) in the
registers ax – dx. For example, the lower byte in the ax register can be addressed as al, and
the upper byte can be addressed as ah. 16-bit x86 instructions can use combinations of 8-bit
and 16-bit operands.

The 8086 processor had two special purpose registers. The first register called ip contained
the PC. The PC is typically not accessible to programmers on x86 machines (unlike the ARM
ISA). The second special purpose register is the flags register that saves the results of the last
comparison (similar to the flags register in ARM and SimpleRisc). The flags register is used
by subsequent conditional branch instructions to compute the outcome of the branch.

In the might eighties, when Intel decided to extend the 8086 design to support 32-bit
registers, it decided to keep the same set of registers (8 general purpose + ip + flags), and
similar nomenclature. However, it extended their names by adding an ’e’ prefix. Thus in a 32-
bit machine, register eax is the 32-bit version of ax. To maintain backward compatibility with
the 8086, the lower 16 bits of eax can be addressed as ax (if we wish to use 16-bit operands).
Furthermore, the two bytes in ax can be addressed as ah and al (similar to 8086). As shown
in Figure 5.1, the names were changed for all the other registers also. Notably, in a 32-bit
machine, the stack pointer is stored in esp, the PC is stored in eip, and the flags are stored in
the eflags register.

There are many advantages to this strategy. The first is that 8086 code can run on a 32-bit
x86 processor seamlessly. All of its registers are defined in the 32-bit ISA. This is because each
16-bit register is represented by the lower 16 bits of a 32-bit register. Hence, there are no issues
with backward compatibility. Secondly, we do not need to add new registers, because we simply
extend each 16-bit register with 16 additional bits. We refer to the new register with a new
name (16-bit name prefixed with ’e’).

Exactly the same pattern was followed while extending the x86 ISA to create the 64-bit
x86-64 ISA. The first letter was replaced from ’e’ to ’r’ to convert a 32-bit register to a 64-bit
register. For example, the register rax is the 64-bit version of eax. Its lower 32 bits can be
addressed as eax. The connotation of ax, ah, and al remains the same as before. Additionally,
the x86-64 ISA introduced 8 more general purpose registers namely r8 – r15. However, their
subfields cannot be addressed directly. The 64-bit PC is saved in the rip register, and the flags
are stored in the rflags register.

179 © Smruti R. Sarangi

The eflags register

Let us now quickly discuss the structure of the eflags register. Like ARM and x86, the eflags
register contains a set of fields, where each field or bit indicates the status of execution of the
instruction that last set it. Table 5.1 lists some of the most commonly used fields in the eflags
register, along with their semantics.

Field Condition Semantics

OF Overflow Set on an overflow

CF Carry flag Set on a carry or borrow

ZF Zero flag Set when the result is a 0,
or the comparison leads to an
equality

SF Sign flag Sign bit of the result

Table 5.1: Fields in the eflags register

5.2.2 Floating Point Registers

The floating point instructions in x86 have a dual view of the floating point register file. They
can either see them as normal registers or as a set of registers organised as a stack. Let us
elaborate.

To start out, x86 defines 8 floating point registers named: st0 . . . st7. These are 80-bit
registers, The x86 floating point format has a 64-bit mantissa, and a 15-bit exponent. It is thus
more precise than double precision numbers. The registers st0 to st7 are organised as a stack.
Here, st0 is the top of the stack, and st7 is the bottom of the stack as shown in Figure 5.2.
Additionally, x86 has a tag register that maintains the status of each register in the stack.
The tag register has 8 fields (1 field for 1 register). Each field contains 2 bits. If the value of
these bits is 00, then the corresponding register contains valid data. If the value is 01, then
the register contains a 0, and if it is 11, then the register is empty. 10 is reserved for special
purposes. We shall refer to the stack of registers, as the floating point stack, or simply the FP
stack.

The registers st0 to st7 are positions on the FP stack. st0 is always the top of the stack,
and st7 is always the bottom of the stack. If we push a data item on to the FP stack, then
the contents of each register get transferred to the register below it. If the stack is full (means
that st7 contains valid data), then a stack overflow occurs. This situation needs to be avoided.
Most floating point instructions operate on data values saved at the top of the stack. They pop
the source operands, and push the destination operand.

5.2.3 View of Memory

Let us now describe the functionality of the segment registers (see Figure 5.1), and the view
of memory. x86 instructions can have two views of memory. The first view is like ARM and
SimpleRisc , which views memory as one large array of bytes that stores both code and data.

© Smruti R. Sarangi 180

st0

st7

st1

st2

st3

st4

st5

st6

Top of the stack

F
P
 sta

ck

Figure 5.2: The x86 floating point register stack

This is known as the linear memory model. In comparison, the segmented memory model views
memory as consisting of fixed size segments, where each segment is tailored to store one kind
of data such as code, stack data, or heap data (for dynamically allocated data structures). We
shall not discuss the linear model of memory because we have seen it before in Chapter 3. Let
us discuss the segment registers, and the segmented memory model in this section.

Definition 40

Linear Memory Model A linear memory model views the entire memory as one large
array of bytes that saves both code and data.

Segmented Memory Model A segmented memory model views the memory as a se-
quence of multiple fixed size segments. Code, data, and the stack have their own
segments.

The Segmented Memory Model

Let us define the term address space as the set of all memory addresses accessible to a program.
The aim of the segmented memory model is to divide the address space into separate smaller
address spaces. Each address space can be specialised to store a specific type of information
such as code or data.

There are two reasons for using segmentation. The first is historical. In the early days
different parts of a program were physically saved at different locations. The code was saved on
punch cards, and the memory data was stored in DRAM memories. Hence, it was necessary to

181 © Smruti R. Sarangi

partition the address space among the devices that stored all the information that a program
required (code, static data, dynamic data). This reason is not valid anymore. Nowadays, all
the information a program requires is typically stored at the same place. However, we still
need segmentation to enforce security. Hackers and viruses typically try to change the code of
a program and insert their own code. Thus a normal program can exhibit malicious behaviour
and can corrupt data, or transfer sensitive data to third parties. To ensure added protection,
the code region is saved in a code segment. Most systems do not allow normal store instructions
to modify the code segment. We can similarly partition the data segments for different classes
of data. In Section 11.4.6, we will have a more thorough discussion on this topic.

Segmentation in x86

The 8086 designers had 6 segment registers that stored the most significant 16 bits of the
starting location of the segment. The remaining bits were assumed to be all zeros. The cs
register stored the upper 16 bits of the starting location of the code segment. Similarly, the ds
register stored the upper 16 bits of the starting location for the data segment, and the ss register
stored the corresponding set of bits for the stack segment. The es (extra segment), fs, and
gs registers could be used to store information for additional user defined segments. Till date
all x86 processors have preserved this model (see Figure 5.1). The contents of instructions are
saved in the code segment, and the data that a program accesses is saved in the data segment.
In most small programs, the stack and data segments are the same. In 8086 processors the
memory address was 20 bits wide. Hence, to obtain the final address also known as the linear
address, the 8086 processor first shifted the contents of the segment register 4 positions to
the left to obtain the starting location of the segment. It then added this address with the
memory address specified by the instruction. We can think of the memory address specified by
an instruction as an offset in the segment, where the starting memory location of the segment
is indicated by the appropriate segment register.

This strategy served the needs of the 8086 designers well. However, this strategy is not
suitable for 32 and 64-bit machines. In this case, the memory addresses are 32 and 64 bits
wide respectively. Thus, the segment registers need to be wider. In the interest of backward
compatibility, designers did not touch the segment registers. They just changed the semantics
of its contents for newer processors. Instead of saving the upper 16 bits of the starting location
of a segment, the registers now contain a segment id. The segment id uniquely identifies a
segment across all the programs running in a system. To get the starting location, 32/64-bit
x86 processors, lookup a segment descriptor table with 13 bits (bits 4 to 16) of the segment
id. 13 bits can specify 8192 entries, which is more than sufficient for all the programs in the
system.

Modern x86 processors have two kinds of segment descriptor tables namely the local de-
scriptor table (LDT), and the global descriptor table (GDT). The LDT is typically local to
a process (running instance of a program) and contains the details of the segments for that
process. The LDT is normally not used nowadays because programs do not use a lot of seg-
ments. In comparison there is only one system level GDT. The GDT can contain up to 8191
entries (the first entry is reserved). Each entry in the GDT contains the starting address of
the segment, the size of the segment, and the privileges required to access the segment. Every
memory access needs to go through the GDT for fetching the starting address of the segment.

© Smruti R. Sarangi 182

This unnecessarily lengthens the critical path of a memory request, and creates contention at
the GDT. To make the access to the GDT faster, modern processors have a small structure
called a segment descriptor cache that stores a few entries of the GDT that are relevant to
the currently executing process. The descriptor cache typically stores the details of all the
segments that the frequently running processes use. This strategy ensures that we do not need
to access the GDT on every memory access. The small and fast descriptor cache is sufficient.
After accessing the descriptor cache, or the GDT, x86 processors get the starting address of
the segment. They subsequently generate the memory address by adding the address specified
in the instruction with the starting address of the segment. This address is then passed on to
the memory system.

Definition 41

Process It is defined as the running instance of a program. For example, if we run two
copies of a program, then we create two processes.

LDT (Local Descriptor Table) The LDT is a per process table that saves the descrip-
tion of all the segments that a process uses. The LDT is indexed by a segment id, and
contains the starting address of the segment, and the privileges required to access it.
It is not used very frequently in modern systems.

GDT (Global Descriptor Table) The GDT is similar to the LDT. However, it is a
system wide table that is shared by all the processes running on a machine.

Now, that we have discussed the view of the register files, and the memory system, let us
describe the addressing modes.

5.2.4 Addressing Modes

Addressing Modes for Specifying Immediates

The best thing about x86 is that there are no size restrictions on immediates. Immediates can be
as large as the size of the register. For example, in a 32-bit system, the size of the immediate can
be as large as 32 bits. Depending upon the assembly language, we can specify immediates in the
hex format (0x...), binary format (e.g., 10101b), or in decimal. Most of the time programmers
prefer the hex or decimal formats. For hexadecimal numbers most assemblers allow us to specify
the number with the standard 0x prefix. Additionally, we can specify a number with the h/H
suffix. For example, 21H is the same as 0x21. For negative numbers, we need to simply put a
‘-’ before the number.

Addressing Modes for Specifying Registers

All registers in x86 are addressed by their names. For example, the general purpose registers
on a 32-bit machine are addressed as eax, ebx . . . edi, according to the rules mentioned in

183 © Smruti R. Sarangi

Section 5.2.1. We can use 16-bit register names in 32-bit mode, and we can use 16 and 32-bit
register addressing in 64-bit mode. Note that we cannot do the reverse. For example, we cannot
use 64-bit register names in 32-bit mode.

Addressing Modes for Memory Operands

x86 supports a variety of addressing modes for main memory. In specific, it supports the
register-indirect, base-offset, base-index, and base-index-offset addressing modes as mentioned
in Section 3.2.5. In addition, it also supports a new addressing mode called the base-scaled-
index-offset addressing mode that scales the index by a constant factor. Let us elaborate.

address =



cs :

ds :

ss :

es :

fs :

gs :





eax

ebx

ecx

edx

esp

ebp

esi

edi


︸ ︷︷ ︸

base

+





eax

ebx

ecx

edx

ebp

esi

edi


︸ ︷︷ ︸
index

×


1

2

4

8


︸︷︷︸
scale


+ [displacement]︸ ︷︷ ︸

offset

(5.1)

Equation 5.1 shows the generic format of a memory address in the 32-bit version of x86.
The interesting aspect of x86 memory addressing is that all of these fields are optional. Hence,
it is possible to have a large number of addressing modes.

Let us first consider the addressing modes that require a base register. With the base
register, we can optionally specify a segment register. If we do not specify a segment register,
then the hardware assumes default segments (ds for data, ss for stack, and cs for code). We
can subsequently specify an index. The index is contained in another register (excluding esp).
We can optionally multiply the index with a power of 2 (1, 2, 4, or 8). Lastly, we can specify a
32-bit offset known as the displacement. The memory address is computed using Equation 5.1.

Now, let us look at addressing modes that do not require a base register. We can just use an
index register and optionally scale it by 1, 2, 4, or 8. For example, we can specify that we want
to access the memory address equal to 2× ecx. This approach uses the scaled-index addressing
mode. We can optionally add a fixed offset (known as the displacement) to the address.

Lastly, it is possible to specify the entire 32-bit address in the displacement field, and not
specify any register at all. This approach is typically used in the operating system code to
directly operate on memory addresses. Regular assembly programmers need to strictly avoid
such direct memory addressing because most of the time we are not aware of the exact memory
addresses. For example, the starting address of the stack pointer is typically allocated at run
time in modern systems, and tends to vary across runs. Secondly, this is not a portable and
elegant approach. It is only meant for operating system writers.

Let us explain with examples (see Table 5.2).

© Smruti R. Sarangi 184

Definition 42
In the x86 ISA, the fixed offset used while specifying the effective address of a memory
operand, is known as the displacement.

Memory operand Value of the address Addressing mode
(in register transfer notation)

[eax] eax register-indirect

[eax + ecx*2] eax + 2 * ecx base-scaled-index

[eax + ecx*2 - 32] eax + 2 * ecx - 32 base-scaled-index-offset

[edx - 12] edx - 12 base-offset

[edx*2] edx * 2 scaled-index

[0xFFE13342] 0xFFE13342 memory-direct

Table 5.2: Example of memory operands

5.2.5 x86 Assembly Language

There are various x86 assemblers such as MASM [mas,], NASM [nas,], and the GNU assem-
bler [gx8,]. In this book, we shall present code snippets that have been tested with the NASM
assembler. The popular NASM assembler is freely available at [nas,], and is known to work on
a variety of platforms including Windows® , Mac OS X, and different flavours of Linux. Note
that we shall mostly avoid using NASM specific features, and we shall keep the presentation of
assembly code very generic. Our assembly codes should be compatible with any assembler that
supports the Intel format for x86 assembly. The only major feature of NASM that we shall use
is that comments begin with a ‘;’ character.

Let us now describe the structure of an assembly language statement in the Intel format.
Its generic structure is as follows.

Structure of an Assembly Statement
<label>: <assembly instruction> ; <comment>

For an assembly instruction, the label and the comment are optional. Alternatively, we can
just have a label or a comment, or a combination of both in a single line. In our code, we shall
use labels starting with a ’.’. However, labels can start with regular alphabets and other special
characters also. For a detailed description readers can refer to the NASM documentation.

Each x86 assembly instruction has an opcode followed by a set of operands.

x86 Assembly Instruction
<opcode>

<opcode> <operand1>

<opcode> <operand1>, <operand2>

185 © Smruti R. Sarangi

An overwhelming majority of x86 instructions are in the 0, 1 and 2-address formats. 0-
address format instructions like nop instructions in SimpleRisc do not require any operands.
1-address format instructions have a single source operand. In this case the destination operand
is equal to the source operand. For example, the instruction not eax computes the bitwise
complement of eax, and saves the result in eax. In two operand instructions, the first operand
is the first source operand and also the destination operand. The second operand is the second
source operand. For example, add eax, ebx, adds the contents of eax and ebx, and subsequently
saves the result in eax.

The source operands can be register, memory, or immediate operands. However, both the
sources cannot be memory operands. Needless to say the destination operand cannot be an
immediate operand. When a single operand is both the source and destination, both the rules
apply.

5.3 Integer Instructions

5.3.1 Data Transfer Instructions

The mov Instruction

Semantics Example Explanation

mov (reg/mem), (reg/mem/imm) mov eax, ebx eax ← ebx

Table 5.3: Semantics of the mov instruction

The mov instruction is a very simple yet versatile instruction in the x86 ISA. It moves the
contents of the second operand, into the first operand. The second operand can be a register,
a memory location, or an immediate. The first operand can be a register or a memory location
(Table 5.3 shows the semantics). The reader needs to note that both the operands cannot be
memory locations.

We thus do not need any dedicated load/store instructions in x86. The mov instruction
can achieve the function of loading and storing memory values because it accepts memory
operands. The mov instruction can also transfer values between registers (similar to SimpleRisc
and ARM). Thus, we have fused the functionality of three RISC instructions into one CISC
instruction. Let us consider some examples.

Example 55
Write an x86 assembly instruction to set the value of ebx to -17.
Answer:

mov ebx, -17

© Smruti R. Sarangi 186

Example 56
Write an x86 assembly instruction to load ebx with the contents of (esp - eax*4 -12).
Answer:

mov ebx, [esp - eax*4 -12]

Example 57
Write an x86 assembly instruction to store the contents of edx in (esp - eax*4 -12). An-
swer:

mov [esp - eax*4 -12], edx

movsx, and movzx Instructions

Semantics Example Explanation

movsx reg, (reg/mem) movsx eax, bx eax ← sign extend(bx), the second
operand is either 8 or 16 bits

movzx reg, (reg/mem) movsx eax, bx eax ← zero extend(bx), the second
operand is either 8 or 16 bits

Table 5.4: Semantics of the movsx, and movzx instructions

The simple mov instruction assumes that the sizes of the operands are the same (16, or
32, or 64 bits). However, sometimes we face the need for saving a smaller register or memory
operand in a larger register. For example, if we save the 16 bit register ax in ebx then we need
we have two options. We can either extend the sign of the input operand, or pad it with 0s.
The movsx instruction (see Table 5.4) copies a smaller register or memory operand to a larger
register and extends its sign. For example, the following code snippet extends the sign of bx
(from 16 to 32 bits), and saves the results in eax.

movsx eax, bx ; eax = sign_extend(bx)

The movzx instruction is defined on the same lines. However, instead of performing a sign
extension, it pads the MSB bits with 0s.

movzx eax, bx ; eax = bx (unsigned)

187 © Smruti R. Sarangi

Semantics Example Explanation

xchg (reg/mem), (reg/mem) xchg eax, [eax + edi] swap the contents of eax
and [eax + edi] atomi-
cally

Table 5.5: Semantics of the xchg instruction

The Atomic Exchange (xchg) Instruction

The xchg instruction swaps the contents of the first and second operands. Here, also we cannot
have two memory operands. This instruction ensures that before the operation is done, no
other operation can read temporary values. For example, if we are swapping the values of eax,
and the memory operand [ebx], there might be an intermediate point in the execution where
the contents of eax are updated, but the contents of [ebx] are not updated. The x86 processor
does not allow other threads (sub-programs that share the address space) to read the contents
of [ebx] at this point. It makes other conflicting instructions in other execution threads wait
till the xchg instruction completes. This property is known as atomicity. An instruction is
atomic if it appears to execute instantaneously. Most of the time, atomic instructions such as
xchg are used for implementing data structures that are shared across multiple threads. The
reader should read Chapter 12 for a detailed discussion on parallel software that uses multiple
threads.

Definition 43
An instruction is atomic if it appears to execute instantaneously.

Example 58
Write a function to swap the contents of eax, and [esp].

Answer:

xchg eax, [esp]

push and pop Instructions

The x86 architecture is explicitly aware of the stack. It has two dedicated instructions for
saving and retrieving operands off the stack. The push instruction pushes data on the stack. In
specific, the push instruction can push the contents of a register, memory location, or immediate
on the stack. It has just one source operand. Its operation is shown in Table 5.6. Conceptually,
it first saves the value of the first operand as a temporary value temp. Then, it decrements the

© Smruti R. Sarangi 188

Semantics Example Explanation

push (reg/mem/imm) push ecx temp ← ecx; esp ← esp - 4; [esp] ← temp

pop (reg/mem) pop ecx temp ← [esp]; esp ← esp + 4; ecx ← temp

Table 5.6: Semantics of the push and pop instructions

stack pointer, and transfers the temporary value to the top of the stack. In a 32-bit system,
we decrement the stack pointer by 4. When we are pushing a register, the processor knows its
size based on the name of the register. For example, if the name of the register is ax, its size
is 16 bits, and if the name of the register is eax, its size is 32 bits. However, if we are pushing
a memory operand or a constant, the assembler cannot determine the size of the operand. We
might be intending to push 2 bytes, 4 bytes, or 8 bytes on the stack. In this case, it is necessary
to indicate the size of the operand to the assembler such that it can generate appropriate binary
code. In the NASM assembler, we specify this information as follows:

push dword [esp]

The modifier dword (double word) represents the fact that we need to push 4 bytes on the
stack. The starting address of the 4 bytes is stored in esp. Table 5.7 shows the list of modifiers
for different sized data types.

Modifier Size

byte 8 bits

word 16 bits

dword 32 bits

qword 64 bits

Table 5.7: Modifiers in the NASM assembler

For pushing in the value of immediate values, NASM assumes they are by default 32 bits
long (if we are running NASM in 32-bit mode). We can override this setting by specifying a
size modifier (word,dword,...) in the instruction.

On the same lines we can define a pop instruction as shown in Table 5.6. Conceptually,
the pop instruction saves the top of the stack in a temporary location. It then proceeds to
increment the stack pointer by 4 (in the case of 32 bits), and then it saves the temporary value
in the destination. The destination can either be a register or a memory location. The push
and pop instructions thus make working with the stack very easy in x86 assembly programs.

Example 59 What is the final value of ebx?

mov eax, 10

push eax

mov ebx, [esp]

189 © Smruti R. Sarangi

Answer: 10

Example 60
What is the final value of ebx?

mov ebp, esp

mov eax, 10

mov [esp], eax

push dword [esp]

mov ebx, [ebp-4]

Answer: Note that ebp and esp are initially the same. After we push a value to the stack,
esp gets decremented by 4. Hence, the new location of the top of the stack is equal to ebp−4.
Since we push the value of eax (10) to the top of the stack using the push instruction, the
value of ebx is equal to 10.

Example 61 What is the final value of ebx?

mov eax, 17

push eax

pop dword [esp]

mov dword ebx, [esp]

Answer: 17

5.3.2 ALU Instructions

Let us now discuss the rich set of ALU instructions that x86 processors support.

Add and Subtract Instructions

Table 5.8 shows the add and subtract operations that are typically used in x86 processors. The
basic add and subtract instructions add the values of the first and second operands, and treat
the first operand also as the destination operand. They set the carry and overflow fields of
the eflags register. The adc instruction adds its two source operands, and also adds the value
of the carry bit. Similarly, the sbb instruction subtracts the second operand from the first,
and then subtracts the carry bit from the result. We can use the adc and sbb instructions to
add or subtract very large integers (refer to Example 62 and Example 63). In these examples,

© Smruti R. Sarangi 190

Semantics Example Explanation

add (reg/mem), (reg/mem/imm) add eax, ebx eax ← eax + ebx

sub (reg/mem), (reg/mem/imm) sub eax, ebx eax ← eax - ebx

adc (reg/mem), (reg/mem/imm) adc eax, ebx eax ← eax + ebx + (carry bit)

sbb (reg/mem), (reg/mem/imm) sbb eax, ebx eax ← eax - ebx - (carry bit)

Table 5.8: Semantics of add and subtract instructions

we first operate on the lower bytes. While operating on the higher bytes we need to take the
carry generated by adding or subtracting the lower bytes into account. We use the adc and sbb
instructions respectively for this purpose.

Example 62
Write an x86 assembly program to add two 64-bit numbers. The first number is stored in
the registers ebx, and eax, where ebx stores the higher byte, and eax stores the lower byte.
The second number is stored in edx, and ecx. Save the result in ebx (higher byte), and
eax(lower byte).
Answer:

add eax, ecx

adc ebx, edx

Example 63
Write an x86 assembly program to subtract two 64-bit numbers. The first number is stored
in the registers ebx, and eax, where ebx stores the higher byte, and eax stores the lower
byte. The second number is stored in edx, and ecx. Subtract the second number from the
first number. Save the result in ebx (higher byte), and eax(lower byte).

Answer:

sub eax, ecx

sbb ebx, edx

inc, dec, and neg Instructions

Table 5.9 shows the semantics of increment (inc), decrement (dec), and negate (neg) instruc-
tions. The inc instruction, adds 1 to the source operand. In this case also the source and
destination operands are the same. Similarly, the dec instruction subtracts 1 from the source
operand, which is also the destination operand. Note that the operand can either be a register

191 © Smruti R. Sarangi

Semantics Example Explanation

inc (reg/mem) inc edx edx ← edx + 1

dec (reg/mem) dec edx edx ← edx - 1

neg (reg/mem) neg edx edx ← -1 * edx

Table 5.9: Semantics of inc, dec, and neg instructions

or a memory location. The neg instruction computes the negative of the value stored in the
first operand (register or memory). Let us consider an example (see Example 64).

Example 64
Write an x86 assembly code snippet to compute eax = -1 * (eax + 1).
Answer:

inc eax

neg eax

The Compare(cmp) Instruction

Semantics Example Explanation

cmp (reg/mem), (reg/mem/imm) cmp eax, [ebx + 4] compare the values in eax,
and [ebx+4], and set the flags

cmp (reg/mem), (reg/mem/imm) cmp ecx, 10 compare the contents of ecx
with 10, and set the flags

Table 5.10: Semantics of the cmp instructions

Table 5.10 shows the cmp (compare) instruction. It compares two operands and sets the
values of the flags. It performs the comparison by subtracting the value of the second operand
from the first operand. It is conceptually a subtract instruction that does not have a destination
operand.

Multiplication and Division Instructions

Table 5.11 shows the signed multiplication and division instructions in x86. They are known as
imul and idiv respectively. The unsigned variants of the instructions are known as mul and div.
They have exactly the same semantics as their signed counterparts. The signed instructions
are more generic. Hence, we only discuss their operation in this section.

The imul instruction has three variants. The 1-address format variant has 1 source operand,
which can either be a register or a memory address. This source operand is multiplied with the

© Smruti R. Sarangi 192

Semantics Example Explanation

imul (reg/mem) imul ecx edx:eax ← eax * ecx

imul reg, (reg/mem) imul ecx, [eax + 4] ecx ← ecx * [eax + 4]

imul reg, (reg/mem), imm imul ecx, [eax + 4], 5 ecx ← [eax + 4] * 5

idiv (reg/mem) idiv ebx Divide (edx:eax) by the con-
tents of ebx; eax contains the
quotient, and edx contains the
remainder.

Table 5.11: Semantics of the imul and idiv instructions

contents of eax. Note that when we multiply two 32-bit numbers, we require at most 64 bits
to save the result (see Section 8.2.1). Hence, to avoid overflows, the processor saves the results
in the register pair (edx,eax). edx contains the upper 32 bits, and eax contains the lower 32
bits of the final product. The 2-address format version is similar to other ALU instructions
that we have studied. It multiplies the first and second source operands, and saves the result in
the destination register (which is the first operand). Note that in this variant of the multiply
instruction, the destination is always a register, and the result is truncated to fit in the register.
The imul instruction has another variant that requires 3 operands. Here, it multiplies the
contents of the second and third operands and stores the product in the register specified by
the first operand. For this variant of the imul instruction, the first operand needs to be a
register, the second operand can be a register or memory location, and the third operand needs
to be an immediate value.

The idiv instruction takes just 1 operand (register or memory). It divides the contents of
the register pair (edx:eax) by the contents of the operand. It saves the quotient in eax, and the
remainder in edx. Note that the remainder has the same sign as the dividend. A subtle point
should be noted here. While using a positive dividend that fits in 32 bits, we need to explicitly
set edx to 0, and for a negative dividend that fits in 32 bits, we need to explicitly set edx to -1
(for sign extension).

Let us consider a set of examples.

Example 65
Write an assembly code snippet to multiply 3 with -17, and save the result in eax.

Answer:

mov ebx, 3

imul eax, ebx, -17

193 © Smruti R. Sarangi

Example 66
Write an assembly code snippet to compute k3, where k is the content of ecx, and save the
result in eax.

Answer:

mov eax, ecx

imul ecx

imul ecx

Example 67
Write an assembly code snippet to divide -50 by 3. Save the quotient in eax, and remainder
in edx.

Answer:

mov edx, -1

mov eax, -50

mov ebx, 3

idiv ebx

At the end eax contains -16, and edx contains -2.

Logical Instructions

Semantics Example Explanation

and (reg/mem), (reg/mem/imm) and eax, ebx eax ← eax AND ebx

or (reg/mem), (reg/mem/imm) or eax, ebx eax ← eax OR ebx

xor (reg/mem), (reg/mem/imm) xor eax, ebx eax ← eax XOR ebx

not (reg/mem) not eax eax ← ∼ eax

Table 5.12: Semantics of and, or, xor, and not instructions

Table 5.12 shows the semantics of four commonly used logical operations. and, or, and xor
instructions have exactly the same format as add and sub instructions, and most of the other
2-address format instructions. They compute the bitwise AND, OR, and exclusive OR of the
first two operands respectively. The not instruction computes the 1’s complement (flips each
bit) of the source operand, which is also the destination operand (format is similar to other
1-address format instructions such as inc, dec, and neg).

© Smruti R. Sarangi 194

Shift Instructions

Semantics Example Explanation

sar (reg/mem), imm sar eax, 3 eax ← eax ≫ 3

shr (reg/mem), imm shr eax, 3 eax ← eax ≫ 3

sal/shl (reg/mem), imm sal eax, 2 eax ← eax ≪ 2

Table 5.13: Semantics of shift instructions

Table 5.13 shows the semantics of shift instructions. sar (shift arithmetic right) performs
an arithmetic right shift by replicating the sign bit. shr (shift logical right), shifts the first
operand to the right. Instead of replicating the sign bit, it fills the MSB bits with 0s. sal
and shl are the same instruction. They perform a left shift. Recall that we do not have an
arithmetic left shift operation. Let us consider some examples.

Example 68
What is the final value of eax?

mov eax, 0xdeadbeef

sal eax, 4

Answer: 0xeadbeef0

Example 69 What is the final value of eax?

mov eax, 0xdeadbeef

sar eax, 4

Answer: 0xfdeadbee

Example 70 What is the final value of eax?

mov eax, 0xdeadbeef

shr eax, 4

Answer: 0xdeadbee

195 © Smruti R. Sarangi

5.3.3 Branch/ Function Call Instructions

Conditional and Unconditional Branch Instructions

Semantics Example Explanation

jmp ⟨label⟩ jmp .foo jump to .foo

j ⟨condcode⟩ j ⟨condcode⟩ .foo jump to .foo if the ⟨condcode⟩ con-
dition is satisfied

Table 5.14: Semantics of branch instructions

Condition code Meaning

o Overflow

no No overflow

b Below (unsigned less than)

nb Not below (unsigned greater than or equal to)

e/z Equal or zero

ne/nz Not equal or not zero

be Below or equal (unsigned less than or equal)

s Sign bit is 1 (negative)

ns Sign bit is 0 (0 or positive)

l Less than (signed less than)

le Less than or equal (signed)

g Greater than (signed)

ge Greater than or equal (signed)

Table 5.15: Condition codes in x86

Table 5.14 shows the semantics of branch instructions. jmp is an unconditional branch
instruction that branches to a label. The assembler internally replaces the label by the PC of
the label. x86 defines a series of branch instructions with the j prefix. These are conditional
branch instructions. The j prefix is followed by the branch condition. The conditions are shown
in Table 5.15. For example, the instruction je means jump if equal. If the last comparison has
resulted in an equality, then the processor branches to the label; otherwise, it executes the
next instruction. If the condition is not satisfied, the conditional branch is equivalent to a nop
instruction.

Now that we have introduced branch instructions, we can implement complex algorithms
using loops. Let us look at a couple of examples. We would like to advise the reader at this point
that the best method to learn assembly language is by actually writing assembly programs. No
amount of theoretical reading can substitute for actual practice.

© Smruti R. Sarangi 196

Example 71
Write a program in x86 assembly to add the numbers from 1 to 10.
Answer:

x86 assembly code
1 mov eax, 0 ; sum = 0

2 mov ebx, 1 ; idx = 1

3 .loop:

4 add eax, ebx ; sum += idx

5 inc ebx ; idx ++

6 cmp ebx, 10 ; compare idx and 10

7 jle .loop ; jump if idx <= 10

Here, we store the running sum in eax and the index in ebx. In Line 4, we add the
index to the sum. We subsequently, increment the index, and compare it with 10 in Line 6.
If it is less than or equal to 10, then we continue iterating. eax contains the final value.

Example 72
Write a program in x86 assembly to test if a number stored in eax is prime. Save the result
in eax. If the number is prime, set eax to 1, otherwise set it to 0. Assume that the number
in eax is greater than 10.
Answer:

x86 assembly code
1 mov ebx, 2 ; starting index

2 mov ecx, eax ; ecx contains the original number

3 .loop:

4 mov edx, 0 ; required for correct division

5 idiv ebx

6 cmp edx, 0 ; compare the remainder

7 je .notprime ; number is composite

8 inc ebx

9 mov eax, ecx ; set the value of eax again

10 cmp ebx, eax ; compare the index and the number

11 jl .loop

12

13 ; end of the loop

14 mov eax, 1 ; number is prime

15 jmp .exit ; exit

16

17 .notprime:

18 mov eax, 0

19 .exit:

197 © Smruti R. Sarangi

In this algorithm, we keep on dividing the input (stored in eax) by a monotonically
increasing index. If the remainder is equal to 0 in any iteration, then the number is com-
posite (non prime). Otherwise, the number is prime. In specific, we perform the division
in Line 5, and jump to the label .notprime if the remainder (stored in edx) is 0. Otherwise,
we increment the index in ebx, and keep iterating. Note that in each iteration, we need to
set the values of eax and edx because they are overwritten by the idiv instruction.

Example 73
Write a program in x86 assembly to find the factorial of a number stored in eax. Save your
result in ecx. You can assume that the number is greater than 10.
Answer:

x86 assembly code
1 mov ebx, 2 ; idx = 2

2 mov ecx, 1 ; prod = 1

3

4 .loop:

5 imul ecx, ebx ; prod *= idx

6 inc ebx ; idx++

7 cmp ebx, eax ; compare num (number) and idx

8 jle .loop ; jump to .loop if idx <= num

In Line 2, we initialise the product to 1. Subsequently, we multiply the index with the
product in Line 5. We then increment the index, and compare it with the input stored in
eax. We keep on iterating till the index is less than or equal to the input.

Function Call and Return Instructions

Semantics Example Explanation

call ⟨label⟩ call .foo Push the return address on the
stack. Jump to the label .foo.

ret ret Return to the address saved on the
top of the stack, and pop the entry

Table 5.16: Semantics of the function call and return instructions

Unlike ARM and SimpleRisc , x86 does not have a return address register. The call in-
struction pushes the return address on the stack, and jumps to the beginning of the function
as explained in Table 5.16. Similarly, the ret instruction jumps to the entry at the top of the

© Smruti R. Sarangi 198

stack. The entry at the top of the stack needs to contain the return address. The ret instruc-
tion subsequently pops the stack and removes the return address. Let us now consider a set of
examples.

Example 74
Write a recursive function to compute the factorial of a number (≥ 1) stored in eax. Save
the result in ebx.
Answer:

x86 assembly code
1 factorial:

2 mov ebx, 1 ; default return value

3 cmp eax, 1 ; compare num (input) with 1

4 je .return ; return if input is equal to 1

5

6 ; recursive step

7 push eax ; save input on the stack

8 dec eax ; num--

9 call factorial ; recursive call

10 pop eax ; retrieve input

11 imul ebx, eax ; prod = prod * num

12

13 .return:

14 ret ; return

In the factorial function, we assume that the input (num) is stored in eax. We first
compare the input with 1. If it is equal to 1, then we return 1 (Lines 2 to 4). However, if the
input is greater than 1, then we save the input by pushing it to the stack (7). Subsequently,
we decrement it and recursively call the factorial function in Line 9. The result of the
recursive call is stored in ebx. To compute the result (in ebx), we multiply ebx with num
(stored in eax) in Line 11.

In Example 74 we pass arguments through registers. We use the stack to only store values
that are overwritten by the callee function. Let us now use the stack to pass arguments to the
factorial function (see Example 75)

Example 75
Write a recursive function to compute the factorial of a number (≥ 1) stored in eax. Save
the result in ebx. Use the stack to pass arguments.
Answer:

x86 assembly code
1

2 factorial:

199 © Smruti R. Sarangi

3 mov eax, [esp+4] ; get the value of eax from the stack

4 mov ebx, 1 ; default return value

5 cmp eax, 1 ; compare num (input) with 1

6 je .return ; return if input is equal to 1

7

8 ; recursive step

9 push eax ; save eax on the stack

10 dec eax ; num--

11 push eax ; push the argument

12 call factorial ; recursive call

13 pop eax ; pop the argument

14 pop eax ; retrieve the value of eax

15 imul ebx, eax ; prod = prod * num

16

17 .return:

18 ret ; return

Here, we use the stack to pass arguments. Since the stack pointer gets automatically
decremented by 4 after a function call, the argument eax is available at [esp+4] because we
push it on the stack just before we call the function. To call the factorial function again,
we push eax on the stack, and then pop it out after the function returns.

Let us now assume that we have a lot of arguments. In this case, we need to push and
pop a lot of arguments from the stack. It is possible that we might lose track of the order of
push and pop operations, and bugs might be introduced in our program. Hence, if we have a
lot of arguments, it is a better idea to create space in the stack by subtracting the estimated
size of the activation block from the stack pointer and moving data between the registers and
stack using regular mov instructions. Let us now modify our factorial example to use mov
instructions instead of push and pop instructions (see Example 76).

Example 76
Write a recursive function to compute the factorial of a number (≥ 1) stored in eax. Save
the result in ebx. Use the stack to pass arguments. Avoid push and pop instructions.
Answer:

x86 assembly code
1 factorial:

2 mov eax, [esp+4] ; get the value of eax from the stack

3 mov ebx, 1 ; default return value

4 cmp eax, 1 ; compare num (input) with 1

5 jz .return ; return if input is equal to 1

6

© Smruti R. Sarangi 200

7 ; recursive step

8 sub esp, 8 ; create space on the stack

9 mov [esp+4], eax ; save the input eax on the stack

10 dec eax ; num--

11 mov [esp], eax ; push the argument

12 call factorial ; recursive call

13 mov eax, [esp+4] ; retrieve eax

14 imul ebx, eax ; prod = prod * num

15 add esp, 8 ; restore the stack pointer

16

17 .return:

18 ret ; return

In this example, we have avoided push and pop instructions altogether. We instead
create space on the stack by subtracting 8 bytes from esp in Line 8. We use 4 bytes to save
the input (in eax) for later use. We use the rest of the 4 bytes to send the argument to the
recursive function call. After the function returns, we retrieve the value of eax from the
stack in Line 13. Lastly, we restore the stack pointer in Line 15.

However, this method is also not suitable for large functions in complex programming lan-
guages such as C++. In a lot of C++ functions, we dynamically allocate space on the stack. In
such cases, most of the time, we do not know the size of the activation block (see Section 3.3.10)
of a function in advance. Hence, deallocating an activation block becomes difficult. We need
to dynamically keep track of the size of the activation block of the function. This introduces
additional complexity, and additional code. It is a better idea to save the value of esp in a
dedicated register at the beginning of a function. At the end of the function, we can transfer
the saved value in the register to esp. This strategy effectively destroys the activation block.
Most of the time, we use the ebp (base pointer) register to save the value of esp at the beginning
of a function. This register is also referred to as the frame pointer. Now, it is possible that a
called function might follow the same strategy, and overwrite the value of ebp set by the caller.
Thus, in this case, ebp needs to be a callee saved register. If an invoked function overwrites
the value of ebp, it needs to ensure that by the time it returns to the caller, the value of ebp
is restored. By using the base pointer, we do not need to explicitly remember the size of the
activation block. We dynamically allocate data structures on the stack.

Let us augment our running example with this feature (see Example 77).

Example 77
Write a recursive function to compute the factorial of a number (≥ 1) stored in eax. Save
the result in ebx. Use the stack to pass arguments. Avoid push and pop instructions.
Secondly, use the ebp register to store the value of the stack pointer.
Answer:

201 © Smruti R. Sarangi

x86 assembly code
1 factorial:

2 mov eax, [esp+4] ; get the value of eax from the stack

3

4 push ebp ; save ebp

5 mov ebp, esp ; save the stack pointer

6

7 mov ebx, 1 ; default return value

8 cmp eax, 1 ; compare num (input) with 1

9 je .return ; return if input is equal to 1

10

11 ; recursive step

12 sub esp, 8 ; create space on the stack

13 mov [esp+4], eax ; save input on the stack

14 dec eax ; num--

15 mov [esp], eax ; push the argument

16 call factorial ; recursive call

17 mov eax, [esp+4] ; retrieve input

18 imul ebx, eax ; prod = prod * num

19

20 .return:

21 mov esp, ebp ; restore the stack pointer

22 pop ebp ; restore ebp

23 ret ; return

Here, we save the old value of ebp on the stack, and set its new value to the stack pointer
in Lines 4 and 5, respectively. At the end of the function, we restore the values of esp and
ebp in Lines 21 and 22.

Stack Management Instructions – enter and leave

Semantics Example Explanation

enter imm, 0 enter 32, 0 push ebp (push the value of ebp on
the stack); mov ebp, esp (save the
stack pointer in ebp); esp ← esp -
32

leave leave mov esp, ebp (restore the value of
esp); pop ebp (restore the value of
ebp)

Table 5.17: Semantics of the enter and leave instructions.

© Smruti R. Sarangi 202

The four extra lines added in Example 77 are fairly generic, and are typically a part of most
large functions. Programmers can add them if they are writing assembly code, or compilers can
add them during automatic code generation. In either case, using the base pointer is a very
convenient mechanism to manage the stack, and to destroy the activation block. Since these
set of instructions are so commonly used, the designers of the x86 ISA decided to dedicate two
specialised instructions for this purpose. The enter instruction pushes the value of ebp on the
stack, and sets its new value to be equal to the stack pointer. Additionally, it is also possible
to set the initial size of the activation block. The first argument takes the size of the activation
block. If we specify 32 as the first argument, then the enter instruction decrements esp by 32.
Note that during the course of execution of the function, the size of the activation block might
continue to vary. The second argument for the enter instruction corresponds to the nesting
level of the function. We shall refrain from discussing it here. Interested readers can refer to
the references mentioned at the end of the chapter. We shall simply use the value of 0 for the
second argument.

The leave instruction performs the reverse set of computations. It first restores the value
of esp, and then the value of ebp (see Table 5.17). Note that the leave instruction is meant to
be invoked just before the ret instruction. We can thus augment Example 77 to use the enter
and leave instructions (see Example 78). Secondly, we can omit the statement that subtracted
8 from esp (Line 12) in Example 77 because this functionality is now built in to the enter
instruction.

Example 78
Write a recursive function to compute the factorial of a number (≥ 1) stored in eax. Save
the result in ebx. Use the stack to pass arguments. Avoid push and pop instructions. Use
the enter and leave instructions to buffer the values of ebp and esp.
Answer:

x86 assembly code
1

2 factorial:

3 mov eax, [esp+4] ; get the value of eax from the stack

4

5 enter 8, 0 ; save ebp and esp, decrement esp by 8

6

7 mov ebx, 1 ; default return value

8 cmp eax, 1 ; compare num (input) with 1

9 je .return ; return if the input is equal to 1

10

11 ; recursive step

12 mov [esp+4], eax ; save input on the stack

13 dec eax ; num--

14 mov [esp], eax ; push the argument

15 call factorial ; recursive call

16 mov eax, [esp+4] ; retrieve input

17 imul ebx, eax ; prod = prod * num

203 © Smruti R. Sarangi

18

19 .return:

20 leave ; load esp and ebp

21 ret ; return

Lastly, we should mention that x86 processors have a nop instruction that does not do any-
thing at all. It is mainly used for the purpose of ensuring correctness in modern processors (see
Chapter 10), and for ensuring that blocks of code are aligned to 16 byte or 64 byte boundaries.
We require the latter functionality for better behaviour at the level of the memory system.

5.3.4 Advanced Memory Instructions

String Instructions

Semantics Example Explanation

lea reg, mem lea ebx, [esi + edi*2 + 10] ebx ← esi + edi*2 + 10

stos(b/w/d/q) stosd [edi]← eax; edi← edi + 4 * (−1)DF

lods(b/w/d/q) lodsd eax ← [esi]; esi ← esi + 4 * (−1)DF

movs(b/w/d/q) movsd [edi] ← [esi] ; esi ← esi + 4 *
(−1)DF ; edi ← edi + 4 * (−1)DF

std std DF ← 1

cld cld DF ← 0

DF → Direction Flag

Table 5.18: Semantics of advanced memory instructions

The lea instruction stands for load effective address. It has a register operand, and a memory
operand. The role of the lea instruction is to copy the address of the memory operand (not its
contents) to the register.

Let us now introduce a special set of instructions known as string instructions. We shall
introduce the following instructions: stos, lods, and movs. The stos instruction transfers data
from the eax register to the location specified by the edi register. It comes in four flavours
depending upon the amount of data that we wish to transfer. It uses the ’b’ suffix for 1 byte,
’w’ for 2 bytes, ’d’ for 4 bytes, and ’q’ for 8 bytes. We show an example of the stosd instruction
in Table 5.18. The stosd instruction transfers the contents of eax (4 bytes) to the memory
address specified by edi. Subsequently, this instruction increments or decrements the contents
of edi by 4 depending on the direction flag. The direction flag (DF) is a field in the flags
register similar to zero, carry, and overflow. If the direction flag is set (equal to 1), then the
stos instruction subtracts the size of the operand from the contents of edi. Conversely, if DF
is equal to 0, then the stos instruction adds the size of the operand to edi.

We introduce two 0-address format instructions namely std and cld to set and reset the
direction flag respectively.

© Smruti R. Sarangi 204

The lods and movs set of instructions are defined in a similar manner. For example, the
lodsd instruction transfers the contents of the memory location specified by esi to eax. It
subsequently increments or decrements the contents of esi by the size of the operands based
on the value of DF . The movs instruction combines the functionality of lods and stos. It first
fetches a set of bytes from the memory address stored in esi. Subsequently, it writes the bytes
to the memory address specified by edi. It increments or decrements esi and edi based on the
value of the direction flag.

Trivia 2
The si register (16-bit version of esi) stands for the source index register. Similarly, the di
register stands for the destination index register.

Let us now look at a set of examples.

Example 79 What is the value of ebx?

lea edi, [esp+4]

mov eax, 21

stosd ; saves eax in [edi]

mov ebx, [esp+4]

Answer: We save 21 (eax) in the memory address specified in edi by using the stosd
instruction. This memory address is equal to (esp + 4). After executing the stosd instruc-
tion, we load the contents of this memory address into ebx. The result is equal to the value
of eax seen by the stosd instruction, which is 21.

Example 80 What is the value of eax after executing this code snippet?

lea esi, [esp+4]

mov dword [esp+4], 19

lodsd ; eax <-- [esi]

Answer: Note the use of the modifier dword here. We need to use it because we are
saving an immediate to a memory location, and we need to specify its size. The value of
eax is equal to the value stored in [esp+4], which is 19.

205 © Smruti R. Sarangi

Example 81 What is the value of eax after executing this code snippet?

mov dword [esp+4], 192

lea esi, [esp+4]

lea edi, [esp+8]

movsd

mov eax, [esp+8]

Answer: The movsd instruction transfer 4 bytes from the memory address specified in esi
to the memory address specified in edi. Since we write 192 to the memory address specified
in esi, we shall read back the same value in the last line.

Instructions with the rep Prefix

The string instructions can additionally increment or decrement the values of esi and edi. We
have not used this feature up till now. Let us use this feature to transfer an array of 10 integers
from one location to another. This feature is very frequently used in modern processors to
transfer large amounts of data between two locations.

Let us first show a conventional solution in Example 82.

Example 82 Write a program to create a copy of a 10 element integer array. Assume that
the starting address of the original array is stored in esi, and the starting address of the
destination array is stored in edi.
Answer:

mov ebx, 0 ; initialise

.loop:

mov edx, [esi+ebx*4] ; transfer the contents

mov [edi + ebx*4], edx

inc ebx ; increment the index

cmp ebx, 10 ; loop condition

jne .loop

Example 83 Write a program to create a copy of a 10 element integer array. Assume that
the starting address of the original array is stored in esi, and the starting address of the
destination array is stored in edi. Use the movsd instruction.
Answer:

© Smruti R. Sarangi 206

cld ; DF = 0

mov ebx, 0 ; initialisation of the loop index

.loop:

movsd ; [edi] <-- [esi]

inc ebx ; increment the index

cmp ebx, 10 ; loop condition

jne .loop

As compared to Example 82, we reduce the number of instruction in the loop from 5 to
4.

In Example 83, we use the movsd instruction to replace a pair of load/store instructions
with just one instruction. This reduces the number of instructions in the loop from 5 to 4. We
were not able to get a bigger reduction because we still need to update the loop index, and
compute the loop condition.

To make our code look even more elegant, the x86 ISA defines a rep prefix that can used
with any string instruction. The rep prefix instructs the processor to execute a single string
instruction n times, where n is the value stored in the ecx register. Every time the processor
executes the string instruction, it decrements ecx. At the end, the value of ecx becomes 0. Its
semantics is shown in Table 5.19.

Semantics Example Explanation

rep inst rep movsd val ← ecx; Execute the movsd in-
struction val times; ecx ← 0

Table 5.19: Semantics of rep instructions

Example 84 Write a program to create a copy of a 10 element integer array. Assume that
the starting address of the original array is stored in esi, and the starting address of the
destination array is stored in edi. Use the rep prefix with the movsd instruction.
Answer:

cld ; DF = 0

mov ecx, 10 ; Set the count to 10

rep movsd ; Execute movsd 10 times

The rep prefix thus allows us to fold an entire loop into just one instruction as shown in
Example 84. The rep prefix is meant to be used with string instructions for copying large regions

207 © Smruti R. Sarangi

of data. It makes the code for operating on strings of data very compact and elegant. The
rep instruction has two variants namely repe, and repne. These instructions use an additional
termination condition, along with the value of ecx. Instructions prefixed with repe can also
terminate when the zero flag becomes 0, and an instruction prefixed with repne also terminates
when the zero flag becomes 1.

5.4 Floating Point Instructions

x86 has a large set of floating point instructions. Let us first give a historical perspective. The
early 8086 processor, and many of its successors till the Intel 486 did not have a floating point
unit in the processor. They used a separate co-processor chip called the x87 that provided
floating point capability. However, after the release of Intel 486, the floating point unit has
been an integral part of the x86 architecture. Hence, many features of the floating point ISA
are artefacts of the older era, in which a floating point instruction was essentially a message to
an external processing unit.

One of the direct consequences of such a design strategy is that there are no direct commu-
nication paths between integer registers, and floating point registers. Secondly, it is not possible
to load an immediate into a floating point register by specifying its value in an instruction. We
can only load the value of floating point registers via memory. For example, if we wish to store
a floating point constant in a floating point register, then we need to first load the constant in
memory. Subsequently, we need to issue a floating point load instruction to load the constant
into a floating point register. Figure 5.3 shows a conceptual organisation of the x86 ISA. The
integer instructions use the integer registers, and they have their own processor state. Likewise,
the floating point instructions use their set of registers, and have their own state. Both the
types of instructions, however, share the memory.

Memory

Integer
registers

FP
registers

Constants

Figure 5.3: Conceptual organisation of the x86 ISA

Let us start by looking at methods to load values into the floating point registers. We
shall refer to the floating point register stack as the FP stack and designate the floating point
registers (st0 . . . st7) as reg while describing the semantics of instructions. We shall also
abbreviate floating point as FP for the sake of brevity.

© Smruti R. Sarangi 208

5.4.1 Data Transfer Instructions

Load Instruction

Semantics Example Explanation

fld mem fld dword [eax] Pushes an FP number stored in
[eax] to the FP stack

fld reg fld st1 Pushes the contents of st1 to the top
of the stack

fild mem fild dword [eax] Pushes an integer stored in [eax] to
the FP stack after converting it to a
32-bit floating point number

Table 5.20: Floating point load instructions

Table 5.20 shows the semantics of the floating point load instructions. The most commonly
used floating point load instruction is the fld instruction. The first variant of the fld instruction
can load a 32-bit floating point value from memory, and push it to the FP stack. We can use
our standard addressing modes with integer registers as described in Section 5.2.4 for specifying
an address in memory. The second variant can push the contents of an existing FP register
on the FP stack. We can alternatively use the fild instruction that can read an integer from
memory, convert it to floating point, and push it on the FP stack. Let us consider an example.

Example 85
Push the constant, 2.392, on the FP stack.
Answer: We need to first define the constant 2.392 in the data section. In NASM, we
do this as follows.

section .data

num: dd 2.392

We need to embed this code snippet at the beginning of the assembly file. Here, the
declaration “section .data” means that we are declaring the data section. In the data section,
we further declare a variable, num, that is a double word (32 bits, specified by dd), and its
value is 2.392. Let us now push this value to the FP stack. We need to embed the following
code snippet in the main assembly function.

fld dword [num]

The assembler treats num as a memory address. While generating code, it will replace
it with its actual address. However, in an assembly program, we can seamlessly treat num
as a valid memory address, and its contents can thus be represented as [num]. The fld
instruction in this code snippet loads 32 bits (dword) from num to the top of the FP stack.

209 © Smruti R. Sarangi

Exchange Instruction

Semantics Example Explanation

fxch reg fxch st3 Exchange the contents of st0 and
st3

fxch fxch Exchange the contents of st0 and
st1

Table 5.21: Floating point exchange instructions

Table 5.21 shows the format of the floating point exchange instruction, fxch. It exchanges
the contents of two floating point registers. The 1-address format fxch instruction exchanges
the contents of the register specified as the first operand and st0. If we do not specify any
operands, then the processor exchanges st0 and st1 (the top of the stack, and the entry just
below the top of the stack).

Store Instructions

Semantics Example Explanation

fst mem fst dword [eax] [eax] ← st0

fst reg fst st4 st4 ← st0

fstp mem fstp dword [eax] [eax] ← st0; pop the FP stack

fist mem fist dword [eax] [eax] ← int(st0)

fistp mem fistp dword [eax] [eax] ← int(st0); pop the FP stack

Table 5.22: Floating point store instructions

Let us now look at the store instructions in Table 5.22. The format is similar to the
floating point load instructions. We have three variants of the basic fst instruction. The first
variant requires a single memory operand. It stores the contents of st0 in the memory location
specified by the memory operand. The second variant requires a FP register operand and stores
the contents of st0 in the FP register.

The third variant uses the ‘p’ suffix which is a generic suffix and is used by many other
instructions also. The fstp instruction initially saves the value contained in st0 in the memory
location specified by the first operand, and then pops the stack. Since the stack size is limited,
it is often necessary to pop the stack to create more space. When we are storing st0, we are
saving a copy of its contents in main memory. Hence, it makes sense to have a variant of the
fst instruction that can free the entry from the stack by popping it.

x86 has additional support for conversion of floating point values to integers. We can use
the fist instruction that first converts the contents of st0 to a signed integer by rounding it
and then saves it in the location specified by the memory operand. Note that we always use a
modifier (byte/word/dword/qword) for memory operands such that we can specify the number

© Smruti R. Sarangi 210

of bytes that need to be transferred. The fist instruction also supports the ‘p’ suffix (see the
semantics of the fistp instruction in Table 5.22).

Example 86
Transfer the contents of st0 to eax by converting the save FP number to an integer.
Answer:

fist dword[esp]

mov eax, [esp]

5.4.2 Arithmetic Instructions

Let us now consider arithmetic instructions. The floating point ISA in x86 has rich support
for floating point operations, and is thus extensively used in numerical computing. Let us start
with the basic floating point add instruction, and take a look at all of its variants.

Add Instruction

Semantics Example Explanation

fadd mem fadd dword [eax] st0 ← st0 + [eax]

fadd reg , reg fadd st0, st1 st0← st0 + st1 (one of the registers
has to be st0)

faddp reg faddp st1 st1 ← st0 + st1; pop the FP stack

fiadd mem fiadd dword [eax] st0 ← st0 + float([eax])

Table 5.23: Floating point add instructions

The semantics of the floating point add instructions is shown in Table 5.23. The basic fadd
instruction has two variants. The first variant uses a single memory operand. Here, we add
the value of the floating point number contained in the memory location to the contents of st0.
The result is also stored in st0. The second variant of the fadd instruction uses two floating
point registers as arguments. It adds the contents of the second register to the first register.

The fadd instruction follows the same pattern as the floating point load and store instruc-
tions. It accepts the ‘p’ suffix. The faddp instruction typically takes 1 argument, which is a
register. We show an example of the instruction faddp st1 in Table 5.23. Here, we add the
contents of st0 to st1, and save the result in st1. Then, we pop the stack. For working with
integers, we can use the fiadd instruction that takes the address of an integer in memory. It
adds this integer to st0, and saves the results in st0.

Subtraction, Multiplication, and Division Instructions

x86 defines subtraction, multiplication, and division instructions that have exactly the same
format as the fadd instructions, and all of its variants as shown in Table 5.23. Let us just show

211 © Smruti R. Sarangi

the basic form of each instruction that uses a single memory operand in Table 5.24.

Semantics Example Explanation

fsub mem fsub dword [eax] st0 ← st0 - [eax]

fmul mem fmul dword [eax] st0 ← st0 * [eax]

fdiv mem fdiv dword [eax] st0 ← st0 / [eax]

Table 5.24: Floating point subtract, multiply, and divide instructions

Example 87
Compute the arithmetic mean of two integers stored in eax and ebx. Save the result (in
64 bits) in esp + 4. Assume that the data section contains the integer, 2, in the memory
address two.

Answer:

; load the inputs to the FP stack

mov [esp], eax

mov [esp+4], ebx

fild dword [esp]

fild dword[esp + 4]

; compute the arithmetic mean

fadd st0, st1

fdiv dword [two]

; save the result (converted to 64 bits) to [esp+4]

; use the qword identifier

fstp qword [esp + 4]

5.4.3 Instructions for Special Functions

Semantics Example Explanation

fabs fabs st0 ← |st0|
fsqrt fsqrt st0 ←

√
st0

fcos fcos st0 ← cos(st0)

fsin fsin st0 ← sin(st0)

Table 5.25: Floating point instructions for special functions

© Smruti R. Sarangi 212

The greatness of the x86 ISA is that it supports trigonometric functions, and complex
mathematical operations such as the square root, and log operations (not covered in this book).
Table 5.25 shows the x86 instructions for computing the values of special functions. The fabs
function computes the absolute value of st0, the fsqrt function computes the square root, the
fcos and fsin functions compute the sine and cosine of the value stored in st0 respectively. All
of these instructions use st0 as their default operand, and also write the result back to st0.

Example 88
Compute the geometric mean of two integers stored in eax and ebx. Save the result (in 64
bits) in esp+ 4.

Answer:

; load the inputs to the FP stack

mov [esp], eax

mov [esp+4], ebx

fild dword [esp]

fild dword[esp + 4]

; compute the geometric mean

fmul st0, st1

fsqrt

; save the result (converted to 64 bits) to [esp+4]

; use the qword identifier

fstp qword [esp + 4]

5.4.4 Compare Instruction

Semantics Example Explanation

fcomi reg , reg fcomi st0, st1 compare st0 and st1, and set the
eflags register (first register has to
be st0)

fcomip reg , reg fcomi st0, st1 compare st0 and st1, and set the
eflags register; pop the FP stack

Table 5.26: Floating point compare instructions

The x86 ISA has many compare instructions. In this section, we shall present only one
compare instruction called fcomi that compares two floating point values saved in registers,
and sets the eflags register. Table 5.26 shows the semantics of the fcomi instruction with and

213 © Smruti R. Sarangi

without the ‘p’ suffix. Once, the eflags register is set, we can use regular branch instructions for
implementing control flow within the program. Note that in x86 we need to use the condition
codes for unsigned comparison in this case. Most of the time programmers make the mistake
of using the condition codes for signed comparison such as l, le, g, or ge for testing the results
of floating point comparison. This leads to wrong results. We should instead use the a (above)
and b (below) condition codes.

Let us now consider an example (Example 89) that computes the value of sin(2θ), and veri-
fies if it is equal to 2sin(θ)cos(θ). The readers should recall from their high school trigonometry
class that both these expressions are actually equal, and one can be derived from the other.
Example 89 experimentally verifies this fact for any given value of θ. We compute the value of
sin(2θ) and 2sin(θ)cos(θ), and compare them using fcomi. Note that floating point arithmetic
is approximate (see Section 2.4.6). Hence, the correct way to compare floating point numbers is
to first subtract them, compute the absolute value of the difference, and compare the difference
with a threshold. The threshold is typically a small number (10−5 in our case). If the difference
is less than a threshold, we can infer equality.

Example 89
Compare sin(2θ) and 2sin(θ)cos(θ). Verify that they have the same value for any given
value of θ. Assume that theta is stored in the data section at the label theta, and the
threshold for floating point comparison is stored at label threshold. Save the result in eax
(1 if equal, and 0 if unequal).
Answer:

; compute sin(2*theta), and save in [esp]

fld dword [theta]

fadd st0 ; st0 = theta + theta

fsin

fstp dword [esp]

; compute (2*sin(theta)*cos(theta))

fld dword [theta]

fst st1

fsin

fxch

fcos ; st0 = cos(theta)

fmul st1 ; st0 = sin(theta) * cos (theta)

fadd st0 ; st0 = 2 * st0

; compute the modulus of the difference

fld dword [esp] ; load (sin(2*theta))

fsub st0, st1

fabs

; compare

© Smruti R. Sarangi 214

fld dword [threshold]

fcomi st0, st1 ; compare

ja .equal

mov eax, 0

jmp .exit

.equal:

mov eax, 1

.exit:

After the end of a function, it is time to clean up the floating point registers, and stack
such that another function can use them. Let us conclude this section by taking a look at the
cleanup instructions.

5.4.5 Stack Cleanup Instructions

Semantics Example Explanation

ffree reg ffree st4 Free st4

finit finit Reset the status of the FP unit in-
cluding the FP stack and registers

Table 5.27: Floating point stack cleanup instructions

Table 5.27 shows two instructions for cleaning up the FP stack. The ffree instruction
sets the status of the register specified as an operand to empty. Using ffree to free all the
registers is a quick solution. For freeing the entire stack we need to invoke the ffree instruction
iteratively. For deleting the entire FP stack, a cleaner solution is to use the finit instruction
that does not take any arguments. It resets the FP unit, frees all the registers, and resets the
stack pointer. The finit instruction ensures that an unrelated function can start from a clean
state.

5.5 Encoding the x86 ISA

We have taken a look at a wide variety of x86 instructions, addressing modes, and instruction
formats. It is truly a CISC instruction set. However, the process of encoding is more regular.
Almost all the instructions follow a standard format. In the case of ARM and SimpleRisc , we
described the process of encoding instructions in great detail. We shall refrain from doing this
here for the sake of brevity. Secondly, an opcode in x86 typically has a variety of modes, and
prefixes. We do not want to digress from the main theme of this book by describing x86 in
such level of detail. Let us start out by looking at the broad structure of an encoded machine
instruction.

215 © Smruti R. Sarangi

5.5.1 High Level View of x86 Instruction Encoding

Figure 5.4 shows the structure of an encoded instruction in binary.

Prefix
1-4 bytes
(optional)

Opcode
1-3 bytes

ModR/M
1 byte

(optional)

SIB
1 byte

(optional)

Displacement

1/2/4 bytes
(optional)

Immediate

1/2/4 bytes
(optional)

Figure 5.4: x86 binary instruction format

The first set of 1-4 bytes are used to encode the prefix of the instruction. The rep prefix is
one such example of a prefix. There are many other kinds of prefixes that can be encoded in
the first group of 1-4 bytes.

The next 1-3 bytes are used for encoding the opcode. Recall that the entire x86 ISA has
hundreds of instructions. Secondly, the opcode also encodes the format of operands. For
example, the add instruction can either have its first operand as a memory operand, or have
its second operand as a memory operand. This information is also a part of the opcode.

The next two bytes are optional. The first byte is known as the ModR/M byte, which
specifies the address of the source and destination registers, and the second byte is known as
the SIB (scale-index-base) byte. This byte records the parameters for the base-scaled-index
and base-scaled-index-offset addressing modes. A memory address might optionally have a
displacement (also referred to as the offset in this book) that can be as large as 32 bits. We
can thus optionally have 4 more bytes in an instruction to record the value of the displacement.
Lastly, some x86 instructions accept an immediate as an operand. The immediate can also be
as large as 32 bits. Hence, the last field, which is again optional, is used to specify an immediate
operand.

Let us now discuss the ModR/M and SIB bytes in more detail.

ModR/M Byte

The ModR/M byte has three fields as shown in Figure 5.5.

Mod Reg R/M

2 3 3

Figure 5.5: The ModR/M byte

The two MSB bits of the ModR/M byte contain the Mod field. The Mod field indicates
the addressing mode of the instruction. It can take 4 values as shown in Table 5.28.

The Mod field indicates the addressing mode of one of the operands. It can either be a
register or a memory operand. If it is a memory operand, then we have three options. We

© Smruti R. Sarangi 216

Mod bits Semantics

00 We use the register indirect addressing mode for one of the
operands. When R/M = 100, we use the base-scaled-index
addressing mode, and there is no displacement. The ids
of the scale, index, and base are specified in the SIB byte.
When R/M = 101, the memory address only consists of the
displacement. The rest of the values of the R/M bits specify
the id of the base register as shown in Table 5.29.
Other than the case of R/M=101, the rest of the combina-
tions of the R/M bits are not associated with a displacement
(assumed to be 0).

01 We use a single byte signed displacement. If R/M = 100,
then we get the ids of the base and index registers from the
SIB byte.

10 We use a 4 byte signed displacement. If R/M = 100, then
we get the ids of the base and index registers from the SIB
byte.

11 Register direct addressing mode.

Table 5.28: Semantics of the Mod field

Register Code

eax 000

ecx 001

edx 010

ebx 011

esp 100

ebp 101

esi 110

edi 111

Table 5.29:
Register encoding

can either have no displacement (Mod = 00), a 8 bit displacement (Mod = 01), or a 32-bit
displacement (Mod=10). If it is a register operand, then the Mod field has a value of 11.

The important point to note is that for all the memory address modes, if the R/M bits are
equal to 100, then we need to use the information in the SIB byte for computing the effective
memory address.

The Reg field encodes the second operand if it is a register. Since both the operands cannot
be memory operands, we use the Mod and R/M bits for encoding one of the operands that
might be a memory operand (source or destination), and use the Reg field for encoding the
other operand, which has to be a register. The encoding for the registers is shown in Table 5.29.

For floating point instructions, the default register operand is always st0. Some instructions
accept another FP register operand. For such instructions, we use register direct addressing
(Mod = 11). We use the R/M bits for specifying the id of the additional FP register. We use 3
bits to encode the index of the register. For example, st0 is encoded as 000, and st6 is encoded
as 110. For the rest of the instructions that either assume default operands, or have a single
memory operand, we use the same format as defined for integer instructions.

SIB Byte

The SIB byte is used to specify the base and index registers (possibly with scaling). For
example, it can be used to encode memory operands of the form [eax + ecx*4]. Recall that
to use the SIB byte it is essential to set the Mod field in the ModR/M register to 100. This
indicates to the processor that the SIB byte follows the ModR/M byte.

The structure of the SIB byte is shown in Figure 5.6.

217 © Smruti R. Sarangi

Scale

2 3 3

Index Base

Figure 5.6: The SIB byte

The SIB byte has three fields – scale, index, and base. The effective memory address (before
considering the displacement) is equal to base+ index× scale. The base and index fields point
to integer registers. Both of them are 3 bits each (can encode up to 8 registers), and use the
encoding shown in Table 5.29. The two MSB bits are used to specify the scale. We can have
four values for the scale in x86 instructions namely 1 (00), 2 (01), 4 (10), and 8 (11).

Rules for Encoding Memory Operands

Note that some rules need to be followed while encoding memory operands. The esp register
cannot be an index, and if the value of the Mod field is 00, then ebp cannot be a valid base
register. Recall that if we set the R/M bits to 101 (id of ebp), when the Mod field is 00, then
the memory address is only a displacement. Or, in other words we can use memory direct
addressing here by directly specifying its address.

If (Mod = 00), then in the SIB byte ebp cannot be a valid base register. If we specify the
base register as ebp in the SIB byte, then the processor calculates the effective memory address
based on the value of the scale and the index.

Example 90
Encode the instruction add ebx, [edx + ecx*2 + 32]. Assume that the opcode for the add
instruction is 0x03.
Answer: Let us calculate the value of the ModR/M byte. In this case, our displacement
fits within 8 bits. Hence, we can set the Mod bits equal to 01 (corresponding to an 8 bit
displacement). We need to use the SIB byte, because we have a scale, and an index. Thus,
we set the R/M bits to 100. The destination register is ebx. Its code is 011 (according to
Table 5.29). Thus, the ModR/M byte is 01011100 (equal to 0x5C).

Now, let us calculate the value of the SIB byte. The scale is equal to 2. This is encoded
as 01. The index is ecx (001), and the base is edx (010). Hence, the SIB byte is: 01 001
010 = 4A. The last byte is the displacement, which is equal to 0x20.

Thus, the encoding of the instruction is 03 5C 4A 20 in hex.

© Smruti R. Sarangi 218

5.6 Summary and Further Reading

5.6.1 Summary

Summary 5

1. The x86 ISA is a family of CISC instruction sets that is primarily used by Intel and
AMD processors.

(a) The original x86 ISA used by 8086 processors used a 16-bit ISA.

(b) Since the mid eighties, x86 processors have moved to the 32-bit ISA.

(c) Finally, since 2003, most of the high end x86 architectures have moved to the
64-bit ISA.

(d) The basic structures of all the ISAs is the same. There are minor differences in
the syntax.

2. The 8 basic registers of the 16-bit x86 ISA are – ax, bx, cx, dx, sp, bp, si, and di.
We use the ‘e’ prefix in 32-bit mode, and the ‘r’ prefix in 64-bit mode.

3. Additionally, the 16-bit x86 ISA has the ip register to save the program counter, and
the flags register to save the results of the last comparison, and other fields that
instructions may use.

4. The x86 ISA predominantly uses instructions in the 2-address format. The first
operand is typically both the source, and the destination. Secondly, one of the operands
can be a memory operand. It is thus possible to fetch the value of a memory location,
operate on it, and write it back to memory, in the same instruction.

5. x86 processes see a segmented memory model. The entire memory space is partitioned
into different segments. Instructions reside in the code segment by default, and data
resides in the data or stack segments by default. It is in general not possible for
instructions to access segments that they typically are not meant for. For example, it is
in general not possible for a store instruction to change the contents of an instruction
in the code segment.

(a) In the 16-bit mode, the top 16 bits of the starting address of each segment are
stored in a segment register.

(b) The effective memory address specified by a memory instruction is added to the
address contained in the segment register (after left shifting it by 4 positions) to
compute the actual memory address.

(c) In later ISAs (32 and 64-bit mode), the contents of segment registers are looked up
in segment descriptor tables (referred to as the LDT and GDT) for obtaining the
starting address of segments. To speed up memory accesses, processors typically
use a small memory structure known as a segment descriptor cache that keeps
the most recently used entries.

219 © Smruti R. Sarangi

6. x86 integer instructions:

(a) The mov instruction is one of the most versatile instructions. It can move values
between two registers, or between registers and memory addresses. It can also be
used to load immediates in registers or memory locations.

(b) x86 defines a host of other arithmetic, and branch instructions.

(c) String instructions are a unique feature of the x86 ISA. They can be used to
transfer large amounts of data between memory locations. To compress an entire
loop of string instructions into one instruction, we typically use the rep prefix
that repeats a given instruction n times, where n is the value stored in the ecx
register.

7. The x86 floating point registers can either be accessed as normal registers (st0 . . . st7),
or as values on a floating point stack. Most of the floating point instructions operate
on st0, which is the top of the stack.

8. There is no direct way to load immediates into the FP registers. We need to first
load them into memory, and then load them to the floating point stack. x86 has
instructions for computing complex mathematical operations (such as square root),
and trigonometric functions directly.

9. Encoding the x86 instruction set is relatively simpler, since the encoded form has a
very regular structure.

(a) We can optionally use 1-4 bytes to encode the prefix.

(b) The opcode’s encoding requires 1-3 bytes.

(c) We can optionally use two additional bytes known as the ModR/M and SIB bytes
to encode the address of operands (both register and memory).

(d) If the memory operand uses a displacement (offset), then we can add 1-4 bytes
for encoding the displacement after the SIB byte.

(e) Lastly, the x86 ISA accepts 32-bit immediate values. Hence, we can use the last
1-4 bytes to specify the value of an immediate operand if required.

5.6.2 Further Reading

The most accurate source of information is the x86 developer manuals released by Intel on their
website [int, , INTEL, 2010].

For the sake of brevity, we have only discussed the popularly used instructions. However,
there are many instructions in the x86 ISA that might prove to be useful in a specific set of
scenarios, which we have not covered in this book. Intel’s software developer manuals are always
the best places to find this information. Secondly, we have only discussed the basic x86 ISA.
The reader should definitely look at the extensions to the x86 ISA such as the MMX™, SSE, and
3d Now! (by AMD) extensions. These extensions add vector instructions, which can operate on

© Smruti R. Sarangi 220

arrays of data. These instructions are used in graphics, games, and scientific applications. The
Intel AVX instruction set is the latest addition in the long line of x86 ISAs. It introduces 512
bit registers that can contain multiple integers. The interested reader should definitely take a
look at this instruction set and try to write programs with it. In this book, we shall show an
example using the SSE instruction set in Section 12.5.3.

The reader can additionally refer to books that describe the x86 instruction set in great
detail, and have a wealth of solved examples. The following books [Cavanagh, 2013, Das,
2010, Kumar, 2003] are useful references in this regard.

Exercises

x86 Machine Model

Ex. 1 — What are the advantages of the segmented addressing mode? Why do modern x86
processors need the LDT and GDT tables?

Ex. 2 — Explain the memory addressing modes in x86.

Ex. 3 — Describe the floating point registers and the floating point stack in x86.

* Ex. 4 — We can specify an entire 32-bit immediate in a single instruction in x86. Recall
that this was not possible in ARM and SimpleRisc . What are the advantages and disadvantages
of having this feature in the ISA?

* Ex. 5 — We claim that using a stack based architecture makes the software very portable.
It does not need to be aware of the number and semantics of registers in an ISA. Comment on
this statement, and try to find other reasons for preferring a stack based machine.

** Ex. 6 — Given an arithmetic expression containing floating point operands, how can we
evaluate it using a floating point stack? What should be the order of loading and operating
on operands? [HINT: A regular arithmetic operation such as – (1 + 2.5) * 3.9 – is called an
infix expression. To evaluate expressions using a stack, we need to convert it into a postfix
expression of the form – 1 2.5 + 3.9 *. Here, we first push 1 and 2.5 on the stack, add the
result, push 3.9 on the stack, and multiply the first two entries. The reader should read more
about postfix expressions in textbooks on discrete mathematics.]

Assembly Programming using Integer Instructions

Ex. 7 — Write x86 assembly code snippets to compute the following:

i) a+ b+ c

ii) a+ b− c/d

iii) (a+ b) ∗ 3− c/d

221 © Smruti R. Sarangi

iv) a/b− (c ∗ d)/3

v) (a≪ 2)− (b≫ 3)

Ex. 8 — Write an assembly program to convert an integer stored in memory from the little
endian to the big endian format.

Ex. 9 — Compute the factorial of a positive number using an iterative algorithm.

Ex. 10 — Compute the factorial of a positive number using a recursive algorithm.

Ex. 11 — Write an assembly program to find if a number is prime.

Ex. 12 — Write an assembly program to test if a number is a perfect square.

Ex. 13 — Write an assembly program to test if a number is a perfect cube.

Ex. 14 — Given a 32-bit integer, count the number of 1 to 0 transitions in it.

Ex. 15 — Write an assembly program that checks if a 32-bit number is a palindrome. A
palindrome is a number which is the same when read from both sides. For example, 1001 is a
4-bit palindrome.

Ex. 16 — Write an assembly program to examine a 32-bit value stored in eax and count the
number of contiguous sequences of 1s. For example, the value:

01110001000111101100011100011111

contains six sequences of 1s. Write the final value in register ebx.

Ex. 17 — Write an assembly program to count the number of 1’s in a 32-bit number.

* Ex. 18 — Write an assembly program to find the smallest number that is a sum of two
different pairs of cubes. [Note: 1729 is known as the Hardy-Ramanujan number. 1729 =
123 + 13 = 103 + 93].

** Ex. 19 — In some cases, we can rotate an integer to the right by n positions (less than or
equal to 31) so that we obtain the same number. For example: a 8-bit number 01010101 can
be right rotated by 2, 4, or 6 places to obtain the same number. Write an assembly program to
efficiently count the number of ways we can rotate a number to the right such that the result
is equal to the original number.

*** Ex. 20 — Write an assembly language program to find the greatest common divisor of
two binary numbers u and v. Assume the two inputs (positive integers) to be available in eax
and ebx. Store the result in ecx. [HINT: The gcd of two even numbers u and v is 2∗gcd(u/2, v/2)]

Ex. 21 — Write an assembly program that uses string instructions to set the value of a range
of memory addresses to 0. Reduce the code size by using the rep prefix.

© Smruti R. Sarangi 222

Assembly Programming using Floating Point Instructions

Ex. 22 — How do you load and store floating point numbers?

Ex. 23 — Write an assembly program to find the roots of the equation x2−x−1 = 0. Recall

that the roots of a quadratic equation of the form ax2 + bx+ c are equal to −b±
√
b2−4ac
2a .

Ex. 24 — Verify the following trigonometric identities for random values of θ using assembly
programs. Use the rdrand instruction that loads a random 32-bit integer into a register.

S. No. Identity

1 sin2(θ) + cos2(θ) = 1

2 sin
(
π
2 − θ

)
= cos(θ)

3 cos(θ + ϕ) = cos(θ)cos(ϕ)− sin(θ)sin(ϕ)

4 sin(θ) + sin(ϕ) = 2sin
(
θ+ϕ
2

)
cos

(
θ−ϕ
2

)
Ex. 25 — Assume that we have two arrays of 10 floating point numbers, where the starting
addresses of the arrays are stored in eax and ebx respectively. Find the arithmetic mean
(AM), geometric mean (GM), and harmonic mean (HM) using assembly routines. Verify that
AM ≥ GM ≥ HM .

* Ex. 26 — Let us compute the value of the constant e using an assembly program. Use the
following mathematical expression.

e = 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+ . . .+

1

10!

** Ex. 27 — For random values of θ show that the following identity holds:

sin(θ) = θ − θ3

3!
+

θ5

5!
− . . .

x86 ISA Encoding

Ex. 28 — What are the values of the SIB and ModR/M bytes for the instruction, mov eax,
[eax + ebx*4]?

Ex. 29 — What are the values of the SIB, ModR/M, and displacement bytes for the instruc-
tion, mov eax, [eax + ebx*4 + 32]?

Ex. 30 — What is the value of the ModR/M byte when we need to specify a memory address
that does not have any base or index registers? Assume that the value of the reg field is 000.

* Ex. 31 — Assume that we have an instruction that has two operands: eax and [ebp]. How
do we encode it (specify the values of the relevant bytes)?

223 © Smruti R. Sarangi

* Ex. 32 — What are the values of the SIB and ModR/M bytes for the instruction, mov eax,
[ebx*4]?

Design Problems

Ex. 33 — Write an x86 assembly emulator that can read an assembly file, and execute each
assembly instruction one by one.

Ex. 34 — Use the GNU compiler to generate an assembly file for a test program written in
C using the command, gcc -S -masm=intel.

© Smruti R. Sarangi 224

6
RISC-V Assembly Language

In this chapter, we will introduce the RISC-V assembly language, which is newer than ARM
and x86. The ISA has a very interesting history. There are both legal and technical reasons
for designing a new RISC ISA as late as 2010. Recall that ISA design was considered to be a
dead area long before. Furthermore, a massive SW-HW ecosystem is needed to sustain an ISA,
which is hard to design from scratch. Nevertheless, there was a requirement in 2010 for a RISC
ISA that could be freely used by everybody and incorporated a lot of the technical know-how
that had been generated in the past two decades of computer architecture research.

Any modern ISA should be compatible with all kinds of devices starting from IoT devices
to mobile phones to laptops to servers. Many of these devices didn’t exist when conventional
ISAs were designed. This means that it should have 32, 64 and 128-bit variants, support a
relatively larger number of registers, and have extensive support for atomics and floating point
numbers.

Let us understand the situation that prevailed in 2010. Designing a simple RISC processor
had become relatively very easy. The architectures were well understood, EDA tools were
reasonably mature and enough computational power was available to even amateur designers.
Hence, putting together a small RISC core became feasible for fabless companies and academic
groups. It is important to note that circa 2010, there was a widespread consensus that RISC is
the way to go for new cores and x86-like CISC ISAs were not an option. This is because of the
1000+ instructions in CISC ISAs and the resulting decoding complexity. Decoders are power
hungry and given that these ISAs were meant to run on low-power embedded systems, a CISC
ISA was not a feasible option.

However, just designing a RISC processor is not enough. It needs to be fabricated as
well. A lot of fabs increased their capacity at that time and it also became possible to design
reasonably high-performance chips at older technology nodes. Hence, fabrication became quite
inexpensive. Along with these technology-level tailwinds, many fabless companies rapidly came
up in different parts of the world. They either wanted to design their bespoke processors or
wanted to integrate their custom cores with third-party accelerators in SoCs. They always had

225

© Smruti R. Sarangi 226

an option to use or modify existing RISC cores designed by ARM and MIPS or design their own
processors that are compatible with their ISAs. The advantage of using existing technologies is
that their toolchain can be used. This includes the compilers, operating systems, libraries and
binutils.

Despite so much of software support, many processor developers decided to forego the
advantages of using existing ISAs primarily for legal reasons. There were a fair amount of
restrictions and licensing requirements for using such legacy ISAs while even designing new
processors from scratch. Furthermore, licensing their cores and using them in SoCs was also
proving to be an expensive proposition to many developers. There was thus a need to create a
new ISA from scratch and also create the full ecosystem to support it. The idea was to have
extremely lenient licensing requirements such that the barrier to entry is reduced to a minimum.

In 2010, the RISC-V project began in Berkeley. It was initially supported by various aca-
demic groups. Later on the RISC-V technical documents were released under a Creative Com-
mons license in 2015. Currently, the RISC-V foundation maintains this ISA and publishes
regular updates.

6.1 RISC-V Machine Model

6.1.1 RISC-V Base ISAs and Extensions

RISC-V is not actually one instruction set but it is a collection of instruction sets that incremen-
tally build on top of each other. There are a set of baseline versions (common cores). Developers
build on top of a common core by adding extensions. Given that the philosophy of RISC-V is
to run on all kinds of machines, the notion of having different core ISAs and extensions aligns
with it well. Let us look at the common base ISAs and extensions in Table 6.1.

Name Description

ISA base versions

RV32 32-bit ISA
RV32E 32-bit ISA (embedded version)
RV64 64-bit ISA
RV64E 64-bit ISA (embedded version)
RV128 128-bit ISA

Extensions

E embedded version
I base integer ISA
M integer multiplication/division instructions
A atomic instructions
F single-precision floating point
D double-precision floating point
V vector instructions

Table 6.1: RISC-V base versions and extensions

RISC-V has three base versions: RV32, RV64 and RV128. The term “RV” is a short form

227 © Smruti R. Sarangi

of RISC-V. The numbers 32, 64 and 128 indicate the bit width, respectively. The ‘E’ suffix
has a special place. It indicates the embedded version that uses a reduced number of registers.
For example, RV32E assumes only 16 integer registers as opposed to 32 integer registers in the
regular version. It is important to note that unlike other ISAs (such as ARM Thumb), the
instruction sizes remain the same. This simplifies compiler and processor design.

Let us now focus on the extensions. Most versions of the ISAs support basic integer instruc-
tions. They are thus named RV32I, RV64I and RV128I, respectively. Then, there are a bunch of
extensions that can be added based on users’ requirements. The list of extensions has become
quite large as of 2024 (around 20-30). Most of the common ones correspond to floating point
instructions, atomic operations, cryptographic primitives, memory barriers, etc. For example,
RV32IMA means that integer instructions (I), multiplication/ division instructions (M) and
atomic instructions (A) are supported.

These extensions themselves can have version numbers: a major version number and a
minor version number. This is because the specifications keep changing as the ISAs are under
development. For example, RV32I1p3 means that the major version number is 1 and the minor
version is 3. The separator ‘p’ is used to separate the major and minor version numbers.

The extensions can be grouped into packages the same way we bundle together add-ons
in flight or hotel deals. The ‘G’ suffix that represents general-purpose computing, combines
the base integer instruction set, additional integer instructions, floating point instructions and
basic synchronization primitives. This is considered to be an essential set of instructions in a
multi-core setup. RV32G is thus a general-purpose RISC-V ISA. It is so happening that the
number of extensions is continuously increasing and we are running out of letters !!!

This is why the ‘Z’ series was introduced, where the extension name (suffix) should start
with ‘Z’ and be followed by a word that describes the extension. For example, ‘Zfa’ refers to
additional floating point instructions.

Let us now recall the fact that the embedded version of RISC-V does not reduce the in-
struction width; it instead reduces the number of available registers by 50%. On the lines of
ARM Thumb, RISC-V does have a compressed format. In this case, the ISA specifier is ‘C’.
In such contexts, most often we use the ISA RV32GC (general-purpose and compressed). The
compressed instructions have the following limitations.

• The width of the instructions is 16 bits.

• Every compressed 16-bit instruction corresponds to a 32-bit RV32 instruction.

• They access a limited number of registers (typically limited to 8 registers in the 16-bit
version).

• Limited opcode support.

• Immediate values that can be encoded are also commensurately smaller.

Akin to any other compressed ISA, they lead to reduced code size, better usage of the
i-cache and lower power consumption in terms of fetching and decoding instructions.

© Smruti R. Sarangi 228

32, 64 and 128-bit Formats

The greatness of RISC-V is that regardless of the width of the data path, the instruction size
(or width) remains the same, i.e., 32 bits. This makes the process of compilation and decoding
the instructions easy. The only thing that varies across the three different ISA formats is the
set of supported instructions, the register width and the size of the memory address.

However, there are some exceptions to this general rule. There are some RISC-V instructions
whose size can be more than 32 bits. The restriction here is that the size needs to be a multiple
of 16 bits – it cannot be an arbitrary size. We have already seen the C-format instructions that
are 16 bits in length. However, we can have longer formats: 48 or 64 bits. Such instructions
(at the moment) are not a part of the standard set of instructions, but there are extensions
that require these longer instructions. Some of these extensions are vector instructions, bit-
manipulation instructions and cryptographic extensions. The instruction format has bits to
indicate if the instruction is longer than 32 bits or not. The current version of the standard
(v20240411) [ris,] can theoretically support instruction lengths up to 176 bits.

We need to note that at the moment (in 2024) such extensions are in different stages of
ratification. For example, there is discussion of ratifying a more general set of 48-bit and 64-bit
instructions. Similarly, the 128-bit format of the ISA is also not fully finalized yet. In other
words, the standards are not fully frozen yet.

Such debates during the course of ISA design are very common. There is always a pull
between the RISC and CISC sides. The RISC side wants regularity and elegance, whereas the
CISC side wants more instructions and more complexity.

Important Point 7 The RISC-V ISA is a RISC ISA. It is however not small and simple
like SimpleRisc. Instead it has a base set of instructions, a set of extensions, 48 and 64-bit
instruction lengths (may get fully frozen in the future) and different ISA variants including
a compressed 16-bit form. This sounds more like “CISC”. However, there is still a lot of
regularity in the ISA: there are a few instructions formats, instructions are mostly 32 bits
in length and the base ISA is very “RISC like”. Such trade-offs are inevitable in designing
any modern ISA that needs to support a wide range of devices: embedded processors to
supercomputers.

6.1.2 View of Registers

RV32I contains 32 registers that are each 32-bits wide. The registers are named x0 to x31.
x0 is hardwired to zero (refer to Table 6.2). There is a dedicated pc register that exposes the
program counter. The architecture per se does not define a fixed calling convention. However,
over time a convention has emerged and developers are mostly using the calling convention
shown in Table 6.2. Note that saved registers are preserved across function calls (callee saved),
whereas temporary registers (caller saved) are not preserved.

RISC-V uses a standard memory addressing model (similar to other RISC machines). It
started out being a little-endian ISA, but now big-endian and bi-endian modes are also sup-
ported.

229 © Smruti R. Sarangi

Register Mnemonic Description

x0 zero Hard-wired to zero

x1 ra Return address

x2 sp Stack pointer

x3 gp Global pointer

x4 tp Thread pointer (thread-local storage)

x5− 7 t0-2 Temporary registers

x8 s0/fp Saved register/frame pointer

x9 s1 Saved register

x10− 11 a0-1 Function arguments/return values

x12− 17 a2-7 Function arguments

x18− 27 s2-11 Saved registers

x28− 31 t3-6 Temporary registers

Table 6.2: RISC-V registers and their assembler mnemonics

Given the machine model, let us now explain the instructions supported by the RV32I ISA.
Note that this is our fourth chapter on low-level assembly languages. Hence, the treatment will
be brief.

6.2 Integer Instructions

While describing the semantics of instructions, we use the same convention as ARM and Sim-
pleRisc . rs1 is the first source register, rs2 is the second source register, rd is the destination
register and imm represents an immediate value. In some cases, we may require to use a third
source register rs3.

6.2.1 Moving Values to Registers

Semantics Example Explanation

addi rd, rs1, imm addi x1, x0, 5 x1 ← 0 + 5

add rd, rs1, rs2 add x1, x2, x3 x1 ← x2 + x3

Table 6.3: Loading values into registers

The most basic operation in any assembly language is to load a value into a register. We
typically transfer the contents from another register or from the immediate field of an instruc-
tion. We need a counterpart of the mov instruction in RISC-V. The relevant instructions are
shown in Table 6.3. RISC-V does not have a dedicated mov instruction; instead, we add an
immediate to the zero register and store the result in the destination register.

Specifically, the addi instruction can be used to load a signed 12-bit immediate to the
destination register. In this case, its usage is somewhat unconventional. As the example shows,
the immediate is added to the contents of x0 (zero register), which is hardwired to 0. Effectively,

© Smruti R. Sarangi 230

the immediate gets transferred to the destination register. An advantage of such a mechanism
is that we need not have a dedicated mov instruction. The add instruction and its variants
can be used to load immediates. Similarly, we can set the immediate to 0 and transfer the
contents of the source register to the destination register. This simulates a regular register mov
instruction. We can alternatively use the regular add instruction to achieve this. We can set
the second register operand to zero. The net effect is that the contents are transferred to the
destination register. The add instruction otherwise does the same as its counterparts in ARM
and SimpleRisc .

Loading Values Directly into Registers

A major issue with the addi instruction is that the immediate is limited to 12 bits. Loading a
full 32-bit value thus requires several instructions. RISC-V therefore provides the lui instruction
that loads a 20-bit immediate into the upper 20 bits of a register – the immediate is effectively
left-shifted by 12 positions. The semantics of this instruction is shown in Table 6.4 (also refer
to Example 91).

Semantics Example Explanation

lui rd, imm lui x1, 5 x1 ← 5 << 12

li rd, imm li x1, 0xABCD1234 x1 ← 0xABCD1234

Table 6.4: Loading values directly into registers

Example 91
Write a RISC-V assembly program to add 409932 + 409823.
Answer:

.main:

lui t0 , 100 # t0 = 4096 * 100 = 409600

addi t0, t0, 332 # t0 = t0 + 332

lui t1 , 100 # t1 = 4096 * 100 = 409600

addi t1, t1, 223 # t1 = t1 + 223

add t2 , t0 , t1 # t2 = t0 + t1

It is evident from Example 91 that loading a 32-bit value into a register requires two in-
structions. Even though the ISA has this limitation, most RISC-V assemblers support the
assembler directive li that directly loads a 32-bit value into a register. The assembler replaces
the directive with two assembly instructions: addi and lui. The code in Example 91 can be
compressed using the li assembler directive (refer to Example 92).

231 © Smruti R. Sarangi

Example 92
Write a RISC-V assembly program to add 409932 + 409823 using the li assembler directive.
Answer:

.main:

li t0 , 409932 # t0 = 409932

li t1 , 409823 # t1 = 409823

add t2 , t0 , t1 # t2 = t0 + t1

6.2.2 Add and Subtract Instructions

Semantics Example Explanation

add rd, rs1, rs2 add x1, x2, x3 x1 ← x2 + x3

addi rd, rs1, imm addi x1, x2, 5 x1 ← x2 + 5

sub rd, rs1, rs2 sub x1, x2, x3 x1 ← x2 - x3

Table 6.5: Arithmetic instructions: add and subtract

Table 6.5 shows the general form of the add and sub instructions in RISC-V. They have the
same general format as SimpleRisc add and sub instructions, respectively. The generic format
is inst rd, rs1, rs2/imm.

Example 93
Write a RISC-V assembly program to compute 4 + 5 - 19.
Answer:

addi t0 , zero , 4 # load 4 into t0

addi t1 , zero , 5 # load 5 into t1

add t2 , t0 , t1 # t2 = t0 + t1

addi t2 , t2 , -19 # subtract 19 from t2

Example 94
Write an assembly program to swap two numbers stored in x1 and x2.

Answer:

add x3 , x0 , x1 # x3 = x1

add x1 , x0 , x2 # x1 = x2

add x2 , x0 , x3 # x2 = x3 (old x1)

© Smruti R. Sarangi 232

6.2.3 Multiplication and Division Instructions

Semantics Example Explanation

mul rd, rs1, rs2 mul x1, x2, x3 x1 ← x2 × x3

div rd, rs1, rs2 div x1, x2, x3 x1 ← x2 / x3

rem rd, rs1, rs2 rem x1, x2, x3 x1 ← rem (x2 / x3)

Table 6.6: Multiplication and division instructions

Table 6.6 shows the multiplication and division instructions. They are a part of the ‘M’
extension. The reason for including them in an extension is to enable the creation of really
low-end and low-power implementations that do not require such instructions.

The multiplication instruction has some complications. The product requires 64 bits, which
means that it will not fit in a single register. The default implementation thus places the lower
32 bits in the destination register. However, sometimes there is a need to store the full 64-bit
product – this will require two registers. The default mul instruction computes the lower 32
bits. The mulh and mulhu instructions can next be used to store the upper 32 bits for signed
× signed and unsigned × unsigned multiplication, respectively. Even though we require two
separate instructions now, micro-architectures can fuse them dynamically. They can identify
two consecutive multiplication instructions where one instruction computes the lower 32 bits and
the next instruction computes the upper 32 bits. This sequence can be identified dynamically
and a single multiplication will only be required.

Example 95
Write an assembly program to multiply 3 with -17 and save the result in t3.

Answer:

addi t1 , zero , 3 # t1 = 3

addi t2 , zero , -17 # t2 = -17

mul t3 , t1 , t2 # t3 = t1 * t2

Example 96
Compute 123 + 1 and save the result in t4.

Answer:

load the registers with required values

addi t1 , zero , 1 # t1 = 1

addi t2 , zero , 12 # t2 = 12

addi t3 , zero , 12 # t3 = 12

233 © Smruti R. Sarangi

#perform the arithmetic operations

mul t3 , t2 , t2 # t3 = 12 * 12

mul t3 , t3 , t2 # t3 = 12 * 12 * 12

add t4 , t3 , t1 # 12^3 + 1

The division instruction div is comparatively simpler. In the RV32 variant, it requires 32-
bit dividends and divisors. The quotient is stored in the destination register. The rounding is
towards zero. Let us explain rounding using a few examples.

Division operation Quotient Remainder

4÷ 3 1 1
4÷ (−3) -1 1
(−4)÷ 3 -1 -1
(−4)÷ (−3) 1 -1

We see that rounding towards zero also means that the sign of the remainder is the same
as the sign of the dividend. The remainder instruction works on similar lines. It computes the
remainder of the division operation (rounding towards zero).

Akin to the multiplication operations, the division and remainder operation work in the
same manner. When they are issued back to back, micro-architectures are expected to fuse
them. They compute a single division operation and store the results in two registers – one
register for the quotient and one for the remainder, respectively.

This is an example of a scenario where the ISA has deliberately been under-designed. Instead
of having an instruction that stores to two 32-bit registers, the programmer or compiler are
expected to invoke these instructions consecutively. It is the job of the hardware to dynamically
identify such sequences and fuse them. This transfers the responsibility of ensuring efficiency
to hardware at the cost of keeping the ISA simple.

Example 97
Write a RISC-V assembly program to divide -50 by 3. Store the quotient in t2 and
remainder in t3.

Answer:

addi t0 , zero , -50 # t0 = -50

addi t1 , zero , 3 # t1 = 3

div t2 , t0 , t1 # quotient in t2

rem t3 , t0 , t1 # remainder in t3

© Smruti R. Sarangi 234

Semantics Example Explanation

and rd, rs1, rs2 and x1, x2, x3 x1 ← x2 AND x3

andi rd, rs1, imm andi x1, x2, 6 x1 ← x2 AND 6

or rd, rs1, rs2 or x1, x2, x3 x1 ← x2 OR x3

ori rd, rs1, imm ori x1, x2, 9 x1 ← x2 OR 9

xor rd, rs1, rs2 xor x1, x2, x3 x1 ← x2 XOR x3

xori rd, rs1, imm xori x1, x2, 7 x1 ← x2 XOR 7

sll rd, rs1, rs2 sll x1, x2, x3 x1 ← x2 << x3

srl rd, rs1, rs2 srl x1, x2, x3 x1 ← x2 >> x3

sra rd, rs1, rs2 sra x1, x2, x3 x1 ← x2 >>> x3

slli rd, rs1, imm slli x1, x2, 3 x1 ← x2 << 3

srli rd, rs1, imm srli x1, x2, 3 x1 ← x2 >> 3

srai rd, rs1, imm srai x1, x2, 3 x1 ← x2 >>> 3

Table 6.7: Logical and shift instructions

6.2.4 Logical and Shift Instructions

Table 6.7 shows a list of the some of the prominent logical and shift instructions. The primary
logical instructions are and, or and xor. We can attach an ‘i’ suffix to these instructions to
accept an immediate value as the second source operand. The format is otherwise the same as
the add and sub instructions.

Example 98
Write a RISC-V assembly program to compute the bitwise OR of A and B. Let A = 4 and
B = 1.

Answer:

addi t1 , zero , 4 # t1 = 1

ori t2 , t1 , 1 # bitwise OR of 4 and 1

Akin to other ISAs, RISC-V has three shift instructions: shift left logical (sll), shift right
logical (srl) and shift right arithmetic (sra). They have their variants where the second source
is an immediate. They are slli, srli and srai, respectively.

Example 99
Write RISC-V assembly code to compute 50/4.

Answer:

235 © Smruti R. Sarangi

addi t0 , zero , 50 # t0 = 50

srai t1 , t0 , 2 # t1 = 50/4

Example 100

Write RISC-V assembly code to compute t1 = t2 + t3× 4.

Answer:

addi t3 , zero , 5 # t3 = 5

addi t2 , zero , 7 # t2 = 7

slli t4 , t3 , 2 # t4 = t3 * 4

add t1 , t2 , t4 # t1 = t2 + t3 * 4

6.3 Control Transfer Instructions

6.3.1 Conditional Branches

Unlike SimpleRisc and ARM, RISC-V does not have a flags register that stores the result of
the last comparison. The arguments for the comparison are typically specified directly in the
branch instruction itself along with the branch target.

Set-less-than (slt) Instruction

However, sometimes there is a need to store the result of a comparison. RISC-V thus provides
a flexible mechanism to achieve this. In a conventional RISC ISA, the flags register is implicit,
whereas it is more explicit in RISC-V. Such a class of instructions is shown in Table 6.8.

Semantics Example Explanation

slt rd, rs1, rs2 slt x1, x2, x3 if (x2 < x3) set x1 to 1
slti rd, rs1, imm slt x1, x2, 5 if (x2 < 5) set x1 to 1
sltu rd, rs1, rs2 slt x1, x2, x3 if (x2 <unsigned x3) set x1 to 1
sltui rd, rs1, imm slt x1, x2, 5 if (x2 <unsigned 5) set x1 to 1

Table 6.8: The slt family of instructions. The destination register is by default set to 0.

Table 6.8 shows the slt family of instructions. They compare the values of two registers, or
a register and an immediate. If the first source operand is less than the second source operand,
then the destination register’s value is set to 1. Otherwise, it remains 0. The conditional branch

© Smruti R. Sarangi 236

instructions can then directly compare this register with zero and decide the outcome of the
branch instruction: taken or not-taken.

Example 101
Write RISC-V assembly code to set t2 if 2 < 5.

Answer:

addi t0 , zero , 2 # t0 = 2

addi t1 , zero , 5 # t1 = 5

slt t2 , t0 , t1 # t2 = (t0 < t1)

Example 102
Add two long 64-bit values stored in ⟨t1, t0⟩ and ⟨t3, t2⟩. Store the result in ⟨t5, t4⟩.
Answer:

initialize the registers

addi t2 , zero , -1

addi t3 , zero , 2

addi t0 , zero , 1

addi t1 , zero , 0

add <t5,t4> = <t1,t0> + <t3,t2>

add t4 , t0 , t2 # add lower 32 bits

add t5 , t1 , t3 # add upper 32 bits

sltu t6 , t4 , t0 # t6 stores the carry

add t5 , t5 , t6 # add the carry

Branch Instructions

Semantics Example Explanation

beq rs1, rs2, label beq x1, x2, .foo Branch to the . foo label if x1 = x2

bne rs1, rs2, label bne x1, x2, .foo Branch to the .foo label if x1 ̸= x2

bge rs1, rs2, label bge x1, x2, .foo Branch to the .foo label if x1 > x2

blt rs1, rs2, label blt x1, x2, .foo Branch to the .foo label if x1 < x2

bgeu rs1, rs2, label bgeu x1, x2, .foo Similar to bge, considers unsigned values.

bltu rs1, rs2, label bltu x1, x2, .foo Similar to blt, considers unsigned values.

Table 6.9: Conditional branch Instructions

237 © Smruti R. Sarangi

The conditional branch instructions in RISC-V are shown in Table 6.9. The instructions
take two register arguments and compare them. The result of the comparison is immediately
used to decide the direction of the branch.

Table 6.9 shows the beq, bne, bge and blt instructions that have their usual meanings. The
third argument is a label that represents the branch target. Along with these signed comparison
instructions, RISC-V has comparison instructions to compare unsigned integers: bgeu and bltu.
Recall that ARM also has similar instructions that are implemented with the help of custom
flags.

Example 103
Write a RISC-V assembly program to compute the factorial of a positive number (> 1)
stored in a1. Save the result in a0.

Answer:

.main:

addi a0 , zero , 1 # prod = 1

addi t0 , zero , 1 # index = 1

.loop:

mul a0 , a0 , t0 # prod = prod * index

addi t0 , t0 , 1 # index ++

bge a1 , t0 , .loop # loop condition

a0 stores the factorial

Example 104
Write an assembly program to add the numbers from 1 to 10. Store the result in s0.

Answer:

.main:

addi t0 , zero , 1 # initialize t0 to 1

addi s0 , zero , 0 # result (s0) = 0

addi t1 , zero , 10 # loop end value

.loop:

add s0 , s0 , t0 # add to the result

addi t0 , t0 , 1 # increment the counter

bge t1 , t0 , .loop # loop condition

s0 has the sum

© Smruti R. Sarangi 238

Example 105
Write an assembly program to test if a number stored in a1 is prime or not. Save the
Boolean result in a0.

Answer:

input in a1, return value in a0

.main:

addi t0 , zero , 2 # starting divisor

.loop:

rem t1 , a1 , t0 # find the remainder (t1)

beq t1 , zero , .notPrime

addi t0 , t0 , 1 # increment the divisor

bne t0 , a1 , .loop # loop back

addi a0 , zero , 1 # number is prime

jal x0 , .end

.notPrime:

addi a0 , zero , 0

.end:

a0 contains the result

Example 106
Write an assembly program to find the number of ones in a 32-bit number stored in a1.

Answer:

.main:

addi t0 , zero , 0 # counter , t0 = 0

addi t1 , zero , 32 # maximum possible ones

addi t2 , zero , 1 # t2 = 1

addi a0 , zero , 0 # will contain the result (a0 = 0)

.loop:

andi t3 , a1 , 1 # check the LSB of the argument a1

srli a1 , a1 , 1 # shift the argument by 1 step

beq t3 , t2 , .inc # jump to .inc if the LSB is 1

.lret:

addi t0 , t0 , 1 # increment the counter

239 © Smruti R. Sarangi

beq t1 , t0 , .end # exit the loop

jal zero , .loop # loop back

.inc:

addi a0 , a0 , 1 # increment the count of 1s

jal zero , .lret # resume the next iteration

.end:

a0 contains the result

Example 107
Write an assembly program to check if a natural number stored in a1 is a perfect square or
not. Save the Boolean result in a0.

Answer:

.main:

input number in a1

addi a1 , zero , 101

addi a0 , zero , 0 # assuming result (a0) = false

addi t1 , zero , 1 # counter (t0) = 1

.loop:

mul t2 , t1 , t1 # square -> compare

beq t2 , a1 , .square # It is a square

addi t1 , t1 , 1 # increment the counter

blt a1 , t2 , .end

jal zero , .loop # loop back

.square:

addi a0 , a0 , 1 # result = 1

.end:

result in a0

6.3.2 Unconditional Branches

The unconditional branch/jump instructions of RISC-V are shown in Table 6.10. The most
commonly used instruction is jal – it functions both as a function call instruction as well as
a regular unconditional jump instruction. In both cases, the control jumps to the PC pointed
to by the label. Akin to other ISAs, while encoding the instruction, the label is translated to
a PC-relative offset. The jump can take place within a region of ± 1 MB. The jal instruction

© Smruti R. Sarangi 240

Semantics Example Explanation

jal rd, label jal x1, func Jump to the func label and store the
return address in x1

jalr rd, rs1, offset jalr x1, x2, 20 Jump to the address x2 + 20 and
store the return address in x1

Table 6.10: Jump instructions in x86

additionally stores the return address (pc+4) in the first source register (x1 in the example).
Note that if the first source register is equal to x0 (zero), then the return address is not stored.
jal in this case acts as a regular unconditional jump that does not store the return address.

The jalr instruction augments jal with one additional register argument. Consider the
example: jal x1, x2, 20. In this case, we add the offset 20 to the contents of x2 and jump to
the resulting address. The return address is stored in x1. Similar to jal, we do not store the
return address if the first source register is x0. The jalr instruction can be used to implement
a function return instruction. All that we have to do is to jump to the PC whose value is 0(ra)
(contents of the register ra + 0).

Example 108
Write a RISC-V assembly program that has a function call.

Answer:

Listing 6.1: C code

int foo() {

return 2;

}

void main() {

int x = 3;

int y = x + foo();

}

Listing 6.2: RISC-V code

.foo: #callee

addi a0 , zero , 2 # a0 = 2

jalr zero , 0(ra) # return inst.

.main:

addi s0 , zero , 3 # s0 = 3

jal ra , .foo # jump to .foo

add s1 , s0 , a0 # y = x + foo()

s1 contains the result

241 © Smruti R. Sarangi

Example 109
Write a RISC-V assembly program to compute xn and store the result in a0. x is passed
through a1 and n is passed through a2.

Answer:

.power:

addi a0 , zero , 1 # a0 will contain the result

add t1 , zero , a2 # t1 = n

beq t1 , zero , .end # check (n == 0)

.loop:

mul a0 , a0 , a1 # result *= x

addi t1 , t1 , -1 # decrement n

bne t1 , zero , .loop

jalr zero , 0(ra) # return

.main:

addi a1 , zero , 7 # x = 7

addi a2 , zero , 3 # n = 3

jal ra , .power # call the power function

the result is in a0

6.3.3 Load and Store Instructions

Semantics Example Explanation

lw rd, imm(rs1) lw x1, 32(sp) x1 ← mem[sp + 32]
sw rs2, imm(rs1) sw x1, 32(sp) mem[sp+32] ← x1
la rd, label la x1, pi x1 ← address(pi)

Table 6.11: Load and store instructions. Note that la is an assembler directive.

Table 6.11 shows the load and store instructions in RISC-V. We only show the 32-bit versions
of these instructions. The lw instruction loads 32-bit values from memory that is specified in
the base-offset format. On similar lines, the sw instruction stores the value of a register to
memory. Note that the store instruction takes two register source operands, and it has its
separate format. The store operation has always been an exception in such respects. RISC-
V defines a special format for it, which accepts two register-based source operands and an
immediate.

© Smruti R. Sarangi 242

Example 110
Write an assembly program to load a0 with the contents of the memory address
sp− s0× 4− 12.

Answer:

.main:

slli s0 , s0 , 2 # s0 = s0 * 4

add s0 , s0 , 12 # s0 = s0 + 12

sub t0 , sp , s0 # t0 = sp - s0

lw a0, 0(t0) # load the value of mem[t0] in a0

Example 111
Write an assembly program to create a copy of a 10-element array. Assume the start-
ing address of the original array is stored in a1 and that of destination array is stored in a2.

Answer:

.main:

addi t1 , zero , 0 # counter(t1) = 0

addi t2 , zero , 10 # number of iterations

.loop:

lw t0, 0(a1) # load an element from the source array

sw t0, 0(a2) # store an element in the destination array

addi a1 , a1 , 4 # get the address of the next element: src array

addi a2 , a2 , 4 # destination array

addi t1 , t1 , 1 # increment the counter

bne t1 , t2 , .loop # loop back

Example 112
Write a RISC-V assembly program to compute the sum of the elements in a 10-element
array. Assume that the base address of the array is stored in a1. Store the result in a0.

Answer:

Listing 6.3: C code

void addNumbers(int a[10]) {

243 © Smruti R. Sarangi

int idx;

int sum = 0;

for (idx = 0; idx < 10; idx++){

sum = sum + a[idx];

}

}

Listing 6.4: RISC-V code

.main:

addi t0 , zero , 0 # index = 0

addi a0 , zero , 0 # result = 0

addi t1 , zero , 10 # limit = 10

.loop:

lw t2, 0(a1) # load an element in t2

add a0 , a0 , t2 # update the result

addi a1 , a1 , 4 # traverse the array

addi t0 , t0 , 1 # index ++

bne t0 , t1 , .loop

result in a0

Example 113
Write a RISC-V assembly program to compute the factorial of a number (stored in a1)
using recursion. Store the result in a0.

Answer:

.fact:

check if n (in a1) is 0 or 1

addi t1, zero , 1 # t1 = 1

bge t1 , a1 , .ltone # if (a1 == 1) jump to .ltone

need to make a recursive call

add t0 , a1 , zero # t0 = a1 (=n)

addi a1, a1, -1 # a1 = n - 1

store the state

addi sp, sp, -8 # sp = sp - 8

sw ra , 0(sp) # store ra and t0

sw t0 , 4(sp) # on the stack

recursive call

© Smruti R. Sarangi 244

jal ra , .fact

restore the state of the stack

lw t0 , 4(sp)

lw ra , 0(sp)

addi sp, sp, 8

compute the result

mul a0 , a0 , t0 # fac(n) = n * fac(n-1)

jalr zero , 0(ra) # return

.ltone:

addi a0, zero , 1 # result is 1

jalr zero , 0(ra) # return

.main:

addi a1 , zero , 5 # compute 5!

jal ra , .fact # Call the factorial function

result in a0

The la Assembler Directive

There is often a need to load values to memory before a program starts to execute. A need arises
when we use built-in constants and initialize global or static variables. Using the li instruction,
it is always possible to load 32-bits to a given memory address. However, it is possible to design
a more elegant solution that in practice will translate to multiple assembly instructions. It will
nevertheless make the job of the assembly programmer much easier. The la directive achieves
this.

Let us consider an example. A constant val needs to be defined as a label. The specific way
of defining it is as follows: val: .word 17. A 32-bit integer constant requires the .word directive
and a floating point constant requires the .f loat directive. It is then succeeded by the value of
the constant.

The la directive can be used to load the address of a constant into a register. Subsequently,
a regular load instruction can be used to read the value of the constant (refer to Example 114).

245 © Smruti R. Sarangi

Example 114
Define a constant val that is initialized to 17. Store its value in register s0 after loading it
from memory.

Answer:

val: .word 17

la t1 , val

lw s0 , 0(t1)

6.4 Floating Point Instructions

Let us now look at the floating point instructions in RISC-V. In 2017, the ‘F’ and ‘D’ extensions
were introduced for single precision and double precision floating point operations, respectively.
This part of the instruction set is quite conventional and is similar to other RISC ISAs. Floating
point numbers are stored in the regular IEEE 754 format.

6.4.1 View of Registers

The RISC-V floating point model has 32 floating point registers. Their names range from f0
to f31. Unlike integer registers, no register is hardwired to 0. There is however a register usage
convention (akin to integer registers).

Register Mnemonic Description

f0-7 ft0-7 Temporary registers
f8-9 fs0-1 Saved registers
f10-11 fa0-1 Arguments/return values
f12-17 fa2-7 Function arguments
f18-27 fs2-11 Saved registers
f28-31 ft8-11 Temporary registers

It is not possible to directly load an immediate into a floating point register. Like x86,
floating point registers can only be initialized by loading values from memory.

Floating Point Control and Status Register

There is an additional special register called the floating point control and status register (fcsr),
whose structure is shown in Figure 6.1. Its lower 8 bits encode important information. The
first 5 bits starting from the LSB store exceptional conditions encountered since these bits were
last reset. This is known as the fflags field. The rest of the 3 bits store the rounding mode.

© Smruti R. Sarangi 246

31
Reserved Rounding Mode (frm) Accrued Exceptions (fflags)

NXUFOFDZNV

8 7

1 1 1 1 1
24 3

5 4 3 2 1 0

Figure 6.1: RISC-V fcsr register

Accrued Exception Flags (fflags)

Mnemonic Explanation

NV Invalid operation

DZ Divide by zero

OF Overflow

UF Underflow

NX Inexact

Table 6.12: Accrued exception flags

The fflags field stores five flags, which are also known as the accrued exception flags. The
first four flags – invalid operation, divide by zero, overflow and underflow – have their standard
meanings. Let us discuss the fifth flag (inexact) that we have not encountered before. This is
set when the result cannot exactly be stored in a floating point register and some rounding was
required. Next, let us discuss the different rounding modes. They are stored in bits 6-8 of the
fcsr.

Rounding Modes

Rounding Mode Mnemonic Meaning

000 RNE Round to nearest, prefer even LSBs

001 RTZ Round towards zero.

010 RDN Round down (towards -∞).

011 RUP Round up (towards +∞).

100 RMM Round to nearest, prefer the number with the max-
imum magnitude

101 Invalid. Reserved for future use.

110 Invalid. Reserved for future use.

111 DYN Selects a rounding mode dynamically (stored in the
frm field of the fcsr)

Table 6.13: Encoding the rounding mode

RISC-V instructions can use a static rounding mode (encoded in the instruction) or a
dynamic rounding mode (encoded in the fcsr’s frm field). The default rounding mode is RNE.
We round the result to the nearest value that can be represented in the IEEE 754 format. If the

247 © Smruti R. Sarangi

real value is between two representable values, then the result is rounded to the value that has
an even LSB. The next rounding mode is RTZ, which is round towards zero. It is equivalent
to truncation where the bits that cannot be fit in the format are simply removed. The next
two rounding modes are self-evident: RDN (round towards −∞ or the floor function) and RUP
(round towards +∞ or the ceiling function).

The RMM rounding mode is similar to RNE. However, if the result is between two repre-
sentable values, then we round towards the number that has the higher magnitude (away from
zero). The next two values are not used at the moment. Finally, the DYN mode selects a
rounding mode dynamically (stored in the frm field of the fcsr).

6.4.2 Load and Store Instructions

Semantics Example Explanation

flw rd, imm(rs1) flw f1, 48(sp) f1 ← mem[48 + sp]

fsw rs2, imm(rs1) fsw f1, 48(sp) mem[48 + sp] ← f1

Table 6.14: Single precision load and store instructions

Let us now look at the basic floating point load and store instructions in Table 6.14. They
load and store values from memory, respectively. They do not perform type conversion. The
fcvt instruction and its variants can be used to perform type conversion, as we shall see later.

The key idea in RISC-V is the same as in x86, which is that floating point immediates
cannot be directly loaded into registers. Their contents need to be stored in memory first and
then the 32-bit floating point value can be loaded into a floating point register. In this sense,
this part of the ISA is less powerful than its integer counterpart. However, this does not cause
much of a performance loss in practice because most of the time we do not face the need for
loading floating point immediates, other than while loading built-in constants such as π and e.
In this case, we can use the assembler pseudoinstruction la to store the contents of the constant
to memory and then load the address of the starting memory address to a register (refer to
Example 115). The floating point load and store instructions otherwise are quite similar to
their integer counterparts in RISC-V.

Example 115
Load the value of a constant val into a floating point register fs1.

Answer:

val: .float 3.14

.main:

la a1 , val

flw fs1 , 0(a1)

© Smruti R. Sarangi 248

Semantics Example Explanation

fadd.s rd, rs1, rs2 fadd.s f1, f2, f3 f1 ← f2 + f3

fsub.s rd, rs1, rs2 fsub.s f1, f2, f3 f1 ← f2 - f3

fmul.s rd, rs1, rs2 fmul.s f1, f2, f3 f1 ← f2 × f3

fdiv.s rd, rs1, rs2 fdiv.s f1, f2, f3 f1 ← f2 ÷ f3

fmin.s rd, rs1, rs2 fmin.s f1, f2, f3 f1 ← min(f2 , f3)

fmax.s rd, rs1, rs2 fmax.s f1, f2, f3 f1 ← max(f2 , f3)

fsqrt.s rd, rs1 fsqrt.s f1, f2 f1 ←
√
f2

Table 6.15: Floating point arithmetic instructions

6.4.3 Floating Point Arithmetic Instructions

Table 6.15 shows the floating point arithmetic instructions. They are of the form ⟨inst⟩.s. The
“.s” suffix corresponds to single precision floating point instructions. The “.d” suffix corresponds
to double precision floating point instructions. The instructions fadd.s, fsub.s, fmul.s, fdiv.s,
fmin.s, fmax.s and fsqrt.s have their usual meanings. Note that we do not have variants
that accept immediates directly as source operands. In the case of floating point instructions,
the immediates can only be loaded using flw instructions or converted from integers. Refer to
Example 116.

Example 116
Compute

√
π + e+ π × e, and store the result in fa0.

Answer:

declare the constants

pi: .float 3.14

e: .float 2.72

.main:

load them into floating point registers

la a1, pi

flw fs1 , 0(a1)

la a2, e

flw fs2 , 0(a2)

fadd.s ft1 , fs1 , fs2 # pi + e

fmul.s ft2 , fs1 , fs2 # pi * e

fadd.s ft3 , ft1 , ft2 # pi + e + pi * e

fsqrt.s fa0 , ft3 # sqrt (pi + e + pi*e)

To support operations such as dot products, matrix multiplication, and similar operations,

249 © Smruti R. Sarangi

Semantics Example Explanation

fmadd.s rd, rs1, rs2, rs3 fmadd.s f1, f2, f3, f4 f1 ← f2 * f3 + f4

fmsub.s rd, rs1, rs2, rs3 fmsub.s f1, f2, f3, f4 f1 ← f2 * f3 - f4

Table 6.16: Fused addition and subtraction instructions

RISC-V supports a few fused arithmetic instructions such as the fused addition and subtraction
operations (refer to Table 6.16). The fused add instruction (fmadd.s) takes three register source
operands as arguments. It multiplies the first two and adds the product to the third. On similar
lines, the fused subtract instruction subtracts the third source operand from the product of the
first two register-based source operands.

6.4.4 Floating Point Conversion Instructions

Semantics Example Explanation

fcvt.s.w rd, rs1 fcvt.s.w f1, x5 f1 ← (float) x5

fcvt.w.s rd, rs1 fcvt.w.s x5, f1 x5 ← (int) f1

Table 6.17: Floating point ↔ integer conversion instructions

Example 117
Compute π × e+ 4, and store the result in fa0. Convert the result to an integer and store
the result in a0.

Answer:

pi: .float 3.14

e: .float 2.72

.main:

la a1, pi # load pi

flw fs1 , 0(a1)

la a2, e # load e

flw fs2 , 0(a2)

addi t1 , zero , 4 # load 4.0 in a register

fcvt.s.w ft1 , t1

fmadd.s ft0 , fs1 , fs2 , ft1 # pi * e + 4

fcvt.w.s a0 , ft0 # convert to int

Table 6.17 shows the floating point to integer conversion (and vice versa) instructions. The
fcvt.s.w instruction proves to be very helpful. It can be used to convert integer immediates to

© Smruti R. Sarangi 250

Semantics Example Explanation

flt.s rd, rs1, rs2 flt.s s1, f2, f3 if (f2 < f3) set s1 to 1

fle.s rd, rs1, rs2 fle.s s1, f2, f3 if (f2 ≤ f3) set s1 to 1

feq.s rd, rs1, rs2 feq.s s1, f2, f3 if (f2 == f3) set s1 to 1

Table 6.18: Floating point comparison instructions

floating point numbers, whenever we wish to multiply a floating point number with a multiplier
of the form 2.0 or 3.0.

6.4.5 Floating Point Comparison Instructions

Comparing floating point numbers is not the same as comparing integers. They cannot be
directly given as arguments to conditional branch instructions. In this case, the status of the
comparison needs to be stored in an integer register. This register can then be compared with
the zero register using a regular conditional branch instruction.

Table 6.18 shows the three floating point comparison instructions that store the result in
an integer register. Let us explore their usage using an example (Example 118).

Example 118
First, initialize a0 = 0, then set a0 = 17 if e < π.

Answer:

pi: .float 3.14

e: .float 2.72

.main:

la a1, pi # load pi

flw fs1 , 0(a1)

la a2, e # load e

flw fs2 , 0(a2)

add a0 , zero , zero # a0 = 0

flt.s t0 , fs2 , fs1 # compare pi and e

beq t0 , zero , .end # if (t0 == 0) jump to .end

addi a0 , zero , 17 # a0 = 17 because t0 == 1

.end:

251 © Smruti R. Sarangi

6.5 Instruction Encoding

6.5.1 Arithmetic and Data Transfer Instructions

RISC-V has four core non-branch instruction formats: R, I, S and U. These are for 32-bit
instructions. RISC-V assemblers and compilers further align these instructions to 4-byte (32-
bit) boundaries. Figure 6.2 shows a visual representation of these four formats and Table 6.19
shows examples of instructions in each format.

opcoderdfunct3funct7 rs1

77 3 55

rs2

5

imm[11..5]

7

rs2

5

R-Type

opcoderdfunct3rs1

73 5512

20

I-Typeimm

opcodeimm[4..0]funct3rs1

73 55

S-Type

opcoderd

75

U-Typeimm

Figure 6.2: RISC-V instruction formats: R, I, S and U formats

Format Structure Instructions

R rd, rs1, rs2 add, sub, mul, div, rem, and, or, xor, sll, srl, sra, slt,
sltu

I rd, rs1, imm addi, andi, ori, xori, slli, srli, srai, slti, sltiu
rd, imm(rs1) lw, jalr

S rs2, imm(rs1) sw

U rd, imm lui

Table 6.19: Instructions belonging to each of the four arithmetic RISC-V formats

Let us now take a deep look at each of these four instruction formats. The first 7 bits are
reserved for the opcodes in all the formats. This means that we can support a maximum of

© Smruti R. Sarangi 252

128 instructions in the ISA; moreover, finding the opcode is also quite easy (first 7 bits). The
reason that this is important is because minimizing the decoder’s complexity is a key goal of
ISA design. Given that all the opcode bits are in the same positions across the formats, finding
the opcode and consequently the type of the instruction is easy.

The next 5 bits are used to store the id of the destination register rd in the R, I and U
formats. S-type instructions do not have a destination register. For example, the sw instruction,
which is an S-type instruction, does not have a destination register. It however has two source
registers and an immediate. Instead of changing the positions of the source registers in the
S-type instruction format, the ISA designers made the right decision to use the bits for the
destination register to store a part of the immediate. Hence, the first 5 bits of the immediate
are stored at the corresponding positions.

Next, let us consider U-type instructions (such as lui). We can use the remaining 20 bits
to store the 20-bit immediate. We don’t need to store any more information. Such instructions
have only two arguments. The destination register rd and the 20-bit immediate.

The rest of the three formats (R, I and S) store a 3-bit field funct3. It is used to hierar-
chically organize the instructions and to also support more instructions. In RISC-V, a single
opcode can correspond to multiple instructions. For example, the opcodes of the add, slt and
xor instructions are the same: 0110011. They are differentiated by the values of the funct3
field. We can thus support more instructions than 128. However, that is not the main aim here.
We can group similar instructions such that they are processed by the hardware in the same
manner. They will still have differences between them such as add and xor. However, most of
the processing can remain the same given that both are R-type instructions.

The next 5 bits store the rs1 field (first source register) in all three formats (R, I and S).
Subsequently, differences arise. I-type instructions need to store a 12-bit immediate. They don’t
have a second source register (rs2). They thus use the remaining 12 bits to store the immediate.
All immediates are sign-extended before being used in hardware unless the instruction has a
‘u’ suffix (for unsigned). The R and S-type instructions store the second source register rs2 in
the next 5 bits.

Let us now consider the last 7 bits in the R and S formats. R-type instructions have another
opcode extender called funct7 (in addition to funct3). It serves the same purpose as funct3.
The aim is to increase the number of instructions and also create a grouping of instructions
based on their similarity. It is possible for two instructions to have the same opcode and funct3
fields, yet have a different funct7 field. Consider add and sub. They have the same opcode
(0110011) and same funct3 (000); however, their funct7 fields are different – 0000000 and
0100000, respectively.

In contrast, S-type instructions store the remaining 7 immediate bits in the uppermost (most
significant) 7 positions. Recall that we had already stored 5 immediate bits in the positions
at which other formats store the id of the destination register (rd). This is a very reasonable
decision because the explicit aim is to ensure that the same field is stored at the same set of
positions across the formats – it is very easy for the decoder to extract it.

6.5.2 Control Flow Instructions

Let us now look at the instruction formats for encoding control flow instructions. There are
two formats in this space: the B and J formats. Refer to Figure 6.3 and Table 6.20.

253 © Smruti R. Sarangi

opcodeimm[..]funct3imm[10..5] rs1

77 3 55

rs2

5

B-Type

opcoderd

11

7520

J-Typeimm[19..12]imm[10..1]

12

20 11

4..1

Figure 6.3: The B and J formats

Format Structure Instructions

B rs1, rs2, imm beq, bne, blt, bge, bltu, bgeu

J rd, rs1, imm jal

Table 6.20: Instructions that are encoded in the B and J formats

All the conditional instructions like beq, bne and blt are implemented using the B format.
Recall that such instructions take two source registers. They are compared and then based on
the results of the comparison, a taken/not-taken decision is made. The instruction uses PC
offset-based addressing, where the offset is encoded in the immediate field.

The immediate is encoded in a special manner in the B format. The offset needs to be a
multiple of 2 (limitation of the ISA). This means that its LSB is 0. Given that this bit is fixed,
there is no need to represent it. In other words the 0th bit is set to 0 and thus need not be
represented. The format thus stores the rest of the 4 bits in the first 5-bit field. Note that as
compared to the S format, the immediate bits 4..1 are stored in exactly the same positions. This
makes extracting these bits very easy and there is consequently no need to design additional
decoder hardware to handle these bits differently in the B format. Given that the 0th bit is not
stored, its corresponding position can be used to store the 11th bit.

The rest of the immediate bits are stored in the most significant bit positions. The most
significant 7 bits store the 12th bit and the bits 10..5. We thus store 13 immediate bits: 12 of
them are explicitly stored and the least significant immediate bit is assumed to be 0. This format
can thus encode an offset between -4096 and 4095 (≈ ± 4 KB). This offset is sign-extended and
added to the PC.

Next, consider the J format. It takes a single destination register and a 20-bit immediate
as its arguments. The immediate here encodes an offset that is a multiple of 2 (akin to the B
format). There is no need to store the LSB, which is set to 0. Like the B format, there is a need
to store 20 bits. The order of storing the bits from the most significant position to the least
significant position is as follows: bit 20, bits 10..1, bit 11, bits 19..12. Given that we encode
21 bits in this format (20 explicitly and 1 implicitly), we can represent an offset range that is
within ±1MB of the current PC.

© Smruti R. Sarangi 254

6.5.3 Floating Point Instructions

imm[11..5]

7

rs2

5

opcoderdwidthrs1

73 5512

LOAD-FP

imm

opcodeimm[4..0]widthrs1

73 55

STORE-FP

Figure 6.4: Encoding the flw and fsw instructions

Figure 6.4 shows the encoding of the flw and fsw instructions. flw instructions are encoded
in the I format. The funct3 instruction is replaced with the width field (amount of data that
is loaded). Similarly, the fsw instruction is encoded using the S format. The only change is
that the funct3 field is replaced with the width.

opcoderdrmfunct5 rs1

75 2 3 55

rs2fmt

5

Figure 6.5: Encoding of floating point arithmetic instructions

Figure 6.5 shows the encoding format of floating point arithmetic instructions (variation of
the R format). All such instructions take one floating point destination register and one or two
source registers as inputs. The format is the same for all variants. The rm field encodes the
rounding mode and the fmt field represents the precision (32-bit, 64-bit, 16-bit, 128-bit).

The opcode field is typically the same for all common floating point arithmetic instructions.
The funct5 field stores the code for the specific type of instruction. For instructions like fqrt
that do not have the second source register, the rs2 field is set to 0.

The same format is also used by the floating point conversion instructions (fcvt.w.s and
fcvt.s.w).

This format is also used by floating point comparison instructions. The rm field in this case
stores the following comparison conditions: EQ, LT and LE. The funct5 field stores a code
for floating point comparison (FCMP).

255 © Smruti R. Sarangi

opcoderdrmrs3 rs1

75 2 3 55

rs2fmt

5

Figure 6.6: Encoding of fused multiply and add instructions

Figure 6.6 shows the encoding format of the fmadd and fmsub instructions. Instead of the
funct5 field, the third source register rs3 is stored in its place. The rest remains the same.

6.6 Summary and Further Reading

6.6.1 Summary

Summary 6

1. The RISC-V ISA refers to a family of instruction sets. The basic ISA is RV32 (32-
bit). There are 64-bit and 128-bit variants as well that are currently under different
stages of development. They are named RV64 and RV128, respectively.

2. The ISA has a modular structure. Different sets of instructions can be added to it
depending upon the use case. Each such module is known as an “extension”.

3. Some popular extensions are as follows: integer (default), embedded, atomic instruc-
tions, single and double-precision floating point arithmetic, and vector arithmetic.

4. There is a compressed instruction set (suffix ‘C’) that is similar in principle to ARM
Thumb.

5. There are 32 integer registers. The zeroth integer register (x0 or zero) is hardwired
to 0. There is an elaborate usage convention that most assembly programmers are
expected to follow.

6. The usage convention distinguishes between temporary registers (caller saved), callee
saved registers and function arguments/return values.

7. The integer registers are named x0 . . . x31. They additionally can be addressed using
their mnemonics t0 − 6 (temporary), s0 − 12 (callee saved), a0 − 7 (arguments and
return values), ra (return address), sp (stack pointer), gp (global pointer) and zero.
Addressing registers by their mnemonics is preferred.

8. For example, the integer register t3 is the third temporary register that is the same as
x28.

© Smruti R. Sarangi 256

9. The RISC-V ISA is a RISC ISA that accepts 12-bit immediates in arithmetic in-
structions and 20-bit immediates in branch instructions and the load-upper-immediate
instruction.

10. There is no dedicated move-immediate instruction in the ISA. Instead, the way to load
an immediate is to use the addi instruction to add the 12-bit immediate to the register
zero. The upper 20 bits can then be set by the lui (load upper immediate) instruction.

11. Akin to other RISC ISAs, RISC-V supports all the standard arithmetic and logical
instructions including some unsigned variants.

12. There is no dedicated flags register that stores the result of the last comparison.
Instead, branch instructions take two register arguments. They directly compare them
and depending upon the branch condition, jump to the label specified in the instruction.

13. The jal and jalr instructions are used to jump to a different location and store the
return address in the first source register. If the register is zero, then the return
address is not saved. The jal instruction can be used to implement the classical call
instruction while the jalr instruction can be used to implement the return instruction.

14. There are two important assembler directives that translate to multiple RISC-V in-
structions at runtime. They are li (load 32-bit immediate) and la (load the address
of a constant defined in the assembly file into a register).

15. RISC-V has 32 floating point registers numbered f0 . . . f31. No floating point register
is hardwired to 0. They also have a usage convention and are also known by their
mnemonics. These mnemonics have a similar pattern: ft0−11, fa0−7 and fs0−12.

16. The floating point control status register (fcsr) is used to control the behavior of
floating point instructions. It stores the rounding mode and floating point exceptions
seen after the last time this register was reset (divide-by-zero, overflow, etc.).

17. There is no direct way of loading a floating point immediate into a register in RISC-V.
In RISC-V, an immediate is associated with a label, and it is assumed to be stored
in memory before the execution of the code starts. The address of the label (or the
immediate) can be loaded to a register using the assembler directive la. Subsequently,
the flw instruction can be used to load the corresponding floating point value. The
fsw instruction can be used to store floating point values.

18. All single-precision floating point arithmetic instructions operate in a manner that
is more or less similar to their integer counterparts. They have the “.s” suffix. For
example, the floating point add instruction is named fadd.s.

19. Another way of loading or storing immediate values is using the floating point con-
version instructions: fcvt.w.s and fcvt.s.w.

257 © Smruti R. Sarangi

20. Floating point comparison instructions have an integer destination register and two
floating point source registers. The hardware compares the source registers based on
the type of the comparison that needs to be performed, and then the Boolean result is
stored in the destination register.

21. RISC-V has six different instruction formats: 4 integer formats (R, I, S and U) and
2 branch formats (B and J).

22. Most arithmetic instructions that do not have immediates use the R format. The I
format is used for instructions that use an immediate such as the addi instruction or
the lw (load) instruction. Store instructions are encoded using the S format and the
lui instruction uses the U format.

23. All the conditional branch instructions use the B format. The B format admits a
12-bit immediate with an additional and implicit LSB bit that is hardwired to 0. jal is
a J-type instruction that has a single destination register and a 20-bit immediate (the
LSB is not specified because it is 0). Effectively, the B format has a 13-bit immediate
and the J format has a 21-bit immediate.

24. Floating point instructions use the I format for flw and S format for fsw instructions,
respectively. The rest of the instructions primarily rely on minor variations of the R
format.

6.6.2 Further Reading

The most definitive resource for understanding the RISC-V ISA is its official manual[ris,] that
can be downloaded from https://riscv.org/. The site hosts two kinds of specifications: un-
privileged specification and privileged specification. The privileged specification is for writing
system software and operating systems. All the RISC-V specifications undergo active develop-
ment and periodically new versions are released. A GitHub repository tracks the development
of these specifications. It is accessible at https://github.com/riscv/. Readers can addition-
ally refer to two classic books[Waterman, 2016, Patterson and Waterman, 2017] to learn more
about the RISC-V ISA.

Readers should also read a few classical papers [Chen and Patterson, 2016, Greengard,
2020, Asanović and Patterson, 2014, Mezger et al., 2022] to understand the history of RISC-V.
This will give them a perspective of the developmental history of RISC-V and how this ISA
came about in an era when instruction set development was considered to be an already solved
problem that did not warrant further attention.

The next port of call can be papers that critically investigate the RISC-V ISA. The following
references [Frolov et al., 2021, Kanter, 2016, Singh and Sarangi, 2021] will prove to be useful.
They critique some design choices of the RISC-V ISA and compare it with other RISC and
CISC ISAs (particularly reference [Singh and Sarangi, 2021]). In this context, readers should
consider the formal specifications of RISC-V [Bourgeat et al., 2021] if they are considering
implementing the ISA or designing a machine-accurate emulator for it.

Next, let us consider performance and implementation-related aspects. Researchers can

https://riscv.org/
https://github.com/riscv/

© Smruti R. Sarangi 258

look at architecture simulators that simulate RISC-V instructions and their vector extensions
such as the simulator released by Ramirez et al. [Ramı́rez et al., 2020]. The next logical step
is to study RISC-V processors such as BOOMv2 [Celio et al., 2017], RISC-V 2 [Patsidis et al.,
2020] and the processor in reference [Stangherlin and Sachdev, 2022]. RISC-V processors are
also being designed to operate in high-radiation environments like outer space. Many space
research organizations are creating their bespoke RISC-V processors [Wessman et al., 2021].

Exercises

RISC-V Assembly Programming

Ex. 1 — Solve all the exercises listed at the end of the chapter on the ARM assembly language
using RISC-V.

RISC-V Assembly Concepts

Ex. 2 — Why does RISC-V not have a mov instruction? What is the advantage of making
this choice?

Ex. 3 — How does the assembler implement the li directive (pseudoinstruction)?

* Ex. 4 — RISC-V does not have a flags register. However, it stores some information in
the fcsr register. Why is this required?

Ex. 5 — Explain the different rounding modes in RISC-V.

Ex. 6 — Why is it not a good idea to have instructions to load floating point immediates
directly into registers (similar to addi and lui for integers)?

* Ex. 7 — How does the assembler implement the la directive?

Ex. 8 — What is the advantage of maintaining the positions of the fields across the different
RISC-V instruction encoding formats?

* Ex. 9 — How do the opcode, funct3, funct5 and funct7 fields help in implementing RISC-
V extensions?

Ex. 10 — What is the advantage of making it easy to extract the sign bit of the immediate
in the different formats, especially the B and J formats?

259 © Smruti R. Sarangi

Design Problems

Ex. 11 — Extend the RISC-V assembler available on the author’s website to support the
following extensions: double precision, vector, SIMD and cryptographic operations.

Ex. 12 — Cross-compile a piece of C code using the RISC-V and ARM cross compilers.
Use the -03 gcc optimization. Next, run them on the Qemu emulation engine. Compare the
performance and find the reasons for the differences.

© Smruti R. Sarangi 260

Part II

Organisation: Processor Design

261

7
Logic Gates, Registers, and Memories

We are ready to design a real computer now. Before we start, let us quickly take a glance at
some of the main requirements and constraints for designing a computer as described in the
last few chapters.

Way Point 3

• A computer needs a central processing unit, set of registers, and a large amount of
memory.

• A computer needs to support a complete, concise, generic, and simple instruction set.

• SimpleRisc is a representative instruction set. To implement it, we need to primarily
have support for logical operations, arithmetic computations, register and memory
accesses.

Figure 7.1 shows a plan for the next few chapters. In this chapter, we shall look at design-
ing simple circuits for logical operations, registers, and basic memory cells. We shall consider
arithmetic units such as adders, multipliers, and dividers in Chapter 8, and subsequently com-
bine the basic elements to form advanced elements such as the central processing unit, and an
advanced memory system in Chapters 9, 10, and 11.

Before, we proceed further, let us warn the reader that this chapter is meant to give a brief
introduction to the design and operation of logic circuits. This chapter takes a cursory look at
digital logic, and focuses on introducing the broad ideas. A rigorous treatment of digital logic
is beyond the scope of this book. The interested reader is referred to seminal texts on digital
logic [Taub and Schilling, 1977, Lin, 2011, Wakerly, 2000]. This chapter is primarily meant for

263

© Smruti R. Sarangi 264

Logical operations

Registers Memory

Arithmetic operations

Chapter 7

Chapter 6

Central processing
 unit

Chapter 8

Memory system

Chapter 10

Advanced elementsBasic elements

Pipelined processors

Chapter 9

Figure 7.1: Plan for the next few chapters

two types of readers. The first type of readers are expected to have taken an introductory course
on digital logic, and they can use this chapter to refresh their knowledge. The second category of
readers are presumed to have little or no background in digital electronics. We provide enough
information for them to appreciate the nuances of digital circuits, and their operation. They
can use this knowledge to understand the circuits required to perform computer arithmetic,
and implement complex processors.

For implementing logical operations such as bitwise AND, OR, shifts, and register/memory
cells, we typically use silicon based circuits today. Note that this was not always the case. The
earliest computers in the 19th century were made from mechanical parts. Till the sixties, they
were made of vacuum tubes. It is only after the discovery of the transistor and integrated circuit
technology that computer processors started getting manufactured using silicon. However, this
might be a passing trend. It is perfectly possible in the future that we will have computers
made of other materials.

7.1 Silicon based Transistors

Silicon is the 14th element in the periodic table. It has four valence electrons and belongs to
the same group as carbon and germanium. However, it is less reactive than both.

Over 90% of the earth’s crust consists of silicon based minerals. Silicon dioxide is the
primary constituent of sand, and quartz. It is abundantly available, and is fairly inexpensive
to manufacture.

Silicon has some interesting properties that make it the ideal substrate for designing circuits
and processors. Let us consider the molecular structure of silicon. It has a dense structure,
where each silicon atom is connected to four other silicon atoms, and the tightly connected set

265 © Smruti R. Sarangi

of silicon atoms are bound together to form a strong lattice. Other materials notably, diamond,
have a similar crystalline structure. Silicon atoms are thus more tightly packed than most
metals.

Due to the paucity of free electrons, silicon does not have very good electrical conduction
properties. In fact it is midway between a good conductor, and an insulator. It is thus known
as a semiconductor. It is possible to slightly modify its properties by adding some impurities
in a controlled manner. This process is called doping.

Definition 44
A semiconductor has an electrical conductivity, which is midway between a good conductor
and an insulator.

7.1.1 Doping

Typically, two types of impurities are added to silicon to modify its properties: n-type and p-
type. N-type impurities typically consist of group V elements in the periodic table. Phosphorus
is the most common n-type dopant. Arsenic is also occasionally used. The effect of adding a
group V dopant with five valence electrons is that an extra electron gets detached from the
lattice, and is available for conducting current. This process of doping effectively increases the
conductivity of silicon.

Likewise, it is possible to add a group III element such as boron or gallium to silicon to
create p-type doped silicon. This produces the reverse effect. It creates a void in the lattice.
This void is also referred to as a hole. A hole denotes the absence of an electron. Like electrons,
holes are free to move. Holes can also help in conducting current. Electrons have a negative
charge, and holes are conceptually associated with a positive charge.

Now that we have created two kinds of semiconductor materials – n-type and p-type. Let
us see what happens if we connect them to form a p-n junction.

Definition 45

• A n-type semiconductor has group V impurities such as phosphorus and arsenic. Its
primary charge carriers are electrons.

• A p-type semiconductor has group III impurities such as boron and gallium. Its pri-
mary charge carriers are holes. Holes have an effective positive charge.

• A p-n junction is formed when we place a p-type and n-type semiconductor side by
side.

© Smruti R. Sarangi 266

p n

Hole

Electron

Depletion
 region

Diffusion

Drift

Figure 7.2: A P-N junction

7.1.2 P-N Junction

Let us consider a p-n junction as shown in Figure 7.2. The p-type region has an excess of holes
and the n-type region has an excess of electrons. At the junction, some of the holes cross over
and move to the n region because they are attracted by electrons. Similarly, some electrons
cross over and get amassed on the side of the p region. This migration of holes and electrons
is known as diffusion. The area around the junction that witnesses this migration is known
as the depletion region. However, due to the migration of electrons and holes, an electric field
is produced in the opposite direction of migration in the depletion region. This electric field
induces a current known as the drift current. At steady state, the drift and diffusion currents
balance each other, and thus there is effectively no current flow across the junction.

Now, let us see what will happen if we connect both sides of the p-n junction to a voltage
source such as a battery. If we connect the p side to the positive terminal, and the n side to
the negative terminal, then this configuration is known as forward bias. In this case, holes flow
from the p side of the junction to the n side, and electrons flow in the reverse direction. The
junction thus conducts current.

If we connect the p side to the negative terminal and the n side to the positive terminal,
then this configuration is known as reverse bias. In this case, holes and electrons are pulled
away from the junction. Thus, there is no current flow across the junction and the p-n junction
in this case does not conduct electricity.

A simple p-n junction as described is known as a diode. It conducts current in only one
direction, i.e., when it is in forward bias.

Definition 46
A diode is an electronic device typically made of a single p-n junction that conducts current
in only one direction.

267 © Smruti R. Sarangi

Substrate (p-type)

n-type n-type

Source

Gate
Drain

SiO2

Source Drain

Gate

Gate voltage Switch state

High on

Low off

(a)

(b)

Source Drain

Gate

(c)

Figure 7.3: NMOS transistor

7.1.3 NMOS Transistor

Now, let us connect two p-n junctions to each other as shown in Figure 7.3(a). This structure is
known as an NMOS (Negative Metal-Oxide-Semiconductor) transistor. In this figure there is a
central substrate of p type doped silicon. There are two small regions on both sides that contain
n type doped silicon. These regions are known as the drain and source respectively. Note that
since the structure is totally symmetric, any of these two regions can be designated as the
source or the drain. The region in the middle of the source and drain is known as the channel.
On top of the channel there is a thin insulating layer typically made of silicon dioxide(SiO2)
and it is covered by a metallic or polysilicon based conducting layer. This is known as the gate.

There are thus three terminals of a typical NMOS transistor – source, drain and gate. Each
of them can be connected to a voltage source. We now have two options for the gate voltage –
logical 1 (Vdd volts) or logical 0 (0 volts). If the voltage at the gate is logical 1 (Vdd volts), then
the electrons in the channel get attracted towards the gate. In fact, if the voltage at the gate
is larger that a certain threshold voltage (typically 0.15 V in current technologies), then a low
resistance conducting path forms between the drain and the source due to the accumulation of
electrons. Thus current can flow between the drain and the source. If the effective resistance of
the channel is Rchannel, then we have Vdrain = IRchannel+Vsource. If the amount of current flow
through the transistor is low, then Vdrain is roughly equal to Vsource because of the low channel
resistance (Rchannel). We can thus treat the NMOS transistor as a switch (see Figure 7.3(b)).
It is turned on when the voltage of the gate is 1.

Now, if we set the voltage at the gate to 0, then a conducting path made up of electrons
cannot form in the channel. Hence, the transistor will not be able to conduct current. It will

© Smruti R. Sarangi 268

be in the off state. In this case, the switch is turned off.

The circuit symbol for a NMOS transistor is shown in Figure 7.3(c).

Substrate (n-type)

p-type p-type

Source

Gate
Drain

SiO2

Source Drain

Gate

Gate voltage Switch state

High

onLow

off

(a)

(b)

Source Drain

Gate

(c)

Figure 7.4: PMOS transistor

7.1.4 PMOS Transistor

Like the NMOS transistor, we can have a PMOS transistor as shown in Figure 7.4(a). In this
case, the source and drain are regions made up of p type silicon. The logic for the operation of
the transistor is exactly the reverse of that of the NMOS transistor. In this case, if the gate is
at logical 0, then holes get attracted to the channel and form a conducting path. Whereas, if
the gate is at logical 1, then holes get repelled from the channel and do not form a conducting
path.

The PMOS transistor can also be treated as a switch (see Figure 7.4(b)). It is turned on,
when the gate voltage is 0, and it is turned off when the voltage at the gate is a logical 1. The
circuit symbol of a PMOS transistor is shown in Figure 7.4(c).

7.1.5 A Basic CMOS based Inverter

Now, let us construct some basic circuits using NMOS and a PMOS transistors. When a circuit
uses both these types of transistors, we say that it uses CMOS (combined mos) logic. The
circuit diagram of an inverter using CMOS logic is shown in Figure 7.5. In this circuit, an
NMOS transistor is connected between the ground and the output, and a PMOS transistor is
connected between Vdd and the output. The input is fed to the gates of both the transistors.

If the input is a logical 0, then the PMOS transistor is switched on, and the NMOS transistor
is switched off. In this case, the output is equal to 1. Likewise, if the input is a logical 1, then

269 © Smruti R. Sarangi

vdd

CMOS inverter

Circuit symbol

Figure 7.5: CMOS inverter

the NMOS transistor is switched on and the PMOS transistor is switched off. In this case the
output is a logical 0. We thus see that this simple circuit inverts the value at the input. It can
thus be used to implement the NOT operation.

The benefits of CMOS technology are manifold. Note that during steady state one of the
transistors is in the off state. It thus does not conduct any current. A little amount of current
can still leak through the transistors or flow through the output terminal. However, this is
minimal. Hence, we can conclude that the power dissipation of a CMOS inverter at steady
state is vanishingly small since power is equal to current multiplied by voltage. However,
some power is dissipated, when the transistor switches its input value. In this case, both the
transistors are on for a small amount of time. There is some current flow from Vdd to ground.
Nonetheless, as compared to competing technologies, the power dissipated by a CMOS inverter
is significantly lower and is thus amenable for use by today’s processors that have more than a
billion transistors.

7.1.6 NAND and NOR Gates

Figure 7.6 shows how to construct a NAND gate in CMOS technology. The two inputs, A and
B, are connected to the gates of each NMOS-PMOS pair. If both A and B are equal to 1, then
the PMOS transistors will switch off, and both the NMOS transistors will conduct. This will
set the output to a logical 0. However, if one of the inputs is equal to 0, then one of the NMOS
transistors will turn off and one of the PMOS transistors will turn on. The output will thus
get set to a logical 1.

Note that we use the ‘.’ operator for the AND operation. This notation is very widely used
in representing Boolean formulae. Likewise for the OR operation, we use the ‘+’ sign.

Figure 7.7 shows how to construct a NOR gate. In this case, the two inputs, A and B, are
also connected to the gates of each NMOS-PMOS pair. However, as compared to the NAND
gate, the topology is different. If one of the inputs is a logical 1, then one of the NMOS

© Smruti R. Sarangi 270

vdd

CMOS NAND gate

Circuit symbol

B

A

A

B

A.B
A.B

Figure 7.6: CMOS NAND gate

vdd

CMOS NOR gate

Circuit symbol
B

A

A

B
A+B

A+B

Figure 7.7: CMOS NOR gate

transistors will turn on and one of the PMOS transistors will turn off. The output will thus get
set to 0. If both the inputs are equal to 0, then both the NMOS transistors will shut off, and
both the PMOS transistors will turn on. The output in this case will be equal to a logical 1.

Now, that we have constructed a basic inverter, a NAND, and NOR gate using CMOS logic;
we have the tools to construct any type of logic gate. This is because NAND and NOR gates are
known as universal gates (see [Kohavi and Jha, 2009]). They can be used to construct any kind
of logic gate and implement any logic function. In our circuits, we shall implement complex
logic gates using AND, OR, NAND, NOR, XOR, and NOT gates. Other than AND and OR
gates, we have described the construction of the rest of the four gates in this section. We can

271 © Smruti R. Sarangi

construct an AND gate by connecting the output of a NAND gate to a NOT gate. Similarly,
we can construct an OR gate by connecting the output of a NOR gate to a NOT gate.

In the next section, we shall look at structures that compute complex functions on a set of
Boolean input bits. We call such structures combinational logic structures because they decide
if a certain set of input boolean bits belong to a set containing restricted combinations of bits.
For example, a XOR gate produces 1 if the input bits are either 01 or 10. In this case the set
S contains the combinations: {01, 10}. A XOR logic structure decides if the two input bits are
in the set S. If they are in the set, then it produces an output equal to 1, otherwise it produces
0.

7.2 Combinational Logic

7.2.1 XOR Gate

Let us implement the logic function for exclusive or (XOR). The truth table is shown in Ta-
ble 7.1. We shall use the ⊕ operator for the XOR operation. An exclusive or operation returns
a 1 if both the inputs are unequal, otherwise it returns a 0.

A B A ⊕ B

0 0 0

1 0 1

0 1 1

1 1 0

Table 7.1: The XOR operation

We observe that A⊕ B = A.B + A.B. The circuit for implementing a XOR gate is shown
in Figure 7.8.

Figure 7.8: XOR gate

7.2.2 Decoder

A decoder takes as input a log(n)-bit binary number and has n outputs. Based on the input it
sets one of the outputs to 1.

© Smruti R. Sarangi 272

A

B

A

B

B
A

B
A

Outputs

0

1

2

3

Figure 7.9: Design of a 2× 4 decoder

Let us assume that n is a power of 2. Now any value from 0 to n − 1 can be encoded
using log(n) bits. Let us thus treat the input as a Boolean representation of one of the outputs
(0 . . . (n−1)). For example, if the value of the log(n)-bit input is equal to i, then the ith output
is set to 1. The rest of the outputs are set to 0. Decoders are extensively used in the design of
memory cells and other combinational elements such as multiplexers and demultiplexers.

The design of the decoder is shown in Figure 7.9. We show the design of a 2 × 4 decoder
that has two inputs and four outputs. Let the inputs be A and B. We generate all possible
combinations: AB, AB, AB, and AB. These Boolean combinations are generated by computing
a logical NOT of A and B and then routing the values to a set of AND gates.

Let us now explain with an example. Assume that the input is equal to 10. This means
that B = 1 and A = 0. We need to set the 2nd output line to 1, and the rest to 0. The
reader can verify that this is indeed happening (note that we are counting from 0). The AND
gate corresponding to the 2nd output needs to compute AB. In this case, it will be the only
condition that evaluates to 1.

On similar lines, we can create a generic log(n)× n decoder.

7.2.3 Multiplexer

The block diagram of a multiplexer is shown in Figure 7.10. It takes n input bits and log(n)
select bits, and based on the value of the select bits, chooses one input as the output (refer to
the line with arrows in Figure 7.10). Multiplexers are heavily used in the design of processors,
where we need to choose one output out of a set of inputs. A multiplexer is also known as a
mux.

To choose 1 input out of n inputs, we need to specify the identifier of the input. Note that it
takes ⌈log(n)⌉ bits to identify any input uniquely (see Section 4.4). We can number each input
using ⌈log(n)⌉ binary bits. Each input thus has a unique representation. Now, if the select
bits match the binary encoding of an input, then the input gets reflected at the output. For
example, if the value of the select bits is i, then the value of the output is equal to the value of
the ith input.

273 © Smruti R. Sarangi

n
 i
n
p

u
ts

log(n) select bits

MUX

Output

Figure 7.10: Block diagram of a multiplexer

Output
2 x 4

Decoder

X00

X01

X10

X11

Select
bits

Figure 7.11: Design of a 4-input multiplexer

A multiplexer consists of three stages (see Figure 7.11). The first stage is a decoder that
takes the log(n) select bits as its input and sets one of the n output lines to a logical 1. Each
output line is connected to an AND gate (second stage). Since only one of the output lines
is set to 1, only the AND gate corresponding to that output is enabled. This means that the
output of this gate is equal to the value of the other input.

In the example in Figure 7.11, the multiplexer has four inputs: X00, X01, X10, and X11.
Each input is connected to an AND gate. If the select bits are equal to 01, then the AND
gate corresponding to the input X01 is enabled by the decoder. Its output is equal to X01.
The outputs of the rest of the AND gates are a logical 0 because they are not enabled by the

© Smruti R. Sarangi 274

decoder: one of their inputs is a logical 0.

Finally, in the third stage, an OR gate computes the logical OR of all the outputs of the
second stage. Note that for the OR gate, the inputs are n− 1 zeros and XBA, where B and A
are the values of the select bits, respectively. The final output is thus the value of the input
that was selected, XBA.

2 x 4
Decoder

Select
bits

Y00

Y01

Y10

Y11

Input

Figure 7.12: Design of a demultiplexer

7.2.4 Demultiplexer

A demultiplexer takes as input a log(n)-bit binary number, a 1-bit input, and transfers the
input to one of n output lines. The block diagram is shown in Figure 7.12. Demultiplexers are
used in the design of memory cells, where it is necessary for the input to reflect in exactly one
of the output lines.

The operation is similar to that of a multiplexer. Instead of having multiple inputs, we have
just 1 input. Like the case of the multiplexer, we first enable the appropriate AND gate with
a decoder. Then the second stage consists of an array of AND gates, where each gate reflects
the input bit at its output if it is enabled by the decoder. Recall that an AND gate is enabled
if one of its inputs is a logical 1; in this case the output is equal to the value of the other input.

7.2.5 Encoder

Let us now consider a circuit with the reverse logic as that of a decoder. Its block diagram is
shown in Figure 7.13. The circuit has n inputs, and log(n) outputs. One of the n inputs is
assumed to be 1, and the rest are assumed to be 0. The output bits provide the binary encoding
of the input that is equal to 1. For example in a 8 input, 3 output encoder, if the fifth line is
equal to 1, then the output is equal to 100 (count starts from 0).

Let us construct a simple 4-2 encoder (4 inputs, 2 output bits). Let us number the bits X0,
X1, X2, and X3. If bit XA is equal to 1, then the output should be equal to the binary encoding

275 © Smruti R. Sarangi

Encodern bits
log(n)
 bits

Figure 7.13: Block diagram of an n bit encoder

of A. Let us designate the output as Y , with two bits Y0, and Y1. We have the following
equations for Y0, and Y1.

Y0 = X1 +X3 (7.1)

Y1 = X2 +X3 (7.2)

(7.3)

The intuition behind these equations is that the LSB of a 2-bit number is equal to 1, when
it is equal to 01(1), or 11(3). The MSB is equal to 1, when it is equal to 10(2), or 11(3). We
can extend this logic to create a generic n-log(n) bit encoder. The circuit diagram of a 4-2-bit
encoder is shown in Figure 7.14.

0

1

1X

3X

2X

3X

Figure 7.14: Circuit diagram of a 4-2-bit encoder

Example 119
Write the equations for a 8-3 bit encoder. Assume that the inputs are X0 . . . X7, and the
outputs are Y0, Y1, and Y2.

© Smruti R. Sarangi 276

Answer:

Y0 = X1 +X3 +X5 +X7 (7.4)

Y1 = X2 +X3 +X6 +X7 (7.5)

Y3 = X4 +X5 +X6 +X7 (7.6)

7.2.6 Priority Encoder

Let us now assume that we do not have the restriction that only one input line can be equal to
1. Let us assume that more than one inputs can be equal to 1. In this case, we need to report
the binary encoding of the input line that has the highest index (priority). For example, if lines
3 and 5 and on, then we need to report the binary encoding of the 5th line. The block diagram
remains the same as Figure 7.13.

However, the equations for computing the output change. For a 4-2-bit priority encoder,
the equations are as follows.

Y0 = X1.X2 +X3 (7.7)

Y1 = X2 +X3 (7.8)

Let us consider Y0. If X3 = 1, then Y0 = 1, because X3 has the highest priority. However,
if X1 = 1, then we cannot take a decision based on its value, because X2, and X3 might also
be equal to 1. If X3 = 1, then there is no issue, because it also sets the value of Y0. However,
if X3 = 0, and X2 = 1, then we need to disregard X1. Hence, we need to compute X1.X2 +X3

for Y0. The equation for Y1 remains the same (the reader should try to find the reason). The
circuit diagram of a 4-2-bit encoder is shown in Figure 7.15.

0

1

1X

3X

2X

3X

2X

Figure 7.15: Circuit diagram of a 4-2-bit priority encoder

277 © Smruti R. Sarangi

Example 120
Write the equations for a 8-3 bit priority encoder. Assume that the inputs are X0 . . . X7,
and the outputs are Y0, Y1, and Y2.
Answer:

Y0 = X1.X2.X4.X6 +X3.X4.X6 +X5.X6 +X7 (7.9)

Y1 = X2.X4.X5 +X3.X4.X5 +X6 +X7 (7.10)

Y3 = X4 +X5 +X6 +X7 (7.11)

7.3 Sequential Logic

We have looked at combinational logic circuits that compute different functions on bits. In this
section, we shall look at saving bits for later use. These structures are known as sequential logic
elements because the output is dependent on past inputs, which came earlier in the sequence of
events. The basic idea in a logic gate was to modify the input values to get the desired outputs.
In a combinational logic circuit, if the inputs are set to 0, then the outputs also get reset. To
ensure that a circuit stores a value and maintains it for as long as the processor is powered on,
we need to design a different kind of circuit that has some kind of ”built-in memory”. Let us
start with formulating a set of requirements.

1. The circuit should be self-sustaining, and should maintain its values after the external
inputs are reset. should not rely on external signals to maintain its stored elements.

2. There should be a method to read the stored value without destroying it.

3. There should be a method to set the stored value to either 0 or 1.

The best way to ensure that a circuit maintains its value is to create a feedback path, and
connect the output back to the input. Let us take a look at the simplest logic circuit in this
space: an SR latch.

7.3.1 SR Latch

Figure 7.16 shows the SR latch. There are two inputs S(set) and R (reset). There are two
outputs Q, and its complement Q. Let us now analyse this circuit that contains two cross-
coupled NAND gates. Note that if one of the inputs of a NAND gate is 0, then the output
is guaranteed to be 1. However, if one of the inputs is 1, and the other input is A, then the
output is A.

Let us consider the case when, S=1 and R=0. One of the inputs(S) to the top NAND gate
is 0. Thus, Q=1. The bottom NAND gate has two inputs R = 1, and Q = 1. Thus, the output,
Q = 0. Similarly, if S=0 and R=1, then Q=0, and Q = 1. The S input sets the bit in the latch,
and the R bit resets it to 0. Let us now consider the case when both S and R are 0. In this case
one of the inputs to both the NAND gates is 1. The top NAND gate’s output is Q = Q, and

© Smruti R. Sarangi 278

Q

Q

S

R

Figure 7.16: The SR latch

the bottom NAND gate’s output is Q. Thus, the value is maintained and we have effectively
achieved the objective of storing a bit.

Now, let us see what happens if we set both S and R to 1. In this case, S = 0 and R = 0.
Thus, Q and Q are both equal to 1. In this case, Q is not the logical complement of Q. Now, let
us say that S is set to 0. Then Q will become 0, and Q will become 1. Likewise, if R is set to 0,
then Q will become 1, and Q will become 0. However, if both S and R simultaneously become
0, then we cannot predict the state of the latch before hand. This is because in practice, signal
transitions are never perfectly simultaneous. A non-zero time lag between the transitions of
both the inputs is almost always there. Hence, the circuit can see the following sequence of
transitions in the SR bits: 11 → 10 → 00, or 11 → 01 → 00. For the former sequence, Q will
be set to 1, and for the latter sequence Q will be set to 0. This is known as a race condition
and causes unpredictable behaviour. Thus, we do not want to set both S and R to 1.

S R Q Q Action

0 0 Qold Qold maintain

1 0 1 0 set

0 1 0 1 reset

1 1 ? ? indeterminate

Table 7.2: State transition table for an SR latch

Table 7.2 shows the state transition table for the SR latch. Qold and Qold are the old values
of Q and Q respectively. The main feature is that setting SR=00 maintains the value stored in
the latch. During this period, we can read the value of the outputs infinitely often.

The main issues with the SR latch are as follows.

• S=1 and R=1 is an invalid input.

• We do not have a method of synchronising the transitions in the input and the output.
Whenever the inputs change, the outputs also change. As we shall see in the next section,
this is not desired behaviour.

279 © Smruti R. Sarangi

7.3.2 The Clock

A typical processor contains millions or possibly billions of logic gates and thousands of latches.
Different circuits take different amounts of time. For example, a multiplexer might take 1 ns,
and a decoder might take 0.5 ns. Now, a circuit is ready to forward its outputs when it has
finished computing them. If we do not have a notion of global time, it is difficult to synchronise
the communication across different units, especially those that have variable latencies. Under
such a scenario it is difficult to design, operate, and verify a processor. We need a notion of
time. For example, we should be able to say that an adder takes two units of time. At the end
of the two units, the data is expected to be found in latch X. Other units can then pick up the
value from latch X after two units of time and proceed with their computation.

Let us consider the example of a processor that needs to send some data to the printer. Let
us further assume that to communicate data, the processor sends a series of bits over a set of
copper wires, the printer reads them, and then prints the data. The question is, when does
the processor send the data? It needs to send the data, when it is done with the computation.
The next question that we can ask is, “How does the processor know, when the computation is
over?” It needs to know the exact delays of different units, and once the total duration of the
computation has elapsed, it can write the output data to a latch and also set the voltages of the
copper wires used for communication. Consequently, the processor does need a notion of time.
Secondly, the designers need to tell the processor the time that different sub-units take. Instead
of dealing with numbers like 2.34 ns, and 1.92 ns, it is much simpler to deal with integers such
as 1, 2, and 3. Here, 1, 2, and 3, represent units of time. A unit of time can be any number
such as 0.9333 ns.

Definition 47

clock signal A periodic square wave that is sent to every part of a large circuit or processor.

clock cycle The period of a clock signal.

clock frequency The inverse of the clock cycle period.

Clock
period

Figure 7.17: A Clock Signal

Hence, most digital circuits synchronise themselves with a clock signal that sends a periodic
pulse to every part of the processor at exactly the same time. A clock signal is a square wave as
shown in Figure 7.17; most of the time the clock signal is generated externally by a dedicated

© Smruti R. Sarangi 280

unit on the motherboard. Let us consider the point at which the clock signal transitions from
1 to 0 (downward/negative edge) as the beginning of a clock cycle. A clock cycle is measured
from one downward edge of the clock to the next downward edge. The duration of a clock cycle
is also known as a clock period. The inverse of a clock period is known as the clock frequency.

Important Point 8
A computer, laptop, tablet, or mobile phone typically has a line listing the frequency in its
specifications. For example, the specifications might say that a processor runs at 3 GHz.
Now we know that this number refers to the clock frequency.

The typical model of computation is as follows. The time required to perform all basic
actions in a circuit is measured in terms of clock cycles. If a producer unit takes n clock cycles,
then at the end of n clock cycles, it writes its value to a latch. Other consumer units are aware
of this delay, and at the beginning of the (n + 1)th clock cycle, they read the value from the
latch. Since all the units explicitly synchronise with the clock, and the processor is aware of
the delays of every unit, it is very easy to sequence the computation, communicate with I/O
devices, avoid race conditions, debug and verify circuits. We can see that our simple example
in which we wanted to send data to a printer can be easily solved by using a clock.

7.3.3 Clocked SR Latch

Q

Q

S

R

Clk

Figure 7.18: The Clocked SR latch

Figure 7.18 shows the SR latch augmented with two NAND gates that have the clock as
one of the inputs. The other two inputs are the S and R bits respectively. If the clock is 0, then
both the inputs to the cross-coupled NAND gates are 1. This maintains the previous value.
If the clock is 1, then the inputs to the cross-coupled NAND gates are S and R respectively.
These are the same inputs as the basic SR latch. The rest of the operation follows Table 7.2.
Note that a clocked latch is typically referred to as a flip-flop.

Definition 48
Flip-flop : It is a clocked latch that can save a bit (0 or 1).

281 © Smruti R. Sarangi

By using the clock, we have partially solved the problem of synchronising inputs and outputs.
In this case, when the clock is 0, the outputs are unaffected by the inputs. When the clock is
1, the outputs are affected by the input. Such a latch is also called a level sensitive latch.

Definition 49
A level sensitive latch is dependent on the value of the clock signal – 0 or 1. Typically, it
can read in new values, only when the clock is 1.

In a level sensitive latch, circuits have half a clock cycle to compute the correct outputs
(when the clock is 0). When the clock is 1, the outputs are visible. It would be better to have
one full clock cycle to compute the outputs. This would require an edge sensitive latch. An
edge sensitive latch reflects the inputs at the output, only at the downward edge of the clock.

Definition 50
An edge sensitive latch reflects the inputs at the output only at a fixed clock edge, such as
the downward edge (transition from 1 to 0).

Let us try to create an edge sensitive SR latch.

7.3.4 Edge Sensitive SR Flip-flop

S

R

Clk

Q

Q

Clk

Figure 7.19: The clocked edge sensitive SR flip-flop

Figure 7.19 shows a clocked edge sensitive SR flip-flop. We connect two clocked SR flip-flops
together. The only difference is that the second SR flip-flop uses the complement of the clock
signal, CLK. The first flip-flop is known as the master, and the second flip-flop is known as
the slave. This flip-flop is also known as a master-slave SR flip-flop. Here, is how this circuit
works.

© Smruti R. Sarangi 282

Definition 51
A master-slave flip-flop contains two flip-flops that are connected to each other. The mas-
ter’s output is the slave’s input. Typically, the slave uses a clock signal that is the logical
complement of the master’s clock.

Whenever the clock signal is high (1), the inputs (S and R) are read into the first SR flip-
flop. When the clock signal becomes low (0), then the first flip-flop stops accepting new data;
however, the second flip-flop takes the output of the first flip-flop and sets its output accordingly.
Thus, new data arrives at the output terminals Q and Q when the clock transitions from 1 to
0 (downward clock edge). We thus have created a flip-flop that is edge sensitive.

However, some problems still remain. If both S and R are 1, then there might be a race
condition, and the output can be unpredictable. This problem needs to be fixed. Let us first
try to look at a complex solution that augments the clocked edge sensitive SR flip-flop, and
then look at simpler solutions.

7.3.5 JK Flip-flop

J

K

Clk

Q

Q

Clk

N1

N2

Figure 7.20: The JK flip-flop

Figure 7.20 shows a JK flip-flop. There are two minor differences as compared to the master-
slave SR flip-flop. The first is that the inputs are now J and K, instead of S and R. The second
is that Q and Q are now inputs to the input NAND gates (N1 and N2).

Let us do a case by case analysis. Assume that the clock is high. If J and K are both 0,
then the outputs of N1 and N2 are both 1 and the case is same as that for the master-slave
SR flip-flop. The outputs are maintained. If J=1 and K=0, then we need to consider the value
of Q. If Q = 1, then Q = 0, and the output of NAND gate N1 (see Figure 7.20) is 0. The
outputs of the master flip-flop are therefore 1 and 0 respectively. The output of the slave after
the downward/ negative clock edge will therefore be: Q = 1, Q = 0.

Now, assume that Q = 0, and Q=1. In this case, the outputs of both N1 and N2 are 1 and
thus all the values are maintained. Hence, after the negative clock edge we have: Q=1, and
Q = 0. We can thus conclude, that if J=1 and K=0, Q=1, and Q=0.

Similarly, if J=0 and K=1, we can prove that Q=0, and Q=1.

283 © Smruti R. Sarangi

Let us now consider the case when both J and K are 1. In this case the output of N1 is Q and
the output of N2 is Q. The output of the master flip-flop is equal to Q and Q respectively. After
the negative clock edge the outputs will be: Q = Qold and Q = Qold. Thus, the outputs will
get toggled. We will not have a race condition anymore. Table 7.3 shows the state transition
table for the JK flip-flop.

J K Q Q Action

0 0 Qold Qold maintain

1 0 1 0 set

0 1 0 1 reset

1 1 Qold Qold toggle

Table 7.3: State transition table for a JK flip-flop

7.3.6 D Flip-flop

Q

Q

D

Clk

Figure 7.21: D flip-flop

Instead of having a dedicated S(set) and R (reset) signal, we can make our life easy by
making one the complement of the other. However, in this case, we will not have a method
of maintaining the value. The input will get reflected at the output at every negative clock
edge. In a lot of cases, this is sufficient and we do not need dedicated logic to either maintain
or toggle the values. In this case, we can use the simplistic D flip-flop as shown in Figure 7.21.
It is basically a SR flip-flop where R = S.

Note that the second input (to the lower NAND gate) is equal to D ∧ Clk. When Clk is
equal to 1, the second input is equal to D. When Clk is 0, the flip-flop maintains the previous
values and does not accept new data.

7.3.7 Master-slave D Flip-flop

Akin to the JK flip-flop we can have a master-slave version of the D flip-flop.
Figure 7.22 shows a master-slave version of the D flip-flop. We connect one D flip-flop to a

SR flip-flop. Here, we do not need wires connecting the inputs with Q and Q because we are
not interested in toggling the state. Secondly, we have avoided race conditions by not having
the evil (1,1) input.

© Smruti R. Sarangi 284

D

Clk

Q

Q

Clk

Figure 7.22: Master-slave D flip-flop

A master-slave flip-flop uses 8 NAND gates and 1 inverter for the clock. A master slave
D flip-flop requires 34 transistors, and a master-slave JK flip-flop requires 38 transistors. This
is a large expenditure for saving just 1 bit! We should be able to do better. We shall see in
later sections that we can store a single bit with even 1 transistor. But the circuit will become
extremely slow. We can thus conclude that flip-flops are inefficient as far as power and the
transistor budget are concerned; however, they are very fast. If we need to save a lot of data
and we are willing to sacrifice on time, then we should opt for SRAM and DRAM memories
(described in Section 7.4).

7.3.8 Metastability

Up till now we have assumed that at the negative edge of a clock the input instantaneously
reflects at the output. This high level assumption is however not strictly correct. Readers need
to appreciate the fact that every digital circuit is at its core an analog circuit. Quantities like
current and voltage take time to reach their optimal levels, and the circuit is sensitive to the
voltage levels, and the timing of the inputs. The readers can refer to standard text books [Taub
and Schilling, 1977] on digital design for a thorough explanation.

In this section, we shall take a look at one particular aspect of the analog nature of flip flops
known as metastability. If there is a change in the input close to the negative clock edge, then
the output becomes non-deterministic, and might even fluctuate or oscillate for some period of
time. This phenomenon is known as metastability. To avoid such behaviour it is necessary to
ensure that the input is stable (does not change) for tsetup units of time before the clock edge,
and is also stable for thold units of time after the clock edge. This means that there is a window
of time around the clock edge in which the input to the flip flop needs to remain stable. Only,
in this case, we can guarantee the correct operation of a flip flop. This window of time in which
we want the inputs to be stable is known as the keep out region.

Let us now display these concepts graphically in Figure 7.23. We need to note that in
practice, the setup time, and the hold time are small fractions of the total cycle time (< 10%).
Designers take special precautions to ensure that there are no transitions in the input in the keep
out region. We shall see that this phenomenon has important implications when we discuss I/O
circuits. These circuits have sophisticated delay elements that delay signals to keep transitions
out of the keep out region.

285 © Smruti R. Sarangi

clock
edge

setup
time

hold
time

keep out
region

Figure 7.23: Setup time, hold time, and the keep out region

7.3.9 Registers

Parallel In–Parallel Out

We can store n bit data by using a set of n master slave D flip flops. Each D flip flop is
connected to an input line, and its output terminal is connected to an output line. Such an n
bit structure is known as an n bit register. Here, we can load n bits in parallel, and also read
out n bits in parallel at every negative clock edge. Hence, this structure is known as a parallel
in–parallel out register. Its structure is shown in Figure 7.24.

clk

D Q

clk

D Q

clk

D Q

Inputs

Outputs

Figure 7.24: A parallel in–parallel out register

© Smruti R. Sarangi 286

clk

D Q

clk

D Q

clk

D Q

Input

Outputs

Figure 7.25: A serial in–parallel out register

Serial In – Parallel Out

Let us now consider a serial in–parallel out register as shown in Figure 7.25. Here, we have
a single input that is fed into the leftmost D flip flop. Every cycle, the input moves to the
adjacent flip flop on the right. Thus, to load n bits it will take n cycles. The first bit will get
loaded into the leftmost flip flop in the first cycle, and it will take n cycles for it to reach the
last flip flop. By that time, the rest of the n − 1 flip flops will get loaded with the rest of the
n−1 bits. We can then read out all the n bits in parallel (similar to the parallel in–parallel out
register). This register is also known as a shift register and is used for implementing circuits
used in high speed I/O buses.

7.4 Memories

7.4.1 Static RAM (SRAM)

SRAM Cell

SRAM refers to static random access memory. A basic SRAM cell contains two cross-coupled
inverters as shown in Figure 7.26. In comparison, a basic SR flip-flop or a D flip-flop contains
cross-coupled NAND gates. The design is shown in Figure 7.26.

The core of the SRAM cell contains 4 transistors (2 in each inverter). This cross-coupled
arrangement is sufficient to save a single bit (0 or 1). However, we need some additional circuitry
to read and write values. At this point, the reader might be wondering if it is a bad idea to have
cross-coupled inverters in a latch. They after all require fewer transistors. We shall see that the
overheads of implementing the circuitry for reading and writing a SRAM cell are non-trivial.
The overheads do not justify making a latch with a SRAM cell as its core.

The cross coupled inverters are connected to transistors on each side (W1, W2). The gates

287 © Smruti R. Sarangi

vdd

Word line (WL)

BL BL
(Bit line)

W1 W2

Figure 7.26: A 6 transistor SRAM cell

of W1 and W2 are connected to the same signal, known as the word line. The four transistors
in the two inverters, W1, and W2, comprise the SRAM cell. It has six transistors in total.
Now, if the voltage on the word line is low, then W1 and W2 are off. It is not possible to read
or write the SRAM cell. However, if the signal on the word line is high, then W1 and W2 are
on. It is possible to access the SRAM cell.

Now, the transistors, W1, and W2, are connected to copper wires on either side known as
the bit lines. The bit lines are designed to carry complementary values. One of them is BL and
the other is BL. To write a value into the cell it is necessary to set the values of BL and BL to
A and A respectively, where A is the value that we intend to write. To read a value, we need
to turn the word line on and read the voltages of the bit lines.

Let us now delve slightly deeper into the operation of the SRAM cells. Note that SRAM
cells are not solitary units like latches. They exist as a part of an array of SRAM cells. We
need to consider the array of SRAM cells in entirety.

Array of SRAM Cells

Figure 7.27 shows a typical SRAM array. SRAM cells are laid out as a two dimensional matrix.
All the SRAM cells in a row share the word line, and all SRAM cells in a column share a pair
of bit lines. To activate a certain SRAM cell it is necessary to turn its associated word line
on. This is done by a decoder. It takes a subset of address bits, and turns the appropriate
word line on. A single row of SRAM cells might contain 100+ SRAM cells. Typically, we will

© Smruti R. Sarangi 288

D
e
co

d
e
r

SRAM
cell

SRAM
cell

SRAM
cell

SRAM
cell

SRAM
cell

SRAM
cell

SRAM
cell

SRAM
cell

SRAM
cell

SRAM
cell

SRAM
cell

SRAM
cell

Address

BL BL
WL

WL

WL

Write
driver

Write
driver

Data in
Sense amplifier Sense amplifier

Data out

Data in

Column mux/demux
Address

Figure 7.27: Array of SRAM Cells

be interested in the values of 32 SRAM cells (on a 32-bit machine). In this case the column
mux/demux selects the bit lines belonging to the SRAM cells of interest. It uses a subset of the
bits in the address as the column select bits. This design methodology is also known as 2.5D
memory organisation.

As the size of the array grows it may become more asymmetric. This needs to be avoided,
otherwise the capacitive loading on the word lines or bit lines will become prohibitive. Hence,
columns need to become wider and the column mux/demux structure needs to be driven by a
large column decoder.

The process of writing is easy. The strong write drivers need to set the values of BL and
BL. To write 1, BL needs to be driven to 1, and BL needs to be driven to 0. However, reading
a value is slightly more difficult. The reason is that a SRAM cell needs to charge an entire bit
line to the stored value such that it can be read. Since hundreds of SRAM cells are typically
connected to a bit line, the bit line has a very high capacitance. Consequently, it will take a
long time to charge/discharge the bit line to logical 0 or 1.

289 © Smruti R. Sarangi

Hence, something smarter needs to be done. The read operation is divided into two phases.
In the first phase, BL and BL are precharged to Vdd/2 volts. If the supply voltage is equal
to 1 volt, then the bit lines are charged to 0.5 volts. This step is known as pre-charging.
Subsequently, the SRAM cells of interest are accessed by setting the corresponding word line.
The sense amplifiers simply monitor the difference in voltage between BL and BL. The moment
the absolute value of the difference exceeds a threshold, the result can be inferred. For example,
if we are reading a logical 1, we need not wait for BL to reach 1, and BL to reach 0. If the
voltage difference between BL and BL exceeds a threshold, then we can declare the result to
be 1.

This method is very fast because of the following reasons. Pre-charging bit lines is very
fast because there are dedicated pre-charge circuits that can pump a large amount of current
into the bit lines to enable faster charging or discharging. After pre-charging inferring the
stored value from the voltage swing between BL and BL is also very fast. This is because the
threshold for the voltage swing is much lower as compared to the supply voltage. Given the
high capacitance of bit lines, the time to charge/discharge bit lines is very crucial. Hence, if we
reduce the amount of the voltage swing that is required to infer the value stored in the SRAM
cell, it makes a significant difference.

We can justify the overhead of pre-charge circuits, write drivers, and sense amplifiers, if we
have a large number of SRAM cells. Hence, SRAMs are suitable for structures such as register
files and on-chip memories. They should not be used for storing a few bits; flip-flops are better
choices.

7.4.2 Content Addressable Memory (CAM)

CAM Cell

In this section, we shall look at a special type of memory cell called a CAM (Content Addressable
Memory) cell. First, consider an SRAM array. A typical SRAM array is a matrix of SRAM
cells. Each row contains a vector of data. A given row is addressed or located by using a
specific set of address bits. However, it is possible to locate a row using a different method.
We can address a row by its content. For example, if each row contains 32 SRAM cells, then
we can think of the contents of a row as a 32-bit number. We wish to address the row this
32-bit number. For example, if a row contains 0x AB 12 32 54, then we should be able to find
the index of the row that contains this value. Such a memory is known as a CAM memory,
and each basic cell is known as a CAM cell. A CAM memory is typically used to implement
a hashtable(see [Cormen et al., 2009]) in hardware. A hashtable saves key-value pairs such as
(name and address). We address a hashtable by its key, and read the value. It is a more flexible
data structure than an array, because we are not limited to integer indices. We shall use CAM
arrays to implement some memory structures in Chapter 11.

Let us take a look at a 10 transistor CAM cell in Figure 7.28. If the value stored in the
SRAM cell, V , is not equal to the input bit, Ai, then we wish to set the value of the match
line to 0. In the CAM cell, the upper half is a regular SRAM cell with 6 transistors. We have
4 extra transistors in the lower half. Let us now consider transistor T1. It is connected to a
global match line, and transistor T2. T1 is controlled, by the value, V , which is stored in the
SRAM cell, and T2 is controlled by Ai. Let us assume that V = Ai. If both of them are 1, then
transistors T1, and T2 are in the ON stage, and there is a direct conducting path between the

© Smruti R. Sarangi 290

vdd

Word line (WL)

BL BL

W1 W2

Ai Ai

match

T1

T2

T3

T4

Figure 7.28: A 10 Transistor CAM cell

match line and ground. Thus, the value of the match line will get set to 0. However, if V and
Ai are both 0, then the path through T1 and T2 is not conducting. But, in this case, the path
through T3, and T4 becomes conducting, because the gates of these transistors are connected
to V , and Ai respectively. The input to both the gates is a logical 1. Thus, the match line will
be pulled down to 0. The reader can conversely verify that if V = Ai, no conducting path is
formed. Thus, a CAM cell drives the match line to a logical 0, if there is a mismatch between
the value stored and the input bit, Ai.

Array of CAM Cells

Figure 7.29 shows an array of CAM cells. The structure is mostly similar to an SRAM array.
We can address a row by its index, and perform a read/write access. Additionally, we can
compare each row of the CAM cell with the input, A. If any row matches the input, then the
corresponding match line will have a value of 1. We can compute a logical OR of all the match
lines, and decide if we have a match in the CAM array or not. Additionally, we can connect
all the match lines of the CAM array to a priority encoder to find the index of the row that
matches the data.

291 © Smruti R. Sarangi

D
e
co

d
e
r

CAM
cell

Address

BL BL

Write
driver

Write
driver

Data in
Sense amplifier Sense amplifier

Data out

Data in

Column mux/demux
Address

A A1 1

CAM
cell

CAM
cell

CAM mode

CAM
cell

BL BL
A A2 2

CAM
cell

CAM
cell

CAM
cell

BL BL
A An n

CAM
cell

CAM
cell

WL

WL

WL

match

match

P
ri

o
ri

ty
 e

n
co

d
e
r

Matching
index

Figure 7.29: Array of CAM Cells

7.4.3 Dynamic RAM (DRAM)

Let us now take a look at a memory technology that just uses one transistor to save a bit. It
is thus very dense, area, and power efficient. However, it is also much slower than SRAMs and
latches. It is suitable for large off-chip memories.

Word line (WL)

BL
(Bit line)

Figure 7.30: A DRAM cell

A basic DRAM(dynamic RAM) cell is shown in Figure 7.30. The gate of the single transistor

© Smruti R. Sarangi 292

is connected to the word line, which enables or disables it. One of the terminals is connected
to a capacitor that stores charge. If the bit stored is a logical 1, then the capacitor is fully
charged. Otherwise, it is not charged.

Thus, reading and writing values is very easy. We need to first set the word line such that
the capacitor can be accessed. To read the value we need to sense the voltage on the bit line.
If it is at ground potential, then the cell stores 0, else if it is close to the supply voltage, then
the cell stores 1. Similarly, to write a value, we need to set the bit line (BL) to the appropriate
voltage, and set the word line. The capacitor will get charged or discharged accordingly.

D
e
co

d
e
r

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

DRAM
cell

Address

BL
WL

WL

WL

Write
driver

Write
driver

Sense amplifier

Refresh Refresh

Data in Data in

Column mux/demux
Address

Sense amplifier

Data outData out

Figure 7.31: Array of DRAM cells

However, in the case of DRAMs, everything does not come for free. Let us assume that
the capacitor is charged to a voltage equal to the supply voltage. In practice, the capacitor
will gradually leak some charge through the dielectric, and the transistor. This current is very
small, but the total loss of charge over a large duration of time can be significant and can

293 © Smruti R. Sarangi

ultimately discharge the capacitor. To prevent this, it is necessary to periodically refresh the
value of a DRAM cell. We need to read it and write the data value back. This also needs to
be done after a read operation because the capacitor loses some charge while charging the bit
line. Let us now try to make an array of DRAM cells.

Array of DRAM Cells

We can construct an array of DRAM cells (see Figure 7.31) the same way that we created an
array of SRAM cells. There are three differences. The first is that there is one bit line instead
of two. Second, we also have a dedicated refresh circuit connected to the bit lines. This is used
after read operations, and is also invoked periodically. Finally, in this case the sense amplifiers
appear before the column mux/demux. The sense amplifiers additionally cache the data for the
entire DRAM row (also called a DRAM page). They ensure that subsequent accesses to the
same DRAM row are fast because they can be serviced directly from the sense amplifiers.

Let us now briefly discuss the timing aspects of modern DRAMs. In the good old days,
DRAM memory was accessed asynchronously. This means that the DRAM modules did not
make any timing guarantees. However, nowadays every DRAM operation is synchronised with
a system clock. Hence, today’s DRAM chips are synchronous DRAM chips (SDRAM chips).
Figure 13.26 in Chapter 13 shows the timing diagram of a simple SDRAM chip for a read
access.

Synchronous DRAM memories typically use the DDR4 or DDR5 standards as of today.
DDR stands for Double Data Rate. Devices using the earliest standard, DDR1, send 8-byte
data packets to the processor on both the rising and falling edges of the clock. This is known
as double pumped operation. The peak data rate of DDR1 is 1.6 GB/s. Subsequent DDR
generations extend DDR1 by transferring data at a higher frequency. For example, DDR2 has
twice the data rate as DDR1 devices (3.2 GB/s). DDR3 further doubles the peak transfer rate
by using a higher bus frequency, and has been in use since 2007 (peak rate of 6.4GB/s).

7.4.4 Read Only Memory (ROM)

Let us now consider simpler memory structures that are read-only in nature. We require read
only memories that save data that should never be modified. This can include security informa-
tion in smart phones, BIOS chips in the motherboards of processors, or the programs in some
microcontrollers. We desire read only memory such that it is not possible for users to mali-
ciously change the information stored in them. It turns that we can make simple modifications
to our DRAM cell, and construct read only memories.

ROM Memories

The capacitor in a DRAM cell stores a logical bit. If it stores a logical 1, then the charge across
the capacitor is equal to the supply voltage Vdd, and if it stores a logical 0, then the charge
across the capacitor is 0V. Instead of having a capacitor, we can directly connect one end of
the transistor to either ground or Vdd depending upon the bit that we wish to store. This can
be done at the time of designing and manufacturing the chip. The ROM memory cell as shown
in Figure 7.32 replaces the capacitor by a direct connection to Vdd or ground. A ROM array is
similar to a DRAM array. However, it does not have write drivers, and refresh circuitry.

© Smruti R. Sarangi 294

Word line (WL)

BL
(Bit line)

Word line (WL)

BL
(Bit line)

Vdd

(a) (b)

Figure 7.32: (a) ROM cell storing a logical 0, (b) ROM cell storing a logical 1

PROM (Programmable ROM) Memories

Word line (WL)

BL
(Bit line)

Antifuse

Figure 7.33: PROM Cell

Let us now look at a programmable ROM (PROM) cell that can be programmed only once
to store either a 0 or 1. Typically vendors of PROM cells release PROM arrays to the market.
They are then programmed by microprocessor vendors to hold a given set of data values. Note
that once data has been written, we cannot make any further modifications. Hence, it acts like
read only memory. A PROM cell is shown in Figure 7.33. We have a connection between the
transistor and ground through an element known as an antifuse. An antifuse is the reverse of a

295 © Smruti R. Sarangi

conventional fuse. By default, an antifuse is a very weak conductor of current. However, when
we transfer a large amount of current through the antifuse, it changes its structure and forms
a conducting path. In the former case, the transistor is left floating, and it does not have the
ability to drive the bit line to a logical 0. Hence, we can infer that the cell stores a logical 1.
Once, the antifuse becomes conducting, the transistor (if enabled by the word line) can drive
the bit line to a logical 0. Thus, in this case, the transistor stores a logical 0. A PROM cell
based array is similar to an array of ROM cells. Each bit line is initially precharged. After
enabling the word line, if the voltage at the sense amplifiers does not increase, then we can infer
a logical 1. However, if the voltage keeps decreasing towards 0 V, then we can infer a logical 0.

We can build antifuses with a variety of materials. Dielectric antifuses use a thin layer
of a sensitive material (silicon oxides) between two conducting wires. This thin layer breaks
down and forms a conducting path upon the application of a large current pulse. In place of
dielectrics we can use other materials such as amorphous silicon.

Read only memories are useful in a limited set of scenarios since their contents cannot be
modified. We have two related sets of devices called EPROM (Erasable PROM), and EEPROM
(Electrically Erasable PROM). Typically these memories are made of special transistors that
allow charge storage in a structure known as a floating gate. EPROM memories could be erased
by applying a strong ultraviolet light pulse to the floating gate. However, such memories are
not used today, and have been superseded by flash memories that can be read, written, and
erased electrically. Flash memories are explained in detail in Section 13.8.4.

7.4.5 Programmable Logic Arrays

It turns out that we can make a combinational logic circuit out of a memory cell similar to a
PROM cell very easily. Such devices are known as programmable logic arrays, or PLAs. PLAs
are used to implement complex logic functions consisting of tens or hundreds of minterms in
practice. The advantage of a PLA over a hardwired circuit made up of logic gates is that
a PLA is flexible. We can change the Boolean logic implemented by the PLA at run time.
In comparison, a circuit made in silicon can never change its logic. Secondly, designing and
programming a PLA is simpler, and there are a lot of software tools to design and work with
PLAs. Lastly, a PLA can have multiple outputs, and it can thus implement multiple Boolean
functions very easily. This additional flexibility comes at a cost, and the cost is performance.

Let us now consider an example. Let us assume that we wish to implement the Boolean
function (ABC+AB) using a PLA. Let us break the Boolean expression into a set of minterms
(see Section 2.1.6). We thus have:

ABC +AB = ABC +ABC +ABC (7.12)

Since, we have three variables (A, B, and C) here, we have 8 possible minterms. Let us
thus have a PLA with 8 rows that generates the values of all the possible minterms. Let each
row correspond to a minterm. Let us design the PLA in such a way that a row has an output
equal to 1 if the corresponding minterm evaluates to 1. We can compute the result of the entire
Boolean expression by computing the logical OR of the values of all the minterms that we are
interested in. For this specific example (ABC +AB), we are interested in 3 out of 8 minterms.

© Smruti R. Sarangi 296

Hence, we need a mechanism to filter these 3 minterms and compute a logical OR of their
values.

Let us start out with the design of a PLA cell.

PLA Cell

Result line

X

PLA cell

(a)

Result line

E E E1 2 n

(b)

E

X1 X2 Xn

Figure 7.34: A PLA cell

The PLA cell shown in Figure 7.34(a) is in principle similar to a basic PROM cell. If the
value (E) at the gate is equal to 1, then the NMOS transistor is in the ON state. As a result
of this, the voltage difference between the source and drain terminals of the NMOS transistor
is very small. In other words, we can simplistically assume that the voltage of the result line
is equal to the voltage of the signal, X. If (E = 0), the NMOS transistor is in the OFF state.
The result line is floating, and it maintains its precharged voltage. In this case, we propose to
infer a logical 1.

Let us now construct a row of PLA cells where each PLA cell is connected to an input wire
at its source terminal as shown in Figure 7.34(b). The inputs are numbered X1 . . . Xn. The
drains of all the NMOS transistors are connected to the result line. The gates of the transistors
of the PLA cells are connected to a set of enable signals, E1 . . . En. If any of the enable signals
is equal to 0, then that specific transistor is disabled, and we can think of it as being logically
removed from the PLA array.

Let us consider all the PLA cells that are enabled (gate voltage is equal to a logical 1). If
any of the source inputs (X1 . . . Xn) is equal to 0, then the voltage of the result line will be
driven to 0. We assume that we precharge the result line to a voltage corresponding to logical
1 at the beginning. Now, if none of the input voltages is equal to 0, then the value of the result
line will be equal to a logical 1. We can thus conclude that the Boolean function computed
by a row of PLA cells is equal to X1.X2Xn (assuming that all the cells are enabled). For
example, if we want to compute the value of the minterm, ABCD, then we need to set X1 = A,
X2 = B, X3 = C, and X4 = D. The Boolean value represented by the result line will be equal
to ABCD.

In this manner, we can evaluate the values of all the minterms by connecting the source
terminals of PLA cells to the input bits. Up till now we have not considered the case of Boolean
variables in minterms in their complemented form such as ABCD. For the minterm, ABCD,
we need to make the following connections. We need to connect 4 PLA cells to the result line,

297 © Smruti R. Sarangi

where their source terminals are connected to the signals A, B, C, and D respectively. We need
to generate, A, and D by complementing the values of A and D using inverters.

Array of PLA Cells

Precharge
driver

Precharge
driver

Precharge
driver

Precharge
driver

Precharge
driver

Precharge
driver

Precharge
driver

Precharge
driver

A A B B C C
ABC

ABC

ABC

ABC

ABC

ABC

ABC

ABC

Precharge
driver

AND plane OR plane

PLA Cell Enabled in the
OR plane ABC + AB AB + AB

Output lines

Figure 7.35: Array of PLA cells

Let us now create an array of PLA cells as shown in Figure 7.35. Each row corresponds to
a minterm. For our 3 variable example, each row consists of 6 columns. We have 2 columns for
each variable (original and complemented). For example, the first two columns correspond to
A and A respectively. In any row, only one of these two columns contains a PLA cell. This is
because A and A cannot both be true at the same time. In the first row, we compute the value
of the minterm, ABC. Hence, the first row contains PLA cells in the columns corresponding to
A, B, and C. We make similar connections in the rest of the rows for the remaining minterms.
This part of the PLA array is known as the AND plane because we are computing a logical
AND of the values (original or complemented) of variables. The AND plane of the PLA array is

© Smruti R. Sarangi 298

independent of the Boolean functions that we wish to compute. Given the inputs, it calculates
the value of all possible minterms.

Now, we need to compute the logical OR of the minterms that we are interested in. For
example, in Equation 7.12, we are interested in the logical OR of 3 minterms. To compute the
OR function, we use another PLA array known as the OR plane. However, there is a small
problem here. A row of PLA cells is designed to compute a logical AND of all the inputs. We
can use DeMorgan’s theorem to compute the OR of inputs using a PLA array. Let us use the
following relationship:

(X1 +X2 + . . . Xn) = X1 +X2 + . . . Xn = X1.X2. . . . Xn

Thus, to compute the logical OR of (X1, X2, . . . Xn), we need to complement each input,
compute the logical AND of all the complemented inputs, and compute the complement of the
result. A similar computation needs to be performed in the OR plane of the PLA array. In
Figure 7.35, we have inverters to compute the logical negation of each minterm. Then, we
compute their logical AND using a column of PLA cells (similar to a row of PLA cells). In
this case, only the PLA cells that correspond to minterms in the Boolean expression need to
be enabled (shown as an arrow in Figure 7.35). The rest of the PLA cells in each column are
disabled. Finally, we compute the logical negation of the result line, to get the value of the
Boolean function.

Note that we can have multiple output lines in the OR plane, and thus we can compute the
values of multiple Boolean functions in parallel. In Figure 7.35 we also compute the value of
A ⊕ B = A.B + A.B in the second output line. For the result lines, and the output lines, we
assume an array of sense amplifiers that perform appropriate voltage conversions. For the sake
of simplicity, we do not show them in the figure.

The important point to remember here is that the OR plane is programmable. As shown
in Figure 7.35, we compute the logical OR of a set of result lines by setting the gate voltage of
the connecting PLA cell to a logical 1. At any point of time, we can change the connections to
the output lines by changing the gate voltages, and we can thus change the Boolean expression
that is computed by the PLA.

Way Point 4

• We have assembled the arsenal required to implement circuits to perform complex
arithmetic operations.

• Using our set of logic gates, flip-flops, memories, and arithmetic circuits(to be studied
in Chapter 8), we are ready to implement a full fledged processor.

299 © Smruti R. Sarangi

7.5 Summary and Further Reading

7.5.1 Summary

Summary 7

1. Modern processors use silicon based transistors. Silicon is a semi-conductor. However,
its properties can be modified by adding impurities (known as doping) from the III,
and V groups of the periodic table. If we add group III elements such as boron (p
type), we remove a charge carrier from the silicon atom lattice, and thus create a hole.
Similarly, if we add a group V element such as phosphorus (n type), then we introduce
an additional electron to the lattice. In either case, we increase the conductivity of
silicon.

2. We can create a p-n junction by juxtaposing p-type and n-type silicon structures. A
p-n junction conducts when it is forward biased (the p side is connected to the higher
voltage), and stops conducting when it is reverse biased.

3. We can create an NMOS transistor by having two wells of n-type silicon in a p-
type substrate. These wells are connected to electrical terminals, and are known as
the source and drain. The area between the wells is known as the channel, and is
separated from an electrical terminal (known as the gate) by a thin layer of silicon
dioxide. When we apply a positive voltage (> threshold voltage) at the gate, the NMOS
transistor can conduct current. Otherwise, it acts like an open circuit.

4. In comparison, the PMOS transistor has two p-type wells in an n-type substrate. It
forms a conducting path, when the voltage at the gate is 0V.

5. We can use NMOS and PMOS transistors to implement a basic inverter, NAND,
NOR, AND and OR gates.

6. We can use these basic gates to create a host of complex structures such as the XOR
gate, multiplexer, decoder, encoder, and priority encoder.

7. By creating a feedback path between NAND or NOR gates, we can save a logical bit.
This structure is known as a latch. If we enable and disable access to a latch based
on the value of a clock signal, then the latch is known as a flip flop.

8. We have considered SR, JK, and D flip flops in this chapter. The SR flip flop does
not have deterministic outputs for all combinations of input transitions.

9. We use a master slave design for JK, and D flip flops because we can make the inputs
appear at the outputs almost instantaneously at the negative clock edge.

10. A set of flip flops can be used to make registers.

© Smruti R. Sarangi 300

11. We use a cross coupled pair of inverters to make an SRAM cell. It is connected
by two transistors (enabled by a word line) to a pair of bit lines. A sense amplifier
monitors the difference in voltages across the pair of bit lines. Based on the sign of
the difference, we can infer a logical 0 or 1.

12. In comparison, a DRAM cell uses a single transistor and a capacitor. It is a high
density memory technology. However, we need to regularly refresh the value of DRAM
cells to keep it operational.

13. We can modify the basic structure of a DRAM cell by creating hardwired connections
between the transistor and the supply rails to implement read only memory. Pro-
grammable ROM (PROM) cells use an antifuse to create an alterable connection to
Vdd.

14. We can create programmable logic arrays for computing the values of Boolean expres-
sions by arranging PLA cells (similar to PROM cells) in an array. In the AND plane,
each row computes the value of a minterm. In the OR plane, we compute a logical
OR of all the minterms that form a part of the Boolean expression.

7.5.2 Further Reading

Semiconductors and electronic devices are thoroughly studied in advanced courses on semicon-
ductor device physics. Readers can refer to the books by Sze [Sze and Ng, 2006], and Street-
man [Streetman and Banerjee, 2005] for a deeper discussion on the physics of semiconductor
devices. In advanced courses on semiconductor device physics, students typically study the
basics of the operations of diodes, transistors, and other semiconductor devices from the point
of view of quantum mechanics. After introducing semiconductor devices, we introduced com-
binational logic gates and sequential logic elements. The simple structures that we introduced
in this chapter, are very commonly used. Students should however take a look at the following
books [Lin, 2011, Wakerly, 2000, Dally and Poulton, 1998] for getting a thorough understanding
of the devices, including their behaviour from the perspective of analog electronics. We lastly
talk about memories. The book, “Introduction to VLSI Systems”, by Ming Bo Lin [Lin, 2011]
has a fairly in-depth coverage of memory structures. Memory technology, especially DRAM
technology, is advancing very quickly. A host of standards, and design styles have evolved over
the last decade. A lot of these trends are discussed in the book on memory systems by Jacob,
Ng, and Wang [Jacob et al., 2007]. This book is also very useful for professionals who are
looking to build commercial systems with state of the art memory technology.

301 © Smruti R. Sarangi

Exercises

Transistors and Logic Gates

Ex. 1 — Describe the operation of a p-n junction.

Ex. 2 — Define drift and diffusion current.

Ex. 3 — Describe the operation of a NMOS transistor?

Ex. 4 — Draw the circuit of a CMOS inverter, NOR gate, and NAND gate.

Ex. 5 — Implement the AND, OR and NOT gates using NAND gates only.

Ex. 6 — Implement the AND, OR and NOT gates using NOR gates only.

Ex. 7 — Implement XOR and XNOR gates using NAND gates only.

Ex. 8 — Implement the following Boolean functions by using only AND, OR and NOT gates.

(a) A.B +A.B +A.B.C

(b) (A+B + C).(A.B + C)

(c) (A+B).(C +D)

(d) A.B.C +A.B.C +D

Ex. 9 — Answer Question 8 by using only NAND gates.

Combinational Logic and Sequential Logic

Ex. 10 — Draw the circuit diagram of a 3× 8 decoder.

Ex. 11 — Draw the circuit diagram of a 8-3 bit encoder.

Ex. 12 — Draw the circuit diagram of a 8-3 bit priority encoder.

Ex. 13 — Suppose a poll has to be conducted with three entities A, B and C, each of which
can either vote a ‘yes’ (encoded as 1) or a ‘no’ (encoded as 0). The final output is equal to the
majority opinion. Draw a truth table of the system, simplify the function, and implement it
using logic gates.

* Ex. 14 — Most circuits in modern computers are built using NAND and NOR gates, be-
cause they are easy to build using CMOS technology. Suppose another technology in invented
in the near future, which implements a new gate, X, very efficiently. X takes 3 inputs A, B
and C and computes: X(A,B,C) = A.B + C. Using only X gates and NOT gates, how will
you implement the following function: f(A,B,C) = A+B + C?

© Smruti R. Sarangi 302

** Ex. 15 — Implement the following logic functions using a 4 to 1 multiplexer, and a single
NOT gate.

(a) AB +BC +AC

(b) A+B + C

(c) A.B +A.B.C

** Ex. 16 — Is it possible to implement every 3 variable Boolean function with a 4 to 1
multiplexer, and a single NOT gate? Prove your answer.

Sequential Logic

Ex. 17 — What is the difference between a flip-flop and a latch?

Ex. 18 — Define the following terms:

i)Metastability

ii)Keep out region

iii)Setup time

iv)Hold time

Ex. 19 — Why do we wish to avoid the indeterminate state in an SR flip-flop?

Ex. 20 — What is the advantage of an edge sensitive flip-flop?

* Ex. 21 — What is the fundamental advantage of a JK flip-flop over a D flip-flop?

Ex. 22 — Describe the design of registers in your own words.

Ex. 23 — An edge sensitive toggle flip-flop (or T flip-flop) has a single input T and toggles
its state on a negative clock edge if T = 1. If (T = 0), then it maintains its state. How will you
construct an edge sensitive T flip-flop form an edge sensitive J-K flip-flop?

* Ex. 24 — Can you create a negative edge triggered D flip-flop using 2 multiplexers, and a
NOT gate?

Ex. 25 — Design a SR flip-flop with NOR gates.

* Ex. 26 — Using two edge triggered D flip-flops, design a circuit that divides the frequency
of the clock signal by 4.

** Ex. 27 — Counters are essential components of any complex digital circuit. They are
essentially sequential circuits which loop through a specific set of states. Design a counter
which generates a sequence of numbers (in binary form) from 0 to 7 and cycles back again to
0. This is called a MOD 8 counter.

303 © Smruti R. Sarangi

** Ex. 28 — Using D flip-flops and logic gates, design a circuit, which generates the following
sequence of numbers:

001→ 100→ 010→ 101→ 110→ 111→ 011→ 001

Assume that the circuit never generates 000. This circuit can be used to generate pseudo-
random numbers.

Memories

Ex. 29 — Compare the power, area and time of a SRAM, DRAM, and latch.

Ex. 30 — Propose a design for the column mux/demux circuit.

Ex. 31 — What is the role of the match line in a CAM array?

Ex. 32 — What is the role of the refresh logic in a DRAM array?

Ex. 33 — Describe the design of a ROM and PROM cell.

Ex. 34 — Design a single PLA array to compute al the following Boolean functions:

a)A.B +B.C + C.A

b)A.B.C +A.B.C

c)A+B

Design Problems

Ex. 35 — Design the following circuits using a circuit simulator such as Spice and verify their
operation:

a)NOT gate

b)NAND gate

c)D flip-flop

d)SRAM cell

Ex. 36 — Prepare a report on novel memory technologies such as phase change memory,
Ferro-electric RAM, and magneto-resistive RAM.

© Smruti R. Sarangi 304

8
Computer Arithmetic

In Chapter 7, we described the basic circuits for logical operations and storage elements. In this
chapter, we will use this knowledge to design hardware algorithms for arithmetic operations.
This chapter also requires the knowledge of binary 2’s complement numbers and floating point
numbers that we gained in Chapter 2. The plan for this chapter is as follows.

In the first part, we describe algorithms for integer arithmetic. Initially, we describe the
basic algorithms for adding two binary numbers. It turns out that there are many ways of
doing these basic operations, and each method has its own set of pros and cons. Note that the
problem of binary subtraction is conceptually the same as binary addition in the 2’s complement
system. Consequently, we do not need to treat it separately. Subsequently, we shall see that
the problem of adding n numbers is intimately related to the problem of multiplication, and it
is a fast operation in hardware. Sadly, very efficient methods do not exist for integer division.
Nevertheless, we shall consider two popular algorithms for dividing positive binary numbers.

After integer arithmetic, we shall look at methods for floating point (numbers with a decimal
point) arithmetic. Most of the algorithms for integer arithmetic can be ported to the realm
of floating point numbers with minor modifications. As compared to integer division, floating
point division can be done very efficiently.

8.1 Addition

8.1.1 Addition of Two 1-bit Numbers

Let us look at the problem of adding two 1-bit numbers, a and b. Both a and b can take two
values – 0 or 1. Hence, there are four possible combinations of a and b. Their sum in binary
can be either 00, 01, or 10. Their sum will be 10, when both a and b are 1. We should make an
important observation here. The sum of two 1 bit numbers might potentially be two bits long.
Let us call the LSB of the result as the sum, and the MSB as the carry. We can relate this
concept to standard primary school addition of two 1 digit decimal numbers. If we are adding

305

© Smruti R. Sarangi 306

8 and 9, then the result is 17. We say that the sum is 7, and the carry is 1. Similarly, if we add
3 and 4, then the result is 7. We say that the sum is 7, and the carry is 0.

We can extend the concept of sum and carry to adding three 1 bit numbers also. If we are
adding three 1 bit numbers then the range of the result is between 00 and 11 in binary. In this
case also, we call the LSB as the sum, and the MSB as the carry.

Definition 52

sum The sum is the LSB of the result of adding two or three 1 bit numbers.

carry The carry is the MSB of the result of adding two or three 1 bit numbers.

For an adder that can add two 1 bit numbers, there will be two output bits – a sum s and a
carry c. An adder that adds two bits is known as a half adder. The truth table of a half adder
is shown in Table 8.1.

Definition 53
A half adder adds two bits to produce a sum and a carry.

a b s c

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Table 8.1: Truth table of a half adder

From the truth table, we can conclude that s = a ⊕ b = a.b + a.b, where ⊕ stands for
exclusive or, ‘.’ stands for boolean AND, and ‘+’ stands for boolean OR. Secondly, c = a.b.
The circuit diagram of a half adder is shown in Figure 8.1. As we can see, a half adder is a
very simple structure and we have constructed it using just six gates in Figure 8.1.

8.1.2 Addition of Three 1-bit Numbers

The aim is to be ultimately able to add 32-bit numbers. To add the two least significant bits,
we can use a half adder. However, for adding the second bit pair, we cannot use a half adder
because there might be an output carry from the first half adder. In this case, we need to add
three 1-bit numbers. Hence, we need to implement a full adder that can add 3 bits. One of
these bits is a carry out of another adder and we call it the input carry. We represent the input
carry as cin, and the two other input bits as a and b.

307 © Smruti R. Sarangi

a
b

a
b

C

S

 Half
adder

a

b

S

C

Figure 8.1: A half adder

Definition 54 An adder than can add 3 bits is known as a full adder.

Table 8.2 shows the truth table for the full adder. We have three inputs – a, b, and cin.
There are two output bits – the sum (s), and the carry out (cout).

a b cin s cout
0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 1

Table 8.2: Truth table of a full adder

From the truth table, we can deduce the following relationships:

© Smruti R. Sarangi 308

s = a⊕ b⊕ cin

= (a.b+ a.b)⊕ cin

= (a.b+ a.b).cin + (a.b+ a.b).cin

= a.b.cin + a.b.cin + (a.b).a.b.cin

= a.b.cin + a.b.cin + (a+ b).(a+ b).cin

= a.b.cin + a.b.cin + a.b.cin + a.b.cin

cout = a.b+ a.cin + b.cin

The circuit diagram of a full adder is shown in Figure 8.2. This is far more complicated than
the circuit of a half adder. We have used 12 logic gates to build this circuit. Furthermore, some
of these logic gates use three inputs. However, this degree of complexity is required because all
our practical adders will use full adders as their basic element. We face the need of adding 3
bits in all of our arithmetic algorithms.

a

b

a
b

 Full
adder

a
b

S

a

b
cin

cin
cout

cin

s

cin
c out

Figure 8.2: A full adder

309 © Smruti R. Sarangi

8.1.3 Ripple Carry Adder

Let us now try to add two n bit numbers. Let us start with an example: 10112 + 01012. The
addition is shown in Figure 8.3. We have seen in Section 2.2.3 that binary numbers can be
added the same way as decimal numbers. In the case of base 10 decimal numbers, we start at
the unit’s digit and proceed towards higher digits. In each step, a carry might be generated,
which is then added to the immediately higher digits. In the case of binary numbers also we
do the same. The only difference is that instead of base 10, we are using base 2.

1 0 1 1
0 1 0 1

 1 0 0 0 0

11 11

Figure 8.3: Addition of two binary numbers

For example, in Figure 8.3, we observe that when two binary bits are added a carry might
be generated. The value of the carry is equal to 1. This carry needs to be added to the bits
in the next position (more significant position). The computation is complete when we have
finished the addition of the most significant bits. It is possible that a carry might propagate
from one pair of bits to another pair of bits. This process of propagation of the carry from one
bit pair to another is known as rippling.

Let us construct a simple adder to implement this procedure. Let us try to add two n
bit binary numbers – A and B. We number the bits of A and B as A1 . . . An and B1 . . . Bn

respectively. Let A1 refer to A’s LSB, and An refer to A’s MSB. We can create an adder for
adding A and B as follows. We use a half adder to add the LSBs. Then we use n−1 full adders
to add the rest of the corresponding bits of A and B and their input carry values. This n bit
adder is known as a ripple carry adder. Its design is shown in Figure 8.4. We observe that we
add two n bit numbers to produce a n+1 bit result. The method of addition is exactly similar
to the procedure we follow while adding two binary numbers manually. We start from the LSB
and move towards the MSB. At every step we propagate the carry to the next pair of digits.

Now, let us calculate the speed of this adder. Let us assume that it takes th units of time
for a half adder to complete its operation, and tf units of time for a full adder to complete
its operation. If we assume that carries are propagated instantaneously across blocks, then the
total time, f(n), is equal to th + (n− 1)tf . Here, n is equal to the number of bits being added.

However, as we shall see this is a rather cryptic basis of comparison, especially for large
values of n. We do not wish to have a lot of constants in our timing model. Secondly, the
values of these constants are heavily dependent on the specific technology used. It is thus hard
to derive algorithmic insights. Hence, we introduce the notion of asymptotic time complexity
that can significantly simplify the timing models, yet retain their basic characteristics. For

© Smruti R. Sarangi 310

Half
adder

A1 B1A2B2 cA3B3 cAnBn c

Full
adder

Result

c carry

Figure 8.4: Addition of two binary numbers

example, in the case of a ripple carry adder, we can say that the complexity is almost equal to
n multiplied by some constant. We can further abstract away the constant, and say that the
time complexity is the order of n. Let us now formally define this notion.

Asymptotic Time Complexity

Let us consider two functions f(n) = 2n2 + 3, and g(n) = 10n. Here, n is the size of the input,
and f(n), and g(n) represent the number of time units it takes for a certain circuit to complete
its operation. We plot the time values for different values of n in Figure 8.5. As we can see,
g(n) is greater than f(n) for small values of n. However, for larger values of n, f(n) is larger,
and it continues to be so. This is because it contains a square term, and g(n) does not. We can
extend this argument to observe that even if g(n) would have been defined to be 100n, f(n)
would have ultimately exceeded it. The gist of the argument lies in the fact that f(n) contains
a quadratic term (n2) and g(n) only contains linear terms. For large n, we can conclude that
f(n) is slower than g(n). Consequently, we need to define a new notion of time that precisely
captures this fact. We call this new notion of time as the asymptotic time complexity.
The name comes from the fact that we are interested in finding an envelope or asymptote to
the time function such that the function is contained within this envelope for practically large
values of n.

For example, we can define the asymptotic time complexity of f(n) to be n2 and that of
g(n) to be n respectively. This notion of time is powerful enough to say that f(n) is greater
than g(n) for values of n larger than some threshold. What if we consider: f(n) = 2n2+3, and
f ′(n) = 3n2 + 10. Needless to say, f ′(n) > f(n). However, we might not be interested in the
difference. If we compare the asymptotic time complexity of f(n) or f ′(n) with another function
that has terms with different exponents (other than 2), then the results of the comparison will be
the same. Consequently, for the sake of simplicity we can ignore the additive and multiplicative
constants. We capture the definition of one form of asymptotic time in the big-O notation. It
is precisely defined in Definition 55.

Definition 55
We say that: f(n) = O(g(n))
if | f(n) |≤ c | g(n) | for all n > n0. Here, c is a positive constant.

311 © Smruti R. Sarangi

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10

ti
m

e

n

f(n)
g(n)

Figure 8.5: f(n) = 2n2 + 3 and g(n) = 10n

The big-O notation is actually a part of a set of asymptotic notations. For more details,
the reader can refer to a standard text in computer algorithms [Cormen et al., 2009]. From our
point of view, g(n) gives a worst case time bound for f(n) ignoring additive and multiplicative
constants. We illustrate this fact with two examples: Examples 121 and 122. In this book, we
will refer to asymptotic time complexity as time complexity.

© Smruti R. Sarangi 312

Example 121
f(n) = 3n2 + 2n+ 3. Find its asymptotic time complexity.
Answer:

f(n) = 3n2 + 2n+ 3

≤ 3n2 + 2n2 + 3n2 (n > 0)

≤ 8(n2)

Hence, f(n) = O(n2).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 2 4 6 8 10

ti
m

e

n

f(n)
8n^2

8n2 is a strict upper bound on f(n) as shown in the figure.

Example 122
f(n) = 0.00001n100 + 10000n99 + 234344. Find its asymptotic time complexity.
Answer: f(n) = O(n100)

Time Complexity of a Ripple Carry Adder

The worst case delay happens when the carry propagates from the least significant bit to the
most significant bit. In this case, each full adder waits for the input carry, performs the addition,
and then propagates the carry out to the next full adder. Since, there are n 1 bit adders, the
total time taken is O(n).

313 © Smruti R. Sarangi

8.1.4 Carry Select Adder

A ripple carry adder is extremely slow for large values of n such as 32 or 64. Consequently, we
desire faster implementations. We observe that in hardware we can potentially do a lot of tasks
in parallel. Unlike purely sequential C or Java programs where one statement executes after
the next, hundreds or even thousands of actions can be performed in parallel in hardware. Let
us use this insight to design a faster adder that runs in O(

√
n) time.

Let us consider the problem of adding two numbers A and B represented as: A32 . . . A1 and
B32 . . . B1 respectively. Let us start out by dividing the set of bits into blocks of let us say 4
bits. The blocks are shown in Figure 8.6. Each block contains a fragment of A and a fragment
of B. We need to add the two fragments by considering the input carry to the block, and
generate a set of sum bits and a carry out. This carry out is an input carry for the subsequent
block.

A32 A1A2A3A4A31 A30 A29

B32 B1B2B3B4B31 B30 B29

A5A6A7A8

B5B6B7B8

Carry propagating
across blocks

Figure 8.6: Dividing the numbers into blocks

In this case, a carry is propagated between blocks rather that between bit pairs. To add the
pair of fragments within a block, we can use a simple ripple carry adder. For small values of n,
ripple carry adders are not very inefficient. However, our basic problem of carry propagation
has not been solved yet.

Let us now introduce the basic idea of the carry select adder. We divide the computation
into two stages. In the first stage, we generate two results for each block. One result assumes
that the input carry is 0, and the other result assumes that the input carry is 1. A result consists
of 4 sum bits, and a carry out. We thus require two ripple carry adders per block. Note that
each of these additions are independent of each other and thus can proceed in parallel.

Now, at the beginning of the second stage two sets of results for the nth block are ready. If
we know the value of the input carry, Cin produced by the (n− 1)th block, then we can quickly
calculate the value of the output carry, Cout, by using a simple multiplexer. We do not need
to perform any extra additions. The inputs to the multiplexer are the values of Cout generated
by the two ripple carry adders that assume Cin to be 0 and 1 respectively. When the correct
value of Cin is available, it can be used to choose between the two values of Cout. This process
is much faster than adding the two blocks. Simultaneously, we can also choose the right set of
sum bits. Then we need to propagate the output carry, Cout, to the (n+ 1)th block.

Let us now evaluate the time complexity of the carry select adder. Let us generalise the
problem and assume the block size to be k. The first stage takes O(k) time because we add
each pair of fragments within a block using a regular ripple carry adder, and all the pairs of
fragments are added in parallel. The second phase takes time O(n/k). This is because we have

© Smruti R. Sarangi 314

have ⌈n/k⌉ blocks and we assume that it takes 1 time unit for the input carry of a block to
choose the right output carry in the multiplexer. The total time is thus: O(k+n/k). Note that
we are making some simplistic assumptions regarding the constants. However, our final answer
will not change if we make our model more complicated.

Let us now try to minimise the time taken. This can be done as follows:

∂(k + n/k)

∂k
= 0

⇒1− n

k2
= 0

⇒k =
√
n

(8.1)

Thus, the optimal block size is equal to
√
n. The total time complexity is thus O(

√
n+
√
n),

which is the same as O(
√
n).

8.1.5 Carry Lookahead Adder

We have improved the time complexity from O(n) for a ripple carry adder to O(
√
n) for a carry

select adder. The question is, “Can we do better?” In this section, we shall present the carry
lookahead adder that can perform addition in O(log(n)) time. O(log(n)) has been proved as
the theoretical lower bound for adding two n bit numbers. Note that the log operation in this
book typically has a base equal to 2, unless explicitly mentioned otherwise. Secondly, since
logarithms to different bases differ by constant multiplicative factors, the base is immaterial in
the big-O notation.

Generate and Propagate Functions

Before introducing the adder, we need to introduce a little bit of theory and terminology. Let us
again consider the addition of two numbers – A and B – represented as A32 . . . A1 and B32 . . . B1

respectively. Let us consider a bit pair – Ai and Bi. If it is equal to (0,0), then irrespective of
the carry in, the carry out is 0. In this case, the carry is absorbed.

However, if the bit pair is equal to (0,1) or (1,0) then the value of the carry out is equal to
the value of the carry in. If the carry in is 0, then the sum is 1, and the carry out is 0. If the
carry in is 1, then the sum is 0, and the carry out is 1. In this case, the carry is propagated.

Lastly, if the bit pair is equal to (1,1), then the carry out is always equal to 1, irrespective
of the carry in. In this case, a carry is generated.

We can thus define a generate(gi) and propagate(pi) function as follows:

gi = Ai.Bi (8.2)

pi = Ai ⊕Bi (8.3)

The generate function captures the fact that both the bits are 1. The propagate function
captures the fact that only one of the bits is 1. We can now compute the carry out Cout in
terms of the carry in Cin, gi, and pi. Note that by our case by case analysis, we can conclude
that the carry out is equal to 1, only if a carry is either generated, or it is propagated. Thus,
we have:

Cout = gi + pi.Cin (8.4)

315 © Smruti R. Sarangi

Example 123
Ai = 0, Bi = 1. Let the input carry be Cin. Compute gi, pi and Cout.

Answer:

gi = Ai.Bi = 0.1 = 0

pi = Ai ⊕Bi = 0⊕ 1 = 1

Cout = gi + pi.Cin = Cin

(8.5)

Let us now try to generalise the notion of generate and propagate functions to multiple bits.
Let us consider a two bit system that has an input carry, and an output carry. Let the bit
pairs be numbered 1 and 2, where 2 represents the most significant bit. Let Ci

out represent the
output carry obtained after adding the ith bit pair. Likewise, Ci

in is the input carry for the ith

bit pair. The output carry of the two bit system is thus equal to C2
out. We have:

C2
out = g2 + p2.C

1
out

= g2 + p2.(g1 + p1.C
1
in)

= (g2 + p2.g1) + p2.p1.C
1
in

(8.6)

Similarly, for a 3 bit system, we have:

C3
out = g3 + p3.C

2
out

= g3 + p3.((g2 + p2.g1) + p2.p1.C
1
in)

= (g3 + p3.g2 + p3.p2.g1) + p3.p2.p1.C
1
in

(8.7)

For a 4-bit system, we have:

C4
out = g4 + p4.C

3
out

= g4 + p4.((g3 + p3.g2 + p3.p2.g1) + p3.p2.p1.C
1
in)

= (g4 + p4.g3 + p4.p3.g2 + p4.p3.p2.g1) + p4.p3.p2.p1.C
1
in

(8.8)

Let us now try to derive a pattern, in these results (see Table 8.3).
We observe that for a system of n bits, it is possible to define a generate function (Gn) and

a propagate function (Pn). If we are able to somehow precompute these functions, then we can
generate Cout from Cin in a single step. However, as we can see from the example of the 4-bit
system, the functions are fairly difficult to compute for large values of n. Let us now derive an
interesting property of the generate and propagate functions.

Let us consider a sequence of n bits. Let us divide it into two parts 1 . . .m and (m +
1) . . . n. Let the generate and propagate functions for both the parts be (G1,m, P1,m) and
(Gm+1,n, Pm+1,n) respectively. Furthermore, let the generate and propagate functions for the

© Smruti R. Sarangi 316

1 bit C1
out = g1︸︷︷︸

G1

+ p1︸︷︷︸
P1

.C1
in

2 bit C2
out = (g2 + p2.g1)︸ ︷︷ ︸

G2

+ p2.p1︸ ︷︷ ︸
P2

.C1
in

3 bit C3
out = (g3 + p3.g2 + p3.p2.g1)︸ ︷︷ ︸

G3

+ p3.p2.p1︸ ︷︷ ︸
P3

.C1
in)

4 bit C4
out = (g4 + p4.g3 + p4.p3.g2 + p4.p3.p2.g1)︸ ︷︷ ︸

G4

+ p4.p3.p2.p1︸ ︷︷ ︸
P4

.C1
in)

n bit Cn
out = Gn + Pn.C

1
in

Table 8.3: Generate and propagate functions for multi bit systems

n

1,mm+1,n

Cout Cin

Csub

Figure 8.7: A block of n bits divided into two parts

entire block beG1,n and P1,n. We wish to find a relationship between the generate and propagate
functions for the whole block with n bits and the functions for the sub blocks.

Let the carry out and carry in of the n bit block be Cout and Cin respectively. Let the carry
between the two sub-blocks be Csub. See Figure 8.7. We have:

Cout = Gm+1,n + Pm+1,n.Csub

= Gm+1,n + Pm+1,n.(G1,m + P1,m.Cin)

= Gm+1,n + Pm+1,n.G1,m︸ ︷︷ ︸
G1,n

+Pm+1,n.P1,m︸ ︷︷ ︸
P1,n

.Cin

= G1,n + P1,n.Cin

(8.9)

Thus, for a block of n bits, we can easily compute G1,n and P1,n from the corresponding
functions of its sub blocks. This is a very powerful property and is the basis of the carry
lookahead adder.

Carry Lookahead Adder – Stage I

The carry lookahead adder’s operation is divided into two stages. In the first stage, we compute
the generate and propagate functions for different subsequences of bits. In the next stage, we
use these functions to generate the result.

The diagram for the first stage is shown in Figure 8.8. Like the carry select adder, we
divide bit pairs into blocks. In this diagram, we have considered a block size equal to 2. In the

317 © Smruti R. Sarangi

first level, we compute the generate and propagate functions for each block. We build a tree
of (G,P) circuits(blocks) as follows. Each (G,P) block in level n takes as input the generate
and propagate functions of two blocks in level n− 1. Thus, at each level the number of (G,P)
blocks decreases by a factor of 2. For example, the first (G,P) block in level 1 processes the
bit pairs (1, 2). Its parent processes the bit pairs (1 . . . 4), and so on. The ranges are shown in
Figure 8.8. We create a tree of (G,P) blocks in this fashion.

32 31 30 3 2 129 4

G,P
32-31

G,P
30-29

G,P
2-1

G,P
4-3

G,P
32-29

G,P
4-1

G,P
32-25

G,P
24-17

G,P
16-9

G,P
8-1

G,P
32-17

G,P
16-1

G,P
32-1

Block 1Block 16

level 4

level 5

level 3

level 2

level 1

level 0

C
o
m

p
u
ta

ti
o
n

Figure 8.8: Carry Lookahead Adder – Stage I

For a n bit input, there are O(log(n)) levels. In each level, we are doing a constant amount
of work since each (G,P) block is only processing the inputs from two other blocks. Hence, the
time complexity of this stage is equal to O(log(n)).

Carry Lookahead Adder – Stage II

In this stage, we use the information generated in Stage I to compute the final sum bits, and
the carry out. The block diagram for the second stage is shown in Figure 8.9.

Let us first focus at the rightmost (G,P) blocks in each level. The ranges for each of these
blocks start at 1. They take the input carry, C1

in, as input, and then calculate the output
carry for the range of bit pairs that they represent as Cout = G+ P.C1

in. When we are adding
two numbers, the input carry at the first bit is typically 0. However, some special instructions
(ADC in ARM) can consider a non-zero value of C1

in also.

Each (G,P) block with a range (r2, r1) (r2 > r1), is connected to all (G,P) blocks that have
a range of the form (r3, r2 + 1). The output carry of the block is equal to the input carry of
those blocks. To avoid excessive clutter in the diagram (Figure 8.9), we show the connections
for only the (G,P) block with range (16-1) using solid lines. Each block is connected to the
block to its left in the same level and to one (G,P) block in every lower level.

The arrangement of (G,P) blocks represents a tree like computation where the correct carry
values propagate from different levels to the leaves. The leaves at level 0, contain a set of 2-bit
ripple carry(RC) adders that compute the result bits by considering the correct value of the

© Smruti R. Sarangi 318

32 31 30 3 2 129 4

G,P
32-31

G,P
30-29

G,P
2-1

G,P
4-3

G,P
32-29

G,P
4-1

G,P
32-25

G,P
24-17

G,P
16-9

G,P
8-1

G,P
32-17

G,P
16-1

G,P
32-1

G,P
28-25

cin

cin

cin

cin

cin
c

out

G,P
20-17

G,P
18-17

1718

2-bit RC Adder 2-bit RC Adder 2-bit RC Adder2-bit RC Adder 2-bit RC Adder

level 4

level 5

level 3

level 2

level 1

level 0

G,P
r2- r1

cincout

G,P block

1

1

1

1

132

C
o
m

p
u
ta

ti
o
n

Result Bits

Figure 8.9: Carry Lookahead Adder – Stage II

input carry. We show an example in Figure 8.9 of the correct carry in value propagating from
the block with range (16-1) to the 2-bit adder representing the bits 31 and 32. The path is
shown using dotted lines.

In a similar manner, carry values propagate to every single ripple carry adder at the zeroth
level. The operation completes once all the result bits and the output carry have been computed.

The time complexity of this stage is also O(log(n)) because there are O(log(n)) levels in
the diagram and there is a constant amount of work done per level. This work comprises of
computing Cout and propagating it to (G,P) blocks at lower levels.

Hence, the total time complexity of the carry lookahead adder is O(log(n)) .

Way Point 5
Time complexities of different adders:

• Ripple Carry Adder: O(n)

• Carry Select Adder: O(
√
n)

• Carry Lookahead Adder: O(log(n))

319 © Smruti R. Sarangi

8.2 Multiplication

8.2.1 Overview

Let us now consider the classic problem of binary multiplication. Similar to addition, let us
first look at the most naive way of multiplying two decimal numbers. Let us try to multiply 13
times 9. In this case, 13 is known as the multiplicand and 9 is known as the multiplier, and 117
is the product.

1 3
9

1 1 7
1 0 0 1
1 1 0 1

0 0 0 0
0 0 0 0

1 1 0 1

1 1 0 1
1 1 1 0 1 0 1

(a)

(b)

Partial sums

Figure 8.10: Multiplication in decimal and binary

Figure 8.10(a) shows the multiplication in the decimal number system, and Figure 8.10(b)
shows the multiplication in binary. Note that multiplying two binary numbers can be done
exactly the same way as decimal numbers. We need to consider each bit of the multiplier from
the least significant position to the most significant position. If the bit is 1, then we write the
value of the multiplicand below the line, otherwise we write 0. For each multiplier bit, we shift
the multiplicand progressively one bit to the left. The reason for this is that each multiplier bit
represents a higher power of two. We call each such value a partial sum (see Figure 8.10(b)).
If the multiplier has m bits, then we need to add m partial sums to obtain the product. In
this case the product is 117 in decimal and 1110101 in binary. The reader can verify that they
actually represent the same number. Let us define another term called the partial product for
ease of representation later. It is the sum of a contiguous sequence of partial sums.

Definition 56

Partial sum It is equal to the value of the multiplicand left shifted by a certain number of
bits, or it is equal to 0.

Partial product It is the sum of a set of partial sums.

© Smruti R. Sarangi 320

U V

Multiplicand(N)

Figure 8.11: Iterative Multiplier

In this example, we have considered unsigned numbers. What about signed numbers? In
Section 2.3.4, we proved that multiplying two 2’s complement signed n bit binary numbers, and
constraining the result to n bits without any concern for overflows, is not different from unsigned
multiplication. We need to just multiply the 2’s complement numbers without bothering about
the sign. The result will be correct.

Let us now consider the issue of overflows in multiplication. If we are multiplying two signed
32-bit values, the product can be as large as (2−31)2 = 2−62. There will thus be an overflow if
we try to save the result in 32 bits. We need to keep this in mind. If we desire precision, then
it is best to allot 64 bits for storing the result of 32-bit multiplication. Let us now look at a
naive approach for multiplying two 32-bit numbers by using an iterative multiplier.

8.2.2 Iterative Multiplier

In this section, we present the design of an iterative multiplier (see Figure 8.11) that multiplies
two signed 32-bit numbers to produce a 64-bit result. We cannot treat the numbers as unsigned
anymore and the algorithm thus gets slightly complicated. We use a 33-bit register U , and a
32-bit register V as shown in Figure 8.11. The multiplier is loaded into V at the beginning.
The multiplicand is stored separately in register N . The size of the register N is equal to 33
bits, and we store the multiplicand in it by extending its sign by 1 position. The two registers
U and V are treated as one large register for the purposes of shifting. If we perform a right
shift on U and V , then the value shifted out of U , becomes the MSB of V . We have an adder
that adds the multiplicand to the current value of U , and updates U . U is initialised to 0. Let
us represent the multiplicand by N , the multiplier by M , and the product by P . We need to
compute P = MN .

The algorithm used by the iterative multiplier is very similar to the multiplication algorithm
that we learnt in elementary school. We need to consider each bit of the multiplier in turn and
add a shifted version of the multiplicand to the partial product if the bit is 1. The algorithm
is as follows:

321 © Smruti R. Sarangi

Algorithm 1: Algorithm to multiply two 32-bit numbers and produce a 64-bit result

Data: Multiplier in V , U = 0, Multiplicand in N
Result: The lower 64 bits of UV contains the product

1 i ← 0
2 for i < 32 do
3 i ← i + 1
4 if LSB of V is 1 then
5 if i < 32 then
6 U ← U +N
7 end
8 else
9 U ← U −N

10 end

11 end
12 UV ← UV ≫ 1 (arithmetic right shift)

13 end

Let us now try to understand how this algorithm works. We iterate for 32 times to consider
each bit of the multiplier. The multiplier is initially loaded into register V .

Now, if the LSB of V is 1 (Line 4), then we add the multiplicand N to U and save the result
in U . This basically means that if a bit in the multiplier is equal to 1, then we need to add
the multiplicand to the already accumulated partial product. The partial product is a running
sum of the shifted values of the multiplicands. It is initialised to 0. In the iterative algorithm,
the part of UV that does not contain the multiplier, contains the partial product. We then
shift UV one step to the right (Line 12). The reason for this is as follows. In each step we
actually need to shift the multiplicand 1 bit to the left and add it to the partial product. This
is the same as not shifting the multiplicand but shifting the partial product 1 bit to the right
assuming that we do not lose any bits. The relative displacement between the multiplicand and
the partial product remains the same.

If in any iteration of the algorithm, we find the LSB of V to be 0, then nothing needs to be
done. We do not need to add the value of the multiplicand to the partial product. We simply
need to shift UV one position to the right using an arithmetic right shift operation.

Note that till the last step we assume that the multiplier is positive. If in the last step we
see that the multiplier is not positive (MSB is 1), then we need to subtract the multiplicand
from U (Line 9). This follows directly from Theorem 2.3.4.2. The theorem states that the value
of the multiplier (M) in the 2’s complement notation is equal to (−Mn2

n−1 +
∑n−1

i=1 Mi2
i−1).

Here Mi is the ith bit of the multiplier, M . In the first n− 1 iterations, we effectively multiply
the multiplicand with

∑n−1
i=1 Mi2

i−1. In the last iteration, we take a look at the MSB of the
multiplier, Mn. If it is 0, then we need not do anything. If it is 1, then we need to subtract
2n−1 × N from the partial product. Since the partial product is shifted to the right by n − 1
positions with respect to the multiplicand, the multiplicand is effectively shifted n−1 positions
to the left with respect to the partial product. To subtract 2n−1 × N to the partial product,
we need to simply subtract N from register U , which is our last step.

© Smruti R. Sarangi 322

Important Point 9
We assume that register U is 33 bits wide. We did this to avoid overflows while adding or
subtracting N from U . Let us consider U and N again. |N | ≤ 231 because N is essentially
a 32-bit number. For our induction hypothesis, let us assume that |U | ≤ 231 (true for the
base case, U = 0). Thus |U ±N | ≤ 232. Hence, if we store both the numbers and their sum
in 33-bit registers, we will never have overflows while adding or subtracting them. Note
that we could have had overflows, if we would have used just 32 bits. Now, after the shift
operation, the value in U is divided by 2. Since U ± N is assigned to U , and we have
established that |U ±N | ≤ 232, we can prove that |U | ≤ 231. Thus, our induction hypothesis
holds, and we can thus conclude that during the operation of our algorithm, we shall never
have an overflow. The absolute value of the product can at the most be 231 × 231 = 262.
Hence, the product can fit in 64 bits(proved in Section 8.2.1), and we thus need to only
consider the lower 64 bits of the UV register.

323 © Smruti R. Sarangi

Examples

Example 124
Multiply 2× 3 using an iterative multiplier. Assume a 4-bit binary 2’s complement number
system. Let 2 (00102) be the multiplicand and let 3 (00112) be the multiplier. For each
iteration show the values of U and V just before the right shift on Line 12, and just after
the right shift.
Answer:

00010 0011

after shift: 00001 0001
1

00000 0011beginning:
U V

Multiplier (M) 0011

Multiplicand (N) 0010

Product(P) 0110

before shift:

00011 0001

after shift: 00001 1000
2

before shift:

00001 1000

after shift: 00000 1100
3

before shift:

00000 1100

after shift: 00000 0110
4

before shift:

2

3

6

Example 125
Multiply 3 × (−2) using an iterative multiplier. Assume a 4-bit binary 2’s complement
number system. Let 3 (00112) be the multiplicand and let -2 (11102) be the multiplier. For
each iteration show the values of U and V just before the right shift on Line 12, and just
after the right shift.

© Smruti R. Sarangi 324

Answer:

00000 1110

after shift: 00000 0111
1

00000 1110beginning:
U V

Multiplier (M) 1110

Multiplicand (N) 0011

Product(P) 1010

before shift:

00011 0111

after shift: 00001 1011
2

before shift:

00100 1011

after shift: 00010 0101
3

before shift:

11111 0101

after shift: 11111 1010
4

before shift:

3

-2

-6

Time Complexity

If we are performing n bit multiplication, then there are n iterations of the loop, and each
iteration performs one addition at the most. This takes O(log(n)) time. Hence, the total time
required is O(nlog(n)).

8.2.3 Booth Multiplier

The iterative multiplier is a simple algorithm, yet it is slow. It is definitely not as fast as
addition. Let us try to speed it up by making a simple alteration. This trick will not change the
asymptotic time complexity of the algorithm. However, in practice the process of multiplication
will become significantly faster. This algorithm is known as the Booth multiplication algorithm
and has been used for designing fast multipliers in a lot of processors.

We observe that if a bit in the multiplier is 0, then nothing needs to be done other than a
shift in the iterative multiplier. The complexity arises when a bit is 1. Let us assume that the

325 © Smruti R. Sarangi

multiplier contains a run of 1s. It is of the form - 0000111100. Let the run of 1s be from the
ith to the jth position (i ≤ j). The value of the multiplier M is thus:

M =

k=j∑
k=i

2k−1 = 2j − 2i−1 (8.10)

Now, the iterative multiplier will perform j− i+1 additions. This is not required as we can
see from Equation 8.10. We just need to do one subtraction when we are considering the ith

bit, and do one addition when we are considering the (j+1)th bit. We can thus replace j− i+1
additions with one addition and one subtraction. This insight allows us to reduce the number
of additions if there are long runs of 1s in the 2’s complement notation of the multiplier. If
the multiplier is a small negative number, then it fits this pattern. It will have a long run of
1s especially in the most significant positions. Even otherwise, most of the numbers that we
encounter will at least have some runs of 1s. The worst case arises, when we have a number of
the form: 010101... . This is a very rare case.

If we consider our basic insight again, then we observe that we need to consider bit pairs
consisting of the previous and the current multiplier bit. Depending on the bit pair we need to
perform a certain action. Table 8.4 shows the actions that we need to perform.

(current value,previous value) Action

0,0 -

1,0 subtract multiplicand from U

1,1 -

0,1 add multiplicand to U

Table 8.4: Actions in the Booth multiplier

If the current and previous bits are (0,0) respectively, then we do not need to do anything.
We need to just shift UV and continue. Similarly, if the bits are (1,1), nothing needs to be
done. However, if the current bit is 1, and the previous bit was 0, then a run of 1s is starting.
We thus need to subtract the value of the multiplicand from U . Similarly, if the current bit is
0, and the previous bit was 1, then a run of 1s has just ended. In this case, we need to add the
value of the multiplicand to U .

© Smruti R. Sarangi 326

Algorithm 2: Booth’s Algorithm to multiply two 32-bit numbers to produce a 64-bit
result
Data: Multiplier in V , U = 0, Multiplicand in N
Result: The lower 64 bits of UV contain the result

1 i ← 0
2 prevBit ← 0
3 for i < 32 do
4 i ← i + 1
5 currBit ← LSB of V
6 if (currBit,prevBit) = (1,0) then
7 U ← U −N
8 end
9 else if (currBit,prevBit) = (0,1) then

10 U ← U +N
11 end
12 prevBit ← currBit
13 UV ← UV ≫ 1 (arithmetic right shift)

14 end

The Booth’s algorithm is shown in Algorithm 2. Here, also, we assume that U is 33 bits
wide, and V is 32 bits wide. We iterate for 32 times, and consider bit pairs (current bit, previous
bit). For (0,0) and (1,1), we do not need to perform any action, else we need to perform an
addition and subtraction.

Proof of Correctness*

Let us try to prove that the Booth’s algorithm produces the same result as the iterative algo-
rithm for a positive multiplier.

There are two cases. The multiplier (M) can either be positive or negative. Let us consider
the case of the positive multiplier first. The MSB of a positive multiplier is 0. Now, let us
divide the multiplier into several sequences of contiguous 0s and 1s. For example, if the number
is of the form: 000110010111. The sequences are: 000, 11, 00, 1, 0, and 111. For a run of 0s,
both the multipliers (Booth’s and iterative) produce the same result result because they simply
shift the UV register 1 step to the right.

For a sequence of continuous 1s, both the multipliers also produce the same result because
the Booth multiplier replaces a sequence of additions with an addition and a subtraction ac-
cording to Equation 8.10. The only special case arises for the MSB bit, when the iterative
multiplier may subtract the multiplicand. In this case, the MSB is 0, and thus no special cases
arise. Each run of continuous 0s and 1s in the multiplier is accounted for in the partial product
correctly. Therefore, we can conclude that the final result of the Booth multiplier is the same
as that of a regular iterative multiplier.

Let us now consider a negative multiplier M . Its MSB is 1. According to Theorem 2.3.4.2,
M = −2n−1 +

∑n−1
i=1 Mi2

i−1. Let M ′ =
∑n−1

i=1 Mi2
i−1. Hence, for a negative multiplier (M):

M = M ′ − 2n−1 (8.11)

327 © Smruti R. Sarangi

M ′ is a positive number (MSB is 0). Note that till we consider the MSB of the multiplier,
the Booth’s algorithm does not know if the multiplier is equal to M or M ′.

Now, let us split our argument into two cases. Let us consider the MSB bit (nth bit), and
the (n− 1)th bit. This bit pair can either be 10, or 11.

Case 10: Let us divide the multiplier M into two parts as shown in Equation in Equation 8.11.
The first part is a positive number M ′, and the second part is −2n−1, where M = M ′ − 2n−1.
Since the two MSB bits of the binary representation ofM are 10, we can conclude that the binary
representation of M ′ contains 00 as its two MSB bits. Recall that the binary representation of
M and M ′ contain the same set of n− 1 least significant bits, and the MSB of M ′ is always 0.

Since the Booth multiplier was proven to work correctly for positive multipliers, we can
conclude that the Booth multiplier correctly computes the partial product as N ×M ′ in the
first (n − 1) iterations. The proof of this fact is as follows. Till the end of (n − 1) iterations,
we are not sure if the MSB is 0 or 1. Hence, we do not know if we are multiplying N with M
or M ′. The partial product will be the same in both the cases. If we were multiplying N with
M ′, then no action will be taken in the last step because the two MSB bits of M ′ are 00. This
means that in the second last step ((n− 1) iterations), the partial product contains NM ′. We
can similarly prove that the partial product computed by the iterative multiplier after (n− 1)
iterations is equal to NM ′ because the MSB of M ′ is 0.

Hence, till this point, both the algorithms compute the same partial product, or alternatively
have the same contents in the U and V registers. In the last step, both the algorithms find
out that the MSB is 1. The iterative algorithm subtracts the multiplicand(N) from U , or
alternatively subtracts N × 2n−1 from the partial product. The reason that we treat the
multiplicand as shifted by n − 1 places is because the partial product in the last iteration
spans the entire U register and n− 1 bits of the V register. Now, when we add or subtract the
multiplicand(N) to U , effectively, we are adding N shifted by n−1 places to the left. Hence, the
iterative multiplier correctly computes the product asM ′N−2n−1N = MN (see Equation 8.11).
The Booth multiplier also does the same in this case. It sees a 0→ 1 transition. It subtracts N
from U , which is exactly the same step as taken by the iterative multiplier. Thus, the operation
of the Booth multiplier is correct in this case (same result as the iterative multiplier).

Case 11: Let us again consider the point at the beginning of the nth iteration. At this point
of time, the partial product computed by the iterative algorithm is M ′N , whereas the partial
product computed by the Booth multiplier is different because the two MSB bits of M ′ are 0
and 1, respectively. Let us assume that we were originally multiplying N with M ′, then the
MSB would have been 0, and this fact would have been discovered in the last iteration. The
Booth’s algorithm would have then added 2n−1N to obtain the final result in the last step
because of a 1 → 0 transition. Hence, after the (n − 1)th iteration, the partial product of
the Booth multiplier is equal to M ′N − 2n−1N . Note that till the last iteration, the Booth
multiplier does not know whether the multiplier is M or M ′.

Now, let us take a look at the last iteration. In this iteration both the algorithms find out
that the MSB is 1. The iterative multiplier subtracts 2n−1N from the partial product, and
correctly computes the final product as MN = M ′N − 2n−1N . The Booth multiplier finds the
current and previous bit to be 11, and thus does not take any action. Hence, its final product
is equal to the partial product computed at the end of the (n− 1)th iteration, which is equal to
M ′N − 2n−1N . Therefore, in this case also the outputs of both the multipliers match.

We have thus proved that the Booth multiplier works for both positive and negative multi-

© Smruti R. Sarangi 328

pliers.

Important Point 10
Here, we use a 33-bit U register to avoid overflows. Let us show an example of an overflow,
if we would have used a 32-bit U register. Assume that we are trying to multiply −231
(multiplicand) with -1(multiplier). We will need to compute 0 − N in the first step. The
value of U should be equal to 231; however, this number cannot be represented with 32 bits.
Hence, we have an overflow. We do not have this issue when we use a 33-bit U register.
Moreover, we can prove that with a 33-bit U register, the additions or subtractions in the
algorithm will never lead to an overflow (similar to the proof for iterative multiplication).

329 © Smruti R. Sarangi

Example 126
Multiply 2 × 3 using a Booth multiplier. Assume a 4-bit binary 2’s complement number
system. Let 3 (00112) be the multiplicand and let 2 (00102) be the multiplier. For each
iteration show the values of U and V just before and after the right shift.
Answer:

00000 0010

after shift: 00000 0001
1

00000 0010beginning:
U V

Multiplier (M) 0010

Multiplicand (N) 00011

Product(P) 0110

before shift:

11101 0001

after shift: 11110 1000
2

before shift:

00001 1000

after shift: 00000 1100
3

before shift:

00000 1100

after shift: 00000 0110
4

before shift:

3

2

6

00

10

01

00

Example 127
Multiply 3× (−2) using a Booth multiplier. Assume a 4-bit binary 2’s complement number
system. Let 3 (00112) be the multiplicand and let -2 (11102) be the multiplier. For each
iteration show the values of U and V just before and after the right shift.
Answer:

© Smruti R. Sarangi 330

00000 1110

after shift: 00000 0111
1

00000 1110beginning:
U V

Multiplier (M) 1110

Multiplicand (N) 00011

Product(P) 1010

before shift:

11101 0111

after shift: 11110 1011
2

before shift:

11110 1011

after shift: 11111 0101
3

before shift:

11111 0101

after shift: 11111 1010
4

before shift:

3

-2

-6

00

10

11

11

8.2.4 An O(log(n)2) Time Algorithm

Let us make our life slightly easier now. Let us multiply two n bit numbers, and save the product
as also a n bit number. Let us ignore overflows, and concentrate only on performance. The
issue of detecting overflows in a high performance multiplier is fairly complex, and is beyond the
scope of this book. Using our results from Section 2.3.4, we use simple unsigned multiplication
to compute the product of signed numbers. If there are no overflows then the result is correct.

Let us take a look at the problem of multiplication again. We basically consider each bit
of the multiplier in turn, and multiply it with a shifted version of the multiplicand. We obtain
n such partial sums. The product is the sum of the n partial sums. Generating each partial
sum is independent of the other. This process can be performed in parallel in hardware. To
generate the ith partial sum, we need to simply compute an AND operation between the ith bit
of the multiplier and each bit of the multiplicand. This takes O(1) time.

Now, we can add the n partial sums(P 1 . . . Pn) in parallel using a tree of adders as shown
in Figure 8.12. There are O(log(n)) levels. In each level we are adding two O(n) bit numbers;
hence, each level takes O(log(n)) time. The total time requirement is thus O(log(n)2). By

331 © Smruti R. Sarangi

P1
P2P3

P4Pn-3
Pn-2Pn-1

Pn

Final product

log(n) levels

Figure 8.12: Tree of adders for adding partial sums

exploiting the inherent parallelism, we have significantly improved the time from O(nlog(n))
to O(log(n)2). It turns out that we can do even better, and get an O(log(n)) time algorithm.

A

B

C

D

E

Carry
save
adder

Figure 8.13: Carry Save Adder

8.2.5 Wallace Tree Multiplier

Before, we introduce the Wallace tree multiplier, let us introduce the carry save adder. A carry
save adder adds three numbers, A, B, C, and produces two numbers D, and E such that:
A+B+C = D+E(see Figure 8.13). We will extensively use carry save adders in constructing
the Wallace tree multiplier that runs in O(log(n)) time.

© Smruti R. Sarangi 332

Carry Save Adder

Let us consider the problem of adding three bits a, b, and c. The sum can range from 0 to 3.
We can express all numbers between 0 to 3 in the form 2d+ e, where (d, e) ∈ [0, 1]. Using this
relationship, we can express the sum of three numbers as the sum of two numbers as follows:

A+B + C =

n∑
i=1

Ai2
i−1 +

n∑
i=1

Bi2
i−1 +

n∑
i=1

Ci2
i−1

=

n∑
i=1

(Ai +Bi + Ci)2
i−1

=

n∑
i=1

(2Di + Ei)2
i−1

=

n∑
i=1

Di2
i

︸ ︷︷ ︸
D

+

n∑
i=1

Ei2
i−1

︸ ︷︷ ︸
E

= D + E

(8.12)

Thus, we have A + B + C = D + E. The question is how to compute the bits Di, and Ei

such that Ai+Bi+Ci = 2Di+Ei. This is very simple. We note that if we add Ai, Bi, and Ci,
we get a two bit result, where s is the sum bit and c is the carry bit. The result of the addition
can be written as 2× c+ s. We thus have two equations as follows:

Ai +Bi + Ci = 2Di + Ei (8.13)

Ai +Bi + Ci = 2c+ s (8.14)

If we set Di to the carry bit and Ei to the sum bit, then we are done! Now, E is equal to∑n
i=1Ei2

i−1. We can thus obtain E by concatenating all the Ei bits. Similarly, D is equal to∑n
i=1Di2

i. D can be computed by concatenating all the Di bits and shifting the number to
the left by 1 position.

The hardware complexity of a carry save adder is not much. We need n full adders to
compute all the sum and carry bits. Then, we need to route the wires appropriately to produce
D and E. The asymptotic time complexity of a carry save adder is O(1) (constant time).

Addition of n Numbers with Carry Save Adders

We can use carry save adders to add n partial sums (see Figure 8.14). In the first level, we
can use a set of n/3 carry save adders to reduce the sum of n partial sums to a sum of 2n/3
numbers in the second level. If we use 2n/9 carry save adders in the second level, then we will
have 4n/9 numbers in the third level, and so on. In every level the set of numbers gets reduced
by a factor of 2/3. Thus, after O(log3/2(n)) levels, there will only be two numbers left. Note
that O(log3/2(n) is equivalent to O(log(n)). Since each stage takes O(1) time because all the
carry save adders are working in parallel, the total time taken up till now is O(log(n)).

333 © Smruti R. Sarangi

P1P2P3

Final product

log (n) levels

CSA

P4P5P6

CSA

CSA

Pn-5Pn-4Pn-3

CSA

Pn-2Pn-1Pn

CSA

CSA

CSA

3/2

Figure 8.14: Wallace Tree Multiplier

In the last stage, when we have just two numbers left, we cannot use a carry save adder
anymore. We can use a regular carry lookahead adder to add the two numbers. This will
take O(log(n)) time. Hence, the total time taken by the Wallace tree multiplier is O(log(n) +
log(n)) = O(log(n)). In terms of asymptotic time complexity, this is the fastest possible
multiplier. It is possible to reduce the number of full adders by slightly modifying the design.
This is known as the Dadda multiplier. The reader can refer to [Wikipedia,] for further
information on this topic.

8.3 Division

8.3.1 Overview

Let us now look at integer division. Unfortunately, unlike addition, subtraction, and multipli-
cation, division is a significantly slower process. Any division operation can be represented as
follows:

N = DQ+R (8.15)

Here, N is the dividend, D is the divisor, Q is the quotient, and R is the remainder. Division
algorithms assume that the divisor and dividend are positive. The process of division needs to
satisfy the following properties.

Property 1 R < D, and R ≥ 0.

© Smruti R. Sarangi 334

Property 2 Q is the largest positive integer that satisfies Equation 8.15.

If we wish to divide negative numbers, then we need to first convert them to positive
numbers, perform the division, and then adjust the sign of the quotient and remainder. Some
architectures try to ensure that the remainder is always positive. In this case, it is necessary to
decrement the quotient by 1, and add the divisor to the remainder to make it positive.

Let us focus on the core problem, which is to divide two n bit positive numbers. The MSB
is the sign bit, which is 0. Now, DQ =

∑n
i=1DQi2

i−1. We can thus write:

N = DQ+R

= DQ1...n−1 +DQn2
n−1 +R

(N −DQn2
n−1)︸ ︷︷ ︸

N ′

= DQ1...n−1︸ ︷︷ ︸
Q′

+R

N ′ = DQ′ +R

(8.16)

We have thus reduced the original problem of division into a smaller problem. The original
problem was to divide N by D. The reduced problem is to divide N ′ = N −DQn2

n−1 by D.
The remainder for both the problems is the same. The quotient, Q′, for the reduced problem
has the same least significant n− 1 bits as the original quotient, Q. The nth bit of Q′ is 0.

To create the reduced problem it is necessary to find Qn. We can try out both the choices
– 0 and 1. We first try 1. If N −D2n−1 ≥ 0, then Qn = 1 (Property 1 and 2). Otherwise, it is
0.

Once, we have created the reduced problem, we can proceed to further reduce the problem
till we have computed all the quotient bits. Ultimately, the divided will be equal to the re-
mainder, R, and we will be done. Let us now illustrate an algorithm that precisely follows the
procedure that we have just outlined.

U V

Divisor(D)

(U-D)

Figure 8.15: Iterative divider

8.3.2 Restoring Division

Let us consider a similar setup as the iterative multiplier to divide two positive 32-bit numbers.
The divisor is stored in a 32-bit register called D. We have a 33 bit register U , and a 32-bit
register V . If we left shift U and V , then the value shifted out of V , is shifted in to U . U is

335 © Smruti R. Sarangi

initialised to 0, and V is initialised to hold the dividend (see Figure 8.15). Note that the size
of U is equal to 33 bits to avoid overflows (similar to the case of the iterative multiplier).

Algorithm 3: Restoring algorithm to divide two 32-bit numbers

Data: Divisor in D, Dividend in V , U = 0
Result: U contains the remainder (lower 32 bits), and V contains the quotient

1 i ← 0
2 for i < 32 do
3 i ← i + 1

/* Left shift UV by 1 position */

4 UV ← UV << 1
5 U ← U - D
6 if U ≥ 0 then
7 q ← 1

8 end
9 else

10 U ← U + D
11 q ← 0

12 end
/* Set the quotient bit */

13 LSB of V ← q

14 end

Algorithm 3 follows the discussion that we had in Section 8.3.1. We shall see that each
iteration of the algorithm reduces the problem according to Equation 8.16. Let us prove its
correctness.

Proof of Correctness*

To start out we iterate 32 times for each bit of the dividend (Lines 2 to 14). Let us consider
the first iteration. At the beginning, the value in the combined register UV is equal to the
value of the dividend N . The first step is to shift UV to the left by 1 position in Line 4. Since
the dividend is originally loaded into register V , we are shifting the dividend to the left by 1
position. The next step is to subtract the divisor from register U in Line 5. If U −D ≥ 0, then
we set the MSB of the quotient to 1 (Line 7), otherwise we add D back to U in Line 10, and
set the MSB of the quotient to 0.

We wish to use Equation 8.16 to reduce the problem in every iteration. Equation 8.16 states
that the new dividend(N ′) is equal to:

N ′ = N − 2n−1DQn (8.17)

Qn is the MSB of the quotient here. The divisor and remainder stay the same. The last n− 1
bits of the new quotient match those of the old quotient.

We wish to prove that the value of UV at the end of the first iteration is equal to (2N ′)(ignoring
quotient bits) such that we can reduce the problem according to Equation 8.16. Let us consider
the value stored in UV . Just after executing Line 4, it contains twice the dividend – 2N –
because we shifted UV by 1 position to the left. Now, we are subtracting D from the upper n

© Smruti R. Sarangi 336

bits of UV . In effect, we are subtracting 2nD. Hence, after Line 5, UV contains UV − 2nD.
We have:

UV − 2nD = 2N − 2nD = 2× (N − 2n−1D) (8.18)

Subsequently, we test the sign of U−D in Line 6. If U−D is positive or zero, then it means
that UV is greater than 2nD because V ≥ 0. If U −D is negative, then let U +∆ = D, where
∆ ≥ 1. We have:

UV − 2nD = 2nU + V − 2nD

= (U −D)2n + V

= V −∆× 2n
(8.19)

Now, V < 2n. Hence, V < ∆× 2n, and thus UV − 2nD is negative. We thus observe that
the sign of U−D is the same as the sign of UV −2nD, which is same as the sign of (N−2n−1D).

sign(U −D) = sign(N − 2n−1D) (8.20)

Now, for reducing the problem, if we observe that U −D ≥ 0, then N − 2n−1D ≥ 0. Hence,
we can set Qn to 1, and set the new dividend to N ′ = N − 2n−1DQn, and also conclude that at
the end of the iteration UV contains 2N ′(Line 5 and 7). If U −D < 0, then we cannot set Qn

to 1. N ′ will become negative. Hence, the algorithm sets Qn to 0 in Line 11 and adds D back
to U . The value of UV is thus equal to 2N . Since Qn = 0, we have N = N ′(Equation 8.17).
In both the cases, the value of UV at the end of the iteration is 2N ′. We thus conclude that in
the first iteration, the MSB of the quotient is computed correctly, and the value of UV ignoring
the quotient bit is equal to 2N ′.

In the next iteration, we can use exactly the same procedure to prove that the value of
UV (ignoring quotient bits) is equal to 4N ′′. Ultimately, after 32 iterations, V will contain the
entire quotient. The value of UV (ignoring quotient bits) at that point will be 2n ×N32. Here
N i is the reduced dividend after the ith iteration. We have the following relation according to
Equation 8.17:

N31 = DQ1 +R

⇒N31 −DQ1︸ ︷︷ ︸
N32

= R (8.21)

Hence, U will contain the value of the remainder and V will contain the quotient.

Important Point 11
Let us now try to prove that the restoring algorithm does not suffer from overflows while
performing a left shift, and adding or subtracting the divisor. Let us first prove that just
before the shift operation in Line 4, U < D. Let us assume positive divisors (D > 0) and
non-negative dividends (N ≥ 0) for division. For the base case, (U = 0), the proposition

337 © Smruti R. Sarangi

holds. Let us consider the nth iteration. Let the value of U before the shift operation be Û .
From the induction hypothesis, we can conclude that Û < D, or alternatively, Û ≤ D − 1
After the shift operation, we have U ≤ 2Û + 1 because we are performing a left shift by
1 position, and shifting in the MSB of V . If U < D, then the induction hypothesis holds
for the (n + 1)th iteration. Otherwise, we subtract D from U . We have, U = U − D ≤
2Û + 1 − D ≤ 2(D − 1) + 1 − D = D − 1. Therefore, U < D. Thus, for the (n + 1)th

iteration, the induction hypothesis holds. Now that we have proved that U < D, let us prove
that the largest value contained in register U is less than or equal to 2D − 1.

After the shift operation, the largest value that U can contain is (2(D−1)+1) = 2D−1.
Henceforth, the value of U can only decrease. Since D is a 32-bit number, we require at the
most 33 bits to store (2D − 1). Consequently, having a 33-bit U register avoids overflows.

Time Complexity

There are n iterations of the for loop. Each iteration does one subtraction in Line 5 and maybe
one addition in Line 10. The rest of the operations can be done in O(1) time. Thus, per
iteration it takes O(log(n)) time. Hence, the total time complexity is O(nlog(n)).

© Smruti R. Sarangi 338

Example 128
Divide two 4-bit numbers: 7 (0111) / 3(0011) using restoring division. Answer:

00000 111Xafter shift:

end of
iteration:

00000 1110
1

00000 0111beginning:
U V

00001 110Xafter shift:

end of
iteration:

00001 1100
2

00011 100Xafter shift:

end of
iteration:

00000 1001
3

00001 001Xafter shift:

end of
iteration:

00001 0010
4

Divisor (D) 0011

Dividend (N) 00111

Remainder(R) 0001

Quotient(Q) 0010

8.3.3 Non-Restoring Division

We observe that there can be a maximum of two add/subtract operations per iteration. It is
possible to circumvent it by using another temporary register to store the result of the subtract
operation U−D. We can move it to U only if U−D ≥ 0. However, this also involves additional
circuitry. The U register will get complicated and slower too.

The non-restoring algorithm does either one addition or one subtraction per iteration.
Hence, it is more efficient even though the asymptotic time complexity is the same. The
hardware setup (U and V registers, dividend (N), divisor (D)) is the same as that for the

339 © Smruti R. Sarangi

restoring algorithm.

Algorithm 4: Non-restoring algorithm to divide two 32-bit numbers

Data: Divisor in D, Dividend in V , U = 0
Result: U contains the remainder, and V contains the quotient

1 i ← 0
2 for i < 32 do
3 i ← i + 1

/* Left shift UV by 1 position */

4 UV ← UV << 1
5 if U ≥ 0 then
6 U ← U −D
7 end
8 else
9 U ← U + D

10 end
11 if U ≥ 0 then
12 q ← 1
13 end
14 else
15 q ← 0
16 end

/* Set the quotient bit */

17 LSB of V ← q

18 end
19 if U < 0 then
20 U ← U +D
21 end

We see that the non-restoring algorithm is very similar to the restoring algorithm with some
minor differences. The non-restoring algorithm shifts UV as the first step in an iteration. Then,
if the value of U is negative, it adds D to U . Otherwise, it subtracts D from U . If the addition
or subtraction has resulted in a value that is greater than or equal to zero, the non-restoring
algorithm sets the appropriate quotient bit to 1, else it sets it to 0.

Finally, at the end V contains the entire quotient. If U is negative, then we need to add
the divisor (D) to U . U will contain the remainder.

Proof of Correctness*

Like the restoring algorithm, let us assume that when we refer to the value of UV , we assume
that all the quotient bits are equal to 0. As long as U remains positive or 0, the state of U and
V is equal to that produced by the restoring algorithm. Let us assume that in the jth iteration,
U becomes negative for the first time. Let us consider the value represented by the register
UV just after it is shifted to the left by 1 position, and call it UVj (j stands for the iteration
number).

At the end of the jth iteration, UV = UVj − D′, where D′ = D × 2n. We shift D by n
places to the left because we always add or subtract D from U , which is the upper half of UV .

© Smruti R. Sarangi 340

According to our assumption UVj is negative. In this case the restoring algorithm would not
have subtracted D′, and it would have written 0 to the quotient. The non-restoring algorithm
sets the quotient bit correctly since it finds UV to be negative (Line 15). Let us now move to
the (j + 1)th iteration.

UVj+1 = 2UVj − 2D′. At the end of the (j + 1)th iteration, UV = 2UVj − 2D′ + D′ =
2UVj −D′. If UV is not negative, then the non-restoring algorithm will save 1 in the quotient.
Let us now see at this point what the restoring algorithm would have done (assuming UV
is non-negative). In the (j + 1)th iteration, the restoring algorithm would have started the
iteration with UV = UVj . It would have then performed a shift and subtracted D′ to set
UV = 2UVj −D′, and written 1 to the quotient. We thus observe that at this point the state
of the registers U and V matches exactly for both the algorithms.

However, if UV is negative then the restoring and non-restoring algorithms will have a
different state. Nonetheless the quotient bits will be set correctly. UVj+2 = 4UVj − 2D′. Since
a negative number multiplied by 2 (left shifted by 1 position) is still negative, the non-restoring
algorithm will add D′ to U . Hence, the value of UV at the end of the (j + 2)th iteration will
be 4UVj −D′. If this is non-negative, then the restoring algorithm would also have exactly the
same state at this point.

We can continue this argument to observe that the quotient bits are always set correctly
and the state of U and V exactly matches that of the restoring algorithm when UV ≥ 0 at
the end of an iteration. Consequently, for dividing the same pair of numbers the states of the
restoring and non-restoring algorithms will start as the same, then diverge and converge several
times. If the last iteration leads to a non-negative UV then the algorithm is correct because
the state exactly matches that produced by the restoring algorithm.

However, if the last iteration leaves us with UV as negative, then we observe that UV
= 2n−kUVk−D′, where k is the iteration number at which the states had converged for the last
time. If we add D′ to UV , then the states of both the algorithms match, and thus the results
are correct (achieved in Line 20).

Important Point 12
Let us now try to prove that the non-restoring algorithm does not suffer from overflows while
performing a left shift, and adding or subtracting the divisor. Similar to the proof for the
restoring algorithm, let us first prove that just before the shift operation, |U | < D. For the
base case, (U = 0), the proposition holds. Let us consider the nth iteration, and let the value
of U just before the shift operation be Û . Let us first assume that Û ≥ 0. In this case, we
can use the same logic as the restoring algorithm, and prove that |U | < D at the beginning
of the (n + 1)th iteration. Let us now assume that Û < 0. From the induction hypothesis,
|Û | < D ⇒ Û ≥ −(D−1). Now, if we shift Û by 1 position, and shift in a 0 or 1, we compute
U ≥ 2Û (for Û < 0, shifting in a 1 reduces the absolute value). After the shift operation,
we add D to U . We thus have, U = U +D ≥ 2Û +D ≥ 2× (1−D)+D = 2−D. Thus, in
this case also |U | < D, just before the shift, and after the shift we have |U | ≤ 2D − 1. We
thus need to allocate an extra bit to register U to correctly store all the possible intermediate
values of U . Hence, the U register is 33 bits wide. We are thus guaranteed to not have
overflows during the operation of the non-restoring algorithm.

341 © Smruti R. Sarangi

Example 129
Divide two 4-bit numbers: 7 (0111) / 3(0011) using non-restoring division. Answer:

00000 111Xafter shift:

end of
iteration:

11101 11101

00000 0111beginning:
U V

11011 110Xafter shift:

end of
iteration:

11110 11002

11101 100Xafter shift:

end of
iteration:

00000 10013

00001 001Xafter shift:

end of
iteration:

11110 00104

Divisor (D) 0011

Dividend (N) 00111

Remainder(R) 0001

Quotient(Q) 0010

0001 0010end (U=U+D):
U V

8.4 Floating Point Addition and Subtraction

The problems of floating point addition and subtraction are actually different faces of the same
problem. A−B can be interpreted in two ways. We can say that we are subtracting B from A,
or we can say that we are adding −B to A. Hence, instead of looking at subtraction separately,
let us look at it as a special case of addition. We shall first look at the problem of adding two
numbers with the same sign in Section 8.4.1, with opposite signs in Section 8.4.4 and then look
at the generic problem of adding two numbers in Section 8.4.5.

Before going further, let us quickly recapitulate our knowledge of floating point numbers

© Smruti R. Sarangi 342

(see Table 8.5).

Normalised form of a 32-bit (normal) floating point number.

A = (−1)S × P × 2E−bias, (1 ≤ P < 2, E ∈ Z, 1 ≤ E ≤ 254)
(8.22)

Normalised form of a 32-bit (denormal) floating point number.

A = (−1)S × P × 2−126, (0 ≤ P < 1) (8.23)

Symbol Meaning

S Sign bit (0(+ve), 1(-ve))

P Significand (form: 1.xxx(normal) or 0.xxx(denormal))

M Mantissa (fractional part of significand)

E (exponent + 127(bias))

Z Set of integers

Table 8.5: IEEE 754 format

8.4.1 Simple Addition with Same Signs

The problem is to add two floating point numbers A and B with the same sign. We want
to compute a new floating point number C = A + B. In this case, the sign of the result is
known in advance (sign of A or B). All of our subsequent discussion assumes the IEEE 32-bit
format. However, the techniques that we develop can be extended to other formats, especially
double-precision arithmetic.

First, the floating point unit needs to unpack different fields from the floating point rep-
resentations of A and B. Let the E fields (exponent + bias) be EA and EB for A and B
respectively. Let the E field of the result, C, be EC . In hardware, let us use a register called
E to save the exponent (in the bias notation). The final value of E needs to be equal to EC .

Unpacking the significand is slightly more elaborate. We shall represent the significands
as unsigned integers and ignore the decimal point. Moreover, we shall add a leading most
significant bit that can act as the sign bit. It is initially 0. For example, if a floating point
number is of the form: 1.0111 × 210, the significand is 1.0111, and we shall represent it as
010111. Note that we have added a leading 0 bit. Figure 8.16 shows an example of how the
significand is unpacked, and placed in a register for a normal floating point number. In the
32-bit IEEE 754 format, there are 23 bits for the mantissa, and there is either a 0 or 1 before
the decimal point. The significand thus requires 24 bits, and if we wish to add a leading sign
bit(0), then we need 25 bits of storage. Let us save this number in a register, and call it W .

Let us start out by observing that we cannot add A and B the way we have added integers,
because the exponents might be different. The first task is to ensure that both the exponents
are the same. Without no loss of generality, let us assume that EA ≥ EB. This can be effected
with a simple compare and swap in hardware. We can thus initialise the register E to EA.

Let the significands of A and B be PA and PB respectively. Let us initially set W equal to

343 © Smruti R. Sarangi

S E Mantissa

123243132

01

W

Number in IEEE 754 format

Figure 8.16: Expanding the significand and placing it in a register

the significand of B(PB) with a leading 0 bit as shown in Figure 8.16.

To make the exponent of A and B equal, we need to right shift W by (EA−EB) positions.
Now, we can proceed to add the significand of A termed as PA to W .

W = W >> (EA − EB) (8.24)

W = W + PA (8.25)

Let the significand represented by W be PW . There is a possibility that PW might be
greater than or equal to 2. In this case, the significand of the result is not in normalised form.
We will thus need to right shift W by 1 position and increment E by 1. This process is called
normalisation. There is a possibility that incrementing E by 1 might make it equal to 255,
which is not allowed. We can signal an overflow in this case. The final result can be obtained
by constructing a floating point number out of the E, W , and the sign of the result (sign of
either A or B).

Example 130
Add the numbers: 1.012 × 23 + 1.112 × 21. Assume that the bias is 0.
Answer:

1. A = 1.01× 23 and B = 1.11× 21

2. W = 01.11 (significand of B)

3. E = 3

4. W = 01.11 >> (3-1) = 00.0111

5. W + PA = 00.0111 + 01.0100 = 01.1011

6. Result: C = 1.1011× 23

© Smruti R. Sarangi 344

Example 131
Add 1.01× 23 + 1.11× 22. Assume that the bias is 0.
Answer:

1. A = 1.01× 23 and B = 1.11× 22

2. W = 01.11 (significand of B)

3. E = 3

4. W = 01.11 >> (3-2) = 00.111

5. W + PA = 00.111 + 01.010 = 10.001

6. Normalisation: W = 10.001 >> 1 = 1.0001, E = 4

7. Result: C = 1.0001× 24

8.4.2 Rounding

In Example 131, let us assume that we were allowed only two mantissa bits. Then, there would
have been a need to discard all the mantissa bits other than the two most significant ones. The
result would have been 1.00. To incorporate the effect of the discarded bits, it might have been
necessary to round the result. For example, let us consider decimal numbers. If we wish to
round 9.99 to the nearest integer, then we should round it to 10. Similarly, if we wish to round
9.05 to the nearest integer, then we should round it to 9. Likewise, it is necessary to introduce
rounding schemes while doing floating point operations such that the final result can properly
reflect the value contained in the discarded bits.

Let us first introduce some terminology. Let us consider the sum of the significands after
we have normalised the result. Let us divide the sum into two parts: (P̂ + R) × 2−23(R < 1).
Here, P̂ is the significand of the temporary result in W multiplied by 223. It is an integer and
it might need to be further rounded. R is a residue (beyond 23 bits) that will be discarded. It
is less than 1. The aim is to modify P̂ appropriately to take into account the value of R. Now,
there are two ways in which P̂ can be modified because of rounding. Either we can leave P̂
as it is, or we can increment P̂ by 1. Leaving P̂ as it is is also known as truncation. This is
because we are truncating or discarding the residue.

The IEEE 754 format supports four rounding modes as shown in Table 8.6. An empty
entry corresponds to truncating the result. We only show the conditions in which we need to
increment P̂ .

We give examples in decimal (base 10) in the next few subsections for the ease of under-
standing. Exactly the same operations can be performed on binary numbers. Our aim is to
round P̂ +R to an integer. There are four possible ways of doing this in the IEEE 754 format.

345 © Smruti R. Sarangi

Rounding Mode Condition for incrementing the significand
Sign of the result (+ve) Sign of the result (-ve)

Truncation
Round to +∞ R > 0
Round to −∞ R > 0

Round to Nearest (R > 0.5)||(R = 0.5 ∧ LSB(P̂) = 1) (R > 0.5)||(R = 0.5 ∧ LSB(P̂) = 1)

P̂ (significand of the temporary result multiplied by 223), ∧ (logical AND), R (residue)

Table 8.6: IEEE 754 rounding modes

Truncation

This is the simplest rounding mode. This rounding mode simply truncates the residue. For
example, in truncation based rounding, if P̂ +R = 1.5, then we will discard 0.5, and we are left
with 1. Likewise, truncating -1.5 will give us -1. This is the easiest to implement in hardware,
and is the least accurate out of the four methods.

Round to +∞

In this rounding mode, we always round a number to the larger integer. For example, if
P̂ +R = 1.2, we round it to 2. If P̂ +R = −1.2, we round it to -1. The idea here is to check the
sign bit and the residue. If the number is positive, and the residue is non-zero, then we need
to increment P̂ , or alternatively the LSB of the significand. Otherwise, in all the other cases
(either R = 0 or the number is negative), it is sufficient to truncate the residue.

Round to −∞

This is the reverse of rounding to +∞. In this case, we round 1.2 to 1, and -1.2 to -2.

Round to Nearest

This rounding mode is the most complicated, and is also the most common. Most processors
use this rounding mode as the default. In this case, we try to minimise the error by rounding
P̂ to the nearest possible value. If R > 0.5, then the nearest integer is P̂ + 1. For example,
we need to round 3.6 to 4, and -3.6 to -4. Similarly, if R < 0.5, then we need to truncate the
residue. For example, we need to round 3.2 to 3, and -3.2 to -3.

The special case arises when R = 0.5. In this case, we would like to round P̂ to the nearest
even integer. For example, we will round 3.5 to 4, and 4.5 to also 4. This is more of a convention
than a profound mathematical concept. To translate this requirement in our terms, we need
to take a look at the LSB of P̂ . If it is 0, then P̂ is even, and we do not need to do anything
more. However, if LSB(P̂) = 1, then P̂ is odd, and we need to increment it by 1.

8.4.3 Implementing Rounding

From our discussion on rounding, it is clear that we need to maintain some state regarding the
discarded bits and P̂ such that we can make the proper rounding decision. In specific, we need

© Smruti R. Sarangi 346

four pieces of information – LSB(P̂), is R = 0.5, is R > 0, and is R > 0.5. The last three
requirements can be captured with two bits – round and sticky.

The round bit is the MSB of the residue, R. The sticky bit is a logical OR of the rest of
the bits of the residue. We can thus express the different conditions on the residue as shown in
Table 8.7.

Condition on Residue Implementation

R > 0 r ∨ s = 1

R = 0.5 r ∧ s = 1

R > 0.5 r ∧ s = 1

r (round bit), s(sticky bit)

Table 8.7: Evaluating properties of the residue using round and sticky bits

Implementing rounding is thus as simple as maintaining the round bit, and sticky bit, and
then using Table 8.6 to round the result. Maintaining the round and sticky bits requires us
to simply update them on every single action of the algorithm. We can initialise these bits to
0. They need to be updated when B is shifted to the right. Then, they need to be further
updated when we normalise the result. Now, it is possible that after rounding, the result is
not in normalised form. For example, if P̂ contains all 1s, then incrementing it will produce 1
followed by 23 0s, which is not in the normalised form.

Renormalisation after Rounding

In case, the process of rounding brings the result to a state that is not in the normalised form,
then we need to re-normalise the result. Note that in this case, we need to increment the
exponent by 1, and set the mantissa to all 0s. Incrementing the exponent can make it invalid
(if E = 255). We need to explicitly check for this case.

8.4.4 Addition of Numbers with Opposite Signs

Now let us look at the problem of adding two floating point numbers, A and B, to produce C.
They have opposite signs. Again let us make the assumption that EA ≥ EB.

The first step is to load the register W with the significand of B(PB) along with a leading 0.
Since the signs are different, in effect we are subtracting the significand of B (shifted by some
places) from the significand of A. Hence, we can take the 2’s complement of W that contains
PB with a leading 0 bit, and then shift it to the right by EA−EB places. This value is written
back to the register W . Note that the shift needs to be an arithmetic right shift here such
that the value is preserved. Secondly, the order of operations (shift and 2’s complement) is not
important.

We can now add the significand of A (PA) to W . If the resulting value is negative, then we
need to take its 2’s complement, and set the sign of the result accordingly.

Next, we need to normalise the result. It is possible that PW < 1. In this case, we need to
shift W to the left till 1 ≤ PW < 2. Most implementations of the floating point standard, use
an extra bit called the guard bit. along with the round and sticky bits. They set the MSB of

347 © Smruti R. Sarangi

the residue to the guard bit, the next bit to the round bit, and the OR of the rest of the bits
to the sticky bits. During the process of shifting a number left, they shift in the guard bit first,
and then shift in 0s. At the end of the algorithm, it is necessary to set the round bit equal
to the guard bit, and OR the sticky bit with the round bit such that our original semantics is
maintained. This added complexity is to optimise for the case of a left shift by 1 position. If
we did not have the guard bit, then we needed to shift the round bit into W , and we would
thus lose the round bit forever.

Once W is normalised and the exponent(E) is updated, we need to round the result as per
Table 8.6. This process might lead to another round of normalisation.

8.4.5 Generic Algorithm for Adding Floating Point Numbers

Note that we have not considered special values such as 0 in our analysis. The flowchart
in Figure 8.17 shows the algorithm for adding two floating point numbers. This algorithm
considers 0 values also.

A=0? C=B

B=0? C=A

Y

Y

N

sign(A) = sign(B)?

Swap A and B
such that E <EAB

W P >> (E - E)A B

Y

N

W W + P

W -W (2's complement)

Normalise W and
 update E

Round W

B

A

E EA , S sign(A)

N

W < 0?

W -W (2's complement)

S = S

Y

N

Normalise W and
 update E

Overflow or
underflow?

Overflow or
underflow?

N

N

Report

Y

Report
Y

Construct C out
of W, E, and S

C

C = A + B

Figure 8.17: Flowchart for adding two floating point values

8.5 Multiplication of Floating Point Numbers

The algorithm for multiplying floating point numbers is of exactly the same form as the algo-
rithm for generic addition without a few steps. Let us again try to multiply A × B to obtain

© Smruti R. Sarangi 348

A=0? C=0

B=0? C=0

Y

Y

N Normalise W and
 update E

Round W
E E + E - biasA

sign(A) sign(B)

N

Normalise W and
 update E

Overflow or
underflow?

Overflow or
underflow?

N

N

Report

Y

Construct C out
of W, E, and S

C

C = A * B

S

B

Overflow or
underflow?

Report

Y

P

AW P

B*

N

Report

Y

Figure 8.18: Flowchart for multiplying two floating point values

the product C. Again, let us assume without loss of generality that EA ≥ EB.

The flowchart for multiplication is shown in Figure 8.18. We do not have to align the
exponents in the case of multiplication. We initialise the algorithm as follows. We load the
significand of B into register W . In this case, the width of W is equal to double the size
of the operands such that the product can be accommodated. The E register is initialised to
EA+EB−bias. This is because in the case of multiplication, the exponents are added together.
We subtract the bias to avoid double counting. Computing the sign of the result is trivial.

After initialisation, we multiply the significand of A with W and save the product in W .
The product contains 46 bits after the floating point. We might need to discard some of the bits
to ensure that the final mantissa is 23 bits long. Hence, it might be necessary to normalise the
result by shifting it to the right (normal numbers), or shifting it to the left (denormal numbers).

As with the case of addition, we can then proceed to round the result to contain 23 bits in
the mantissa, and renormalise if necessary. Since there are a constant number of add operations,
the time complexity is equal to the sum of the time complexity of normal multiplication and
addition. Both of them are O(log(n)) operations. The total time taken is thus O(log(n)).

349 © Smruti R. Sarangi

8.6 Division of Floating Point Numbers

8.6.1 Simple Division

The major difference between integer and floating point division is that floating point division
does not have a remainder. It only has a quotient. Let us try to divide A by B to obtain C.

We initialise the algorithm by setting the W register to contain the significand(PA) of A.
The E register is initialised as EA − EB + bias. This is done because in division, we subtract
the exponents. Hence, in their biased representation we need to subtract EB from EA, and we
need to add the value of the bias back. Computing the sign of the result is also trivial in this
case.

We start out by dividing PA by PB. The rest of the steps are the same as that of multipli-
cation (see Section 8.5). We normalise the result, round it, and then renormalise if necessary.

The time complexity of this operation is the same as the time complexity of the restoring
or non-restoring algorithms. It is equal to O(nlog(n)). It turns out that for the case of floating
point division, we can do much better.

8.6.2 Goldschmidt Division

Let us try to simplify the process of division by dividing it into two stages. In the first stage,
we compute the reciprocal of the divisor (1/B). In the next stage, we multiply the obtained
reciprocal with the dividend A. The product is equal to A/B. Floating point multiplication is
an O(log(n)) time operation. Hence, let us focus on trying to compute the reciprocal of B.

Let us also ignore exponents in our discussion because, we just need to flip the sign of the
exponent in the reciprocal. Let us only focus on the significand, PB, and to keep matters simple,
let us further assume that B is a normal floating point number. Thus, 1 ≤ PB < 2. We can
represent PB = 1 +X(X < 1). We have:

1

PB
=

1

1 +X
(PB = 1 +X,X < 1)

=
1

1 + 1−X ′ (X ′ = 1−X,X ′ < 1)

=
1

2−X ′

=
1

2
× 1

1−X ′/2

=
1

2
× 1

1− Y
(Y = X ′/2, Y < 1/2)

(8.26)

Let us thus focus on evaluating 1/(1− Y). We have:

© Smruti R. Sarangi 350

1

1− Y
=

1 + Y

1− Y 2

=
(1 + Y)(1 + Y 2)

1− Y 4

= . . .

=
(1 + Y)(1 + Y 2) . . . (1 + Y 16)

1− Y 32

≈ (1 + Y)(1 + Y 2) . . . (1 + Y 16)

(8.27)

We need not proceed anymore. The reason for this is as follows. Since Y < 1/2, Y n

is less than 1/2n. The smallest mantissa that we can represent in the IEEE 32-bit floating
point notation is 1/223. Hence, there is no point in having terms that have an exponent
greater than 23. Given the approximate nature of floating point mathematics, the product
(1 + Y)(1 + Y 2) . . . (1 + Y 16) is as close to the real value of 1/(1− Y) as we can get.

Let us now consider the value – (1 + Y)(1 + Y 2) . . . (1 + Y 16). It has 5 add operations that
can be done in parallel. To obtain Y . . . Y 16, we can repeatedly multiply each term with itself.
For example, to get Y 8, we can multiply Y 4 with Y 4 and so on. Thus, generating the powers
of Y takes 4 multiply operations. Lastly, we need to multiply the terms in brackets – (1 + Y),
(1+Y 2),(1+Y 4),(1+Y 8), and (1+Y 16). This will required 4 multiplications. We thus require
a total of 8 multiplications and 5 additions.

Let us now compute the time complexity. For an n-bit floating point number, let us assume
that a fixed fraction of bits represent the mantissa. Thus, the number of bits required to
represent the mantissa is O(n). Consequently, the number of terms of the form (1 + Y 2k)
that we need to consider is O(log(n)). The total number of additions, and multiplications for
finding the reciprocal is also O(log(n)). Since each addition or multiplication takes O(log(n))
time, the time complexity of finding the reciprocal of B is equal to O(log(n)2). Since the rest
of the operations such as adjusting the exponents and multiplying the reciprocal with A take
O(log(n)) time, the total complexity is equal to O(log(n)2).

We observe that floating point division is asymptotically much faster than normal integer
division. This is primarily because floating point mathematics is approximate, whereas integer
mathematics is exact.

8.6.3 Division Using the Newton-Raphson Method

We detail another algorithm that also takes O(log(n)2) time. We assume that we are trying to
divide A by B. Let us only consider normal numbers. Akin to Goldschmidt division, the key
point of the algorithm is to find the reciprocal of the significand of B. Adjusting the exponents,
computing the sign bit, and multiplying the reciprocal with A are fast operations (O(log(n)).

For readability, let us designate PB as b (1 ≤ b < 2). We wish to compute 1/b. Let us
create a function: f(x) = 1/x − b. f(x) = 0 when x = 1/b. The problem of computing the
reciprocal of b is thus the same as computing the root of f(x). Let us use the Newton Raphson
method [Kreyszig, 2000].

The gist of this method is shown in Figure 8.19. We start with an arbitrary value of x
such as x0. We then locate the point on f(x) that has x0 as its x co-ordinate and then draw

351 © Smruti R. Sarangi

x0

x0 f(x)0,

x1

x1 f(x)1,

x2

root

x

f(x)

Figure 8.19: The Newton-Raphson method

a tangent to f(x) at (x0, f(x0)). Let the tangent intersect the x axis at x1. We again follow
the same procedure, and draw another tangent at (x1, f(x1)). This tangent will intersect the x
axis at x2. We continue this process. As we can observe in the figure, we gradually get closer
to the root of f(x). We can terminate after a finite number of steps with an arbitrarily small
error. Let us analyse this procedure mathematically.

The derivative of f(x) at x0 is df(x)/dx = −1/x20. Let the equation of the tangent be
y = mx+ c. The slope is equal to −1/x20. The equation is thus: y = −x/x20+ c. Now, we know
that at x0, the value of y is 1/x0 − b. We thus have:

1

x0
− b = −x0

x20
+ c

⇒ 1

x0
− b = − 1

x0
+ c

⇒c =
2

x0
− b

(8.28)

The equation of the tangent is y = −x/x20 + 2/x0 − b. This line intersects the x axis when
y = 0, and x = x1. We thus have:

0 = −x1
x20

+
2

x0
− b

⇒x1 = 2x0 − bx20

(8.29)

Let us now define an error function of the form: E(x) = bx− 1. Note that E(x) is 0, when
x is equal to 1/b. Let us compute the error: E(x0) and E(x1).

© Smruti R. Sarangi 352

E(x0) = bx0 − 1 (8.30)

E(x1) = bx1 − 1

= b
(
2x0 − bx20

)
− 1

= 2bx0 − b2x20 − 1

= −(bx0 − 1)2

= −E(x0)2

| E(x1) | =| E(x0) |2

(8.31)

Thus, the error gets squared every iteration, and if the starting value of the error is less
than 1, then it will ultimately get arbitrarily close to 0. If we can place bounds on the error,
then we can compute the number of iterations required.

We start out by observing that 1 ≤ b < 2 since we only consider normal floating point
numbers. Let x0 be 1/2. The range of bx0 − 1 is thus [−1/2, 0]. We can thus bound the
error(E(x0)) as −1/2 ≤ E(x0) < 0. Therefore, we can say that | E(x0) |≤ 1/2. Let us now take
a look at the maximum value of the error as a function of the iteration in Table 8.8.

Iteration max(E(x))
0 1

2

1 1
22

2 1
24

3 1
28

4 1
216

5 1
232

Table 8.8: Maximum error vs iteration count

Since we only have 23 mantissa bits, we need not go beyond the fifth iteration. Thus, in
this case also, the number of iterations is small, and bounded by a small constant. In every
step we have a multiply and subtract operation. These are O(log(n)) time operations.

Let us compute the time complexity for n bit floating point numbers. Here, also we assume
that a fixed fraction of bits are used to represent the mantissa. Like the case of Goldschmidt
division, we need O(log(n)) iterations, and each iteration takes O(log(n)) time. Thus, the total
complexity is O(log(n)2).

353 © Smruti R. Sarangi

8.7 Summary and Further Reading

8.7.1 Summary

Summary 8

1. Adding two 1 bit numbers (a and b) produces a sum bit(s) and a carry bit(c)

(a) s = a⊕ b

(b) c = a.b

(c) We can add them using a circuit called a half adder.

2. Adding three 1 bit numbers (a, b, and cin) also produces a sum bit(s) and a carry
bit(cout)

(a) s = a⊕ b⊕ cin

(b) cout = a.b+ a.cin + b.cin

(c) We can add them using a circuit called a full adder.

(d)

3. We can create a n bit adder known as a ripple carry adder by chaining together n− 1
full adders, and a half adder.

4. We typically use the notion of asymptotic time complexity to express the time taken
by an arithmetic unit such as an adder.

(a) f(n) = O(g(n)) if |f(n)| ≤ c|g(n)| for all n > n0, where c is a positive constant.

(b) For example, if the time taken by an adder is given by f(n) = 2n3+1000n2 +n,
we can say that f(n) = O(n3)

5. We discussed the following types of adders along with their time complexities:

(a) Ripple carry adder – O(n)

(b) Carry select adder – O(
√
n)

(c) Carry lookahead adder – O(log(n))

6. Multiplication can be done iteratively in O(n log(n)) time using an iterative multiplier.
The algorithm is similar to the one we learned in elementary school.

7. We can speed it up by using a Booth multiplier that takes advantage of a continuous
run of 1s in the multiplier.

8. The Wallace tree multiplier runs in O(log(n)) time. It uses a tree of carry save adders
that express a sum of three numbers, as a sum of two numbers.

© Smruti R. Sarangi 354

9. We introduced two algorithms for division:

(a) Restoring algorithm

(b) Non-restoring algorithm

10. Floating point addition and subtraction need not be considered separately. We can
have one algorithm that takes care of the generic case.

11. Floating point addition requires us to perform the following steps:

(a) Align the significand of the smaller number with the significand of the larger
number.

(b) If the signs are different then take a 2’s complement of the smaller significand.

(c) Add the significands.

(d) Compute the sign bit of the result.

(e) Normalise and round the result using one of four rounding modes.

(f) Renormalise the result again if required.

12. We can follow the same steps for floating point multiplication and division. The only
difference is that in this case the exponents get added or subtracted respectively.

13. Floating point division is fundamentally a faster operation than integer division be-
cause of the approximate nature of floating point mathematics. The basic operation is
to compute the reciprocal of the denominator. It can be done in two ways:

(a) Use the Newton-Raphson method to find the root of the equation f(x) = 1/x− b.
The solution is the reciprocal of b.

(b) Repeatedly multiply the numerator and denominator of a fraction derived from
1/b such that the denominator becomes 1 and the reciprocal is the numerator.

8.7.2 Further Reading

For more details on the different algorithms for computer arithmetic, the reader can refer to
classic texts such as the books by Israel Koren [Koren, 2001], Behrooz Parhami [Parhami,
2009], and Brent and Zimmermann [Brent and Zimmermann, 2010]. We have not covered
the SRT division algorithm. It is used in a lot of modern processors. The reader can find
good descriptions of this algorithm in the references. The reader is also advised to look at
algorithms for multiplying large integers. The Karatsuba and Scönhage-Strassen algorithms
are the most popular algorithms in this area. The area of approximate adders is gaining in
prominence. These adders add two numbers by assuming certain properties such as a bound on
the maximum number of positions a carry propagates. It is possible that they can occasionally
make a mistake. Hence, they have additional circuitry to detect and correct errors. With high
probability such adders can operate in O(log(log(n)) time. Verma et. al. [Verma et al., 2008]
describe one such scheme.

355 © Smruti R. Sarangi

Exercises

Addition
Ex. 1 — Design a circuit to find the 1’s complement of a number using half adders only.

Ex. 2 — Design a circuit to find the 2’s complement of a number using half adders and logic
gates.

Ex. 3 — Assume that the latency of a full adder is 2ns, and that of a half adder is 1ns. What
is the latency of a 32-bit ripple carry adder?

* Ex. 4 — Design a carry-select adder to add two n-bit numbers in O(
√
n) time, where the

sizes of the blocks are 1, 2, ...,m respectively.

Ex. 5 — Explain the operation of a carry lookahead adder.

* Ex. 6 — Suppose there is an architecture which supports numbers in base 3 instead of base
2. Design a Carry Lookahead Adder for this system. Assume that you have a simple full-adder
which adds numbers in base 3.

* Ex. 7 — Most of the time, a carry does not propagate till the end. In such cases, the correct
output is available much before the worst case delay. Modify a ripple carry adder to consider
such cases and set an output line to high as soon as the correct output is available.

* Ex. 8 — Design a fast adder, which uses only the propagate function, and simple logic
operations. It should NOT use the generate function. What is its time and space complexity?

Ex. 9 — Design a hardware structure to compute the sum of m, n bit numbers. Make it run
as fast as possible. Show the design of the structure. Compute a tight bound on its asymptotic
time complexity. [NOTE: Computing the time complexity is not as simple as it seems].

** Ex. 10 — You are given a probabilistic adder, which adds two numbers and yields the
output ensuring that each bit is correct with probability, a. In other words, a bit in the output
may be wrong with probability, (1 − a), and this event is independent of other bits being
incorrect. How will you add two numbers using probabilistic adders ensuring that each output
bit is correct with at least a probability of b, where b > a?

*** Ex. 11 — How frequently does the carry propagate to the end for most numbers? An-
swer: Very infrequently. In most cases, the carry does not propagate beyond a couple of bits.
Let us design an approximately correct adder. The insight is that a carry does not propagate
by more than k positions most of the time. Formally, we have:
Assumption 1: While adding two numbers, the largest length of a chain of propagates is at
most k.

Design an optimal adder in this case that has time complexity O(log k) assuming that Assump-
tion 1 holds all the time. Now design a circuit to check if assumption 1 has ever been violated.

© Smruti R. Sarangi 356

Verma et. al. [Verma et al., 2008] proved that k is equal to O(log(n)) with very high probability.
Voila, we have an exactly correct adder, which runs most of the time in O(log(log(n))) time.!!!

*** Ex. 12 — Let us consider two n-bit binary numbers, A, and B. Further assume that the
probability of a bit being equal to 1 is p in A, and q in B. Let us consider (A+B) as one large
chunk(block).
(a) What are the expected values of generate and propagate functions of this block as n tends
to ∞?
(b) If p = q = 1

2 , what are the values of these functions?
(c) What can we infer from the answer to part (b) regarding the fundamental limits of binary
addition?

Multiplication

Ex. 13 — Write a program in assembly language (any variant) to multiply two unsigned
32-bit numbers given in registers r0 and r1 and store the product in registers r2 (LSB) and
r3 (MSB). Instead of using the multiply instruction, simulate the algorithm of the iterative
multiplier.

Ex. 14 — Extend the solution to Exercise 13 for 32-bit signed integers.

* Ex. 15 — Normally, in the Booth’s algorithm, we consider the current bit, and the previous
bit. Based on these two values, we decide whether we need to add or subtract a shifted version
of the multiplicand. This is known as the radix-2 Booth’s algorithm, because we are considering
two bits at one time. There is a variation of Booth’s algorithm, called radix-4 Booth’s algorithm
in which we consider 3 bits at a time. Is this algorithm faster than the original radix-2 Booth’s
algorithm? How will you implement this algorithm ?

* Ex. 16 — Assume that in the sizes of the U and V registers are 32 bits in a 32-bit Booth
multiplier. Is it possible to have an overflow? Answer the question with an example. [HINT:
Can we have an overflow in the first iteration itself?]

* Ex. 17 — Prove the correctness of the Booth multiplier in your own words.

Ex. 18 — Explain the design of the Wallace tree multiplier. What is its asymptotic time
complexity?

** Ex. 19 — Design a Wallace tree multiplier to multiply two signed 32-bit numbers, and
save the result in a 32-bit register. How do we detect overflows in this case?

Division

Ex. 20 — Implementation of division using an assembly program.

i) Write an assembly program for restoring division.

ii) Write an assembly program for non-restoring division.

357 © Smruti R. Sarangi

* Ex. 21 — Design an O(log(n)k) time algorithm to find out if a number is divisible by 3.
Try to minimise k.

* Ex. 22 — Design an O(log(n)k) time algorithm to find out if a number is divisible by 5.
Try to minimise k.

** Ex. 23 — Design a fast algorithm to compute the remainder of the division of an unsigned
number by a number of the form (2m + 1). What is its asymptotic time complexity?

** Ex. 24 — Design a fast algorithm to compute the remainder of the division of an unsigned
number by a number of the form (2m − 1). What is its asymptotic time complexity?

** Ex. 25 — Design an O(log(uv)2) algorithm to find the greatest common divisor of two
binary numbers u and v. [HINT: The gcd of two even numbers u and v is 2 ∗ gcd(u/2, v/2)]

Floating Point Arithmetic

Ex. 26 — Give the simplest possible algorithm to compare two 32-bit IEEE 754 floating point
numbers. Do not consider ±∞, NAN, and (negative 0). Prove that your algorithm is correct.
What is its time complexity ?

Ex. 27 — Design a circuit to compute ⌈log2(n)⌉. What is its asymptotic time complexity?
Assume n is an integer. How can we use this circuit to convert n to a floating point number?

Ex. 28 — A and B, are saved in the computer as A′ and B′. Neglecting any further truncation
or roundoff errors, show that the relative error of the product is approximately the sum of the
relative errors of the factors.

Ex. 29 — Explain floating point addition with a flowchart.

Ex. 30 — Explain floating point multiplication with a flowchart.

Ex. 31 — Can we use regular floating point division for dividing integers also? If not, then
how can we modify the algorithm for performing integer division?

Ex. 32 — Describe in detail how the “round to nearest” rounding mode is implemented.

*** Ex. 33 — We wish to compute the square root of a floating point number in hardware
using the Newton-Raphson method. Outline the details of an algorithm, prove it, and compute
its computational complexity. Follow the following sequence of steps.

1.Find an appropriate objective function.

2.Find the equation of the tangent, and the point at which it intersects the x-axis.

3.Find an error function.

4.Calculate an appropriate initial guess for x.

5.Prove that the magnitude of the error is less than 1.

6.Prove that the error decreases at least by a constant factor per iteration.

© Smruti R. Sarangi 358

7.Evaluate the asymptotic complexity of the algorithm.

Design Problems

Ex. 34 — Implement an adder and a multiplier in a hardware description language such as
VHDL or Verilog.

Ex. 35 — Extend your design for implementing floating point addition and multiplication.

Ex. 36 — Read about the SRT division algorithm, comment on its computational complexity,
and try to implement it in VHDL/Verilog.

9
Processor Design

Now, we are all set to design a basic processor for the SimpleRisc instruction set. We have
assembled the arsenal to design a processor as well as making it efficient by our study of assembly
languages, basic elements of a digital circuit (logical elements, registers, and memories), and
computer arithmetic.

We shall start out by describing the basic elements of a processor in terms of fetching
an instruction from memory, fetching its operands, executing the instruction, and writing the
results back to memory or the register file. We shall see that along with the basic elements
such as adders and multipliers, we need many more structures to efficiently route instructions
between different units, and ensure fast execution. For modern processors, there are two primary
design styles – hardwired, and microprogrammed. In the hardwired design style, we complicate
a simple processor by adding more elaborate structures to process instructions. There is a net
increase in complexity. In the microprogrammed design style, we have a very simple processor
that controls a more complicated processor. The simple processor executes basic instructions
known as microinstructions for each program instruction, and uses these microinstructions to
control the operation of the complicated processor. Even though the hardwired design style is
much more common today, the microprogrammed design style is still used in many embedded
processors. Secondly, some aspects of microprogramming have crept into today’s complex
processors.

9.1 Design of a Basic Processor

9.1.1 Overview

The design of a processor is very similar to that of a car assembly line (see Figure 9.1). A car
assembly line first casts raw metal into the chassis of a car. Then the engine is built, and put
on the chassis. Then it is time to connect the wheels, the dashboard, and the body of the car.
The final operation is to paint the car, and test it for manufacturing defects. The assembly

359

© Smruti R. Sarangi 360

Figure 9.1: Car Assembly Line

line represents a long chain of actions, where one station performs a certain operation, and
passes on a half built car to the next station. Each station also uses a pool of raw materials to
augment the half built car such as metal, paint, or accessories.

We can think of a processor on the same lines as a car assembly line. In the place of a car,
we have an instruction. The instruction goes through various stages of processing. The same
way that raw metal is transformed to a beautiful finished product in a car factory, a processor
acts upon a sequence of bits to do complex arithmetic and logical computations.

Instruction
Fetch
(IF)

Operand
Fetch
(OF)

Execute

(EX)

Memory
Access
(MA)

Register
Write
(RW)

Figure 9.2: Five stages of instruction processing

We can broadly divide the operation of a processor into five stages as shown in Figure 9.2.
The first step is to fetch the instruction from memory. The underlying organisation of the
machine does not matter. The machine can be a Von Neumann machine (shared instruction
and data memory), or a Harvard machine (dedicated instruction memory). The fetch stage has
logical elements to compute the address of the next instruction. If the current instruction, is
not a branch, then we need to add the size of the current instruction (4 bytes) to the address
stored in the PC. However, if the current instruction is a branch, then the address of the next
instruction depends on the outcome and target of the branch. This information is obtained
from other units in the processor.

The next stage is to “decode” the instruction and fetch its operands from registers. Simp-
leRisc defines 21 instructions, and the processing required for different instruction types is very
different. For example, load-store instructions use a dedicated memory unit, whereas arithmetic
instructions do not. To decode an instruction, processors have dedicated logic circuits that gen-
erate signals based on fields in the instruction. These signals are then used by other modules
to properly process the instruction. The SimpleRisc format is very simple. Hence, decoding
the instruction is very easy. However, commercial processors such as Intel processors have very
elaborate decode units. Decoding the x86 instruction set is very complicated. Irrespective of

361 © Smruti R. Sarangi

the complexity of decoding, the process of decoding typically contains the following steps –
extracting the values of the operands, calculating the embedded immediate values and extend-
ing them to 32 or 64 bits, and generating additional information regarding the processing of
the instruction. The process of generating more information regarding an instruction involves
generating processor specific signals. For example, we can generate signals of the form “enable
memory unit” for load/store instructions. For a store instruction, we can generate a signal to
disable register write functionality.

In our SimpleRisc processor, we need to extract the immediate, and branch offset values
embedded in the instruction. Subsequently, we need to read the values of the source registers.
There is a dedicated structure in the processor called the register file that contains all the 16
SimpleRisc registers. For a read operation, it takes the number of the register as input, and
produces the contents of the register as its output. In this step, we read the register file, and
buffer the values of register operands in latches.

The next stage executes arithmetic and logical operations. It contains a arithmetic and
logical unit(ALU) that is capable of performing all arithmetic and logical operations. The ALU
is also required to compute the effective address of load-store operations. Typically this part
of the processor computes the outcome of branches also.

Definition 57
The ALU (arithmetic logic unit) contains elements for performing arithmetic and logical
computations on data values. The ALU typically contains an adder, multiplier, divider, and
has units to compute logical bitwise operations.

The next stage contains the memory unit for processing load-store instructions. This unit
interfaces with the memory system, and co-ordinates the process of loading and storing values
from memory. We shall see in Chapter 11 that the memory system in a typical processor is
fairly complex. Some of this complexity is implemented in this part of the processor. The last
step in processing an instruction is to write the values computed by the ALU or loaded values
obtained from the memory unit to the register file.

9.2 Units in a Processor

9.2.1 Instruction Fetch – Fetch Unit

We start out by fetching an instruction from main memory. Recall that a SimpleRisc instruction
is encoded as a sequence of 32 bits or 4 bytes. Hence, to fetch an instruction we need the starting
address of the instruction. Let us store the starting address of the instruction in a register called
the program counter (pc).

Important Point 13
Let us make an important distinction here between the terms PC and pc. PC is an acronym

© Smruti R. Sarangi 362

for “program counter”. In comparison, pc is a register in our pipeline, and will only be used
to refer to the register, and its contents. However, PC is a general concept and will be used
in the place of the term, “program counter”, for the sake of brevity.

Secondly, we need a mechanism to update the PC to point to the next instruction. If the
instruction is not a branch then the PC needs to point to the next instruction, whose starting
address is equal to the value of the old PC plus 4 (REASON: each instruction is 4 bytes long).
If the instruction is a branch, and it is taken, then the new value of the PC needs to be equal
to the address of the branch target. Otherwise, the address of the next instruction is equal to
the default value (current PC + 4).

pc

Instruction
 memory

4

branchPC

Fetch unit

control signal

1 - input 1
0 - input 0
Multiplexer

isBranchTaken

triggered by a negative
clock edge

32

32
32

inst

1

0

1

0

32

Figure 9.3: The Fetch Unit

Figure 9.3 shows an implementation of the circuit for the fetch unit. There are two basic
operations that need to be performed in a cycle – (1) computation of the next PC, and (2)
fetching the instruction.

The PC of the next instruction can come from two sources in SimpleRisc as shown in
Figure 9.3. We can either use an adder and increment the current PC by 4, or we can get

363 © Smruti R. Sarangi

the address from another unit that calculates the branch target(branchPC), and the fact that
the branch is taken. We can use a multiplexer to choose between these two inputs. Once, the
correct input is chosen, it needs to be saved in the pc register and sent to the memory system
for fetching the instruction. We can either use a combined memory for both instruction and
data (Von Neumann Machine) or use a separate instruction memory (Harvard Machine). The
latter option is more common. The instruction memory is typically implemented as an array
of SRAM cells. The fetch unit provides the address in the SRAM array, and then uses the 32
bits stored at the specified starting address as the contents of the instruction.

Before proceeding to decode the instruction, let us make an important observation. Let us
list down the external inputs of the fetch unit. They consist of the (1) branch target(branchPC),
(2) instruction contents, (3) and the signal to control the multiplexer (isBranchTaken). The
branch target is typically provided by the decode unit, or the instruction execution unit. The in-
struction contents are obtained from the instruction memory. Let us now consider the case of the
signal to control the multiplexer – isBranchTaken. The conditions for setting isBranchTaken
are shown in Table 9.1.

Instruction Value of isBranchTaken

non-branch instruction 0

call 1

ret 1

b 1

beq
branch taken – 1
branch not taken – 0

bgt
branch taken – 1
branch not taken – 0

Table 9.1: Conditions for setting the isBranchTaken signal

In our processor, a dedicated branch unit generates the isBranchTaken signal. It first
analyses the instruction. If the instruction is a non-branch instruction, or a call/ret/b instruc-
tion, then the value of isBranchTaken can be decided according to Table 9.1. However, if the
instruction is a conditional branch instruction (beq/bgt), then it is necessary to analyse the flags
register. Recall that the flags register contains the results of the last compare instruction (also
see Section 3.3.2). We shall describe a detailed circuit for the branch unit in Section 9.2.4.

Let us refer to this stage of instruction processing as the IF (instruction fetch) stage. Before,
we proceed to other stages, let us slightly digress here, and discuss two important concepts –
data path, and control path.

9.2.2 Data Path and Control Path

We need to make a fundamental observation here. There are two kinds of elements in a circuit.
The first type of elements are registers, memories, arithmetic, and logic circuits to process data
values. The second type of elements are control units that decide the direction of the flow of
data. The control unit in a processor typically generates signals to control all the multiplexers.
These are called control signals primarily because their role is to control the flow of information.

© Smruti R. Sarangi 364

We can thus conceptually think of a processor as consisting of two distinct subsystems. The
first is known as the data path that contains all the elements to store and process information.
For example the data memory, instruction memory, register file, and the ALU (arithmetic logic
unit), are a part of the data path. The memories and register file store information, whereas
the ALU processes information. For example, it adds two numbers, and produces the sum as
the result, or it can compute a logical function of two numbers.

In comparison, we have a control path that directs the proper flow of information by gener-
ating signals. We saw one example in Section 9.2.1, where the control path generated a signal
to direct a multiplexer to choose between the branch target and the default next PC. The
multiplexer in this case was controlled by a signal isBranchTaken.

We can think of the control path and data path as two distinct elements of a circuit much
like the traffic network of a city. The roads and the traffic lights are similar to the data path,
where instead of instructions, cars flow. The circuits to control traffic lights constitute the
control path. The control path decides the time of the transitions of lights. In modern smart
cities, the process of controlling all the traffic lights in a city is typically integrated. If it is
possible to intelligently control traffic to route cars around traffic jams, and accident sites.
Similarly, a processor’s control unit is fairly intelligent. Its job is to execute instructions as
quickly as possible. In this book, we shall study a basic version of a control unit. However, the
control unit will get very complicated in an advanced course on computer architecture.

Definition 58

Data Path The data path consists of all the elements in a processor that are dedicated to
storing, retrieving, and processing data such as register files, memories, and ALUs.

Control Path The control path primarily contains the control unit, whose role is to gener-
ate appropriate signals to control the movement of instructions, and data in the data
path.

A conceptual diagram showing the relationship between the control path and the data path
is shown in Figure 9.4. After this short digression, let us now move on to discuss the next stage
of instruction processing.

9.2.3 Operand Fetch Unit

SimpleRisc Instruction Format

Let us quickly recapitulate our knowledge about the SimpleRisc instruction format. The list of
SimpleRisc instructions is shown in Table 9.2 along with their opcodes, and instruction format.

SimpleRisc is a simple and regular instruction set. It has three classes of instruction formats
as shown in Table 9.3. The instruction formats are branch, register, and immediate. The add,
sub, mul, div, mod, and, or, cmp, not, lsl, lsr, asr, and mov instructions can have either the
register or the immediate format. This is decided by the I bit (27th bit) in the instruction.

365 © Smruti R. Sarangi

Data path elements

Interconnection network

Control path

Figure 9.4: Relationship between the data path and control path

Inst. Code Format Inst. Code Format

add 00000 add rd, rs1, (rs2/imm) lsl 01010 lsl rd, rs1, (rs2/imm)

sub 00001 sub rd, rs1, (rs2/imm) lsr 01011 lsr rd, rs1, (rs2/imm)

mul 00010 mul rd, rs1, (rs2/imm) asr 01100 asr rd, rs1, (rs2/imm)

div 00011 div rd, rs1, (rs2/imm) nop 01101 nop

mod 00100 mod rd, rs1, (rs2/imm) ld 01110 ld rd, imm[rs1]

cmp 00101 cmp rs1, (rs2/imm) st 01111 st rd, imm[rs1]

and 00110 and rd, rs1, (rs2/imm) beq 10000 beq offset

or 00111 or rd, rs1, (rs2/imm) bgt 10001 bgt offset

not 01000 not rd, (rs2/imm) b 10010 b offset

mov 01001 mov rd, (rs2/imm) call 10011 call offset

ret 10100 ret

Table 9.2: List of instruction opcodes

Format Definition

branch op (28-32) offset (1-27)

register op (28-32) I (27) rd (23-26) rs1 (19-22) rs2 (15-18)

immediate op (28-32) I (27) rd (23-26) rs1 (19-22) imm (1-18)

op → opcode, offset → branch offset, I → immediate bit, rd → destination register

rs1 → source register 1, rs2 → source register 2, imm → immediate operand

Table 9.3: Summary of instruction formats

© Smruti R. Sarangi 366

The cmp instruction does not have a destination register. The mov and not instructions have
only one source operand. For further details, the reader can refer to Table 9.2, or Section 3.3.

The Operand Fetch Unit

The operand fetch unit has two important functions – (1) calculate the values of the immediate
operand and the branch target by unpacking the offset embedded in the instruction, and (2)
read the source registers.

Computation of the Immediate Operand and the Branch Target

shift by 2 bits
and extend sign

pc

calculate
immediate

imm
inst[1:18]

immx

27 32

18 32

inst branchTarget

Figure 9.5: Calculation of the immediate operand and the branch target

Figure 9.5 shows the circuit for calculating the immediate operand, and the branch target.
To calculate the immediate operand, we need to first extract the imm field (bits 1-18) from
the instruction. Subsequently, we extract the lower 16 bits, and create a 32-bit constant in
accordance with the modifiers (bit 17, and 18). When no modifier is specified, we extend the
sign of the 16-bit number to make it a 32-bit number. For the u modifier, we fill the top 16
bits with 0s, and for the h modifier, we shift the 16-bit number, 16 positions to the left. The
newly constructed 32-bit value is termed as immx.

In a similar manner, we can compute the signal, branchTarget (branch target for all types
of branches excluding ret). We need to first extract the 27 bit offset (bits 1 to 27) from the
instruction. Note that these 27 bits represent the offset in terms of memory words as described
in Section 3.3.14. Thus, we need to shift the offset to the left by 2 bits to make it a 29
bit number, and then extend its sign to make it a 32-bit number. Since we use PC-relative
addressing in SimpleRisc , to obtain the branch target we need to add the shifted offset to the
PC. The branch target can either be derived from the instruction (branchTarget signal), as we
have just described, or in the case of a ret instruction, the branch target is the contents of the
ra register. In this case, the ra register comes from the register file. We choose between both
the values in the next stage, and compute branchPC.

There is a need to make an important observation here. We are calculating branchTarget
and immx for all instructions. However, any instruction in the SimpleRisc format will only
require at the most one of these fields (branchTarget or immx). The other field will have junk
values. Nevertheless, it does not hurt to pre-compute both the values in the interest of speed.
It is necessary to ensure that the correct value is used in the later stages of processing.

367 © Smruti R. Sarangi

Reading the Registers

rs2

op1

op2

inst[15:18]

inst[23:26]

isSt Register
file

read port 1

read port 2

A D

A D

A

D

address
data

1

0

inst

isRet

1

0

rd

rs1
inst[19:22]

ra(15)

Figure 9.6: Reading the Source Registers

In parallel, we can read the values of the source registers as shown. Here, also we follow the
same strategy. We read more than what we require. Critics might argue that this approach
wastes power. However, there is a reason for doing so. Extra circuitry is required to decide if
a given operand is actually required. This has an adverse impact in terms of area, and time.
The operand fetch unit becomes slower. Hence, we prioritise the case of simplicity, and read
all the operands that might be required.

The circuit for reading the values of source registers is shown in Figure 9.6. The register
file has 16 registers, two read ports, and one write port (not shown in the figure). A port is a
point of connection (an interface) in a hardware structure, and is used for the purpose of either
entering inputs, or reading outputs. We can have a read port (exclusively for reading data), a
write port (exclusively for writing data), and a read-write port (can be used for both reading
and writing).

Definition 59
A port is a point of connection in a hardware structure, and is used for the purpose of
either entering inputs, or reading outputs. We can have a read port (exclusively for reading
data), a write port (exclusively for writing data), and a read-write port (can be used for both
reading and writing).

For the first register operand, op1, we have two choices. For ALU, and memory instructions,
we need to read the first source register, rs1 (bits 19 to 22). For the ret instruction, we need to
read the value of the return address register, ra. To choose between the contents of the field,
rs1, in the instruction and ra, we use a multiplexer. The multiplexer is controlled by a signal,
isRet. If isRet (is return) is equal to 1, then we choose ra, otherwise we choose rs1. This value

© Smruti R. Sarangi 368

is an input to the register file’s first read port. We term the output of the first read port as op1
(operand 1).

We need to add a similar multiplexer for the second read port of the register file too. For
all the instructions other than the store instruction, the second source register is specified by
the rs2 (bits 15 to 18) field in the instruction. However, the store instruction is an exception.
It contains a source register in rd (bits 23 to 26). Recall that we had to make this bitter choice
at the cost of introducing a new instruction format. Since we have a very consistent instruction
format (see Table 9.3) the process of decoding is very simple. To extract different fields of the
instruction (rs1, rs2, opcode, and imm) we do not need additional logic elements. We need to
save each bit of the instruction in a latch, and then route the wires appropriately.

Coming back to our original problem of choosing the second register operand, we observe
that we need to choose the right source register – rs2 or rd. The corresponding multiplexer is
controlled by the isSt (is store) signal. We can quickly find out if the instruction is a store by
using a set of logic gates to verify if the opcode is equal to 01111. The result of the comparison
is used to set the isSt signal. The corresponding output of the register file is termed as op2
(operand 2).

rs1

rs2
 op2

inst[19:22]

inst[15:18]

shift by 2 bits
and extend sign

pc

calculate
immediate

imm
inst[1:18]

immx

(opcode, I bit)
inst[27:32]

Control
unit

Fetch unit Operand fetch unit Execute
unit

27 32

18 32

6

rd
inst[23:26]

isSt

re
g
.
o
p
e
ra

n
d
s

im
m

.
o
p
e
ra

n
d
s

Register
file

read port 1

read port 2

A D

A
D

A

D

address
data

inst

1

0

1

0

ra(15)
isRet

branchTarget

op1

Figure 9.7: Operand Fetch Stage

Lastly, it is necessary to send the opcode (5 bits), and the immediate bit (1 bit) to the
control unit such that it can generate all the control signals. The complete circuit for the
operand fetch unit is shown in Figure 9.7. op1, op2, branchTarget, and immx are passed to

369 © Smruti R. Sarangi

the execute unit.

9.2.4 Execute Unit

Let us now look at executing an instruction. Let us start out by dividing instructions into
two types – branch and non-branch. Branch instructions are handled by a dedicated branch
unit that computes the outcome, and final target of the branch. Non branch instructions are
handled by an ALU (arithmetic logic unit).

Branch Unit

flags

flags.E

isBeq

flags.GT

isBgt

isUBranch

isBranchTaken

branchPC

branchTarget

op1
1

0

isRet

fr
o
m

 O
F

Figure 9.8: Branch Unit

The circuit for the branch unit is shown in Figure 9.8.
First, we use a multiplexer to choose between the value of the return address (op1), and the

branchTarget embedded in the instruction. The isRet signal controls the multiplexer. If it is
equal to 1, we choose op1; otherwise, we choose branchTarget. The output of the multiplexer,
branchPC, is sent to the fetch unit.

Now, let us consider the circuit to compute the branch outcome. As an example, let us
consider the case of the beq instruction. Recall that the SimpleRisc instruction set requires a
flags register that contains the result of the last compare (cmp) instruction. It has two bits
– E and GT . If the last compare instruction led to an equality, then the E bit is set, and
if the first operand was greater than the second operand then the GT bit is set. For the beq
instruction, the control unit sets the signal isBeq to 1. We need to compute a logical AND of
this signal and the value of the E bit in the flags register. If both are 1, then the branch is

© Smruti R. Sarangi 370

taken. Similarly, we need an AND gate to compute the outcome of the bgt instruction, as shown
in Figure 9.8. The branch might also be unconditional (call/ret/b). In this case, the control
unit sets the signal isUBranch to 1. If any of the above conditions is true, then the branch is
taken. We subsequently use an OR gate that computes the outcome of the branch, and sets
the isBranchTaken signal. This signal is used by the fetch unit to control the multiplexer that
generates the next PC.

ALU

op1

op2

immx

ALU
(Arithmetic
logic unit)

s

isImmediate aluSignals

aluResult

A
LU

 a
n

d
 m

e
m

 i
n
st

s

1

0

A

B

Figure 9.9: ALU

Figure 9.9 shows the part of the execution unit that contains the ALU. The first operand
(A) of the ALU is always op1 (obtained from the operand fetch unit). However, the second
operand (B) can either be a register or the sign extended immediate. This is decided by the
isImmediate signal generated by the control unit. The isImmediate signal is equal to the
value of the immediate bit in the instruction. If it is 1, then the multiplexer in Figure 9.9
chooses immx as the operand. If it is 0, then op2 is chosen as the operand. The ALU takes
as input a set of signals known collectively as aluSignals. They are generated by the control
unit, and specify the type of ALU operation. The result of the ALU is termed as aluResult.

Figure 9.10 shows the design of the ALU. The ALU contains a set of modules. Each module
computes a separate arithmetic or logical function such as addition or division. Secondly, each
module has a dedicated signal that enables or disables it. For example, there is no reason to
enable the divider when we want to perform simple addition. There are several ways that we
can enable or disable an unit. The simplest method is to use a transmission gate for every
input bit. A transmission gate is shown in Figure 9.11. If the signal(S) is turned on, then the
output reflects the value of the input. Otherwise, it maintains its previous value. Thus, if the
enabling signal is off, then the module does not see the new inputs. It thus does not dissipate
any power, and is effectively disabled.

Let us consider each of the modules in the ALU one after another. The most commonly
used module is the adder. It is used by add, sub, and cmp instructions, as well as by load and
store instructions to compute the memory address. It takes A and B as inputs. Here, A and B
are the values of the source operands. If the isAdd signal is turned on, then the adder adds the
operands. Likewise, if the isSub signal is turned on, then the adder adds the 2’s complement of
B with A. In effect, it subtracts B from A. If the isCmp flag is turned on, then the adder unit
subtracts B from A and sets the value of the flags register. If the output is 0, then it sets the E

371 © Smruti R. Sarangi

Adder

isAdd isSub isCmp

Multiplier

isMul

A

B

A

B

Divider

isDiv

A

B

isMod

Logical
unit

isOr isNot isAnd

Mov

isMov

B

flags
Shift
unit

isLsl isLsr isAsr

A

B

A

B

aluResult

Figure 9.10: ALU

S

S

Figure 9.11: A transmission gate

bit. If the output is positive, it sets the GT bit. If none of these signals (isAdd/isSub/isCmp)
is true, then the adder is disabled.

The multiplier and divider function in a similar manner. The multiplier is enabled by the
isMul signal, and the divider is enabled by the isDiv or isMod signal. If the isDiv signal is
true, then the result is the quotient of the division, whereas, if the isMod signal is true, the
result is the remainder of the division.

The shift unit left shifts, or right shifts A, by B positions. It takes three signals – isLsl,
isLsr, and isAsr. The logical unit consists of a set of AND, OR, and NOT gates. They are
enabled by the signals isOr, isAnd, and isNot respectively. The Mov unit is slightly special
in the sense that it is the simplest. If the isMov signal is true, then the output is equal to B.
Otherwise, it is disabled.

To summarise, we show the full design of the execution unit (branch unit and ALU) in

© Smruti R. Sarangi 372

Figure 9.12. To set the output (aluResult), we need a multiplexer that can choose the right
output out of all the modules in the ALU. We do not show this multiplexer in Figure 9.12.
We leave the detailed design of the ALU circuit along with the transmission gates and output
multiplexer as an exercise for the reader.

op1

op2

immx

Execute unit

ALU
(Arithmetic
logic unit)

s

isImmediate aluSignals

flags

aluResult

flags.E

isBeq

flags.GT

isBgt

isUBranch

isBranchTaken

A
LU

 a
n

d
 m

e
m

 i
n
st

s

1

0

A

B

branchPC

branchTarget

op1
1

0

isRet

fr
o
m

 O
F

Figure 9.12: Execute Unit (Branch and ALU unit)

9.2.5 Memory Access Unit

Figure 9.13 shows the memory access unit. It has two inputs – data and address. The address
is calculated by the ALU. It is equal to the result of the ALU (aluResult). Both the load and
store instructions use this address. The address is saved in a register traditionally known as
MAR (memory address register).

Let us now consider the case of a load instruction. In SimpleRisc , the format of the load
instruction is ld rd, imm[rs1]. The memory address is equal to the immediate value plus the
contents of register, rs1. This is the value of aluResult. The memory unit does not require any
other inputs. It can proceed to fetch the value of the memory address from the data memory.
The memory unit reads 4 bytes starting from the memory address. The result (ldResult) is
now ready to be written to the destination register.

373 © Smruti R. Sarangi

ldResult

aluResult
Memory unit

isLd isSt

Data memory

mar

mdr
32

32

32

mar

mdr memory
data reg.

memory
address reg.

op2

Figure 9.13: Memory Unit

The format of the store instruction is : st rd, imm[rs1]. The address is computed using
the ALU similar to the way the address is calculated for the load instruction. For the store
instruction, rd is a source register. The contents of register rd (reg[rd]) are read by the operand
fetch unit (see Section 9.2.3). This value is termed as op2 in Figure 9.6. op2 contains the contents
of register rd, and represents the data of the store instruction. The memory unit writes the
value of op2 to the MDR (memory data register) register. In parallel, it proceeds to write the
data to data memory. The store instruction does not have an output.

Note that here also we follow the same naming scheme as we had followed for PC and pc.
MAR is an acronym for (memory address register), whereas mar refers specifically to the mar
register in the data path.

Now, the memory unit takes two control signals as inputs – isLd, and isSt. For obvious
reasons, at most one of these signals can be true at any one time. If none of these signals is
true, then the instruction is not a memory instruction, and the memory unit is disabled.

A subtle point needs to be discussed here. MAR and MDR are traditionally referred
to as registers. However, they are not conventional edge triggered registers. They are used
like temporary buffers that buffer the address and the store values till the memory request
completes.

9.2.6 Register Writeback Unit

The last step of instruction processing is to write the computed values back to the register file.
This value can be the output of a load or ALU instruction, or the return address written by
the call instruction. This process is known as writeback, or register writeback. We refer to this

© Smruti R. Sarangi 374

Register writeback unit

ldResult

aluResult32

32 result

isLd

read port 1

read port 2

write port
rd (inst[23:26])

A
D

A
D

A
D

Register file

isWb
E

A

D

address
data

E enable

10pc32
01

00

isCall

0

1
ra(15)

isCall

4

Figure 9.14: Register Writeback Unit

unit as the register writeback(RW) unit. Its circuit diagram is shown in Figure 9.14.

We first need to choose the right source operand. We have three choices – aluResult,
ldResult, or the return address. The return address is equal to the PC of the call instruction
plus 4. We use a multiplexer to choose between the three input values. We use two control
signals to control the multiplexer. The first control signal is isLd (is load), and the second
control signal is isCall. We choose aluResult, when both the control signals are 0. We choose
ldResult, when isLd = 1, and isCall = 0, and lastly, we choose PC + 4, when isCall is equal
to 1. The output of the multiplexer, result, needs to be written to the register file.

Note that we had shown a partial view of the register file when we discussed the operand
fetch unit in Section 9.2.3. We showed only two read ports. However, the register file has also
a write port that is used to write data. The write port has three inputs – address, data, and
enable bit. The address is either the number of the destination register rd or the id of the
return address register (15). The correct address needs to be chosen with a multiplexer. The
destination register is specified by bits 23 to 26 of the instruction. The second multiplexer
chooses the data that needs to be written. The output of this multiplexer is sent to the data
pins of the write port. Lastly, we need an enable signal (isWb) that specifies if we need to write
the value of a register. For example, the store, nop, and compare instructions do not need a
register writeback. Hence, for these instructions, the value of isWb is false. It is also false for
branch (excluding call) instructions. isWb is true for the rest of the ALU instructions, mov
and ld instructions.

375 © Smruti R. Sarangi

9.2.7 The Data Path

pc

1

0

Instruction
memory

1 0

ALU fla
gs

Immediate and
branch target

Register
file

Branch
unit

Data memory Memory
unit

mar

isBeq

isBgt
isUBranch

pc + 4

rs1rs2rd

Instruction

1 0

immx
op2 op1

Control
unit

isSt

isImmediate

aluSignals

isLd

isSt

mdr

isWb

isBranchTaken
B A

1 0

ra(15)

isRet

0 1

isRet

01
isLd

data

rd

0010
4

isCall

ra(15)

0

1

pc

data

reg

Figure 9.15: A basic processor

Let us now form the whole by joining all the parts. We have up till now divided a processor
into five basic units: instruction fetch unit (IF), operand fetch unit (OF), execution unit (EX),

© Smruti R. Sarangi 376

memory access unit (MA), and register writeback unit (RW). It is time to combine all the parts
and look at the unified picture. Figure 9.15 shows the result of all our hard work. We have
omitted detailed circuits, and just focused on the flow of data and control signals.

Every clock cycle, the processor fetches an instruction from a new PC, fetches the operands,
executes the instruction, and writes the results back to the data memory and register file. There
are two memory elements in this circuit namely the data and instruction memory. They can
possibly refer to the same physical memory structure, or refer to different structures. We shall
have ample opportunities to discuss the different schemes in Chapter 11.

The main state elements of the processor are the following registers: pc, and flags registers,
and the register file. We can optionally add mar and mdr registers with the memory unit. Note
that they are strictly not required in our simple version of the processor. However, they shall
be required in advanced designs where a memory request can possibly take multiple cycles. We
shall also require them in our microprogrammed processor. Hence, it is a good idea to keep
them in our basic design.

Note that most of the sets of wires in the data path have a top-down orientation i.e., the
source is above the destination in Figure 9.15. There are two notable exceptions. The source of
these wires is below the destination in Figure 9.15. The first such exception is the set of wires
that carry the branch target/outcome information from the execute unit to the fetch unit. The
second exception is the set of wires that carry the data to be written from the register writeback
unit to the register file.

We need to lastly note that the magic of a processor lies in the interplay of the data path
and the control path. The control signals give a form to the data path. The unique values of
the set of all the control signals determine the nature of instructions. It is possible to change
the behavior of instructions, or in fact define new instructions by just changing the control unit.
Let us take a deeper look at the control unit.

9.3 The Control Unit

Table 9.4 shows the list of control signals that need to be generated by the control unit along
with their associated conditions. The only control signal that is not generated by the control
unit is isBranchTaken. This is generated by the branch unit that is a part of the execute unit.
However, the rest of the 22 signals need to be generated by the control unit. Recall that the
inputs to the control unit are the opcode of the instruction, and the value of the immediate
bit.

Control
 unit

opcode
inst[28:32]

I bit
inst[27]

control
signals

Figure 9.16: Abstraction of a hardwired control unit

377 © Smruti R. Sarangi

Serial No. Signal Condition

1 isSt Instruction: st

2 isLd Instruction: ld

3 isBeq Instruction: beq

4 isBgt Instruction: bgt

5 isRet Instruction: ret

6 isImmediate I bit set to 1

7 isWb Instructions: add, sub, mul, div,
mod, and, or, not, mov, ld, lsl, lsr,
asr, call

8 isUBranch Instructions: b, call, ret

9 isCall Instructions: call

aluSignals

10 isAdd Instructions: add, ld, st

11 isSub Instruction: sub

12 isCmp Instruction: cmp

13 isMul Instruction: mul

14 isDiv Instruction: div

15 isMod Instruction: mod

16 isLsl Instruction: lsl

17 isLsr Instruction: lsr

18 isAsr Instruction: asr

19 isOr Instruction: or

20 isAnd Instruction: and

21 isNot Instruction: not

22 isMov Instruction: mov

Table 9.4: List of control signals

The hardwired control unit for our simple processor can be thought of as a black box that
takes 6 bits as input (5 opcode bits, and 1 immediate bit), and produces 22 control signals as
its output. This is shown in Figure 9.16.

Internally, there are a set of logic gates that act on the input bits to produce each output
bit. For example, to set the isAdd signal, we need to check if the opcode is equal to 00000. Let
us number the five bits of the opcode as op1, op2, op3, op4 and op5. Here op1 is the LSB, and
op5 is the MSB. Let us refer to the immediate bit as I.

Table 9.5 shows the conditions for setting all the control signals. We leave the implemen-
tation of Table 9.5 using logic gates as an exercise to the reader. Note that it will take the
maximum amount of time to compute the value of isWb. Nevertheless, this circuit is extremely
simple as compared to a multiplier or a carry lookahead adder. Hence, the total execution time
of the control unit is expected to be small as compared to the execute unit.

The hardwired control unit is thus fast and efficient. This is the reason why most commercial
processors today use a hardwired control unit. However, hardwired control units are not very

© Smruti R. Sarangi 378

Serial No. Signal Condition

1 isSt op5.op4.op3.op2.op1
2 isLd op5op4.op3.op2.op1
3 isBeq op5.op4.op3.op2.op1
4 isBgt op5.op4.op3.op2.op1
5 isRet op5.op4.op3.op2.op1
6 isImmediate I

7 isWb ∼ (op5 + op5.op3.op1.(op4 + op2)) +
op5.op4.op3.op2.op1

8 isUbranch op5.op4.(op3.op2 + op3.op2.op1)

9 isCall op5.op4.op3.op2.op1
aluSignals

10 isAdd op5.op4.op3.op2.op1+op5.op4.op3.op2
11 isSub op5.op4.op3.op2.op1
12 isCmp op5.op4.op3.op2.op1
13 isMul op5.op4.op3.op2.op1
14 isDiv op5.op4.op3.op2.op1
15 isMod op5.op4.op3.op2.op1
16 isLsl op5.op4.op3.op2.op1
17 isLsr op5.op4.op3.op2.op1
18 isAsr op5.op4.op3.op2.op1
19 isOr op5.op4.op3.op2.op1
20 isAnd op5.op4.op3.op2.op1
21 isNot op5.op4.op3.op2.op1
22 isMov op5.op4.op3.op2.op1

Table 9.5: Boolean conditions for setting all the control signals

flexible. For example, it is not possible to change the behavior of an instruction, or even
introduce a new instruction, after the processor has been shipped. Sometimes we need to change
the way an instruction is executed if there are bugs in functional units. For example, if the
multiplier has a design defect, then it is theoretically possible to run the Booth’s multiplication
algorithm with the adder, and shift units. We will however, need a very elaborate control unit
to dynamically reconfigure the way instructions are executed.

There are other more practical reasons for favoring a flexible control unit. Some instruction
sets such as x86 have rep instructions that repeat an instruction a given number of times. They
also have complicated string instructions that operate on large pieces of data. Supporting such
instructions requires a very complicated data path. In principle, we can execute such instruc-
tions by having elaborate control units that in turn have simple processors to process these
instructions. These sub processors can generate control signals for implementing complicated
CISC instructions.

379 © Smruti R. Sarangi

Way Point 6

1. We have successfully designed a hardwired processor that implements the entire Sim-
pleRisc ISA.

2. Our processor is broadly divided into five stages: IF, OF, EX, MA, and RW.

3. The data path contains state elements (such as registers), arithmetic units, logical
units, and multiplexers to choose the right set of inputs for each functional unit.

4. The multiplexers are controlled by control signals generated by the control unit.

9.4 Microprogram-Based Processor

Let us now look at a different paradigm for designing processors. We have up till now looked
at a processor with a hardwired control unit. We designed a data path with all the elements
required to process, and execute an instruction. Where there was a choice between the input
operands, we added a multiplexer that was controlled by a signal from the control unit. The
control unit took the contents of the instruction as the input, and generated all the control
signals. This design style is typically adopted by modern high performance processors. Note
that efficiency comes at a cost. The cost is flexibility. It is fairly difficult for us to introduce
new instructions. We need to possibly add more multiplexers, and generate many more control
signals for each new instruction. Secondly, it is not possible to add new instructions to a
processor after it has been shipped to the customer. Sometimes, we desire such flexibility.

It is possible to introduce this additional flexibility by introducing a translation table that
translates instructions in the ISA to a set of simple microinstructions. Each microinstruction
has access to all the latches, and internal state elements of a processor. By executing a group
of microinstructions associated with an instruction, we can realise the functionality of that
instruction. These microinstructions ormicrocodes are saved in a microcode table. It is typically
possible to modify the contents of this table via software, and thus change the way hardware
executes instructions. There are several reasons for wanting such kind of flexibility that allows
us to add new instructions, or modify the behaviour of existing instructions. Some of the
reasons are as follows:

Definition 60
We can have an alternate design style, where we break instructions in the ISA to a

set of microinstructions (microcodes). For each instruction, a dedicated unit executes its
associated set of microinstructions to implement its functionality. It is typically possible
to dynamically change the set of microinstructions associated with an instruction. This
helps us change the functionality of the instruction via software. Such kind of a processor
is known as a microprogrammed processor.

© Smruti R. Sarangi 380

1. Processors sometimes have bugs in the execution of certain instructions [Sarangi et al.,
2006]. This is because of mistakes committed by designers in the design process, or
due to manufacturing defects. One such famous example is the bug in division in the
Intel® Pentium® processor. Intel had to recall all the Pentium processors that it had
sold to customers [Pratt, 1995]. If it would have been possible to dynamically change
the implementation of the division instruction, then it would not have been necessary to
recall all the processors. Hence, we can conclude that some degree of reconfigurability of
the processor can help us fix defects that might have been introduced in various stages of
the design and manufacturing process.

2. Processors such as Intel Pentium 4, and later processors such as Intel® Core™i3, and
Intel® Core™i7 implement some complex instructions by executing a set of microinstruc-
tions saved in memory. Complicated operations with strings of data, or instructions that
lead to a series of repetitive computations are typically implemented using microcode.
This means that the Intel processor internally replaces a complex instruction with a snip-
pet of code containing simpler instructions. This makes it easier for the processor to
implement complicated instructions. We do not need to unnecessarily make changes to
the data path, add extra state, multiplexers, and control signals to implement complex
instructions.

3. Nowadays processors are part of a chip with many other elements. This is known as a
system-on-chip (SOC). For example, a chip in a cellphone might contain a processor, a
video controller, an interface to the camera, a sound and network controller. Processor
vendors typically hardwire a set of simple instructions, and a lot of other instructions
for interfacing with peripherals such as the video and audio controllers are written in
microcode. Depending on the application domain and the set of peripheral components,
the microcode can be customised.

4. Sometimes custom diagnostic routines are written using a set of dedicated microinstruc-
tions. These routines test different parts of the chip during its operation, report faults,
and take corrective action. These built-in-self-test (BIST) routines are typically customis-
able, and are written in microcode. For example, if we desire high reliability, then we can
modify the behaviour of instructions that perform reliability checks on the CPU to check
all components. However, in the interest of time, these routines can be compressed to
check fewer components.

We thus observe that there are some compelling reasons to be able to programatically alter
the behaviour of instructions in a processor to achieve reliability, implement additional features,
and improve portability. Hence, modern computing systems, especially, smaller devices such as
phones, and tablets use chips that rely on microcode. Such microcode sequences are popularly
referred to as firmware.

Definition 61
Modern computing systems, especially, smaller devices such as phones, modems, printers,

381 © Smruti R. Sarangi

and tablets use chips that rely on microcode. Such microcode sequences are popularly referred
to as firmware.

Let us thus design a microprogram-based processor that provides us significantly more flexi-
bility in tailoring the instruction set, even after the processor has been fabricated and sent to the
customer. Before we proceed to design the data path and control path of a microprogrammed
processor, we need to note that there is a fundamental tradeoff between a regular hardwired
processor as presented in Section 9.2.7, and a microprogrammed processor. The tradeoff is
efficiency versus flexibility. We cannot expect to have a very flexible processor that is fast and
power efficient. Let us keep this important tenet in mind and proceed with the design.

9.5 Microprogrammed Data Path

Let us design the data path for a microprogrammed processor. Let us not design it from scratch.
Let us rather modify the data path for the processor as shown in Section 9.2.7. Recall that
it had some major units such as the fetch unit, register file, ALU, branch unit, and memory
unit. These units were connected with wires, and whenever there was a possibility of multiple
source operands, we added a multiplexer in the data path. The role of the control unit was to
generate all the control signals for the multiplexers.

The issue is that the connections to the multiplexers are hardwired. It is not possible
to establish arbitrary connections. For example, it is not possible to send the output of the
memory unit to the input of the execute unit. Hence, we wish to have a design that is free of
fixed interconnections between components. It should be theoretically possible for any unit to
send data to any other unit.

The most flexible interconnect is a bus based structure. A bus is a set of common copper
wires that connect all the units. It supports one writer, and multiple readers at any point of
time. For example, unit A can write to the bus at a certain point of time, and all the other
units can get the value that unit A writes. It is possible to send data from one unit to another
unit, or from one unit to a set of other units if required. The control unit needs to ensure that
at any point of time, only one unit writes to the bus, and the unit that needs to process the
value that is being written, reads the value from the bus.

Definition 62 A bus is a set of common wires that connect all the functional units in a
processor. It supports one writer, and multiple readers at any point of time.

Let us now proceed to design simplified versions of all the units that we introduced for
our hardwired processor. These simplified versions can aptly be used in the data path of our
microprogrammed processor.

© Smruti R. Sarangi 382

Shared bus

pc Instruction memory ir

Figure 9.17: The fetch unit in a microprogrammed processor

9.5.1 Fetch Unit

Let us start out by explaining the design philosophy of the microprogrammed processor. We
add registers with every unit. These registers store the input data for the specific unit, and a
dedicated output register stores the results generated by the unit. Both these sets of registers
are connected to the common bus. Unlike the hardwired processor, where there was a good
amount of coupling across different units, units in a microprogrammed processor are fairly
independent of each other. Their/ job is to perform a set of actions, and put the results back
on to the bus. Each unit is like a function in a programming language. It has an interface
comprising of a set of registers to read data in. It typically takes 1 cycle to compute its output,
and then the unit writes the output value to an output register.

In concordance with this philosophy, we present the design of the fetch unit in Figure 9.17.
It has two registers – pc (PC), and ir (instruction register). We shall use the acronym, IR, for
the instruction register. ir contains the contents of the instruction. The pc register can read
its value from the bus, and can also write its value to the bus. We have not connected ir to the
bus because no other unit is typically interested in the exact contents of the instruction. Other
units are only interested in different fields of the instruction. Hence, it is necessary to decode
the instruction and break it into a set of different fields. This is done by the decode unit.

9.5.2 Decode Unit

This unit is similar in function to the operand fetch unit as described in Section 9.2.3. How-
ever, we do not include the register file in this unit. We treat it as a separate unit in the
microprogrammed processor. Figure 9.18 shows the design of the operand fetch unit.

Shared bus

ir
rd rs1 rs2I Immediate

unit
immx calc.

offset
branchTarget

pc

Figure 9.18: The decode unit in a microprogrammed processor

The job of the decode unit is to break down the contents of the instruction into multiple

383 © Smruti R. Sarangi

fields, and export them as registers. In specific, the following registers are made available to the
bus, I (immediate bit), rd (destination register), rs1 (source register 1), rs2 (source register
2), immx (after processing the modifiers), and branchTarget (branch target). To compute the
branch target we calculate the offset from the current PC by extracting bits [1:27] from ir, and
shifting it to the left by 2 places. This is added to the current value of the PC. Table 9.6 shows
the range of bits extracted from ir for each output register.

Register Bits in ir

I 27

rd 23-26

rs1 19-22

rs2 15-18

immx 1-18 (process modifiers)

branchTarget PC + (ir[1 : 27]≪ 2)

Table 9.6: List of bits in ir corresponding to each register in the decode unit

It is possible that a given program execution might not have values for all the registers.
For example, an instruction in the register format will not have an embedded immediate
value. Hence, in this case the immx register will have junk data. However, it does not hurt
to extract all possible fields from the instruction, and store them in registers. We can use
only those registers that contain valid data, and ignore those registers that are not relevant to
the instruction. This ensures that our data path remains simple, and we do not need costly
multiplexers in the decode unit.

9.5.3 Register File

We had combined the decode unit and the register file, into one unit called the operand fetch
unit of the hardwired processor. However, we prefer to keep the register file separate in the
microprogrammed processor. This is because in the hardwired processor it was accessed right
after decoding the instruction. However, this might not be the case in the microprogrammed
processor. It might need to be accessed possibly several times during the execution of an
instruction.

The register file has two source registers – regSrc, and regData. The regSrc register
contains the number of the register that needs to be accessed. In the case of a write operation,
the regData register contains the value to be written. The args values are directly read from
the bus. They contain the commands to the register file. We assume that there are dedicated
wires in the shared bus to carry the arguments (args) values. They take different values, where
each value corresponds to an unique operation of an unit. The value 00...0 is a distinguished
value that corresponds to a nop (no operation).

The arguments to the register file, are very simple – read, write, and nop. If the args specify
a write operation, then the value in regData is written to the register specified by the regSrc
register. If a read operation is specified, then the register specified by regSrc is read and its
value is stored in the register, regV al (register value).

© Smruti R. Sarangi 384

Register
file

regSrcregDataregVal a
rg

s

Shared bus

Figure 9.19: The register file in a microprogrammed processor

To access the register file it is thus necessary to write the number of the register to the regSrc
register, write the value to be written to the regData register if required, and finally specify
the appropriate arguments. The assumption is that after 1 cycle the operation is complete. In
the case of a read operation, the value is available in the regV al register.

9.5.4 ALU

Shared bus

ALU

A BaluResult

flags

flags.E flags.GT

a
rg

s

Figure 9.20: The ALU in a microprogrammed processor

The structure of the ALU is shown in Figure 9.20. It has two input registers, A and B.
The ALU performs actions on the values contained in registers, A and B. The nature of the
operation is specified by the args value. For example, if it specifies an add operation, then the
ALU adds the values contained in registers, A and B. If it specifies a subtract operation, then
the value in B is subtracted from the value contained in A. For the cmp instruction, the ALU
updates the flags. Recall that in SimpleRisc we use two flags that specify the equality, and
greater than conditions. They are saved in the registers flags.E and flags.GT respectively.
The result of the ALU operation is then saved in the register aluResult. Here also, we assume
that the ALU takes 1 cycle to execute after the args values are specified on the bus.

385 © Smruti R. Sarangi

9.5.5 Memory Unit

Shared bus

Data
memory

mar mdrldResult ar
gs

Figure 9.21: The memory unit in a microprogrammed processor

The memory unit is shown in Figure 9.21. Like the hardwired processor, it has two source
registers – mar and mdr. The memory address register(mar) buffers the memory address, and
the memory data register (mdr) buffers the value that needs to be stored. Here also, we require
a set of arguments that specify the nature of the memory operation – load or store. Once, a
load operation is done, the data is available in the ldResult register.

9.5.6 Overview of the Data Path

Shared bus

pc Instruction memory ir
rd rs1 rs2I Immediate

unit
immx calc.

offset
branchTarget

Register
file

regSrcregDataregVal

ALU

A BaluResult

flags

flags.E flags.GT

Data
memory

mar mdrldResult

μcontrol
unit

a
rg

s

a
rg

s

opcode

a
rg

s

Figure 9.22: The data path in a microprogrammed processor

Let us now add all the individual units, and take a look at the entire data path as shown
in Figure 9.22. Along with all the units that we just described, we have added an extra unit,
which is the microprogrammed control unit (µcontrol unit). Its role is to execute a set of
microinstructions corresponding to each program instruction, and orchestrate the flow of data

© Smruti R. Sarangi 386

values across the different units in the data path of the microprogrammed processor. It is
mainly responsible for the execution of microinstructions, data transfers across the different
units, and for transferring control to the correct program instruction by updating the PC. Note
that we have also added an extra connection between the ir register and the µcontrol unit to
transfer the opcode of the instruction. We require the µcontrol unit to load the appropriate
set of microinstructions corresponding to the program instruction. By design, we do not wish
to make the value of the opcode available to other units. This is because, we have a set of
microinstructions for each opcode, and there is no reason why other units should require the
value of the opcode.

Definition 63

The microcontrol unit, also referred to as the µcontrol unit is a dedicated piece of hard-
ware that is responsible for the execution of a set of microinstructions corresponding to each
program instruction. Its role is to fetch the appropriate set of microinstructions from a ded-
icated microprogram memory, and execute them in sequence. A register called the micro
PC (µpc) points to the currently executing microinstruction.

We envision a microprogram memory that is a part of the µcontrol unit. It contains the
set of microinstructions corresponding to each program instruction. It is thus necessary for the
µcontrol unit to jump to the starting address of the set of microinstructions corresponding to
each program instruction. We also need a microPC that points to the current microinstruction
being executed.

Before discussing the design and implementation of the µcontrol unit, let us first look at pro-
gramming, or rather microprogramming our new processor. We need to design a microassembly
language that will help us write programs for it.

9.6 Microassembly Language

9.6.1 Machine Model

All the internal registers in Figure 9.22 are the set of registers that are visible to microassem-
bly instructions. Ideally microassembly instructions are not supposed to be aware of regular
architectural registers, and other aspects of architectural state. They are only supposed to be
aware of internal registers that are not externally visible.

Table 9.7 shows the list of internal registers in our microprogrammed data path. Note that
we have 1-bit registers, 4-bit registers, and 32-bit registers.

Microprogrammed instructions do not access memory. Hence, they do not need a view of
memory.

9.6.2 Microinstructions

Let us look at the life cycle of a regular program instruction. The first step is to fetch the
contents of the instruction from the instruction memory. Let us introduce a microinstruction

387 © Smruti R. Sarangi

Serial No. Register Size
(bits)

Function

1 pc 32 program counter

2 ir 32 instruction register

3 I 1 immediate bit in the instruc-
tion

4 rd 4 destination register id

5 rs1 4 id of the first source register

6 rs2 4 id of the second source regis-
ter

7 immx 32 immediate embedded in the
instruction (after processing
modifiers)

8 branchTarget 32 branch target, computed as
the sum of the PC and the off-
set embedded in the instruc-
tion

9 regSrc 4 contains the id of the register
that needs to be accessed in
the register file

10 regData 32 contains the data to be writ-
ten into the register file

11 regV al 32 value read from the register
file

12 A 32 first operand of the ALU

13 B 32 second operand of the ALU

14 flags.E 1 the equality flag

15 flags.GT 1 the greater than flag

16 aluResult 32 the ALU result

17 mar 32 memory address register

18 mdr 32 memory data register

19 ldResult 32 the value loaded from memory

Table 9.7: List of all the internal registers

to read the contents of the instruction from the instruction memory and place it in the IR
(ir). Let us call it mloadIR. Note that we will add the prefix m (m for micro) to every
microinstruction. This is to denote the fact that it is a microinstruction, and differentiate it
from regular program instructions.

Microinstruction Semantics

mloadIR Loads the ir with the contents
of the instruction

© Smruti R. Sarangi 388

Once, we have loaded the instruction register, it automatically sends the contents to all
the subunits in the decode unit, and they extract the appropriate bit fields, and save them
in the decode registers – I, rd, rs1, rs2, immx, and branchTarget. We envision an mdecode
instruction in the 0-address format that makes the µcontrol unit wait for 1 cycle. In this cycle,
all the decode registers get populated.

Microinstruction Semantics

mdecode Waits for 1 cycle. Meanwhile,
all the decode registers get
populated.

Note that these two steps (mloadIR and mdecode) are common for all program instructions.
After this, we need to load the microinstructions for the specific program instruction. This
is achieved through a mswitch instruction that instructs the µcontrol unit to jump to the
appropriate location in the microinstruction memory, and begins executing microinstructions
starting from that location.

Microinstruction Semantics

mswitch Load the set of microinstruc-
tions corresponding to the
program instruction

Now, the processing of the instruction can start. The aim here is to use as few microin-
structions as possible. We want to keep the microassembly interface very simple. Let us first
introduce the mmov instruction that moves data from the source register to a destination regis-
ter. Additionally, it can set the arguments of the unit corresponding to the destination register.
We thus introduce a 2-address and 3-address format of the mmov instruction. The 3-address
format contains the arguments (args) of the unit corresponding to the destination register, as
shown below.

Microinstruction Semantics

mmov r1, r2 r1← r2

mmov r1, r2, ⟨args⟩ r1 ← r2, send the value of
args on the bus

We sometimes face the need to load constants into registers. Hence, we introduce themmovi
instruction that loads a constant into a register.

Microinstruction Semantics

mmovi r1, ⟨imm⟩ r1← imm

mmovi r1, ⟨imm⟩, ⟨args⟩ r1 ← imm, send the value of
args on the bus

We need an madd instruction because we need to increment the values of registers such as
the pc. Instead of using the main ALU, we can have a small adder as a part of the µcontrol
unit. We refer to this as the µadder. Here, there is a tradeoff to make. Do we need an add
instruction that adds two registers, and saves it in another register? At the microinstruction

389 © Smruti R. Sarangi

level, this is seldom required. We definitely do not require this instruction to implement the
SimpleRisc instruction set. Hence, we do not see a reason to include this microinstruction. If
there is ever a need to have one such microinstruction, then we can always use the main ALU
in the data path to perform the addition. We thus introduce a simple add instruction in the
2-address format. It adds an immediate value to a register. The semantics of this instruction
is shown below.

Microinstruction Semantics

madd r1, ⟨imm⟩ r1← r1 + imm

madd r1, ⟨imm⟩, ⟨args⟩ r1← r1+imm, send the value
of ⟨args⟩ on the bus

Here, the madd instruction adds imm to r1, and saves the result in r1. imm can be a
positive or a negative number. We restrict it to a 12-bit number, because we do not need more
bits in most cases. The range of the immediate is thus between -2048 and +2047.

Lastly, we need branch instructions. We need both conditional branches, and unconditional
branches. We thus introduce two new microinstructions – mb (branch) and mbeq (branch if the
arguments are equal). The mb microinstruction takes a single argument, which is the address
of the target microinstruction (or its label while writing microassembly code). We use the
PC-direct addressing mode here as compared to the PC-relative addressing mode because, we
expect the total number of microinstructions to be small. Secondly, if we would have use a
PC-relative addressing mode, then we would have required an extra adder in our data path
to add the offset to the PC. The SimpleRisc instruction set allocates 5 bits for the opcode.
This means that at the most we can have 32 instructions in our instruction set. Let us assume
that in the worst case, an instruction translates to 20 microinstructions. We would thus need
to store 640 microinstructions. We can thus allocate 10 bits for the specifying the address of
the microinstruction and our µpc (micro-PC) can also be 10 bits wide. This means that at
the most we can support a total of 1024 microinstructions. This is much more than what we
actually require. However, it is not a bad idea to over design hardware because it cannot be
changed later. Note that in the microinstruction memory, the address refers to the index of the
microinstruction (not to the starting address of the first byte).

The mbeq instruction requires three operands. The first operand is a register, the second
operand is an immediate, and the third operand is the address(label) of a microinstruction. If
the value contained in the register is equal to the immediate operand, then the microPC jumps
to the microinstruction specified by the third operand. Otherwise, the next microinstruction in
sequence is executed.

Microinstruction Semantics

mb ⟨addr⟩ execute the microinstruction at
⟨addr⟩(label) in the microprogram
memory

mbeq reg, imm, ⟨addr⟩ If the value in the internal register
reg is equal to imm, then the mi-
croPC needs to jump to ⟨add⟩(label)

© Smruti R. Sarangi 390

Serial No. Microinstruction Semantics

1 mloadIR ir ← [pc]

2 mdecode populate all the decode regis-
ters

3 mswitch jump to the µpc correspond-
ing to the opcode

4 mmov reg1, reg2, ⟨args⟩ reg1 ← reg2, send the value
of args to the unit that owns
reg1, ⟨args⟩ is optional

5 mmovi reg1, imm, ⟨args⟩ reg1 ← imm, ⟨args⟩ is op-
tional

6 madd reg1, imm, ⟨args⟩ reg1← reg1+ imm, ⟨args⟩ is
optional

7 mbeq reg1, imm, ⟨addr⟩ if (reg1 = imm) µpc ←
addr(label)

8 mb ⟨addr⟩ µpc ← addr(label)

Table 9.8: List of microinstructions

To summarise, Table 9.8 shows the 8 microinstructions that we have described in this section.
We have a compact list of 8 microinstructions, and thus we can encode each microinstruction
using just 3 bits.

9.6.3 Implementing Instructions in the Microassembly Language

Let us now try to implement program instructions in the microassembly language using the set
of basic microinstructions enumerated in Table 9.8.

For all the instructions, they start with a common set of microinstructions as shown below.
We refer to these 4 microinstructions as the preamble.

1 .begin:

2 mloadIR

3 mdecode

4 madd pc, 4

5 mswitch

Definition 64
A set of microinstructions that is common to all program instructions and is executed at
the beginning before proceeding to implement the logic of the instruction, is known as the
preamble, or microcode preamble.

391 © Smruti R. Sarangi

Every instruction needs to pass through at least three of these steps. We need to fetch the
contents of the PC and load them into the ir register. Then, we need to decode the instruction,
and break it down into its constituent fields. For instructions, other than branches, we need
to increment the value of the PC by 4. In our microcode we prefer to do this step for all the
instructions. For taken branches, we need to later overwrite the PC with the branch target.
Lastly, we need to execute the mswitch instruction to jump to the starting location of the set
of microinstructions that are specific to the program instruction.

The label .begin points to the beginning of this routine. Note that after finishing the exe-
cution of an instruction, we need to jump to the .begin label such that we can start processing
the next instruction in the program. Note that in our microassembly code we specify the
label that we need to branch to. When the microassembly code is translated to actual ma-
chine level microinstructions, then each label is replaced by the address of the corresponding
microinstruction.

9.6.4 3-Address Format ALU Instructions

Let us now look at implementing 3-address format ALU instructions. These instructions are:
add, sub, mul, div, mod, and, or, lsl, lsr, and asr.

First, we need to read the value of the first operand stored in rs1 from the register file, and
send it to the ALU. The microcode snippet to achieve this is as follows:

1 mmov regSrc, rs1, <read>

2 mmov A, regVal

Note, that we are combining a functional unit operation, and a register transfer in the same
cycle. This can be confusing at the beginning. Hence, the reader should read this example
several times and ensure that she has a clear understanding. The reason that we fuse both
the operations is because microcode registers are typically very small, and thus they can be
accessed very quickly. Hence, it is not a good idea to use a complete cycle for transferring data
between micro registers. It is a better idea to fuse a register transfer with a functional unit
operation, such that we can ensure that we are roughly doing a similar amount of work every
cycle.

Let us proceed. Subsequently, we need to check if the second operand is a register or an
immediate. This can be achieved by comparing the I register with 1. If it is 1, then the second
operand is an immediate, else it is a register. The following piece of code first checks this
condition, and then performs data transfers accordingly.

1 mbeq I, 1, .imm

2 /* second operand is a register */

3 mmov regSrc, rs2, <read>

4 mmov B, regVal, <aluop>

5 mb .rw

6 /* second operand is an immediate */

7 .imm:

8 mmov B, immx, <aluop>

© Smruti R. Sarangi 392

9 /* write the ALU result to the register file*/

10 .rw:

Here, we first check if the value stored in the I register is equal to 1, using the mbeq
instruction. If it is not 1, then the second operand is a register, and we start executing the
subsequent microinstruction. We move the contents of the register, rs2, to the regSrc register
that contains the index of the register that we need to read from the register file. Then we move
the value of the operand read from the register file (regV al) to the ALU (register B). Since
the value in register A is already present, we can directly start the ALU operation. This is
indicated to the ALU by sending an extra argument (⟨aluop⟩) that encodes the ALU operation.
⟨aluop⟩ corresponds to one of the following operations: add, sub, mul, div, mod, and, or, lsl,
lsr, and asr.

However, if the value of the I register is 1, then we need to branch to .imm. The value of the
immediate embedded in the instruction is already available with appropriate sign extensions in
the register immx. We need to simply transfer the value of immx to B (second ALU register),
and the arguments (⟨aluop⟩) to the ALU. Similar to the case with the second operand being a
register, ⟨aluop⟩ encodes the ALU operation. Once, we are done, we need to start execution at
the label, .rw.

The label .rw needs to point to code that writes the value of the computed result to the reg-
ister file, and then proceeds to execute the next instruction. The code for these two operations
is shown below.

1 .rw:

2 mmov regSrc, rd

3 mmov regData, aluResult, <write>

4 mb .begin

We write the result of the ALU into the register file, and then branch to the beginning,
where we proceed to execute the next instruction. To summarise, here is the code for any
3-address format ALU instruction (other than the preamble).

1 /* transfer the first operand to the ALU */

2 mmov regSrc, rs1, <read>

3 mmov A, regVal

4

5 /* check the value of the immediate register */

6 mbeq I, 1, .imm

7 /* second operand is a register */

8 mmov regSrc, rs2, <read>

9 mmov B, regVal, <aluop>

10 mb .rw

11 /* second operand is an immediate */

12 .imm:

13 mmov B, immx, <aluop>

14

393 © Smruti R. Sarangi

15 /* write the ALU result to the register file*/

16 .rw:

17 mmov regSrc, rd

18 mmov regData, aluResult, <write>

19 mb .begin

This code snippet has 10 microinstructions. Recall that we also need to execute 4 more
microinstructions as a part of the preamble before this. They read the PC, decode the instruc-
tion, set the next PC, and jump to the beginning of the appropriate set of microinstructions.
Executing 14 microinstructions for 1 program instruction is clearly a lot of effort. However, the
reader must recall that we are not really after performance here. We wanted to design a very
clean and flexible means of accessing different units.

9.6.5 2-Address Format ALU Instructions

The three ALU instructions in the 2-address format, are not, mov, and cmp. not and mov have
a similar format. They do not use the first source operand, rs1. They operate on either rs2,
or immx, and transfer the result to the register pointed by rd.

Let us look at the mov instruction first. We first check whether the second operand is an
immediate, or not, by comparing the value in register I with 1. If it is equal to 1, then we jump
to the label, .imm. Otherwise, we proceed to execute the subsequent instructions in Lines 4,
and 5. In Line 4, we transfer rs2 to regSrc, along with the ⟨read⟩ command. The operand is
read and stored in regV al. In the next cycle, we transfer regV al to regData such that it can be
written back to the register file. If the second operand was an immediate, then we execute the
code in Line 9. We transfer the immediate (stored in immx) to the regData register. In either
case, regData contains the value to be written to the register file. Then we transfer the id of
the destination register (stored in rd) to regSrc, and simultaneously issue the write command
in Line 13.

mov instruction
1 /* check the value of the immediate register */

2 mbeq I, 1, .imm

3 /* second operand is a register */

4 mmov regSrc, rs2, <read>

5 mmov regData, regVal

6 mb .rw

7 /* second operand is an immediate */

8 .imm:

9 mmov regData, immx

10

11 /* write to the register file*/

12 .rw:

13 mmov regSrc, rd, <write>

14

15 /* jump to the beginning */

16 mb .begin

© Smruti R. Sarangi 394

Let us now write a similar routing for the not instruction. The only additional step is to
transfer the value read from the register to the ALU, compute the logical negation, and then
transfer the value back to the register file. A hallmark feature of our microassembly language
is that we can transfer a value to a unit, and if all the other operands are in place, then we can
also perform an operation in the unit in the same cycle. The implicit assumption here is that 1
clock cycle is enough to transfer the data between registers, and perform a computation. In line
with this philosophy we transfer the value of immx, or regV al to register B of the ALU, and
also perform a ⟨not⟩ operation in the same cycle (see Lines 5 and 9). Like the mov instruction,
we transfer the ALU result to the regData register, and write it to the register file in Lines 13,
and 14.

not instruction
1 /* check the value of the immediate register */

2 mbeq I, 1, .imm

3 /* second operand is a register */

4 mmov regSrc, rs2, <read>

5 mmov B, regVal, <not> /* ALU operation */

6 mb .rw

7 /* second operand is an immediate */

8 .imm:

9 mmov B, immx, <not> /* ALU operation */

10

11 /* write to the register file*/

12 .rw:

13 mmov regData, aluResult

14 mmov regSrc, rd, <write>

15

16 /* jump to the beginning */

17 mb .begin

Let us now look at the compare instruction that does not have a destination operand. It
compares two operands, where one is a register operand, and the other can be either a register
or an immediate. It saves the results automatically in the flags.E and flags.GT registers.

Let us now consider the microcode for the cmp instruction.

cmp instruction
1 /* transfer rs1 to register A */

2 mmov regSrc, rs1, <read>

3 mmov A, regVal

4

5 /* check the value of the immediate register */

6 mbeq I, 1, .imm

7 /* second operand is a register */

8 mmov regSrc, rs2, <read>

9 mmov B, regVal, <cmp> /* ALU operation */

10 mb .begin

11

395 © Smruti R. Sarangi

12 /* second operand is an immediate */

13 .imm:

14 mmov B, immx, <cmp> /* ALU operation */

15 mb .begin

Here, we first transfer the value in register rs1 to the ALU (in register A). Then, we check
if the second operand is an immediate. If it is an immediate, then we transfer the value of
immx to the ALU (in register B), and simultaneously issue a command to execute a compare
in Line 14. However, if the second operand is a register, then we need to read it from the
register file (Line 8), and then transfer it to the ALU (Line 9). The last step is to branch to
the beginning (mb .begin).

9.6.6 The nop Instruction

Implementing the nop instruction is trivial. We just need to branch to the beginning as shown
below.

1 mb .begin

9.6.7 ld and st instructions

Let us now look at the load instruction. We need to transfer the value of the first source register
to the ALU. Then we transfer the value of the immediate to the second ALU register (B), and
initiate the add operation to calculate the effective address. Once the effective address has been
calculated, it is available in the aluResult register. Subsequently, we move the contents of the
aluResult register to the memory address register (mar), and initiate a load operation. The
result is available in the ldResult register in the next cycle. We write the loaded value to the
register specified by rd in the next two cycles.

ld instruction
1 /* transfer rs1 to register A */

2 mmov regSrc, rs1, <read>

3 mmov A, regVal

4

5 /* calculate the effective address */

6 mmov B, immx, <add> /* ALU operation */

7

8 /* perform the load */

9 mmov mar, aluResult, <load>

10

11 /* write the loaded value to the register file */

12 mmov regData, ldResult

13 mmov regSrc, rd, <write>

14

15 /* jump to the beginning */

16 mb .begin

© Smruti R. Sarangi 396

The microcode for the store instruction is similar to that of the load instruction. We first
calculate the effective memory address and store it in the mar register. Then we read the value
of the rd register that contains the data to be stored (Line 10). We save this in the mdr register,
and issue the store (Line 11).

st instruction
1 /* transfer rs1 to register A */

2 mmov regSrc, rs1, <read>

3 mmov A, regVal

4

5 /* calculate the effective address */

6 mmov B, immx, <add> /* ALU operation */

7

8 /* perform the store */

9 mmov mar, aluResult

10 mmov regSrc, rd, <read>

11 mmov mdr, regVal, <store>

12

13 /* jump to the beginning */

14 mb .begin

9.6.8 Branch Instructions

There are five branch instructions in SimpleRisc : b, beq, bgt, call, and ret.
Implementing the unconditional branch instruction is trivial.We simply need to transfer the

value of the branch target to the PC.

b instruction
1 mmov pc, branchTarget

2 mb .begin

We can make a minor modification to this code to implement the beq, and bgt instructions.
We need to check the value of the flags registers, and set the branchTarget to the PC only if
the corresponding flags register contains a 1.

beq instruction
1 /* test the flags register */

2 mbeq flags.E, 1, .branch

3 mb. begin

4

5 .branch:

6 mmov pc, branchTarget

7 mb .begin

bgt instruction
1 /* test the flags register */

2 mbeq flags.GT, 1, .branch

3 mb. begin

4

5 .branch:

6 mmov pc, branchTarget

7 mb .begin

The last two instructions that we need to implement are the call and ret instructions. The
call instruction is a combination of a simple branch, and a register write operation that adds
the value of the next PC (PC + 4) to the return address register (register 15). The microcode

397 © Smruti R. Sarangi

is as follows. Note that we do not increment the PC by 4 because it is already incremented in
the preamble.

call instruction
1 /* save PC + 4 in the return address register */

2 mmov regData, pc

3 mmovi regSrc, 15, <write>

4

5 /* branch to the function */

6 mmov pc, branchTarget

7 mb .begin

We save the address of the next PC in the register file in lines 2 to 3. Then we move
the branchTarget to the PC, and then proceed to execute the first instruction in the invoked
function.

The ret instruction performs the reverse operation, and transfers the return address to the
PC.

ret instruction
1

2 /* save the contents of the return

3 address register in the PC */

4 mmovi regSrc, 15, <read>

5 mmov pc, regVal

6 mb .begin

We have thus implemented all our SimpleRisc instructions in microcode. A microcoded
implementation is definitely slower that our hardwired datapath. However, we have gained a
lot in terms of flexibility. We can implement some very complex instructions in hardware, and
thus make the task of software developers significantly easier. We can also dynamically change
the behaviour of instructions. For example, if we wish to store the return address on the stack
rather than the return address register, we can do so easily (see Examples 132 and 133).

Example 132
Change the call instruction to store the return address on the stack. The preamble need not
be shown (study carefully).
Answer:

stack based call instruction
1

2 /* read and update the stack pointer */

3 mmovi regSrc, 14, <read> /* regSrc contains the id

4 of the stack pointer */

5 madd regVal, -4 /* decrement the stack pointer */

6 mmov mar, regVal /* MAR contains the new stack pointer */

7

© Smruti R. Sarangi 398

8 mmov regData, regVal, <write> /* update the stack pointer */

9

10 /* write the return address to the stack */

11 mmov mdr, pc, <store>

12

13 mb. begin

Example 133
Change the ret instruction to load the return address from the stack. The preamble need
not be shown.
Answer:

stack based call instruction
1 /* read the stack pointer */

2 mmovi regSrc, 14, <read>

3

4 /* set the memory address to the stack pointer */

5 mmov mar, regVal, <load>

6

7 mmov pc, ldResult /* set the PC */

8

9 /* update the stack pointer */

10 madd regVal, 4 /* sp = sp + 4 */

11 mmov regData, regVal, <write> /* update stack pointer */

12

13 /* jump to the beginning */

14 mb .begin

Example 134
Implement an instruction to compute the factorial of the number saved in register r2. You
can destroy the contents of r2. Save the result in register r3. Assume that the number is
greater than 1.

stack based call instruction
1

2 /* code to set the inputs to the multiplier */

3 mmovi B, 1

4 mmovi regSrc, 2, <read>

5 mmov A, regVal

6 /* at this point A = r2, B = 1 */

399 © Smruti R. Sarangi

7

8 /* loop */

9 .loop:

10 /* Now begin the multiplication */

11 mmov B, B, <multiply> /* aluResult = A * B */

12 mmov B, aluResult /* B = aluResult */

13

14 /* decrement and test */

15 madd A, -1 /* A = A - 1 */

16 mbeq A, 1, .out /* compare A with 1 */

17 mb .loop

18

19 .out:

20 mmov regData, aluResult

21 mmovi regSrc, 3, <write> /* all done */

22

23 mb .begin

Example 135
Implement an instruction to find if the value saved in register r2 is a cubic Armstrong
Number. A cubic Armstrong number is equal to the sum of the cubes of its decimal digits.
For example, 153 is one such number. 153 = 13 + 53 + 33. Save the Boolean result in r3.
Assume two scratch registers: sr1 and sr2.

stack based call instruction
1

2 /* Set the inputs of the ALU */

3 mmovi regSrc, 2, <read>

4 mmov A, regVal

5 mmov sr1, regVal

6 mmovi B, 10

7 mmovi sr2, 0 /* sum = 0 */

8

9 /* loop */

10 .loop:

11 /* test */

12 mbeq A, 0, .out

13

14 /* compute the mod and cube it */

15 mmov B, B, <mod> /* aluResult = A % B */

16 mmov B, aluResult /* B = aluResult */

17 mmov A, aluResult, <multiply> /* aluResult = (A%B)^2 */

© Smruti R. Sarangi 400

18 mmov A, aluResult, <multiply> /* aluResult = (A%B)^3 */

19 mmov A, aluResult /* A = (A%B)^3 */

20 mmov B, sr2, <add> /* add the running sum */

21 mmov sr2, aluResult /* sr2 has the new sum */

22

23 /* test */

24 mmov A, sr1 /* old value of A */

25 mmovi B, 10, <divide>

26 mmov A, aluResult /* A = A / 10 */

27 mmov sr1, A /* sr1 = A */

28

29 mb .loop

30

31 /* out of the loop */

32 .out:

33 mmov A, sr2 /* A contains the sum */

34 mmov B, regVal, <cmp> /* compare */

35 mmov regSrc, 3

36 mbeq flags.E, 1, .success

37

38 /* failure */

39 mmov regData, 0, <write>

40 mb .begin

41

42 .success:

43 mmov regData, 1, <write>

44 mb .begin

Example 136
Implement an instruction to test if a number saved in register r2 is prime. Assume that
the number is greater than 3. Save the result in r3.

stack based call instruction
1

2 /* Read the register and set the ALU inputs */

3 mmovi regSrc, 2, <read>

4 mmov A, regVal

5 mmovi B, 1

6

7 .loop:

8 /* test for divisibility */

9 madd B, 1, <mod> /* aluResult = A % (B+1), B = B + 1 */

401 © Smruti R. Sarangi

10 mbeq aluResult, 0, .failure

11

12 /* test B */

13 mmov A, A, <cmp> /* compare A with B */

14 mbeq flags.E, 1, .success

15

16 mb .loop

17

18 .success:

19 mmovi regSrc, 3

20 mmovi regData, 1, <write>

21 mb .begin

22

23 .failure:

24 mmovi regSrc, 3

25 mmovi regData, 0, <write>

26 mb. begin

9.7 Shared Bus and Control Signals

Let us take a look again at the list of implemented microinstructions in Table 9.8. We observe
that each microinstruction has at the most one register read operand, and one register write
operand. We typically read from one internal register, and then use it as a part of a computation
(addition or comparison), and then write the result to another internal register.

We thus propose the design of a shared bus that actually consists of two buses as shown in
Figure 9.23. The first bus is known as the write bus that is connected to all the registers that
might potentially write data to the bus. The output of the write bus, the embedded immediate
(µimm) in the microinstruction, and the output of the µadder are sent to a multiplexer. Recall
that the µadder adds the embedded immediate with the contents of a register. Now, this
multiplexer chooses one value among the three, and then sends it on the read bus. We refer
to this multiplexer as the transfer multiplexer. All the registers that might potentially read a
value are connected to the read bus. The PC is connected to both the buses. The µadder has
two inputs. One of them is the sign extended immediate that is a part of the microinstruction,
and the other is the output of the write bus.

Simultaneously, we compare the value sent on the write bus with the embedded immediate
(µimm). The result is contained in the isMBranch signal. The isMBranch signal is required
for implementing the mbeq instruction.

To create a flexible data path, we need to add as many interconnections between units as
possible. We thus decide to connect every register other than the decode, and flags registers
to both the read and write buses. These registers are the input/output registers of the register
file (regSrc, regData, and regV al), the ALU registers (A, B, aluResult), and the registers

© Smruti R. Sarangi 402

Decode unit pc

Reg. file, ALU, Mem unit
Reg. file, ALU, Mem unit

pc

immμ

Microcontrol unit

Shared bus

Write bus
Read bus

isMBranch

Figure 9.23: The design of the shared bus

associated with the memory unit (mar, mdr, ldResult). To support branch instructions, it is
also necessary to connect the PC to both the buses.

9.7.1 Control Signals

Each register that writes to the write bus needs a control signal. If it is asserted (equal to 1),
then the value of the register appears on the write bus. Otherwise, the value of the register
does not get reflected on the write bus. For example, the register, aluResult, contains the
result of an ALU operation, and it is sometimes necessary to transfer its value to the write bus.
The signal aluResultout controls the behaviour of the aluResult register. We associate similar
signals with the subscript, out with all the registers that need to access the write bus.

Likewise, we associate a set of signals with the registers that are connected to the read bus.
For example, the register mar is connected to the read bus. We associate the signal marin with
it. If it is 1, then the value of the data on the read bus is transferred to mar. If marin = 0, the
mar register is effectively disconnected from the read bus.

The PC has two signals associated with it: pcin and pcout. The µcontrol unit ensures that
at one point of time only one register can write to the write bus. However, it is theoretically
possible for multiple registers to read from the read bus concurrently.

9.7.2 Functional Unit Arguments

We augment the read bus to carry the arguments for the functional units (referred to as ⟨args⟩).
These arguments specify the nature of the operation, which the functional unit needs to perform.
For example, the two operations associated with the memory unit are ⟨load⟩, and ⟨store⟩, and
the two operations associated with the register file are ⟨read⟩ and ⟨write⟩. Each ALU operation
also has its separate code.

403 © Smruti R. Sarangi

We propose to encode each operation in binary, and reserve the special value of 0 to indicate
that no operation needs to be performed. Each functional unit needs to be connected to the
read bus, and needs to process the value of the arguments. The ⟨args⟩ field can be split into
two parts: ⟨unit id⟩, and ⟨opcode⟩. The ⟨unit id⟩ specifies the identifier for the functional unit.
For example, we can assign 00 to the ALU, 01 to the register file, and 10 to the memory unit.
The ⟨opcode⟩ contains the details of the operation to be performed. This is specific to the
functional unit. We propose a 10-bit ⟨args⟩ bus that is a part of the read bus. We devote 3 bits
to the ⟨unit id⟩, and 7 bits to the ⟨opcode⟩. Thus, for each unit we can support 128 different
operations. Implementing the circuit to process the ⟨args⟩ is easy, and we leave it as an exercise
to the reader.

9.8 The Microcontrol Unit

We now arrive at the last piece of our microprogrammed processor, which is the design of
the µcontrol unit. It is a simple processor that executes microinstructions. It consists of a
µfetch unit and a µpc. Every cycle we increment the µpc by 1 (addressed by the number of
the instruction, not by bytes), or set it to the branch target. Then, we proceed to read the
microinstruction from the microprogram memory, and process it. There are two main paradigms
for designing an encoding of microinstructions, and executing them using a µcontrol unit. The
first is known as vertical microprogramming. In principle, this paradigm is similar to executing
regular program instructions using a hardwired processor. The second paradigm is known as
horizontal microprogramming. This is more common, and is also a more efficient.

9.8.1 Vertical Microprogramming

In vertical microprogramming, we encode an instruction similar to encoding a regular RISC
instruction in a hardwired processor.

type

3

src dest

5 5

immediate

12

branchTarget

10

args

10

Figure 9.24: Encoding of a microinstruction (vertical microprogramming)

Figure 9.24 shows an encoding for our scheme. Here, we devote 3 bits for encoding the type
of the microinstruction. We need 3 bits because we have a total of 8 microinstructions (see
Table 9.8). Each microinstruction embeds the 5 bit id (because we have 19 registers visible
to microprograms) of an internal source register, 5 bit id of an internal destination register, a
12-bit immediate, and a 10-bit branch target. At the end, we encode a 10-bit args value in the
microinstruction. Each instruction thus requires 45 bits.

Now, to process a vertically encoded microinstruction, we need a dedicated µdecode unit
that can generate all the control signals. These signals include all the enable signals for the
internal registers, and the signals to select the right input in the transfer multiplexer. Addi-
tionally it needs to extract some fields from the microinstruction such as the immediate, branch

© Smruti R. Sarangi 404

target, and the args value, and subsequently extend their sign. We have already gone through a
similar exercise for extracting the fields of an instruction, and generating control signals, when
we discussed the operand fetch unit and control unit for our hardwired processors in Sections
9.2.3, and 9.3 respectively. The logic for generating the control signals, and extracting fields
from the microinstruction is exactly the same. Hence, we leave the detailed design of these
units as an exercise for the reader.

μpc Microprogram
memory

Decode
unit

Execute
unit

Data path

control
signals

1
branchTarget

Shared bus

switchμmux

o
p

c
o
d

e

Figure 9.25: The µcontrol unit (vertical microprogramming)

The design of the vertical µcontrol unit is shown in Figure 9.25. We have a microPC (µpc),
which saves the index of the currently executing microinstruction. Every cycle, we increment
the µpc by 1. This is because each row of the microprogram memory saves 1 microinstruction.
We assume that a row is wide enough to save the entire contents of the microinstructions.
We do not have the requirement of saving data at the granularity of a fixed number of bytes
here. After reading the microinstruction, we proceed to decode it. The process of decoding
a microinstruction breaks it into a set of fields (instruction type, immediate, branch target,
args, source, and destination registers). Subsequently, we generate all the control signals and
dispatch the set of control signals to the execute unit. The execute unit sets all the control
signals, and orchestrates an operation in the data path of the processor. The execute unit also
sets the control signals of the transfer multiplexer. We need some additional support to process
the mswitch instruction. We add a dedicated switch unit that takes inputs (the opcode) from
the ir register, and computes the starting address for the microcode of the currently executing
program instruction. It sends the address to the multiplexer, µfetch (see Figure 9.25). The
multiplexer chooses between three inputs – default microPC, branch target, and the address
generated by the switch unit. It is controlled by the execute unit. The rules for choosing the
input are shown in Table 9.9. In accordance with these rules, and the value of the isMBranch
signal (generated by comparing µimm, and the contents of the shared bus), the execute unit
generates the control signals for the µfetch multiplexer.

405 © Smruti R. Sarangi

Instruction Output of the µfetch multiplexer

mloadIR next µpc

mdecode next µpc

mswitch output of the switch unit

mmov next µpc

mmovi next µpc

madd next µpc

mb branch target

mbeq branch target if isMBranch = 1, else next µpc

Table 9.9: Rules for controlling the µfetch multiplexer

9.8.2 Horizontal Microprogramming

We can further simplify the design of the µcontrol unit. We do not need three steps (fetch,
decode, execute) to execute a microinstruction. The decode step is not required. We can embed
all the control signals in the microinstruction itself. It is thus not required to have a dedicated
signal generator to generate all the control signals. By doing so, we will increase the size of the
encoding of an instruction. Since the number of microinstructions is small, and we do not have
any significant constraints on the size of the encoding of a microinstruction, adding additional
bits in the encoding is not an issue. This paradigm is known as horizontal microprogramming.
The encoding of a microinstruction is shown in Figure 9.26.

immediate

12

branchTarget

10

args

10

control signals

33

Figure 9.26: Encoding of a microinstruction (horizontal microprogramming)

We need the following fields – control signals (saved as a bit vector whose size is 33 bits),
immediate (12 bits), branch target (10 bits), and args (10 bits). The reason we require 33
control signals is as follows. We have 19 registers (see Table 9.7) visible to microcode. Out
of these register, the following 9 registers are exclusively connected to either the read bus or
the write bus: ir, flags.E, flags.GT , I, rd, rs1, rs2, branchTarget, and immx. Hence, these
registers require just one control signal. The rest of the registers have read-write functionality.
Hence, these registers require two control signals. Thus, the total number of register enabling
control signals are 29. We need 2 more signals each to control the transfer multiplexer, and
the µfetch multiplexer. We thus have a total of 33 control signals, and we require 65 bits to
encode the instruction. Recall that with vertical microprogramming, we needed 45 bits.

Now, with additional storage we can completely eliminate the signal generator in the decode
stage, and thus significantly simplify the µcontrol unit as shown in Figure 9.27

Here, we have eliminated the decode stage. All the signals are embedded in the instruction,
and they are thus used to orchestrate a computation in the data path. The execute unit

© Smruti R. Sarangi 406

μpc Microprogram
memory

Execute
unit

Data path

control
signals

1
branchTarget

Shared bus

switch

isMBranch

opcode

μmux

M1

Figure 9.27: The µcontrol unit (horizontal microprogramming)

generates the isMBranch signal (by comparing the µimm and the value on the read bus),
which is used to choose between the next µpc, and the branch target using multiplexer, M1.
Here, we slightly complicate the µfetch multiplexer, and add a little bit of redundancy in the
interest of simplicity. We make it a 4 input structure, and choose between the value from the
switch unit, the branch target, the output of M1, and the next µpc. The 2-bit control signals
for controlling the µfetch multiplexer are embedded in the instruction in accordance with the
rules given in Table 9.9. The rest of the operation of the circuit is the same as the circuit for
vertical microprogramming as shown in Figure 9.25.

9.8.3 Tradeoffs between Horizontal and Vertical Microprogramming

The tradeoffs between horizontal and vertical microprogramming are the following:

1. Horizontal microprogramming requires more storage. However, this is not an issue in a
microprogrammed processor. The additional storage is minimal.

2. Horizontal microprogramming eliminates the need for dedicated signal generation logic in
the µcontrol unit.

3. To program a horizontally microprogrammed processor, it is necessary to expose the con-
trol signals to the programmer and the microassembler. This makes the microassembler
very specific to a given processor. However, in vertical microprogramming, as long as the
internal register set remains the same, we do not need different microassemblers.

To summarise, microprogramming is a very potent method to implement an instruction
set. We can design very expressive instruction sets using this method. However, this is not

407 © Smruti R. Sarangi

a preferable approach for implementing all the instructions (especially the common ones) in a
high performance processor.

9.9 Summary and Further Reading

9.9.1 Summary

Summary 9

1. We design a processor by dividing it into multiple stages, where the stages are mostly
independent of each other. We divide our basic SimpleRisc processor into five stages:
instruction fetch(IF), operand fetch(OF), execute (EX), memory access (MA), and
register writeback (RW).

2. The roles of these stages are as follows:

(a) The IF stage computes the next PC, and fetches the contents of the instruction,
whose address is stored in the PC.

(b) In the OF stage, we decode the instruction, and read its operands from the reg-
ister file. Specifically, we compute the branch target, and expand the embedded
immediate in the instruction according to the modifiers.

(c) In the EX stage, we compute the branch outcome, branch target, and perform
the ALU operations.

(d) In the MA stage, we perform loads and stores.

(e) Lastly, in the RW stage, we write back the values computed by ALU or load
instructions, and the return address for a call instruction to the register file.

3. The data path consists of all the elements for storing, retrieving, and processing infor-
mation such as the registers, memory elements, and the ALU. In contrast, the control
path generates all the signals for controlling the movement of instructions and data.

4. We can use a hardwired control unit that generates all the signals for the control path.

5. For additional flexibility, and portability, we presented the design of a micropro-
grammed processor. This processor replaces every program instruction by a sequence
of microinstructions.

6. We defined 8 microinstructions, and created a microprogrammed data path that con-
nected all the units on a shared bus. Each unit in a microprogrammed data path
exposes its input and output ports through registers. We use 19 registers in our de-
sign.

7. We subsequently showed implementations in microcode for all the instructions in the
SimpleRisc ISA.

© Smruti R. Sarangi 408

8. We designed a shared bus for such processors by interconnecting two physical buses
(write bus, and read bus) with a multiplexer. The multiplexer (known as the transfer
multiplexer) chooses between the output of the write bus, the output of the µadder,
and the micro immediate.

9. We showed the design of a µcontrol unit for both vertical and horizontal micropro-
gramming. Vertical microprogramming requires a decode stage for generating all the
control signals. In comparison, horizontal microprogramming requires all the control
signals to be embedded in the microinstruction.

9.9.2 Further Reading

Processor design is very heavily studied in courses on computer architecture. Readers should
first start with Chapter 10 that discusses pipelining. Chapter 10 is a sequel to the current
chapter. The reader can then take a look at the “Further Reading” section (Section 10.12.2)
in Chapter 10. In general, for basic processor design, the reader can also consult other books
on computer architecture [Mano, 2007, Stallings, 2010, Henessey and Patterson, 2010] to get a
different perspective. The books by Morris Mano [Mano, 2007], and Carl Hamacher [Hamacher
et al., 2001] consider different flavours of microprogramming, and define their own semantics.
If the reader is interested in the history of microprogramming per se, then she can consult
books dedicated to the design and history of microprogramming [Carter, 1995, Husson, 1970].
The PTLSim [Yourst, 2007] simulator translates x86 instructions into micro-instructions, and
simulates these microinstructions on a data path similar to that of commercial processors.
Readers can take a look at the code of this simulator, and appreciate the nuances of processing
and executing microinstructions.

Exercises

Hardwired Processor Design

Ex. 1 — We have divided a SimpleRisc processor into 5 distinct units. List them, and de-
scribe their functions.

Ex. 2 — Explain the terms – data path and control path?

Ex. 3 — How does having a lesser number of instruction formats help in the process of de-
coding an instruction?

Ex. 4 — Draw the circuit for calculating the value of the 32-bit immediate, from the first 18
bits of the instruction. Take the modifiers into account.

Ex. 5 — Why is it necessary for the register file in our SimpleRisc processor to have 2 read
ports, and 1 write port?

409 © Smruti R. Sarangi

Ex. 6 — Why do we need 2 multiplexers in the OF stage of the processor? What are their
functions?

Ex. 7 — Let us propose to compute the branch outcome and target in the OF stage. Describe
the design of the OF stage with this functionality.

* Ex. 8 — For the ALU we use a multiplexer with a large number of inputs. How can we
implement this multiplexer with transmission gates? (show a circuit diagram, and explain why
your idea will work)

Ex. 9 — Draw a circuit for implementing the cmp instruction. It should show the circuit for
subtraction, and the logic for updating the flags.

Ex. 10 — How do we implement the call instruction in our processor?

Ex. 11 — Draw the circuit diagram for computing the isWb signal.

Ex. 12 — Why do we use the isAdd control signal for the load, and store instructions also?

Microprogramming

Ex. 13 — Compare a hardwired control unit and a microprogrammed control unit.

Ex. 14 — Draw the block diagram of a microprogrammed processor.

Ex. 15 — Why do we need the mswitch instruction.

Ex. 16 — Describe the microcode implementation of the load and store instructions.

Ex. 17 — Write a program in microassembly to check if a number in register r2 is a perfect
square. Save the Boolean result in register, r0.

Ex. 18 — Write a program in microassembly to check if the value in register r2 is a palin-
drome. A palindrome reads the same from both sides. For example, the 8 bit number, 11011011
is a palindrome. Save the Boolean result in register, r0.

* Ex. 19 — Write a program in microassembly to check if the value in register r2 can be
expressed as a sum of two cubes in two different ways. For example, 1729, is one such number.
1729 = 123 + 13 = 103 + 93. Save the Boolean result in register, r0.

Ex. 20 — Outline the design of the shared bus, and microprogrammed data path. Explain
the functionalities of each of its components.

Ex. 21 — Draw a detailed diagram of the µcontrol unit along with the transfer multiplexer
in a vertically microprogrammed processor.

Ex. 22 — Draw a detailed diagram of the µcontrol unit along with the transfer multiplexer
in a horizontally microprogrammed processor.

© Smruti R. Sarangi 410

Ex. 23 — Compare the tradeoffs between horizontal and vertical microprogramming.

Design Problems

Ex. 24 — Implement the hardwired SimpleRisc processor using Logisim, which is an ed-
ucational tool for designing and simulating digital circuits. It is freely available at http:

//ozark.hendrix.edu/~burch/logisim. Try to support all the instructions, and the modi-
fiers.

Ex. 25 — Now, try to implement a horizontally microprogrammed processor using Logisim.
This project has two parts.

a)Write a microassembler that can translate microassembly instructions to their machine
encodings. Use this microassembler to generate the microcode for all the instructions in
the SimpleRisc ISA.

b)Create a data path and control path in Logisim for a horizontally microprogrammed pro-
cessor. This processor should be able to directly execute the code generated by the mi-
croassembler.

c)Run regular SimpleRisc programs on this processor.

d)Implement custom SimpleRisc instructions such as multiply-add (a ← b ∗ c + d), or in-
structions to find the square of a number on this processor.

Ex. 26 — Implement the basic hardwired processor in a high-level description language such
as VHDL. You can use the freely available open source tool GNU HDL (http://gna.org/
projects/ghdl/) to implement and simulate your circuit.

http://ozark.hendrix.edu/~burch/logisim
http://ozark.hendrix.edu/~burch/logisim
http://gna.org/projects/ghdl/
http://gna.org/projects/ghdl/

10
Principles of Pipelining

10.1 A Pipelined Processor

Let us quickly review where, we are.

Way Point 7

1. We have designed a processor with five main stages – IF, OF, EX, MA, and RW.

2. We have designed a detailed data path and control path for the hardwired implemen-
tation of our processor.

3. We introduced a microprogram based implementation of our processor in Section 9.4,
and we designed a detailed data path and control path for it.

Now, our aim is to make our processor fast and efficient. For this we focus on the hardwired
implementation of our processor. We exclude microprogrammed processors from our discussion
because we are explicitly looking for high performance, and flexibility/ reconfigurability are not
important criteria for us in this section. Let us begin by pointing out some problems with the
design of the hardwired processor as presented in Section 9.2.

10.1.1 The Notion of Pipelining

Issues with a Single-Cycle Processor

We assumed that our hardwired processor presented in Section 9.2 takes a single cycle to fetch,
execute, and write the results of an instruction to either the register file or memory. At an

411

© Smruti R. Sarangi 412

electrical level, this is achieved by signals flowing from the fetch unit to ultimately the register
writeback unit via other units. It takes time for electrical signals to propagate from one unit
to the other.

For example, it takes some time to fetch an instruction from the instruction memory. Then
it takes time to read values from the register file, and to compute the results with the ALU.
Memory access, and writing the results back to the register file, are also fairly time taking
operations. We need to wait for all of these individual sub-operations to complete, before we
can begin processing the next instruction. In other words, this means that there is a significant
amount of idleness in our circuit. When the operand fetch unit is doing its job, all other units
are idle. Likewise, when the ALUs are active, all the other units are inactive. If we assume
that each of the five stages (IF,OF,EX,MA,RW) takes the same amount of time, then at any
instant, about 80% of our circuit is idle! This represents a waste in computational power, and
idling resources is definitely not a good idea.

If we can find a method to keep all the units of a chip busy, then we can increase the rate
at which we execute instructions.

10.1.2 Overview of Pipelining

Let us try to find an analogy to the problem of idleness in a simple single-cycle processor as we
just discussed. Let us go back to our original example of the car factory. If we assume, that we
start making a car, after the previous car has been completely manufactured, then we have a
similar problem. When we are assembling the engine of a car, the paint shop is idle. Likewise,
when we are painting a car, the engine shop is idle. Clearly, car factories cannot operate this
way. They thus typically overlap the manufacturing stages of different cars. For example, when
car A is in the paint shop, car B is in the engine shop. Subsequently, these cars move to the
next stage of manufacturing and another new car enters the assembly line.

We can do something very similar here. When one instruction is in the EX stage, the next
instruction can be in the OF stage, and the subsequent instruction can be in the IF stage. In
fact, if we have 5 stages in our processor, where we simplistically assume that each stage roughly
takes the same amount of time, we can assume that we have 5 instructions simultaneously being
processed at the same time. Each instruction undergoes processing in a different unit of the
processor. Similar to a car in an assembly line, an instruction moves from stage to stage in the
processor. This strategy ensures that we do not have any idle units in our processor because
all the different units in a processor are busy at any point in time.

In this scheme, the life cycle of an instruction is as follows. It enters the IF stage in cycle n,
enters the OF stage in cycle n+1, EX stage in cycle n+2, MA stage in cycle n+3, and finally
it finishes its execution in the RW stage in cycle n + 4. This strategy is known as pipelining,
and a processor that implements pipelining is known as a pipelined processor. The sequence of
five stages (IF, OF, EX, MA, RW) conceptually laid out one after the other is known as the
pipeline (similar to the car assembly line). Figure 10.1 shows the organisation of a pipelined
data path.

In Figure 10.1, we have divided the data path into five stages, where each stage processes a
separate instruction. In the next cycle, each instruction passes on to the next stage as shown
in the figure.

413 © Smruti R. Sarangi

Instruction
Fetch
(IF)

Operand
Fetch
(OF)

Execute

(EX)

Memory
Access
(MA)

Register
Write
(RW)

Figure 10.1: A pipelined data path

Definition 65
The notion of dividing a processor into a set of stages where the stages are ordered one
after the other, and simultaneously process a set of instructions by assigning an instruction
to each stage, is known as pipelining. The implicit assumption here is that it takes the same
amount of time for each stage to complete its work. After this time quanta is over, each
instruction moves to the subsequent stage.

The conceptual layout of stages where one stage is laid out after the other is known as
a pipeline, and a processor that incorporates pipelining is known as a pipelined processor.

10.1.3 Performance Benefits

Let us quantify the expected benefit in terms of performance of a pipelined processor. We shall
take a deeper look into performance issues in Section 10.9. Here, we shall look at this topic
briefly. Let us assume that it takes τ nanoseconds for an instruction to travel from the IF
to RW stage of the pipeline in the worst case. The minimum value of the clock cycle is thus
limited to τ nanoseconds for the case of a single cycle pipeline. This is because in every clock
cycle we need to ensure that an instruction executes completely. Alternatively, this mean that
every τ nanoseconds, we finish the execution of an instruction.

Now, let us consider the case of a pipelined processor. Here, we have been assuming that the
stages are balanced. This means that it takes the same amount of time to execute each stage.
Most of the time, processor designers try to achieve this goal to the maximum extent that is
possible. We can thus divide τ by 5, and conclude that it takes τ/5 nanoseconds to execute
each stage. We can thus set the cycle time to τ/5. After the end of a cycle, the instructions in
each stage of the pipeline proceed to the next stage. The instruction in the RW stage moves
out of the pipeline and finished its execution. Simultaneously, a new instructions enters the IF
stage. This is graphically shown in Figure 10.2.

In the nth cycle, we have five instructions (1-5) occupying the five stages of the pipeline. In
the (n+1)th cycle each instruction progresses by 1 stage, and instruction 6 enters the pipeline.
This pattern continues.

The noteworthy point is that we are finishing the execution of a new instruction, every
τ/5 nanoseconds. As compared to a single-cycle processor that finishes the execution of a new
instruction every τ nanoseconds, the instruction throughput is 5 times higher for a pipelined

© Smruti R. Sarangi 414

Instruction
Fetch
(IF)

Operand
Fetch
(OF)

Execute

(EX)

Memory
Access
(MA)

Register
Write
(RW)

inst 1inst 2inst 3inst 4inst 5

Instruction
Fetch
(IF)

Operand
Fetch
(OF)

Execute

(EX)

Memory
Access
(MA)

Register
Write
(RW)

inst 2inst 3inst 4inst 5inst 6

cycle n

cycle n+1

Figure 10.2: Instructions in the pipeline

processor. In a span of 1000 nanoseconds, a single cycle processor completes 1000/τ instructions,
whereas a pipelined processor completes 5000/τ instructions, and is thus 5 times more efficient.
Therefore, we observe a fivefold advantage with pipelining.

If we can obtain a fivefold advantage with a 5-stage pipeline, then by the same logic we
should be able to obtain a 100-fold advantage with a 100-stage pipeline. In fact, we can keep on
increasing the number of stages till a stage just contains one transistor. However, this is not the
case, and there are fundamental limitations to the performance of a pipelined processor, as we
shall show in the subsequent sections. It is not possible to arbitrarily increase the performance
of a processor by increasing the number of pipeline stages. In fact, after a certain point, adding
more stages is counterproductive.

10.2 Design of a Simple Pipeline

Let us now design a simple pipeline. Our main aim in this section is to split the data path
of the single-cycle processor into five stages and ensure that five instructions can be processed
concurrently (one instruction in each stage). We need to also ensure the seamless movement
of instructions between the pipeline stages. Note that the problem of designing a pipeline in
general is very complex, and we will explore some of the major nuances in the next few sections.
For this section, let us not consider any dependences between instructions, or consider any
correctness issues. We shall look at these issues in detail in Section 10.4. Let us reiterate that
at the moment, we want to design a simple pipeline that needs to have the capability to process
five instructions simultaneously, and ensure that they move to the subsequent stage every new
cycle.

10.2.1 Splitting the Data Path

We have five distinct units in our data path, and all instructions traverse the units in the same
order. These units are instruction fetch (IF), operand fetch (OF), execute (EX), memory access
(MA), and the register write (RW) units. A layout of these five units in a pipelined fashion

415 © Smruti R. Sarangi

has already been shown in Figure 10.1. Let us now discuss the issue of splitting a data path in
some more detail.

The reader needs to note that pipelining is a general concept, and any circuit can in principle
be split into multiple parts and pipelined. There are however some rules that need to be followed.
All the subparts of the circuit must preferably be distinct entities that have as few connections
between them as possible. This is true in the case of our data path. All our units are distinct
entities. The second is that all kinds of data must flow through the units in the same order,
and lastly the work done by each unit should roughly be the same. This minimises the idleness
in the circuit. In our case, we have tried to follow all these rules. The reader needs to note that
the div and mod operations are exceptions to this rule. They are in general, significantly slower,
than add or multiply operations. They thus increase the maximum delay of the EX stage, and
the pipeline consequently becomes unbalanced. Hence, most simple pipelined processors either
refrain from implementing these instructions, or have specialised logic to deal with them. We
shall show one solution for this problem in Section 10.6 that proposes to stall a pipeline till
a division operation completes. Let us nevertheless continue to assume that all our pipeline
stages are balanced.

10.2.2 Timing

Now, we need to design a method that ensures that instructions seamlessly proceed to the
subsequent pipeline stage. We need a global mechanism that ensures that all the instructions
proceed to the next stages simultaneously. We already have this global mechanism built in,
and is nothing else, but the clock. We can have a protocol that for example, ensures that at
the falling edge of the clock, all the instructions proceed to the subsequent stages.

Instruction
Fetch
(IF)

Operand
Fetch
(OF)

Execute

(EX)

Memory
Access
(MA)

Register
Write
(RW)

Latches

Figure 10.3: A pipelined data path with registers

Figure 10.3 shows a simple method to achieve this. We insert a register between two
consecutive pipeline stages. Since we have five pipeline stages in our data path, we insert 4
registers. The four registers are named after their locations – IF-OF, OF-EX, EX-MA, and
MA-RW. Each of these registers are called pipeline registers or pipeline latches. The reader
needs to note that in this case, a latch, is actually referring to an edge triggered register. We
shall use the terms interchangeably. All the pipeline registers are connected to a common clock,
and read-write data at the same time.

© Smruti R. Sarangi 416

Definition 66
A pipeline register, or a pipeline latch is a register that is added between two consecutive
pipeline stages. All the registers are connected to the common clock, and help in seamlessly
transferring instructions between pipeline stages.

Let us explain with an example. When an instruction enters the pipeline, it enters the
IF unit. At the end of the first cycle, it gets saved in the IF-OF register. At the beginning
of the second cycle, it enters the OF stage, and then again at the end of the second cycle,
it gets latched into the OF-EX register. This pattern continues till the instruction leaves the
pipeline. The pipeline registers essentially transfer their inputs to the outputs at the end of a
cycle (negative edge of the clock). Then the logic of the pipeline stage processes the instruction,
and at the end of the cycle, the instruction gets transferred to the register of the subsequent
pipeline stage. In this manner, an instruction hops between stages till it reaches the end of the
pipeline.

10.2.3 The Instruction Packet

Let us now proceed to design our data path with pipeline stages and registers in some more de-
tail. Up till now we have been maintaining that the instruction needs to be transferred between
registers. Let us elaborate on the term “instruction”. We actually mean an instruction packet
here, which contains all the details regarding the instruction, along with all of its intermediate
results, and the control signals that it may require.

We need to create such an elaborate instruction packet because there are multiple instruc-
tions in the processor at the same time. We need to ensure that there is no overlap between
the information required to process two different instructions. A clean way of designing this
is to confine all the information required to process an instruction in a packet, and transfer
the packet between pipeline registers every cycle. This mechanism also ensures that all the
intermediate state required to process an instruction is removed after it leaves the pipeline.

What should an instruction packet contain? It needs to contain at the least, the PC and
the contents of the instruction. It should also contain all the operands and control signals that
are required by subsequent stages. The amount of information that needs to be stored in the
instruction packet reduces as the instruction proceeds towards the last stage. For the sake of
uniformity, we assume that all the pipeline registers have the same size, and are sized to hold
the entire instruction packet. Some of the fields might not be used. However, this is a negligible
overhead. Let us now proceed to design the data path of the pipeline. We shall use exactly the
same design as we had used for the single-cycle processor. The only difference is that we add a
register after each pipeline stage, other than the last stage, RW. Secondly, we add connections
to transfer data in and out of the pipeline registers. Let us quickly take a look at each of the
pipeline stages in our pipelined data path.

417 © Smruti R. Sarangi

10.3 Pipeline Stages

10.3.1 IF Stage

pc

1

0

Instruction
memory

pc + 4

instruction

instructionpc

isBranchTaken

branchPC

IF/OF

Figure 10.4: The IF stage in a pipelined processor

Figure 10.4 shows the IF stage augmented with a pipeline register. We save the value of
the PC, and the contents of the instruction in the pipeline register. This is all the information
that we need to carry forward to the subsequent stages of the pipeline. Other than this small
change, we do not need to make any other change in this part of the data path.

10.3.2 OF Stage

1 0

Immediate and
branch target

Register
file

rs2rd

1 0
immx

op2 op1

isSt

isImmediate

Control
unit

instructionpc

instructionpc controlbranchTarget B A op2

rs1

1 0

ra(15)

isRet

IF-OF

OF-EX

Figure 10.5: The OF stage in a pipelined processor

Figure 10.5 shows the design of the operand fetch stage. The only extra additions are

© Smruti R. Sarangi 418

the connections to the two pipeline registers IF-OF, and OF-EX. The stage starts out by
extracting the fields rd (bits 23-26), rs1 (bits 19-22), rs2 (bits 15-18), and the immediate
(bits 1-18) from the instruction. These are sent to the register file, the immediate and branch
units. Additionally, we send the contents of the instruction to the control unit that generates
all the control signals. Three of the control signals namely isRet, isImmediate, and isSt are
used immediately. The rest of the control signals are for controlling multiplexers in subsequent
stages of the pipeline. Hence, it is necessary for us to save them in the OF-EX pipeline register
such that they can traverse the pipeline along with the instruction, and control the actions of
different units accordingly. Therefore, we allocate some space within the instruction packet,
and store all the control signals generated by the control unit (refer to the field control in
Figure 10.5).

We need to carry all the intermediate results generated by the OF stage. In specific, the OF
stage generates the branchTarget, both the inputs for the ALU (A, and B), and the value to be
written to memory for a store instruction (op2). Thus, we allocate four fields in the instruction
packet, and the OF-EX pipeline register to store this information as shown in Figure 10.5.
Let us recall that the aim of designing the instruction packet was to have all the information
required to process an instruction at one place. In accordance with this philosophy we have
saved all the details of the instruction including its address, contents, intermediate results, and
control signals in our pipeline registers.

10.3.3 EX Stage

ALU

fla
gs Branch

unit

isBeq

isBgt
isUBranch

aluSignals

instructionpc controlbranchTarget B A

pc controlaluResult

op2

instructionop2

isBranchTaken

10
isRet

OF-EX

EX-MA

branchPC

To
 f

e
tc

h
 u

n
it

Figure 10.6: The EX stage in a pipelined processor

Let us now take a look at the EX stage in Figure 10.6. The ALU receives its inputs(A and
B) from the OF-EX pipeline register. The results generated by this stage are the aluResult
(result of the ALU operation), the final branch target, and the branch outcome. The branch
outcome is 1, if the branch is taken, otherwise it is 0. The result of the ALU operation is
added to the instruction packet, and saved in the EX-MA register. The EX-MA register also
contains the rest of the fields of the instruction packet namely the PC, instruction (contents
of the instruction), control signals, and the second operand read from the register file (op2).

For computing the final branch target, we need to choose between the branch target com-
puted in the OF stage and the value of the return address register (possibly stored in A). The
result of the choice is the final branch target(branchPC), and this is sent to the fetch unit. The

419 © Smruti R. Sarangi

branch unit computes the value of the signal, isBranchTaken. If it is 1, then the instruction is
a branch, and it is taken. Otherwise, the fetch unit needs to use the default option of fetching
the next PC.

10.3.4 MA Stage

Data memory Memory
unit

mar mdr isLd

isSt

pc controlaluResult instructionop2

pc controlldResult instructionaluResult

EX-MA

MA-RW

Figure 10.7: The MA stage in a pipelined processor

The MA stage is shown in Figure 10.7. The only operand that the load instruction uses
is the result of the ALU, which contains the effective memory address. This is saved in the
aluResult field of the EX-MA register. The data to be stored resides in the rd register. This
value was read from the register file in the OF stage, and was stored in the op2 field of the
instruction packet. In this stage, the op2 field is connected to the MDR (memory data register)
register. The relevant control signals – isLd and isSt – are also a part of the instruction packet,
and they are routed to the memory unit.

The only output of this stage is the result of the load instruction. This is saved in the
ldResult field of the MA-RW register.

10.3.5 RW Stage

Register
file

pc controlldResult instruction

01
isLd

data

rd

isWb

aluResult

0010
4

isCall

ra(15)

0

1
A
D

E

A

D

address
data

E enable

Figure 10.8: The RW stage in a pipelined processor

© Smruti R. Sarangi 420

We need to lastly take a look at the RW stage in Figure 10.8. The inputs that it requires
from the previous stages are the values of the ALU and load operations stored in the aluResult
and ldResult fields respectively. These inputs along with the default next PC (current PC +
4) are connected to a multiplexer that chooses the value to be written back. The rest of the
circuit is the same as that of the single-cycle processor. Note that there is no pipeline register
at the end of the RW stage because it is the last stage in the pipeline.

10.3.6 Putting it All Together

Let us now summarise our discussion regarding the simple pipeline by showing our data path
with the pipeline registers in Figure 10.9. The figure is undoubtedly complex. However, the
reader has seen all the parts of this figure before and thus should not have a significant amount
of difficulty in putting the different parts together. Nonetheless, we should note that the design
of our processor has already become fairly complex, and the size of our diagrams have already
reached one page !!! We do not want to introduce more complicated diagrams. The reader
should note that up till now our aim was to introduce the entire circuit. However, we shall now
introduce some degree of abstraction such that we can introduce more complicated features
into our processor. Henceforth, we shall broadly concentrate on the logic of the pipeline, and
not talk about the implementation in detail. We shall leave the implementation of the exact
circuit as an exercise for the reader.

Figure 10.10 shows an abstraction of our pipeline data path. This figure prominently con-
tains block diagrams for the different units and shows the four pipeline registers. We shall
use this diagram as the baseline for our discussion on advanced pipelines. Recall that the first
register operand can either be the rs1 field of the instruction, or it can be the return address
register in the case of a ret instruction. A multiplexer to choose between ra and rs1 is a part
of our baseline pipeline design, and for the sake of simplicity, we do not show it in the diagram.
We assume that it is a part of the register file unit. Similarly, the multiplexer to choose the
second register operand (between rd and rs2) is also assumed to be a part of the register file
unit, and is thus not shown in the diagram. We only show the multiplexer that chooses the
second operand (register or immediate).

10.4 Pipeline Hazards

In our simple pipeline discussed in Section 10.2, we were not concerned with correctness issues in
the pipeline. We were simply concerned with designing the pipeline, and having the capability
to process five instructions at the same time. Now, we want to take a look at correctness issues.
Let us start out by introducing the pipeline diagram, which will prove to be a very useful tool
in our analyses.

10.4.1 The Pipeline Diagram

We typically use a pipeline diagram to study the behaviour of a pipeline. It shows the rela-
tionships between instructions, clock cycles, and the different stages of the pipeline. It can be
used to study the nature of dependences across different instructions, and their execution in
the pipeline.

421 © Smruti R. Sarangi

pc

1

0

Instruction
memory

1 0

ALU
 fla

gs

Immediate and
branch target

Register
file

Branch
unit

Data
memory

Memory
unit

mar mdr

isBeq

isBgt
isUBranch

pc + 4

rs2rd

instruction

1 0
immx

op2 op1

reg

isSt

isImmediate

aluSignals

Control
unit

isLd

isSt

instructionpc

instructionpc controlbranchTarget B A

pc controlaluResult

op2

instructionop2

pc controlldResult instruction

isBranchTaken

01
isLd

data

rd

isWb

data

isWb

rs1

1 0

ra(15)

isRet

10
isRet

aluResult

0010
4

isCall

ra(15)

0

1

Figure 10.9: Pipelined data path

Figure 10.11 shows a pipeline diagram for three instructions as they proceed through the
pipeline. Each row of the diagram corresponds to each pipeline stage. The columns correspond
to clock cycles. In our sample code, we have three instructions that do not have any dependences
between each other. We name these instructions – [1], [2], and [3] respectively. The earliest

© Smruti R. Sarangi 422

IF-OF

Fetch
unit

Instruction
memory

Immediate
and branch

unit

Register
file

Control
unit

OF-EX

op2

op1

ALU
Unit

Branch
unit

flags

EX-MA

Memory
unit

Data
memory

MA-RW

Register
write unit

Figure 10.10: An abstraction of the pipelined data path

[1]: add r1, r2, r3

[2]: sub r4, r5, r6

[3]: mul r8, r9, r10

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

IF

OF

EX

MA

RW

1 2 3 4 5 6 7 8 9

Clock cycles

Figure 10.11: The Pipeline Diagram

instruction, [1] enters the IF stage of the pipeline in the first cycle, and leaves the pipeline in
the fifth cycle. Similarly, the second instruction, [2], enters the IF stage of the pipeline in the
second cycle, and leaves the pipeline in the sixth cycle. Each of these instructions progresses to
the subsequent stage of the pipeline in each cycle. The trace of each instruction in the pipeline
diagram is a diagonal that is oriented towards the bottom-right. Note that this scenario will
get fairly complicated after we consider dependences across instructions.

Here, are the rules to construct a pipeline diagram.

1. Construct a grid of cells, which has five rows, and N columns, where N is the total number
of clock cycles that we wish to consider. Each of the five rows corresponds to a pipeline
stage.

2. If an instruction ([k]) enters the pipeline in cycle m, then we add an entry corresponding
to [k] in the mth column of the first row.

423 © Smruti R. Sarangi

3. In the (m + 1)th cycle, the instruction can either stay in the same stage (because the
pipeline might be stalled, described later), or can move to the next row (OF stage). We
add a corresponding entry in the grid cell.

4. In a similar manner, the instruction moves from the IF stage to the RW stage in sequence.
It never moves backwards. However, it can stay in the same stage across consecutive
cycles.

5. We cannot have two entries in a cell.

6. We finally remove the instruction from the pipeline diagram after it leaves the RW stage.

Example 137
Build a pipeline diagram for the following code snippet. Assume that the first instruction
enters the pipeline in cycle 1.

[1]: add r1, r2, r3

[2]: sub r4, r2, r5

[3]: mul r5, r8, r9

Answer:

[1]: add r1, r2, r3

[2]: sub r4, r2, r5

[3]: mul r5, r8, r9

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

IF

OF

EX

MA

RW

1 2 3 4 5 6 7 8 9

Clock cycles

10.4.2 Data Hazards

Let us consider the following code snippet.

[1]: add r1, r2, r3

[2]: sub r3, r1, r4

Here, the add instruction is producing the value for register, r1, and the sub instruction is
using it as a source operand. Let us now construct a pipeline diagram for just these instructions
as shown in Figure 10.12.

© Smruti R. Sarangi 424

[1]: add r1, r2, r3

[2]: sub r3, r1, r4

1

1

1

1

1

2

2

2

2

2

IF

OF

EX

MA

RW

1 2 3 4 5 6 7 8 9

clock cycles

Figure 10.12: Pipeline diagram showing a RAW hazard

There is a problem. Instruction 1 writes the value of r1 in the fifth cycle, and instruction
2 needs to read its value in the third cycle. This is clearly not possible. We have added an
arrow between the relevant pipeline stages of both the instructions to indicate that there is
a dependency. Since the arrow is towards the left (backwards in time), we cannot execute
this code sequence in a pipeline. This is known as a data hazard. A hazard is defined as the
possibility of erroneous execution of an instruction in a pipeline. This specific case is classified as
a data hazard, where it is possible that instruction 2 might get the wrong data unless adequate
steps are taken.

Definition 67
A hazard is defined as the possibility of erroneous execution of an instruction in a pipeline.
A data hazard represents the possibility of erroneous execution because of the unavailability
of correct data.

This specific type of data hazard is known as a RAW (read after write) hazard. Here the
subtract instruction is trying to read r1, which needs to be written by the add instruction. In
this case, a read succeeds a write.

Note that this is not the only kind of data hazard. The two other types of data hazards
are WAW (write after write), and WAR (write after read) hazards. These hazards are not an
issue in our pipeline because we never change the order of instructions. A preceding instruction
is always ahead of a succeeding instruction in the pipeline. This is an example of an in-order
pipeline. In comparison, modern processors have out-of-order pipelines that execute instructions
in different orders.

425 © Smruti R. Sarangi

Definition 68
In an in-order pipeline (such as ours), a preceding instruction is always ahead of a succeeding
instruction in the pipeline. Modern processors use out-of-order pipelines that break this rule
and it is possible for later instructions to execute before earlier instructions.

Let us take a look at the following assembly code snippet.

[1]: add r1, r2, r3

[2]: sub r1, r4, r3

Here, instructions 1 and 2 are writing to register r1. In an in-order pipeline r1 will be
written in the correct order, and thus there is no WAW hazard. However, in an out-of-order
pipeline we run the risk of finishing instruction 2 before instruction 1, and thus r1 can end up
with the wrong value. This is an example of a WAW hazard. The reader should note that
modern processors ensure that r1 does not get the wrong value by using a technique known as
register renaming (see Section 10.11.4).

Let us give an example of a potential WAR hazard.

[1]: add r1, r2, r3

[2]: add r2, r5, r6

Here, instruction 2 is trying to write to r2, and instruction 1 has r2 as a source operand. If
instruction 2 executes first, then instruction 1 risks getting the wrong value of r2. In practice
this does not happen in modern processors because of schemes such as register renaming. The
reader needs to understand that a hazard is a theoretical risk of something wrong happening.
It is not a real risk because adequate steps are taken to ensure that programs are not executed
incorrectly.

In this book, we will mostly focus on RAW hazards, because WAW and WAR hazards are
relevant only for modern out-of-order processors. Let us outline the nature of the solution.
To avoid a RAW hazard it is necessary to ensure that the pipeline is aware of the fact that it
contains a pair of instructions, where one instruction writes to a register, and another instruction
that comes later in program order reads from the same register. It needs to ensure that the
consumer instruction correctly receives the value of the operand (in this case, register) from
the producer instruction. We shall look at solutions in both hardware and software.

10.4.3 Control Hazards

Let us now look at another type of hazards that arise when we have branch instructions in the
pipeline. Let us consider the following code snippet.

[1]: beq .foo

[2]: mov r1, 4

[3]: add r2, r4, r3

...

...

© Smruti R. Sarangi 426

.foo:

[100]: add r4, r1, r2

Let us show the pipeline diagram for the first three instructions in Figure 10.13.

[1]: beq .foo

[2]: mov r1, 4

[3]: add r2, r4, r3

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

IF

OF

EX

MA

RW

1 2 3 4 5 6 7 8 9

Clock cycles

Figure 10.13: Pipeline diagram

Here, the outcome of the branch is decided in cycle 3, and is communicated to the fetch unit.
The fetch unit starts fetching the correct instruction from cycle 4. Now, if the branch is taken,
then instructions 2, and 3, should not be executed. Sadly, there is no way of knowing in cycles
2 and 3, about the outcome of the branch. Hence, these instructions will be fetched, and will be
a part of the pipeline. If the branch is taken, then there is a possibility that instructions 2 and
3 might corrupt the state of the program, and consequently introduce an error. Instructions 2
and 3, are known as instructions in the wrong path. This scenario is known as a control hazard.

Definition 69
Instructions that would have been executed if a branch would have had an outcome that is
different from its real outcome, are said to be on the wrong path. For example, instructions
succeeding a branch instruction in the program, are in the wrong path, if the branch is taken.

Definition 70
A control hazard represents the possibility of erroneous execution in a pipeline because
instructions in the wrong path of a branch can possibly get executed and save their results
in memory, or in the register file.

To avoid a control hazard, it is necessary to identify instructions in the wrong path, and
ensure that their results do not get committed to the register file, and memory. There should
be a way to nullify such instructions, or avoid them altogether.

427 © Smruti R. Sarangi

10.4.4 Structural Hazards

Definition 71
A structural hazard refers to the possibility of instructions not being able to execute because
of resource constraints. For example, they can arise when multiple instructions try to access
a functional unit in the same cycle, and due to capacity limitations, the unit cannot allow all
the interested instructions to proceed. In this case, a few of the instructions in the conflict
need to stall their execution.

Structural hazards do not arise in the SimpleRisc pipeline. However, for the sake of complete-
ness, we should still study them. They arise when different instructions try to access the same
resource, and the resource cannot allow all of them to access it in the same cycle. Let us give
an example. Let us suppose that we had an add instruction that could read one operand from
memory. It could have the following form:

add r1, r2, 10[r3]

Here, we have one register source operand, r2, and a memory source operand, 10[r3]. Let
us further assume that our pipeline reads the value of the memory operand in the OF stage.
Let us now look at a potentially conflicting situation.

[1]: st r4, 20[r5]

[2]: sub r8, r9, r10

[3]: add r1, r2, 10[r3]

Note that there are no control and data hazards here. Let us nonetheless, consider a point
in the pipeline diagram when the store instruction is in the MA stage. At this point instruction
2 is in the EX stage, and instruction 3 is in the OF stage. Note that in this cycle, both
instructions 1 and 3 need to access the memory unit. However, if we assume that the memory
unit can only service one request per cycle, then clearly there is a conflicting situation. One of
the instructions needs to stall its execution. This situation is an example of a structural hazard.

We claim that in our SimpleRisc pipeline there are no structural hazards. In other words,
we never have a situation in which multiple instructions across different pipeline stages wish
to access the same unit, and that unit does not have the capacity to service all the requests.
This statement can be proved by considering that the only units that are accessed by multiple
stages are the fetch unit, and the register file. The fetch unit is accessed by an instruction in
the IF stage, and by branch instructions in the EX stage. It is designed to handle both the
requests. Likewise, the register file is accessed by instructions in the OF stage, and RW stage.
Our register file has two read ports, and one write port. It can thus handle both the requests
in the same cycle.

Let us thus focus on trying to eliminate RAW and control hazards.

© Smruti R. Sarangi 428

10.5 Solutions in Software

10.5.1 RAW Hazards

Now, let us find a way of avoiding a RAW hazard. Let us look at our example again.

[1]: add r1, r2, r3

[2]: sub r3, r1, r4

Instruction 2 requires the value of r1 in the OF stage. However, at that point of time,
instruction 1 is in the EX stage, and it would not have written back the value of r1 to the
register file. Thus, instruction 2 cannot be allowed to proceed in the pipeline. Let us propose a
naive software solution to this problem. A smart compiler can analyse the code sequence and
realise that a RAW hazard exists. It can introduce nop instructions between these instructions
to remove any RAW hazards. Let us consider the following code sequence

[1]: add r1, r2, r3

[2]: nop

[3]: nop

[4]: nop

[5]: sub r3, r1, r4

Here, when the sub instruction reaches the OF stage, the add instruction would have written
its value and left the pipeline. Thus, the sub instruction will get the correct value. Note that
adding nop instructions is a costly solution, because we are essentially wasting computational
power. In this example, we have basically wasted 3 cycles by adding nop instructions. However,
if we consider a longer sequence of code, then the compiler can possibly reorder the instructions
such that we can minimise the number of nop instructions. The basic aim of any compiler
intervention needs to be that there have to be a minimum of 3 instructions between a producer
and consumer instruction. Let us consider Example 138.

Example 138
Reorder the following code snippet, and add a sufficient number of nop instructions to make
it execute correctly on a SimpleRisc pipeline.

add r1, r2, r3

add r4, r1, 3

add r8, r5, r6

add r9, r8, r5

add r10, r11, r12

add r13, r10, 2

Answer:

429 © Smruti R. Sarangi

add r1, r2, r3

add r8, r5, r6

add r10, r11, r12

nop

add r4, r1, 3

add r9, r8, r5

add r13, r10, 2

We need to appreciate two important points here. The first is the power of the nop in-
struction, and the next is the power of the compiler. The compiler is a vital tool in ensuring
the correctness of the program, and also improving its performance. In this case, we want to
reorder code in such a way that we introduce the minimum number of nop instructions.

10.5.2 Control Hazards

Let us now try to use the same set of techniques to solve the issue of control hazards. If we take
a look at the pipeline diagram again, then we can conclude that there need to be a minimum
of two instructions between the branch instruction and the instruction at the branch target.
This is because, we get both the branch outcome, and the branch target at the end of the EX
stage. At this point of time there are two more instructions in the pipeline. These instructions
have been fetched when the branch instruction was in the OF, and EX stages respectively.
They might potentially be on the wrong path. After the branch target, and outcome have been
determined in the EX stage, we can proceed to fetch the correct instruction in the IF stage.

Now, let us consider these two instructions that were fetched, when we were not sure of the
branch outcome. If the PC of the branch is equal to p1, then their addresses are p1 + 4, and
p1 +8 respectively. They are not on the wrong path if the branch is not taken. However, if the
branch is taken, then these instructions need to be discarded from the pipeline since they are
on the wrong path. For doing this, let us look at a simple solution in software.

Let us consider a scheme where the hardware assumes that the two instructions immediately
after a branch instruction are not on the wrong path. The positions of these two instructions
are known as the delay slots. Trivially, we can ensure that the instructions in the delay slots do
not introduce errors, by inserting two nop instructions after a branch. However, we will not gain
any extra performance by doing this. We can instead find two instructions that execute before
the branch instruction, and move them to the two delay slots immediately after the branch.

Note that we cannot arbitrarily move instructions to the delay slots. We cannot violate
any data dependence constraints, and we need to also avoid RAW hazards. Secondly, we
cannot move any compare instructions into the delay slots. If appropriate instructions are not
available, then we can always fall back to the trivial solution and insert nop instructions. It is
also possible that we may find just one instruction that we can reorder, then we just need to
insert one nop instruction after the branch instruction. The method of delayed branches is a
very potent method in reducing the number of nop instructions that need to be added to avoid
control hazards.

The reader should convince herself that to support this simple software scheme, we do not
need to make any changes in hardware. The pipelined data path shown in Figure 10.9 already

© Smruti R. Sarangi 430

supports this scheme. In our simple pipelined data path, the two instructions fetched after the
branch have their PCs equal to p1 + 4, and p1 + 8 respectively (p1 is the PC of the branch
instruction). Since the compiler ensures that these instructions are always on the correct path
irrespective of the outcome of the branch, we do not commit an error by fetching them. After
the outcome of the branch has been determined, the next instruction that is fetched either has
a PC equal to p1 + 12 if the branch is not taken, or the PC is equal to the branch target if the
branch is taken. Thus, in both the cases, the correct instruction is fetched after the outcome
of the branch is determined, and we can conclude that our software solution executes programs
correctly on the pipelined version of our processor.

To summarise, the crux of our software technique is the notion of the delay slot. We need
two delay slots after a branch because we are not sure about the two subsequent instructions.
They might be on the wrong path. However, using a smart compiler we can manage to move in-
structions that get executed irrespective of the outcome of the branch to the delay slots. We can
thus avoid placing nop instructions in the delay slots, and consequently increase performance.
Such a branch instruction is known as a delayed branch instruction.

Definition 72
A branch instruction is known as a delayed branch if the processor assumes that all the
succeeding instructions that are fetched before its outcome has been determined, are on
the correct path. If the processor fetches n instructions between the time that a branch
instruction has been fetched, and its outcome has been determined, then we say that we have
n delay slots. The compiler needs to ensure that instructions on the correct path occupy the
delay slots, and no additional control or RAW hazards are introduced. The compiler can
also trivially introduce nop instructions in the delay slots.

Now, let us consider a set of examples.

Example 139
Reorder the following piece of assembly code to correctly run on a pipelined SimpleRisc
processor with delayed branches. Assume two delay slots per branch instruction.

add r1, r2, r3

add r4, r5, r6

b .foo

add r8, r9, r10

Answer:

b .foo

add r1, r2, r3

add r4, r5, r6

add r8, r9, r10

431 © Smruti R. Sarangi

10.6 Pipeline with Interlocks

Up till now, we have only looked at software solutions for eliminating RAW and control hazards.
However, compiler approaches, are not very generic. Programmers can always write assembly
code manually, and try to run it on the processor. In this case, the likelihood of an error is
high, because programmers might not have reordered their code properly to remove hazards.
Secondly, there is an issue of portability. A piece of assembly code written for one pipeline,
might not run on another pipeline that follows the same ISA. This is because it might have
a different number of delay slots, or different number of stages. One of our main aims of
introducing assembly programs gets defeated, if our assembly programs are not portable across
different machines that use the same ISA.

Hence, let us try to design solutions at the hardware level. The hardware should ensure that
irrespective of the assembly program, it is run correctly. The output should always match that
produced by a single cycle processor. To design such kind of a processor, we need to ensure
that an instruction never receives wrong data, and wrong path instructions are not executed.
This can be done by ensuring that the following conditions hold.

• Condition: Data-Lock : We cannot allow an instruction to leave the OF stage unless it
has received the correct data from the register file. This means that we need to effectively
stall the IF and OF stages and let the rest of the stages execute till the instruction in the
OF stage can safely read its operands. During this time, the instruction that passes from
the OF to the EX stage needs to be a nop instruction.

• Condition: Branch-Lock : We never execute instructions on the wrong path. We either
stall the processor till the outcome is known, or use techniques to ensure that instructions
on the wrong path are not able to commit their changes to the memory, or registers.

Definition 73
In a purely hardware implementation of a pipeline, it is sometimes necessary to stop a new
instruction from entering a pipeline stage, till a certain condition ceases to hold. The notion
of stopping a pipeline stage from accepting and processing new data, is known as a pipeline
stall, or a pipeline interlock. Its primary purpose is to ensure the correctness of program
execution.

If we ensure that both the Data-Lock and Branch-Lock conditions hold, then our pipeline
will execute instructions correctly. Note that both the conditions dictate that possibly some
stages of the pipeline needs to be stalled for some time. These stalls are also known as pipeline
interlocks. In other words, by keeping our pipeline idle for some time, we can avoid executing
instructions that might potentially lead to an erroneous execution. Let us now quickly compare
the pure software and hardware schemes in Table 10.1, and see what are the pros and cons of
implementing the entire logic of the pipeline in hardware. Note that in the software solution we
try to reorder code, and subsequently insert the minimum number of nop instructions to nullify
the effect of hazards. In comparison, in the hardware solution, we dynamically stall parts of the

© Smruti R. Sarangi 432

pipeline to avoid executing instructions in the wrong path, or with wrong values of operands.
Stalling the pipeline is tantamount to keeping some stages idle, and inserting nop instructions
in other stages as we shall see later in this section.

Attribute Software Hardware (with interlocks)
Portability Limited to a specific

processor
Programs can be run on any pro-
cessor irrespective of the nature of
the pipeline

Branches Possible to have no
performance penalty,
by using delay slots

Need to stall the pipeline for 2 cy-
cles in our design

RAW hazards Possible to eliminate
them through code
scheduling

Need to stall the pipeline

Performance Highly dependent on
the nature of the pro-
gram

The basic version of a pipeline
with interlocks is expected to be
slower than the version that relies
on software

Table 10.1: Comparison between software and hardware approaches for ensuring the correctness
of a pipeline

We observe that the efficacy of the software solution is highly dependent on the nature of
the program. It is possible to reorder the instructions in some programs to completely hide the
deleterious effects of RAW hazards and branches. However, in some programs we might not
find enough instructions that can be reordered. We would be thus compelled to insert a lot
of nop instructions, and this would reduce our performance. In comparison, a pure hardware
scheme, which obeys the Data-Lock and Branch-Lock conditions stalls the pipeline whenever
it detects an instruction that might execute erroneously. It is a generic approach, which is
slower than a pure software solution.

Now, it is possible to combine the hardware and software solutions to reorder code to make
it “pipeline friendly” as much as possible, and then run it on a pipeline with interlocks. Note
that in this approach, no guarantees of correctness are made by the compiler. It simply spaces
producer and consumer instructions as far apart as possible, and takes advantage of delayed
branches if they are supported. This reduces the number of times we need to stall the pipeline,
and ensures the best of both worlds. Before proceeding to design a pipeline with interlocks, let
us study the nature of interlocks with the help of pipeline diagrams.

10.6.1 A Conceptual Look at a Pipeline with Interlocks

Data Hazards

Let us now draw the pipeline diagram of a pipeline with interlocks. Let us consider the following
code snippet.

[1]: add r1, r2, r3

[2]: sub r4, r1, r2

433 © Smruti R. Sarangi

Here, instruction [1] writes to register r1 and instruction [2] reads from r1. Clearly, there
is a RAW dependence. To ensure the Data-Lock condition, we need to ensure that instruction
[2] leaves the OF stage only when it has read the value of r1 written by instruction [1]. This is
possible only in cycle 6 (refer to the pipeline diagram in Figure 10.14). However, instruction [2]
reaches the OF stage in cycle 3. If there would have been no hazard, then it would have ideally
proceeded to the EX stage in cycle 4. Since we have an interlock, instruction [2] needs to stay
in the OF stage in cycles 4,5 and 6 also. The question is, “what does the EX stage do when
it is not processing a valid instruction in cycles 4, 5 and 6?” Similarly, the MA stage does not
process any valid instruction in cycles 5, 6 and 7. We need to have a way to disable pipeline
stages, such that we do not perform redundant work. The standard approach is to insert nop
instructions into stages, if we want to effectively disable them.

[1]: add r1, r2, r3

[2]: sub r4, r1, r2

1

1

1

1

1

2

2

2

2

2

IF

OF

EX

MA

RW

1 2 3 4 5 6 7 8 9

Clock cyclesbubble

2 22

Figure 10.14: A pipeline diagram with bubbles

Let us refer to Figure 10.14 again. At the end of cycle 3, we know that we need to introduce
an interlock. Hence, in cycle 4, instruction [2] remains in the OF stage, and we insert a nop
instruction into the EX stage. This nop instructions moves to the MA stage in cycle 5, and RW
stage in cycle 6. This nop instruction is called a pipeline bubble. A bubble is a nop instruction
that is dynamically inserted by the interlock hardware. It moves through the pipeline stages
akin to normal instructions. Similarly, in cycles 5 and 6 also, we need to insert a pipeline
bubble. Finally, in cycle 7, instruction [2] is free to proceed to the EX, and subsequent stages.
A bubble by definition does not do anything, and thus none of the control signals are turned
on when a stage encounters a bubble. The other subtle point to note here is that we cannot
read and write to the same register in the same cycle. We need to give preference to the write
because it is an earlier instruction, and the read needs to stall for one cycle.

There are two ways to implement a bubble. The first is that we can have a separate bubble
bit in the instruction packet. Whenever, the bit is 1, the instruction will be construed to be a
bubble. The second is that we can change the opcode of the instruction to that of a nop, and
replace all of its control signals by 0s. The latter approach is more invasive, but can eliminate
redundant work in the circuit completely. In the former approach, the control signals will be on,
and units that are activated by them, will remain operational. The hardware needs to ensure

© Smruti R. Sarangi 434

that a bubble is not able to make changes to registers or memory.

Definition 74
A pipeline bubble is a nop instruction that is inserted dynamically in a pipeline register by
the interlock hardware. A bubble propagates through the pipeline in the same way as normal
instructions.

We can thus conclude that it is possible to avoid data hazards, by dynamically inserting
bubbles in the pipeline. Let us quickly take a look at the issue of slow instructions such as the
div and mod instructions. It is highly likely that in most pipelines these instructions will take
n (n > 1) cycles to execute in the EX stage. In each of the n cycles, the ALU completes a
part of the processing of the div or mod instructions. Each such cycle is known as a T State.
Typically, one stage has 1 T State; however, the EX stage for a slow instruction has many T
states. Hence, to correctly implement slow instructions, we need to stall the IF and OF stages
for (n− 1) cycles till the operations complete.

For the sake of simplicity, we shall not discuss this issue further. Instead, we shall move on
with the simplistic assumption that all our pipeline stages are balanced, and take 1 cycle to
complete their operation.

Control Hazards

Now, let us look at control hazards. Let us start out by considering the following code snippet.

[1]: beq .foo

[2]: add r1, r2, r3

[3]: sub r4, r5, r6

....

....

.foo:

[4]: add r8, r9, r10

Instead of using a delayed branch, we can insert bubbles in the pipeline if the branch is
taken. Otherwise, we do not need to do anything. Let us assume that the branch is taken. The
pipeline diagram for this case is shown in Figure 10.15.

In this case, the outcome of the branch condition of instruction [1] is decided in cycle 3.
At this point, instructions [2] and [3] are already in the pipeline (in the IF and OF stages,
respectively). Since the branch condition evaluates to taken, we need to cancel instructions
[2] and [3], otherwise they will be executed erroneously. We thus, convert them to bubbles as
shown in Figure 10.15. Instructions[2] and [3] are converted to bubbles in cycle 4. Secondly,
we fetch from the correct branch target (.foo) in cycle 4, and thus instruction [4] enters the
pipeline. Both of our bubbles proceed through all the pipeline stages, and finally leave the
pipeline in cycles 6 and 7 respectively.

We can thus ensure both the conditions (Data-Lock and Branch-Lock) by dynamically
introducing bubbles in the pipeline. Now, let us look at these approaches in some more detail.

435 © Smruti R. Sarangi

[1]: beq. foo
[2]: add r1, r2, r3
[3]: sub r4, r5, r6
....
....
.foo:
[4]: add r8, r9, r10

1

1

1

1

1

2

2

4

4

4

IF

OF

EX

MA

RW

1 2 3 4 5 6 7 8 9

Clock cyclesbubble

4

3 4

Figure 10.15: Pipeline diagram for a control hazard with bubbles

10.6.2 Ensuring the Data-Lock Condition

To ensure the Data-Lock condition we need to ensure that there is no conflict between the
instruction in the OF stage, and any instruction in the subsequent stages. A conflict is defined
as a situation that can cause a RAW hazard. In other words, a conflict exists if an instruction
in a subsequent stage writes to a register that is read by the instruction in the OF stage. There
are thus two pieces of hardware that we require to implement the Data-Lock condition. The
first is to check if a conflict exists, and the second is to ensure that the pipeline gets stalled.

Let us first look at the conflict detection hardware. The conflict detection hardware needs
to compare the contents of the instruction in the OF stage with the contents of each of the
instructions in the other three stages namely EX, MA, and RW. If there is a conflict with any
of these instructions, we can declare a conflict. Let us thus focus on the logic of detecting a
conflict. We leave the design of the exact circuit as an exercise for the reader. Let us outline
the brief pseudo-code of a conflict detection circuit. Let the instruction in the OF stage be [A],
and an instruction in a subsequent stage be [B]. The algorithm to detect a conflict is shown as
Algorithm 5.

© Smruti R. Sarangi 436

Implementing Algorithm 5 in hardware is straightforward. The reader can draw a simple
circuit and implement this algorithm. All we need is a set of logic gates and multiplexers.
Most hardware designers typically write the description of a circuit similar to Algorithm 5 in
a hardware description language such as Verilog or VHDL, and rely on smart compilers to
convert the description to an actual circuit. Hence, we shall refrain from showing detailed
implementations of circuits henceforth, and just show the pseudo code.

We need three conflict detectors (OF ↔ EX, OF ↔ MA, OF ↔ RW). If there are no
conflicts, then the instruction is free to proceed to the EX stage. However, if there is at least
one conflict, we need to stall the IF and OF stages. Once an instruction passes the OF stage,
it is guaranteed to have all of its source operands.

Stalling the Pipeline:
Let us now look at stalling the pipeline. We essentially need to ensure that till there is a conflict
no new instruction enters the IF and OF stages. This can be trivially ensured by disabling the
write functionality of the PC and the IF-OF pipeline register. They thus cannot accept new
data on a clock edge, and thus will continue to hold their previous values.

Secondly, we also need to insert bubbles in the pipeline. For example, the instruction that
passes from the OF to the EX stage needs to be an invalid instruction, or alternatively a bubble.
This can be ensured by passing a nop instruction. Hence, the circuit for ensuring the Data-Lock
condition is straightforward. We need a conflict detector that is connected to the PC, and the
IF-OF register. Till there is a conflict, these two registers are disabled, and cannot accept new
data. We force the instruction in the OF-EX register to contain a nop. The augmented circuit
diagram of the pipeline is shown in Figure 10.16.

IF
-O

F

Fetch
unit

Instruction
memory

Immediate
and branch

unit

Register
file

Control
unit

O
F-

EX

op2

op1

ALU
unit

Branch
unit

flags

EX
-M

A

Memory
unit

Data
memory

M
A

-R
W Register

write unit

Data-lock Unit
stall

bubble
stall

Figure 10.16: Data path of a pipeline with interlocks (implements the Data-Lock condition)

437 © Smruti R. Sarangi

Algorithm 5: Algorithm to detect conflicts between instructions

Data: Instructions: [A] and [B]
Result: Conflict exists (true), no conflict (false)

1 if [A].opcode ∈ (nop,b,beq,bgt,call) then
/* Does not read from any register */

2 return false

3 end
4 if [B].opcode ∈ (nop, cmp, st, b, beq, bgt, ret) then

/* Does not write to any register */

5 return false

6 end
/* Set the sources */

7 src1 ← [A].rs1
8 src2 ← [A].rs2
9 if [A].opcode = st then

10 src2 ← [A].rd
11 end
12 if [A].opcode = ret then
13 src1 ← ra
14 end

/* Set the destination */

15 dest ← [B].rd
16 if [B].opcode = call then
17 dest ← ra
18 end

/* Check if the first operand exists */

19 hasSrc1 ← true
20 if [A].opcode ∈ (not,mov) then
21 hasSrc1 ← false
22 end

/* Check the second operand to see if it is a register */

23 hasSrc2 ← true
24 if [A].opcode /∈ (st) then
25 if [A].I = 1 then
26 hasSrc2 ← false
27 end

28 end
/* Detect conflicts */

29 if (hasSrc1 = true) and (src1 = dest) then
30 return true
31 end
32 else if (hasSrc2 = true) and (src2 = dest) then
33 return true
34 end
35 return false

© Smruti R. Sarangi 438

10.6.3 Ensuring the Branch-Lock condition

Let us now assume that we have a branch instruction in the pipeline (b, beq, bgt, call, ret). If we
have delay slots, then our data path is the same as that shown in Figure 10.16. We do not need
to do any changes, because the entire complexity of execution has been offloaded to software.
However, exposing the pipeline to software has its pros and cons as discussed in Table 10.1. If
we add more stages in the pipeline, then existing executables might cease to work. To avoid
this let us design a pipeline that does not expose delay slots to software.

We have two design options here. The first is that we can assume that a branch is not
taken till the outcome is decided. We can proceed to fetch the two instructions after a branch
and process them. Once, the outcome of the branch is decided in the EX stage, we can take
an appropriate action based on the outcome. If the branch is not taken, then the instructions
fetched after the branch instruction, are on the correct path, and nothing more needs to be
done. However, if the branch is taken, then it is necessary to cancel those two instructions, and
replace them with pipeline bubbles (nop instructions).

The second option is to stall the pipeline till the outcome of the branch is decided, irrespec-
tive of the outcome. Clearly, the performance of this design is less than the first alternative
that assumes that branches are not taken. For example, if a branch is not taken 30% of the
time, then with the first design, we do useful work 30% of the time. However, with the second
option, we never do any useful work in the 2 cycles after a branch instruction is fetched. Hence,
let us go with the first design in the interest of performance. We cancel the two instructions
after the branch only if the branch is taken. We call this approach predict not taken, because
we are effectively predicting the branch to be not taken. Later on if this prediction is found to
be wrong, then can cancel the instructions in the wrong path.

Important Point 14
If the PC of a branch instruction is equal to p, then we choose to fetch the instructions
at p + 4, and p + 8 over the next two cycles. If the branch is not taken, then we resume
execution. However, if the branch is taken, then we cancel these two instructions, and
convert them to pipeline bubbles.

We do not need to make any significant changes to the data path. We need a small branch
hazard unit that takes an input from the EX stage. If the branch is taken, then in the next
cycle it converts the instructions in the IF-OF and OF-EX stages to pipeline bubbles. The
augmented data path with the branch interlock unit is shown in Figure 10.17.

10.7 Pipeline with Forwarding

10.7.1 Basic Concepts

We have now implemented a pipeline with interlocks. Interlocks ensure that a pipeline executes
correctly irrespective of the nature of dependences across instructions. For the Data-Lock

condition we proposed to add interlocks in the pipeline that do not allow an instruction to

439 © Smruti R. Sarangi

IF
-O

F

Fetch
unit

Instruction
memory

Immediate
and branch

unit

Register
file

Control
unit

O
F-

EX

op2

op1

ALU
unit

Branch
unit

flags

EX
-M

A

Memory
unit

Data
memory

M
A

-R
W Register

write unit

Data-lock unit
stall

bubble
stall

Branch-lock unit

isBranchTaken

bubble

Figure 10.17: Data path of a pipeline with interlocks (implements both the Data-Lock and
Branch-Lock conditions)

leave the operand fetch stage until the correct values are available in the register file. However,
we shall see in this section that we do not need to add interlocks always. In fact, in a lot of
instances, the correct data is already present in pipeline registers, albeit not in the register
file. We can design a method to properly pass data from the internal pipeline registers to the
appropriate functional unit. Let us consider a small example by considering this SimpleRisc
code snippet.

[1]: add r1, r2, r3

[2]: sub r4, r1, r2

Let us take a look at the pipeline diagram with just these two instructions in Figure 10.18.
Figure 10.18(a) shows the pipeline diagram with interlocks. Figure 10.18(b) shows a pipeline
diagram without interlocks and bubbles. Let us now try to argue that we do not need to insert
a bubble between the instructions.

Let us take a deeper look at Figure 10.18(b). Instruction 1 produces its result at the end
of the EX stage, or alternatively at the end of cycle 3, and writes to the register file in cycle
5. Instruction 2 needs the value of r1 in the register file at the beginning of cycle 3. This is
clearly not possible, and thus we had proposed to add pipeline interlocks to resolve this issue.
However, let us try an alternative solution instead. Let us allow the instructions to execute.
Then in cycle 3, [2] will get the wrong value. We allow it to proceed to the EX stage in cycle 4.
At this point of time, instruction [1] is in the MA stage, and its instruction packet contains the
correct value of r1. This value of r1 was computed in the previous cycle, and is present in the
aluResult field of the instruction packet. [1]’s instruction packet is in the EX-MA register in

© Smruti R. Sarangi 440

[1]: add r1, r2, r3

[2]: sub r4, r1, r2

1

1

1

1

1

2

2

2

2

2

IF

OF

EX

MA

RW

1 2 3 4 5 6 7 8 9

Clock cyclesbubble

2 2

1

1

1

1

1

2

2

2

2

1 2 3 4 5 6 7 8 9

Clock cycles

2

(a) (b)

2

Figure 10.18: (a) Pipeline diagram with interlocks and bubbles (b) Pipeline diagram without
bubbles

cycle 4. Now, if we add a connection between the aluResult field of the EX-MA register and an
input of the ALU, then we can successfully transfer the correct value of r1 to the ALU. There
will be no error in our computation, because the operands to the ALU are correct, and thus
the result of the ALU operation will also be computed correctly. Figure 10.19 shows the result
of our actions in the pipeline diagram. We add a line from the MA stage of instruction [1] to
the EX stage of instruction [2]. Since the arrow does not go backwards in time, it is possible
to forward the data (value of r1) from one stage to the other.

[1]: add r1, r2, r3

[2]: sub r4, r1, r2

1

1

1

1

1

2

2

2

2

1 2 3 4 5 6 7 8 9

Clock cycles

2

IF

OF

EX

MA

RW

Figure 10.19: Example of forwarding in a pipeline

Definition 75
Forwarding is a method to transfer values of operands between instructions in different
pipeline stages through direct connections between the stages. We do not use the register file

441 © Smruti R. Sarangi

for transferring the values of operands across instructions. Forwarding allows us to avoid
costly pipeline interlocks.

We have just looked at an extremely powerful technique for avoiding stalls in pipelines.
This technique is known as forwarding. Essentially, we allow the values of operands to flow
between instructions by directly transferring them across stages. We do not use the register
file to transfer values across instructions. The notion of forwarding has allowed us to execute
instructions [1] and [2] back to back (in consecutive cycles). We do not need to add any stall
cycles. Hence, it is not necessary to reorder code, or insert nops.

Before, we proceed to the implementation of forwarding, let us discuss forwarding concep-
tually using pipeline diagrams. To forward the value of r1 between instructions [1] and [2], we
added a connection between the MA stage and the EX stage. We showed this connection in
Figure 10.19 by drawing an arrow between the corresponding stages of instructions [1] and [2].
The direction of this arrow was vertically upwards. Since it did not go backwards in time, we
concluded that it is possible to forward the value. Otherwise, it would not have been possible.

Let us now try to answer a general question. Can we forward values between all pairs
of instructions. Note that these need not be consecutive instructions. Even if there is one
instruction between an producer and a consumer ALU instruction, we still need to forward
values. Let us now try to think of all possible forwarding paths between stages in a pipeline.

10.7.2 Forwarding Paths in a Pipeline

Let us discuss the basic tenets of forwarding that we shall broadly aim to follow.

1. We add a forwarding path between a later stage and an earlier stage.

2. We forward a value as late as possible in the pipeline. For example, if a given value is
not required in a given stage, and it is possible to get the value in a later stage from the
producer instruction, then we wait to get the forwarded value in the later stage.

Note that both of these basic tenets do not affect the correctness of programs. They simply
allow us to eliminate redundant forwarding paths. Let us now systematically look at all the
forwarding paths that we require in our pipeline.

RW→MA : Let us consider the MA stage. It needs a forwarding path from the RW stage.
Let us consider the code snippet shown in Figure 10.20 Here, instruction [2] needs the value of
r1 in the MA stage (cycle 5), and instruction [1] fetches the value of r1 from memory by the
end of cycle 4. Thus, it can forward its value to instruction [2] in cycle 5.
RW→ EX : The code snippet shown in Figure 10.21 shows a load instruction that fetches the
value of register r1 by the end of cycle 4, and a subsequent ALU instruction that requires the
value of r1 in cycle 5. It is possible to forward the value because we are not going backwards
in time.
MA→ EX : The code snippet shown in Figure 10.22 shows an ALU instruction that computes
the value of register r1 by the end of cycle 3, and a consecutive ALU instruction that requires

© Smruti R. Sarangi 442

[1]: ld r1, 4[r2]

[2]: st r1, 10[r3]

1

1

1

1

1

2

2

2

2

1 2 3 4 5 6 7 8 9

Clock cycles

2

IF

OF

EX
MA
RW

Figure 10.20: RW → MA forwarding

[1]: ld r1, 4[r2]

[2]: st r8, 10[r3]

[3]: add r2, r1, r4

1

1

1

1

1

2

2

2

2

1 2 3 4 5 6 7 8 9

Clock cycles

2

IF

OF

EX
MA
RW

3

3

3

3

3

Figure 10.21: RW → EX forwarding

the value of r1 in cycle 4. In this case also, it is possible to forward the data by adding an
interconnection (forwarding path) between the MA and EX stages.
RW→ OF : Typically the OF stage does not need forwarding paths because it does not
have any functional units. Hence, it does not need to use a value immediately. We can thus
forward the value later according to tenet 2. However, the only exception is forwarding from
the RW stage. We cannot forward the value later because the instruction will not be there in
the pipeline. Hence, it is necessary to add a forwarding path from the RW to the OF stage.
An example of a code snippet that requires RW → OF forwarding is shown in Figure 10.23.
Instruction [1] produces the value of r1 by reading its value from memory by the end of cycle 4.
It then writes the value of r1 to the register file in cycle 5. Meanwhile, instruction [4] tries to
read the value of r1 in the OF stage in cycle 5. Unfortunately, there is a conflict here. Hence,
we propose to resolve the conflict by adding a forwarding path between the RW and OF stages.
Thus, we prohibit instruction [4] from reading the register file for the value of r1. Instead,

443 © Smruti R. Sarangi

[1]: add r1, r2, r3

[2]: sub r4, r1, r2

1

1

1

1

1

2

2

2

2

1 2 3 4 5 6 7 8 9

Clock cycles

2

IF

OF

EX

MA

RW

Figure 10.22: MA → EX forwarding

instruction [4] gets the value of r1 from instruction [1] using the RW → OF forwarding path.

[1]: ld r1, 4[r2]
[2]: st r4, 10[r3]

1

1

1

1

1

2

2

2

2

1 2 3 4 5 6 7 8 9

Clock cycles

2

IF

OF

EX
MA
RW

[3]: st r5, 10[r6]

3

3

3

3

3

4

4

4

4

4

[4]: sub r7, r1, r2

Figure 10.23: RW → OF forwarding

Important Point 15
Forwarding from the RW to the OF stage is a very tricky operation. This is because the
instruction in the RW stage is writing to the register file, and the instruction in the OF
stage is also reading from the register file. If the value of the register is the same in these
two instructions, then it is typically not possible to perform both the operations (read and
write) in the same cycle. This is because reading and writing to the same SRAM cell can
lead to incorrect operation of the circuit, and it is hard to ensure correctness. Consequently,
it is a standard practice to allow the write from RW to go through, and cancel the register

© Smruti R. Sarangi 444

read operation issued by the instruction in the OF stage. Thus, this read operation does not
go to the register file. Instead, the instruction in the OF stage gets the value of the register
through the forwarding path. This strategy ensures that we do not have any remote chances
of leaving data in an inconsistent state in the register file. The instruction in the OF stage
also gets the right value of the operands.

It is not necessary to add the following forwarding paths: MA→ OF, and EX→ OF. This is
because, we can use the following forwarding paths (RW → EX), and (MA → EX) instead. In
accordance with tenet 2, we need to avoid redundant forwarding paths. Hence, we do not add
the forwarding paths to the OF stage from the MA and EX stages. We do not add forwarding
paths to the IF stage because at this stage, we have not decoded the instruction, and thus we
do not know about its operands.

10.7.3 Data Hazards with Forwarding

Question 7
Has forwarding completely eliminated data hazards?

Let us now answer this question. Let us consider ALU instructions. They produce their result
in the EX stage, and they are ready to forward in the MA stage. Any succeeding consumer
instruction will need the value of an operand produced by the preceding ALU instruction at
the earliest in its EX stage. At this point, we can effect a successful forwarding because the
value of the operand is already available in the MA stage. Any subsequent instruction can
always get the value using any of the available forwarding paths or from the register file if the
producer instructions has left the pipeline. The reader should be convinced that if the producer
instruction is an ALU instruction, then it is always possible to forward the result of the ALU
operation to a consumer instruction. To prove this fact, the reader needs to consider all possible
combinations of instructions, and find out if it is possible to forward the input operands to the
consumer instruction.

The only other instruction that produces a register value explicitly is the load instruction.
Recall that the store instruction does not write to any register. Let us look at the load instruc-
tion. The load instruction produces its value at the end of the MA stage. It is thus ready to
forward its value in the RW stage. Let us now consider a code snippet and its pipeline diagram
in Figure 10.24.

Instruction [1] is a load instruction that writes to register r1, and instruction [2] is an ALU
instruction that uses register r1 as a source operand. The load instruction is ready to forward
at the beginning of cycle 5. Sadly, the ALU instruction needs the value of r1 at the beginning
of cycle 4. We thus need to draw an arrow in the pipeline diagram that flows backwards in
time. Hence, we can conclude that in this case forwarding is not possible.

445 © Smruti R. Sarangi

[1]: ld r1, 10[r2]

1

1

1

1

1

2

2

2

2

1 2 3 4 5 6 7 8 9

Clock cycles

2

IF

OF

EX

MA

RW

[2]: sub r4, r1, r2

Figure 10.24: The load-use hazard

Definition 76
Load-Use Hazard A load-use hazard is a situation where a load instruction supplies the
loaded value to an immediately succeeding instruction that needs the value in its EX stage.
A pipeline even with forwarding needs to insert a single stall cycle after the load instruction.

This is the only case in which we need to introduce a stall cycle in our pipeline. This
situation is known as a load-use hazard, where a load instruction supplies the loaded value
to an immediately succeeding instruction that needs the value in its EX stage. The standard
method of eliminating load-use hazards is by allowing the pipeline to insert a bubble, or by
using the compiler to either reorder instructions or insert a nop instruction.

Thus, we can conclude that a pipeline with forwarding does need interlocks, albeit rarely.
The only special condition is a load-use hazard.

Note that if there is a store instruction after a load instruction that stores the loaded value,
then we do not need to insert a stall cycle. This is because the store instruction needs the value
in its MA stage. At this point of time the load instruction is in the RW stage, and it is possible
to forward the value.

10.7.4 Implementation of a Pipeline with Forwarding

Now, let us come to the most important part of our discussion. Let us design a pipeline with
forwarding. We shall first design the data path, and then briefly look at the control path.
To implement a data path that supports forwarding, we need to make minor changes to our
pipeline stages. These changes will allow the functional units to use their default input values,
as well as outputs of subsequent stages in the pipeline. The basic idea is to use a multiplexer
before every input to a functional unit. The role of this multiplexer is to select the right input.
Let us now look at each of the pipeline stages. Note that we do not need to make any changes

© Smruti R. Sarangi 446

to the IF stage because it does not send or receive any forwarded value.

OF Stage with Forwarding

IF-OF

Immediate
and branch

unit

Register
file

Control
unit

OF-EX

op2

op1

from RW

B

A

op2

M1

M2
M'

Figure 10.25: OF stage with forwarding

The OF stage with support for forwarding is shown in Figure 10.25. The multiplexers
in our baseline pipeline without forwarding are coloured with a lighter colour. Whereas, the
additional multiplexers added to enable forwarding are coloured with a darker colour. We shall
use this convention for the rest of our discussion on forwarding. Let us focus on the two new
multiplexers in the OF stage.

We only show those multiplexers that are relevant to our discussion on forwarding. We need
to choose between the first operand read from the register file, and the value forwarded from
the RW stage. We thus add a multiplexer(M1) to help us choose between these two inputs.
Likewise, we need to choose between the second operand read from the register file, and the
value forwarded from the RW stage. To implement forwarding, we add a multiplexer (M2) to
make a choice between the value fetched from the register file, and the value forwarded from the
RW stage (see Figure 10.25). Multiplexer (M ′), which is a part of our baseline design chooses
between the second register operand and the immediate computed from the contents of the
instruction. Recall that the three fields in the instruction packet that save the results of the
OF stage are as follows. A saves the value of the first register operand, op2 saves the value of
the second register operand (rd register in case of a store), and B saves the value of the second
operand of the instruction (register or immediate). Recall that we had decided to read all the
values that might possibly be required by any instruction in the interest of time. For example,
the not instruction does not require the first register operand. Nevertheless, we still read it
because we do not have enough time to take a decision about whether to read or not read the
register operands.

447 © Smruti R. Sarangi

EX Stage with Forwarding

OF-EX

ALU
unit

Branch
unit

flags

EX-MA

op2

from MA
from RW

to IF

M3

M4
M5

A

B

Figure 10.26: EX stage with forwarding

Figure 10.26 shows the modified EX stage. The three inputs that the EX stage gets from
the OF stage are A (first ALU operand), B (second ALU operand), and op2 (second register
operand). For A and B, we add two multiplexers, M3, and M4, to choose between the values
computed in the OF stage, and the values forwarded from the MA and RW stages respectively.
For the op2 field, which possibly contains the store value, we do not needMA→ EX forwarding.
This is because the store value is required in the MA stage, and thus we can use RW → MA
forwarding. This observation allows us to reduce one forwarding path. Hence, multiplexer M5
has two inputs (default and the value forwarded from the RW stage).

MA Stage with Forwarding

Figure 10.27 shows the MA stage with additional support for forwarding. The memory address
is computed in the EX stage, and saved in the aluResult field of the instruction packet. The
memory unit directly uses this value for the address. However, in the case of a store, the value
that needs to be stored (op2) can possibly be forwarded from the RW stage. We thus add
multiplexer M6, which chooses between the op2 field in the instruction packet and the value
forwarded from the RW stage. The rest of the circuit remains the same.

RW Stage with Forwarding

Finally, Figure 10.28 shows the RW stage. Since this is the last stage, it does not use any
forwarded value. However, it sends the value that it writes to the register file to the MA, EX,

© Smruti R. Sarangi 448

EX-MA

Memory
unit

Data
memory

MA-RW

from RW

to EX

to EX and OF

op2

aluResult

M6

Figure 10.27: MA stage with forwarding

MA-RW

Register
write unit

to OF, EX, and MA

Figure 10.28: RW stage with for-
warding

and OF stages, respectively.

Putting it All Together

IF-OF

Fetch
unit

Instruction
memory

Immediate
and branch

unit

Register
file

Control
unit

OF-EX

op2

op1

ALU
unit

Branch
unit

flags

EX-MA

Memory
unit

Data
memory

MA-RW

Register
write unit

op2

Figure 10.29: Pipelined data path with forwarding (abridged diagram)

Figure 10.29 puts all the pieces together and shows the pipeline with support for forwarding.
To summarise, we need to add 6 multiplexers, and make some extra interconnections between
units to pass the forwarded values. We envision a dedicated forwarding unit that computes
the control signals for the multiplexers (not shown in the diagram). Other than these small
changes, no other major change needs to be done to the data path.

We have been using an abridged diagram (similar to Figure 10.29) in our discussions on
forwarding. The reader needs to note that the actual circuit has become fairly complicated now.

449 © Smruti R. Sarangi

Along with the augmentations to the data path, we need to also add a dedicated forwarding
unit to generate the control signals for the multiplexers. A detailed picture of the pipeline is
shown in Figure 10.30.

pc

1

0

Instruction
memory

1 0

ALU
 fla

gs

Immediate and
branch target

Register
file

Branch
unit

Data
memory

Memory
unit

mar mdr

isBeq

isBgt
isUBranch

pc + 4

rs2rd

instruction

1 0

immx op2 op1

isSt

isImmediate

aluSignals

Control
unit

isLd

isSt

instructionpc

instructionpc controlbranchTarget B A

pc controlaluResult

op2

instructionop2

pc controlinstruction

isBranchTaken

data

isWb

1 0

ldResult aluResult

isBranchTaken

branchPC

Fo
rw

ar
d

in
g

 u
n
it

rs1

1 0

ra

isRet

reg

10
isRet

A

01
isLd

data

rd

isWb0010
4

isCall

ra(15)

0

1

1 0

Figure 10.30: Pipelined data path with forwarding

Let us now add the interlock logic to our pipeline. We need the interlock logic for both
the Data-Lock and Branch-Lock conditions. Note that now we have successfully handled all

© Smruti R. Sarangi 450

IF
-O

F

Fetch
unit

Instruction
memory

Immediate
and branch

unit

Register
file

Control
unit

O
F-

EX

op2

op1

Execute
unit

Branch
unit

flags

EX
-M

A

Memory
unit

Data
memory M

A
-R

W

Register
write unit

op2

Data-lock Unit
stall

Branch-lock Unit

isBranchTaken

bubble

Forwarding unit

Figure 10.31: Pipelined processor with forwarding

RAW hazards other than the load-use hazard. In the case of a load-use hazard, we need to
stall for only 1 cycle. This significantly simplifies our Data-Lock circuit. If there is a load
instruction in the EX stage, then we need to check if there is a RAW data dependence between
the load instruction, and the instruction in the OF stage. The only RAW hazard that we do
not need to consider here is a load-store dependence, where the load writes to a register that
contains the store value. We do not need need to stall because we can forward the value to
be stored from the RW to the MA stage. For all other data dependences, we need to stall
the pipeline by 1 cycle by introducing a bubble. This will take care of the load-use hazard.
The circuit for ensuring the Branch-Lock condition remains the same. Here also, we need to
inspect the instruction in the EX stage, and if it is a taken branch, we need to invalidate the
instructions in the IF and OF stages. Lastly, the reader should note that interlocks always take
precedence over forwarding.

10.7.5 Forwarding Conditions

After designing the data path for supporting forwarding, let us design the control path. The
only extra addition to the control path is the forwarding unit. This unit computes the values
of the signals to control the forwarding multiplexers. Let us now discuss the design of the
forwarding unit.

451 © Smruti R. Sarangi

The Forwarding Unit

As shown in Figure 10.31 the forwarding unit receives inputs from all the four pipeline registers.
They provide the contents of the instructions resident in the OF, EX, MA, and RW stages
respectively. Based on the contents of the instructions, the forwarding unit computes the
values of the control signals.

Salient Points

Let us now consider the four forwarding paths in our architecture – RW → OF , RW → EX,
MA→ EX, and RW →MA. We note that the distance between the producer and consumer
stages for these four paths are 3, 2, 1, and 1 respectively. Alternatively, we can say that
instruction number i, can get its inputs from instructions i − 1, i − 2, and i − 3. The reader
needs to note that there are two forwarding paths between adjacent stages (distance equal to
1).
Forwarding Paths with Distance Equal to 1
These forwarding paths are MA → EX, and RW → MA. We actually need both these
forwarding paths. The reason is as follows. The MA → EX path is required for forwarding
results between consecutive ALU instructions. The RW → MA path is required when the
value of the input is generated in the MA stage, and it is also required in the MA stage. The
only instruction that generates a value in the MA stage is the load instruction, and the only
instruction that requires register operands in the MA stage, is the store instruction. Thus, we
need to use the RW → MA forwarding path between a load instruction, and an immediately
succeeding store instruction, when there is a register dependence. The following code snippet
gives an example.

ld r1, 10[r2]

st r1, 20[r4]

Note that sometimes we might have a choice of forwarding paths (MA → EX, or RW →
MA). The following code snippet shows an example.

[1]: add r1, r2, r3

[2]: st r1, 20[r4]

Here, instruction [1] is ready to forward the value of r1 when it reaches the MA stage.
However, instruction [2] requires the value of r1 when instruction [1] reaches the RW stage.
We can thus use either forwarding path (MA → EX, or RW → MA). Let us choose to use
RW → MA forwarding in this case (also see Section 10.7.4). This optimisation allows us to
reduce a forwarding path between MA to EX for op2. This is also in accordance with tenet 2
mentioned in Section 10.7.2 that says that we should forward as late as possible.
Case of the mov Instruction
The other special case arises for the mov instruction. Since the EX stage does not produce its
output value, we can theoretically use RW → MA forwarding for it. Ideally, if the consumer
instruction in a load-use hazard, is a mov instruction, we should not have the necessity to stall
the pipeline. However, for the purpose of simplicity, let us choose to treat a mov instruction as
a regular ALU instruction, and choose to disregard any optimisations in this case.

© Smruti R. Sarangi 452

Conflicts with Multiple Instructions
Let us look at our four forwarding paths: RW → OF , RW → EX, MA → EX, and RW →
MA, again. We notice that the EX stage gets forwarded inputs from two stages – MA and RW.
It is possible that the instruction in the EX stage has a conflict (RAW register dependence)
with the instructions in both the MA and RW stages for the same input. In this case, we need
to choose the input from the MA stage because it is an earlier instruction. Let us show an
example.

[1]:add r1, r2, r3

[2]:sub r1, r4, r5

[3]:mul r8, r9, r1

In this case, when instruction [3] is in the EX stage, instruction [2] is in the MA stage, and
instruction [1] is in the RW stage. The second source operand (value of register r1) needs to be
forwarded. We need to get the value from the MA stage because instruction [2] will overwrite
the value written by instruction [1]. We can design a simple circuit to give a higher priority to
the MA stage than the RW stage while forwarding results to the EX stage. We leave this as an
exercise for the interested reader.

Algorithms for Forwarding Conditions

We show the pseudo codes for the forwarding conditions. We need to first detect if a conflict
exists for the first operand, which is typically the rs1 field of the instruction packet. In the case
of a ret instruction, the first operand is the ra (return address) register. If a conflict exists,
then we can potentially forward a value. For reasons of brevity, we do not show the code that
disregards the case of forwarding if one of the instructions is a pipeline bubble.

Algorithm 6 shows the algorithm for detecting a conflict on the first operand. We first rule
out the trivial cases in which instruction [A] does not read from any register, and [B] does
not write to any register. Then, we set the first operand. It is equal to the rs1 field in the
instruction packet. The only exception is the ret instruction whose first operand is the ra
register. Similarly, the destination operand is always register rd, with the call instruction being
the only exception. Its destination operand is the return address register, ra. Then we detect
a conflict in Line 15, and we return true if a conflict (RAW dependence) exists, otherwise
we return false. We can use the output of Algorithm 6 to set the input of the forwarding
multiplexers for the first operand.

Algorithm 7 shows the pseudo code of the algorithm for detecting conflicts for the second
operand. We first rule out the trivial cases, in which [A] does not read any register and [B] does
not write to any register. Then, we need to see if the second operand of [A] is an immediate.
In this case, forwarding is not required. The second operand is typically equal to the rs2 field
of the instruction packet. However, in the case of a store instruction, it is equal to the rd field
of the instruction packet. Similarly, we find the destination register of instruction [B], and take
care of the special case of the call instruction. We finally detect a conflict in Line 20. Note
that we do not consider the load-use hazard, or Branch-Lock conditions in the forwarding
logic, because we always assume that interlocks have higher priority over forwarding. Secondly,
whenever we do not have a forwarding path, the forwarding conditions do not apply. Finally,

453 © Smruti R. Sarangi

Algorithm 6: Conflict on the first operand (rs1/ra)

Data: Instructions: [A] and [B] (possible forwarding: [B] → [A])
Result: Conflict exists on rs1/ra (true), no conflict (false)

1 if [A].opcode ∈ (nop,b,beq,bgt,call,not,mov) then
/* Does not read from the rs1 register */

2 return false

3 end
4 if [B].opcode ∈ (nop, cmp, st, b, beq, bgt, ret) then

/* Does not write to any register */

5 return false

6 end
/* Set the sources */

7 src1 ← [A].rs1
8 if [A].opcode = ret then
9 src1 ← ra

10 end
/* Set the destination */

11 dest ← [B].rd
12 if [B].opcode = call then
13 dest ← ra
14 end

/* Detect conflicts */

15 if src1 = dest then
16 return true

17 end
18 return false

© Smruti R. Sarangi 454

Algorithm 7: Conflict on the second operand (rs2/rd)

Data: Instructions: [A] and [B] (possible forwarding: [B] → [A])
Result: Conflict exists on second operand (rs2/rd) (true), no conflict (false)

1 if [A].opcode ∈ (nop,b,beq,bgt,call) then
/* Does not read from any register */

2 return false

3 end
4 if [B].opcode ∈ (nop, cmp, st, b, beq, bgt, ret) then

/* Does not write to any register */

5 return false

6 end
/* Check the second operand to see if it is a register */

7 if [A].opcode /∈ (st) then
8 if [A].I = 1 then
9 return false

10 end

11 end
/* Set the sources */

12 src2 ← [A].rs2
13 if [A].opcode = st then
14 src2 ← [A].rd
15 end

/* Set the destination */

16 dest ← [B].rd
17 if [B].opcode = call then
18 dest ← ra
19 end

/* Detect conflicts */

20 if src2 = dest then
21 return true

22 end
23 return false

455 © Smruti R. Sarangi

in the case of multiple conflicting instructions, the forwarding unit needs to ensure that the
correct value is forwarded.

Special Case of Forwarding from the Call Instruction

Let us consider the following code snippet.

call .function

..

...

.function:

ret

Here, we call a function and immediately return. In this case, the call instruction will still be
in the pipeline, when the ret instruction enters the pipeline. Recall that the call instruction
writes to register ra and the ret instruction reads from register ra. Moreover, the call instruction
computes the value of ra, and writes it to the register file in the RW stage. We shall prove that
this does not cause any correctness issues.

A call instruction is a taken branch. This means that when it enters the EX stage, the
Branch-Lock circuitry will detect that it is a taken branch, and convert the instructions in the
IF and OF stages to bubbles. Any instruction that requires the value of the ra register will
at least be three stages behind the call instruction. This means that when the call instruction
will reach the RW stage, the next valid instruction in the pipeline will be in the OF stage. If
this is a ret instruction, or any other instruction that needs the value of the ra register, then
it can simply get its value through the RW → OF forwarding path. Hence, the special case of
forwarding from the call instruction is handled correctly.

10.8 Support for Interrupts/ Exceptions*

The process of building our pipelined processor is almost done. We just need to put the final
piece together. We have up till now focused on building a fast pipeline that has interlocks for
correctness and has forwarding for enhancing performance. We shall now discuss the interaction
of our processor with external devices such as I/O devices and with specialised programs such
as the operating system. The operating system is a master program that controls the behaviour
of other programs, the processor, and I/O devices. The standard mechanism for supporting
the operating system, and other I/O devices, is through a mechanism called an interrupt. We
shall have ample opportunities to discuss interrupts in Chapter 13. In this section, we discuss
the implementation of an interrupt from the point of view of a pipeline.

10.8.1 Interrupts

The main idea of an interrupt is as follows. Assume that we click a key on a keyboard. The
keyboard records the ASCII code of the clicked key, and then sends a message to the processor
with the code of the key that was clicked. This message is known as an interrupt. After the
processor receives an interrupt, it stops the execution of the currently executing program and
jumps to a dedicated program known as the interrupt handler. The interrupt handler reads

© Smruti R. Sarangi 456

the value sent by the I/O device (in this case, the keyboard), and sends it to the program that
handles the display device (monitor/ laptop screen). This program shows the character typed.
For example, if the user clicks the character, ’a’, then monitor ultimately shows an ’a’ on the
screen through a sequence of steps.

Definition 77
An interrupt is a signal sent by an I/O device to the processor. An interrupt is typically
used to draw the attention of the processor to new inputs, or changes in the status of an
I/O device. For example, if we click a key on a keyboard, then a new interrupt is generated
and sent to the processor. Upon receiving an interrupt, the processor stops the execution of
the currently executing program, and jumps to an interrupt handler routine. This routine
processes the interrupt, by reading the values sent by the I/O device, and performing any
other action if required.

10.8.2 Exceptions

Interrupts are not the only kind of events sent to the processor. Sometimes some actions of
the program can generate interrupts. For example, if a program accesses an illegal memory
address, then it is necessary to take corrective action. The memory system typically sends
an interrupt to the processor. The processor in turn invokes the interrupt handler routine,
which in turn calls dedicated modules in the operating system. Note that in this book, we shall
use the terms interrupt handler and exception handler interchangeably. These modules either
take some kind of corrective action, or terminate the program. Such kind of interrupts that
are generated as a result of actions of the executing program are called exceptions. Readers
familiar with languages such as Java can relate to the concept of exceptions. For example, in
Java if we access an illegal array index such as -1, an exception is generated, and the processor
jumps to a pre-specified location to take corrective action.

Definition 78
An exception is a special event that is generated when the executing program typically per-
forms an erroneous action, and it becomes necessary to take corrective action.

10.8.3 Precise Exceptions

Let us now discuss how we need to handle interrupts and exceptions. The processor needs
to clearly stop what it is currently doing, and jump to the interrupt handling routine. After
handling the interrupt, and performing the desired action, it needs to come back and start from
exactly the same point in the program, at which it had stopped. Let us now define the notion
of a precise exception. The term “precise exception” is also used in the case of interrupts. We
can think of it as a generic term for all kinds of interrupts and exceptions.

457 © Smruti R. Sarangi

Definition of Precise Exceptions

At any point of time, a program will typically have multiple instructions in the pipeline with
different PCs. When the processor encounters an interrupt, it needs to branch to the starting
location of the interrupt handler. To facilitate this process, it can have an interrupt handler
table. This table typically stores a list of interrupt types, and the starting PCs of their interrupt
handlers. The processor uses this table to branch to the appropriate interrupt handler. After
finishing the processing of the interrupt handler, it needs to come back to exactly the same
point in the original program. In other words, the original program should not be aware of the
fact that another program such as the interrupt handler executed in the middle. This entire
process needs to be orchestrated very carefully.

Let us elaborate. Assume that a program, P , is executing on the processor. Let us record
all its dynamic instructions that leave the pipeline after successfully completing their execution,
and number them I1, I2, . . . In. A dynamic instruction is the instance of an instruction created
by the processor. For example, if a loop has 5 instructions, and executes 100 times, then we
have 500 dynamic instructions. Furthermore, an instruction completes its execution when it
finishes its job and updates the state of the processor (registers or memory). A store instruction
completes in the MA stage, and instructions with a destination register complete in the RW
stage. All other instructions, are assumed to complete in the MA stage. The nop instruction is
excluded from this discussion. Let Ik be the last instruction in P that completes its execution
before the first instruction in the interrupt handler completes its execution. We wish to ensure
that at the time that Ik leaves the pipeline, all the instructions in P before Ik have completed
their execution and left the pipeline, and no instruction in P after Ik has completed or will
complete its execution before the program resumes. Let the set of completed instructions at
this point of time (when Ik leaves the pipeline) be C. Formally, we have:

Ij ∈ C ⇔ (j ≤ k) (10.1)

An interrupt or exception implemented in this manner is said to be precise.

Definition 79
An interrupt or exception is precise if the following conditions are met:

Condition 1: Let Ik be the last dynamic instruction in the original program, P , that com-
pletes its execution before the first instruction in the interrupt handler completes its
execution. Let Ik leave the pipeline at time, τ . At τ , all instructions Ij (j < k) have
also completed their execution.

Condition 2: No instruction after Ik in P completes its execution before all the instruc-
tions in the interrupt handler complete, and the program resumes execution.

Condition 3: After the interrupt handler finishes, we can seamlessly start executing all
the instructions starting from Ik (if it has not completed successfully) or Ik+1.

When the interrupt handler returns, it needs to start executing instruction, Ik+1. For some

© Smruti R. Sarangi 458

special types of interrupts/ exceptions it might be required to re-execute Ik. Secondly, the
register state (values of all the registers) needs to be restored before the original program,
P , starts executing again. We can thus ensure that a processor can seamlessly switch to an
interrupt handler and back without violating the correctness of the program.

Marking Instructions

Let us now discuss how to implement precise exceptions. Let us look at the three conditions in
Definition 79 in more detail.

When an interrupt arrives, we can at the most have 5 instructions in the pipeline. We can
designate one of these instructions as the last instruction before the interrupt handler executes
such that the three conditions outlined in Definition 79 are satisfied. Now, we cannot designate
the instruction in the RW stage as the last instruction (Ik) because the instruction in the MA
stage might be a store instruction. In the current cycle it will complete its execution, and thus
condition 2 will get violated. However, we are free to designate instructions in any of the four
other stages as the last instruction. Let us decide to mark the instruction in the MA stage as
the last instruction.

Now, let us look at exceptions. Exceptions are typically caused by the erroneous execution
of instructions. For example, in the IF stage we might fetch from an illegal address, try to
perform an illegal arithmetic operation in the EX stage, or write to a non-existent address
in the MA stage. In these situations it is necessary to take corrective action. The processor
needs to invoke a dedicated exception handler. For example, a very common type of exception
is a page fault as we shall discuss in Chapter 11. A page fault occurs when we try to read
or write a memory address in a 4 KB block of memory for the first time. In this case, the
operating system needs to read the 4 KB block from the hard disk and copy it to memory. The
faulting instruction executes again, and it succeeds the second time. In this case, we need to
re-execute the exception causing instruction Ik, and needless to say we need to implement a
precise exception. To properly take core of exceptions, the first step is to mark an instruction,
immediately after it causes an exception. For example, if we try to fetch from an uninitialised
or illegal address we mark the instruction in the IF stage.

Making a Marked Instruction Proceed to the End of the Pipeline

Now, that we have marked instructions, we need to ensure two conditions. The first is that
all the instructions before the marked instruction need to complete. The second is that all the
instructions after the marked instruction should not be allowed to write to the register file, or
the main memory. We should ideally not allow any writes to the flags register also. However,
it is difficult to implement this functionality, because we are typically aware of interrupts at the
end of the clock cycle. We shall devise an ingenious solution to handle updates to the flags
register later.

For implementing a precise exception, we need to add an exception unit to our pipeline. Its
role is to process interrupts and exceptions. Once an instruction is marked, it needs to let the
exception unit know. Secondly, we envision a small circuit that sends a code identifying the
exception/ interrupt to the exception unit. Subsequently, the exception unit needs to wait for
the marked instruction to reach the end of the pipeline such that all the instructions before it
complete their execution. Instructions fetched after the marked instruction need to be converted

459 © Smruti R. Sarangi

into bubbles. This needs to be done to ensure that instructions after a marked instruction do
not complete. Once, the marked instruction reaches the end of the pipeline, the exception unit
can load the PC with the starting address of the interrupt handler. The interrupt or exception
handler can then begin execution. This mechanism ensures that asynchronous events such as
interrupts and exceptions remain precise. Now, we have a mechanism to seamlessly transition
to executing interrupt handlers. Sadly, we still do not have a mechanism to come back to
exactly the same point in the original program, because we have not remembered the point at
which we had left.

10.8.4 Saving and Restoring Program State

Let us define the term program state as the state of all the registers and memory elements
associated with the program. In specific, the program state, comprises of the contents of the
register file, PC, flags register, and main memory.

Definition 80
The term program state is defined as the state of all the registers and memory elements
associated with the program. In specific, the program state, comprises of the contents of the
register file, PC, flags register, and main memory.

We need to find effective means of saving and restoring the state of the executing program.
Let us start by stating that we do not need a method to save and restore the state of main
memory because the assumption is that the interrupt handler uses a different region of main
memory. We shall discuss methods to enforce a separation of memory regions between programs
in Chapter 11. Nonetheless, the bottom line is that there is no unintended overlap of the
memory regions of the executing program and the interrupt handler. In the case of exceptions,
the interrupt handler might access some parts of the memory space of the program such that it
can add some data that the program requires. One such example of exceptions is a page fault.
We will have ample opportunities to discuss page faults in Chapter 11.

Hence, we need to explicitly take care of the PC, the flags register, and the set of registers.
The state of all of these entities is known as the context of a program. Hence, our problem is
to successfully save and retrieve the context of a program upon an interrupt.

Definition 81
The context of a program refers to the values of the PC, the flags register, and the values
contained in all the registers.

The oldPC Register

Let us add an NPC field for the next PC in the instruction packet. By default, it is equal to
PC + 4. However, for branch instructions that are taken, the NPC field contains the branch

© Smruti R. Sarangi 460

target. We envision a small circuit in the EX stage that adds the branch target, or PC + 4
to the NPC field of the instruction packet. Recall that the instruction packet gets passed
from one stage to the next in a pipeline. Once a marked instruction reaches the RW stage,
the exception unit looks up a small internal table indexed by the interrupt/ exception code.
For some types of interrupts such as I/O events, we need to return to the next PC (PC + 4
or the branch target). This value is stored in the NPC field of the MA-RW pipeline register.
However, for some types of exceptions such as page faults, it is necessary to re-execute the
faulting instruction once again. A page fault happens because a certain memory location is not
loaded with its data. The interrupt handler (for a page fault) needs to load the data of the
memory location by fetching values from the hard disk, and then re-execute the instruction. In
this case, we need to return to the PC of the marked instruction. In either case, the exception
unit transfers the correct return address to an internal oldPC register, and then starts fetching
instructions for the interrupt handler.

Spilling General Purpose Registers

We need a mechanism to save and restore registers akin to spilling and restoring registers as
in the case of function calls. However, there is an important difference in the case of interrupt
handlers. Interrupt handlers have their own stacks that are resident in their private memory
regions. To use the stack pointer of an interrupt handler, we need to load its value into sp. This
step will overwrite the previous value, which is the value of the stack pointer of the program.
Hence, to avoid losing the value of the stack pointer of the program, we add another register
called oldSP . The interrupt handler first transfers the contents of sp to oldSP . Subsequently,
it loads sp with the value of its stack pointer and then spills all the registers excluding sp to its
stack. At the end of this sequence of steps, it transfers the contents of oldSP to the stack.

The oldF lags Register

The only part of the program state that we have not saved up till now is the flags register.
Let us assume that the flags register is a 32-bit register. Its lower 2 bits contain the values,
flags.E and flags.GT respectively. Moreover, let us add a flags field to the instruction packet.
Instructions other than the cmp instruction write the contents of the flags register to the flags
field in the instruction packet, in the EX stage. The cmp instruction writes the updated value
of the flags register to the flags field in the EX stage and moves to the subsequent stages.
When a marked instruction reaches the RW stage, the exception unit extracts the contents of
the flags field in the instruction packet, and saves it in the oldF lags register. The oldF lags
register is a special register that is visible to the ISA, and helps store the last value of the flags
register that a valid instruction in the program had seen.

Saving and Restoring Program State

For saving the program state, the interrupt handler contains assembly routines to save the
general purpose registers (excluding sp) and the oldSP , oldF lags, and oldPC registers. We
save all of these values in the stack of the interrupt handler. Likewise, we can restore program
state in almost the reverse order. We restore the value of oldPC, the flags register, the general

461 © Smruti R. Sarangi

purpose registers, and the stack pointer. As the last step, we need to transfer the contents of
oldPC to PC such that we can resume executing the original program.

Privileged Instructions

We have added the following special registers namely oldPC, oldSP , oldF lags and flags. Note
that we had the flags register before also. However, it was not accessible as a register. Next,
we add a special category of instructions called privileged instructions that are only accessible
to specialised programs such as operating systems, and interrupt handlers. The first privileged
instruction that we introduce is movz. It transfers values between regular registers and the
special registers (oldPC, oldSP , oldF lags, and flags).

The other privileged instruction that we introduce in this section is retz. It reads the value
of oldPC, and transfers its contents to PC. In other words, we jump to the location contained
in oldPC. We do not allow instructions to directly transfer the values of special registers to and
from memory, because we have to create privileged versions of both load and store instructions.
We wish to avoid creating two additional instructions.

Definition 82
A privileged instruction is a special instruction that has access to the internals of the pro-
cessor. It is typically meant to be used only by operating system programs such as the kernel
(core of the operating system), device drivers (programs to interact with I/O devices), and
interrupt handlers.

To implement the movz instruction, we add a new instruction opcode. Recall that we
introduced only 21 instructions in the SimpleRisc instruction set. We can afford to have 11
more instructions in the ISA. movz uses the same register format based encoding as the mov
instruction. However, it sees a different view of registers. The registers visible to privileged
instructions, and their identifiers are shown in Table 10.2.

Register Encoding

r0 0000

oldPC 0001

oldSP 0010

flags 0011

oldF lags 0100

sp 1110

Table 10.2: View of registers for privileged instructions

Privileged instructions use a different register encoding. They can only see the four special
registers, r0, and sp. We need to make a small modification to the OF and RW stages to
implement the movz instruction. The first is that we need to have a circuit in the OF stage

© Smruti R. Sarangi 462

to quickly find out if the opcode of an instruction is movz. We can use a fast circuit similar
to the one that we use to find out if an instruction is a store. Then, we can choose the right
set of register inputs from either the normal register file, or from one of the privileged registers
using multiplexers. Similarly, in the RW stage, we can choose to either write the value in
the normal register file, or in one of the special registers, again, with the help of additional
multiplexers. For the sake of brevity, we do not show the circuit. We leave implementing movz
as an exercise for the reader. We can implement retz in a similar way as the ret instruction.
The only difference is that instead of getting the return value from the ra register, we get it
from the oldPC register. Note that we will also require forwarding and interlock logic that
takes special registers into account. The pseudocode of the forwarding and interlock logic needs
to be updated.

Let us summarise the discussion in terms of two new concepts that we have learnt. The
first is the notion of privileged instructions. These instructions are typically used by interrupt
handlers, and other modules of the operating systems. They have more visibility into the
internals of the processor. Since they are very powerful, it is not a good idea to give programmers
the ability to invoke them. They might corrupt system state, and introduce viruses. Hence,
most systems typically disallow the usage of privileged instructions by normal programs. Most
processors have a register that contains the current privilege level (CPL). It is typically 1 for user
programs, and 0 for operating system programs such as interrupt handlers. There is a privilege
level change, when we switch to processing an interrupt handler (1 to 0), and when we execute
the retz instruction to return to a user program (0 to 1). Whenever, we execute a privileged
instruction, the processor checks the CPL register, and if the program is not allowed to execute
the instruction, then an exception is flagged. The operating system typically terminates the
program, since it may be a virus.

Definition 83
Most processors have a register that contains the current privilege level (CPL). It is typically
1 for user programs, and 0 for operating system programs such as interrupt handlers. We
are allowed to execute privileged instructions, only when the CPL is equal to 0.

The second important concept is the notion of different register views for different instruc-
tions, or different pieces of code. This concept is known as a register window, and was pioneered
by the Sun Ultrasparc processors. The Sun processors used different register windows for dif-
ferent functions. This allowed the compiler to avoid costly register spills. Here, we use register
windows to separate the set of registers that can be accessed by user programs and the interrupt
handlers. The interrupt handlers can see all the special registers and two regular registers (r0
and sp).

Definition 84
A register window is defined as the set of registers that a particular instruction or function
can access. For example, in our case, privileged instructions can access only six registers,

463 © Smruti R. Sarangi

out of which four are special registers. In comparison regular instructions have a register
window that contains all the 16 general purpose registers, but no special register.

10.8.5 SimpleRisc Assembly Code of an Interrupt Handler

Let us now quickly conclude our discussion by showing the assembly code of an interrupt
handler. The code for saving the context is shown in Figure 10.32, and the code for restoring
the context and returning to the user program is shown in Figure 10.33. We assume that the
stack pointer for the interrupt handler starts at : 0x FF FF FF FC.

10.8.6 Processor with Support for Exceptions

Figure 10.34 shows an abridged diagram of the data path with support for exceptions. We
have added an exception unit that takes inputs from all the pipeline registers. Whenever, an
instruction detects an exception, or an interrupt is detected, the exception unit is notified. The
exception unit proceeds to mark an instruction as the last instruction. It waits till the marked
instruction leaves the pipeline, and concurrently converts all the instructions fetched after the
marked instruction to bubbles. Finally, when the marked instruction reaches the RW stage,
the exception unit stores the PC, or NPC (next PC) value in the oldPC register. It also saves
the flags field in the instruction packet to the oldF lags register. We add four registers namely
oldPC, oldSP , oldF lags, and flags. The ALU immediately updates the flags register if it
processes a cmp instruction. The RW stage can also write to the flags register. These four
registers are bundled with the regular register file. We call the new structure as the register
unit (shown in Figure 10.34). We do not show the multiplexers to choose between the inputs
from the register file, and the special registers. We assume that the multiplexers are embedded
inside the register unit.

10.9 Performance Metrics

10.9.1 The Performance Equation

Let us now discuss the performance of our pipelined processor. We need to first define the
meaning of “performance” in the context of processors. Most of the time, when we lookup the
specifications of a laptop or smart phone, we are inundated with a lot of terms such as the
clock frequency, RAM, and hard disk size. Sadly, none of these terms are directly indicative of
the performance of a processor. The reason that the performance is never explicitly mentioned
on the label of a computer, is because the term “performance” is rather vague. The term
performance of a processor is always with respect to a given program or set of programs. This
is because processors perform differently with respect to different programs.

Given a program, P , let us try to quantify the performance of a given processor. We say
that processor A performs better than processor B, if it takes less time for P to execute P on A
than on B. Thus, quantifying performance with respect to a given program is very simple. We
measure the time it takes to run the program, and then compute its reciprocal. This number

© Smruti R. Sarangi 464

Saving the context
/* save the stack pointer */

movz oldSP, sp

mov sp, 0x FF FC

/* spill all the registers other than sp*/

st r0, -4[sp]

st r1, -8[sp]

st r2, -12[sp]

st r3, -16[sp]

st r4, -20[sp]

st r5, -24[sp]

st r6, -28[sp]

st r7, -32[sp]

st r8, -36[sp]

st r9, -40[sp]

st r10, -44[sp]

st r11, -48[sp]

st r12, -52[sp]

st r13, -56[sp]

st r15, -60[sp]

/* save the stack pointer */

movz r0, oldSP

st r0, -64[sp]

/* save the flags register */

movz r0, oldFlags

st r0, -68[sp]

/* save the oldPC */

movz r0, oldPC

st r0, -72[sp]

/* update the stack pointer */

sub sp, sp, 72

/* code of the interrupt handler */

....

....

....

Figure 10.32: SimpleRisc assembly code for saving the context

465 © Smruti R. Sarangi

Restoring the context
/* update the stack pointer */

add sp, sp, 72

/* restore the oldPC register */

ld r0, -72[sp]

movz oldPC, r0

/* restore the flags register */

ld r0, -68[sp]

movz flags, r0

/* restore all the registers other than sp*/

ld r0, -4[sp]

ld r1, -8[sp]

ld r2, -12[sp]

ld r3, -16[sp]

ld r4, -20[sp]

ld r5, -24[sp]

ld r6, -28[sp]

ld r7, -32[sp]

ld r8, -36[sp]

ld r9, -40[sp]

ld r10, -44[sp]

ld r11, -48[sp]

ld r12, -52[sp]

ld r13, -56[sp]

ld r15, -60[sp]

/* restore the stack pointer */

ld sp, -64[sp]

/* return to the program */

retz

Figure 10.33: SimpleRisc assembly code for restoring the context

can be interpreted to be proportional to the performance of the processor with respect to the
program.

Let us first compute the time(τ) it takes to run program P .

© Smruti R. Sarangi 466

IF
-O

F

Fetch
unit

Instruction
memory

Immediate
and branch

unit

Register
file

Control
unit

O
F-

EX

op2

op1

ALU
unit

Branch
unit

flags

EX
-M

A

Memory
unit

Data
memory M

A
-R

W

Register
write unit

op2

Data-lock Unit
stall

Branch-lock Unit

isBranchTakenbubble

Forwarding unit

Exception unit

PC of exception handler

(p
c/

np
c)

, fl
ag

s

oldPC
oldSP
flags

oldFlags

Register unit

CPL

Figure 10.34: Pipelined data path with support for exceptions

τ = #seconds

=
#seconds

#cycles
× #cycles

#instructions
× (#instructions)

=
#seconds

#cycles︸ ︷︷ ︸
1/f

× #cycles

#instructions︸ ︷︷ ︸
CPI

×(#instructions)

=
CPI ×#insts

f

(10.2)

The number of cycles per second is the processor’s clock frequency (f). The average number
of cycles per instruction is known as the CPI, and its inverse (number of instructions per cycle)
is known as the IPC. The last term is the number of instructions (abbreviated to #insts). Note
that this is the number of dynamic instructions, or, alternatively, the number of instructions
that the processor actually executes. Note that it is NOT the number of instructions in the
program’s executable file.

467 © Smruti R. Sarangi

Definition 85

Static Instruction The binary or executable of a program contains a list of instructions.
Each such instruction is a static instruction.

Dynamic Instruction A dynamic instruction is the instance of a static instruction, which
is created by the processor when an instruction enters the pipeline.

Definition 86

CPI Cycles per instruction

IPC Instructions per cycle

We can now define the performance P as a quantity that is inversely proportional to the
time, τ . Equation 10.3 is known as the Performance Equation.

P ∝ IPC × f

#insts
(10.3)

We can thus quickly conclude that the performance of a processor with respect to a pro-
gram is proportional to the IPC, and frequency, and inversely proportional to the number of
instructions.

Let us now look at the performance of a single cycle processor. Its CPI is equal to 1 for
all instructions. The performance is thus proportional to f/#insts. This is a rather trivial
result. It says that as we increase the frequency, a single cycle processor keeps getting faster
proportionally. Likewise, if we are able to reduce the number of instructions in our program
by a factor of X, then the performance also increases by a factor of X. Let us consider the
performance of a pipelined processor. The analysis is more complicated, and the insights are
very profound.

10.9.2 Performance of an Ideal Pipelined Processor

Let us look at the three terms in the performance equation (Equation 10.3), and consider them
one by one. Let us first consider the number of instructions.

Number of Instructions

The number of instructions in a program is dependent on the intelligence of the compiler. A
really smart compiler can reduce instructions by choosing the right set of instructions from the

© Smruti R. Sarangi 468

ISA, and by using smart code transformations. For example, programmers typically have some
code, which can be categorised as dead code. This code has no effect on the final output. A
smart compiler can remove all the dead code that it can find. Another source of additional
instructions is the code to spill and restore registers. Compilers often perform function inlining
for very small functions. This optimisation dynamically removes such functions and pastes their
code in the code of the calling function. For small functions, this is a very useful optimisation
since we are getting the rid of the code to spill and restore registers. There are many more
compiler optimisations that help in reducing code size. The reader is referred to [Aho et al.,
2006, Muchnick, 1997] for a detailed discussion on compiler design. For the rest of this section,
we shall assume that the number of instructions is a constant. Let us exclusively focus on the
hardware aspect.

Computing the Total Number of Cycles

Let us assume an ideal pipeline that does not need to insert any bubbles, or stalls. It will be
able to complete one instruction every cycle, and thus will have a CPI of 1. Let us assume a
program containing n instructions, and let the pipeline have k stages. Let us compute the total
number of cycles it will take for all the n instructions to leave the pipeline.

Let the first instruction enter the pipeline in cycle 1. It leaves the pipeline in cycle k.
Henceforth, one instruction will leave the pipeline every cycle. Thus, after (n − 1) cycles, all
the instructions would have left the pipeline. The total number of cycles is therefore, n+k− 1.
The CPI is equal to:

CPI =
n+ k − 1

n
(10.4)

Note that the CPI tends to 1, as n tends to ∞.

Relationship with the Frequency

Let the maximum amount of time that an instruction takes to finish its execution on a single
cycle processor be tmax. This is also known as the total amount of algorithmic work. We are
ignoring the delays of pipeline registers while computing tmax. Now, let us divide the data path
into k pipeline stages. We need to add k − 1 pipeline registers. Let the delay of a pipeline
register be l. If we assume that all the pipeline stages are balanced (do the same amount of
work, and take the same amount of time), then the time that the slowest instruction will take
to finish its work in a stage is equal to tmax

k . The total time per stage is equal to the circuit
delay and the delay of a pipeline register.

tstage =
tmax

k
+ l (10.5)

Now, the minimum clock cycle time has to be equal to the delay of a pipeline stage. This
is because, the assumption while designing a pipeline is that each stage takes exactly one clock
cycle. We thus have the minimum clock cycle time (tclk), or the maximum frequency (f) equal
to:

tclk =
1

f
=

tmax

k
+ l (10.6)

469 © Smruti R. Sarangi

Performance of a Pipeline

Let us now compute the performance of this pipeline, and make a simplistic assumption that
performance is equal to (f / CPI) because the number of instructions is a constant(n).

P =
f

CPI

=

1
tmax

k
+l

n+k−1
n

=
n

(tmax/k + l)× (n+ k − 1)

=
n

((n− 1)tmax/k + (tmax + ln− l) + lk

(10.7)

Let us try to maximise performance by choosing the right value of k. We have:

∂ ((n− 1)tmax/k + (tmax + ln− l) + lk)

∂k
= 0

⇒− (n− 1)tmax

k2
+ l = 0

⇒k =

√
(n− 1)tmax

l

(10.8)

Equation 10.8 provides a theoretical estimate of the optimal number of pipeline stages as a
function of the latch delay (l), the total algorithmic work (tmax), and the number of instructions
(n). Let us gauge the trends predicted by this equation. The first is that as we increase the
number of instructions, we can afford more pipeline stages. This is because the startup delay of
k cycles, gets nullified when there are more instructions. Secondly, as we increase the amount
of algorithmic work (tmax), we need a deeper pipeline. More are the number of pipeline stages,
less is the amount of work we need to do per stage. We can thus have a higher frequency, and
thus have a higher instruction throughput. Lastly, the optimal number of stages is inversely
proportional to

√
l. As we increase the latch delay, we start wasting more time inserting and

removing data from latches. Hence, it is necessary to adjust the number of pipeline stages with
the latch delay. If the latches are very slow, we need to reduce the number of pipeline stages
also such that we do not waste a lot of time in adding, and removing data from pipeline latches.

Sadly, an ideal pipeline does not exist in practice. This means that they do not have a CPI
equal to (n+k−1)/n. Almost all programs have dependences between instructions, and thus it
becomes necessary to insert bubbles in the pipeline. Inserting bubbles increases the CPI from
the ideal CPI computed in Equation 10.4. Equation 10.8 provides us with interesting insights.
However, the reader needs to note that it is hypothetical. It predicts that the optimal number
of stages approaches infinity, for very large programs. This is unfortunately not the case in
practical scenarios.

© Smruti R. Sarangi 470

10.9.3 Performance of a Non-Ideal Pipeline

Mathematical Characterisation

We need to incorporate the effect of stalls in the CPI equation. Let us assume that the number
of instructions (n) is very very large. Let the ideal CPI be CPIideal. In our case, CPIideal = 1.
We have:

CPI = CPIideal + stall rate× stall penalty (10.9)

Example 140
Assume that the ideal CPI is 1. Assume that 10% of the instructions suffer a load-use
hazard, and 20% of the instructions are taken branches. Find the CPI of the program.
Answer: We need to insert 1 bubble for a load-use hazard, and 2 bubbles for a taken
branch. Thus, the average number of bubbles that we need to insert per instruction is equal
to: 0.1 * 1 + 0.2 * 2 = 0.5. Thus,

CPInew = CPIideal + 0.5 = 1 + 0.5 = 1.5

Example 141
Compare the performance of two programs, P1 and P2. Assume that the ideal CPI for
both of them is 1. For P1, 10% of the instructions have a load-use hazard, and 15% of its
instructions are taken branches. For P2, 20% of the instructions have a load-use hazard,
and 5% of its instructions are taken branches.
Answer:

CPIP1 = 1 + 0.1 ∗ 1 + 0.15 ∗ 2 = 1.4

CPIP2 = 1 + 0.2 ∗ 1 + 0.05 ∗ 2 = 1.3

The CPI of P2 is less than the CPI of P1. Hence, P2 is faster.

The final CPI is equal to the sum of the ideal CPI and number of mean stall cycles per
instruction. The mean stall cycles per instruction is equal to the product of the average stall
rate per instruction multiplied by the average number of bubbles that we need to insert per stall
(stall penalty). The stall rate term is typically a function of the nature of dependences across
instructions in a program. The stall penalty term is also typically dependent on the design of
the pipeline, and its forwarding paths. In our case, we need to stall for at most one cycle for
RAW hazards, and for 2 cycles for taken branches. However, pipelines with more stages might
have different behaviours. Let us now try to model this pipeline mathematically.

We assume that the stall rate is only dependent on the program, and the stall penalty is
proportional to the number of stages in a pipeline. This assumption is again not completely

471 © Smruti R. Sarangi

correct. However, it is good enough for developing a coarse mathematical model. The reason,
we assume that stall penalty is proportional to the number of stages is because, we assume
that we create deeper pipelines by essentially splitting the stages of our simple pipeline further.
For example, we can pipeline the functional units. Let us assume that we divide each stage,
into two sub-stages. Then, we need to stall for 2 cycles on a load-use hazard, and stall for 4
cycles for a taken branch.

Let us thus assume that CPI = (n + k − 1)/n + rck, where r and c are constants, and k
is the number of pipeline stages. r is equal to the average number of stalls per instruction
(stall rate). We assume that the stall penalty ∝ k, or alternatively, stall penalty = ck, where
c is the constant of proportionality.

We thus have:

P =
f

CPI

=

1
tmax/k+l

(n+ k − 1)/n+ rck

=
n

((n− 1)tmax/k + (rcntmax + tmax + ln− l) + lk(1 + rcn)

(10.10)

To maximise performance, we need to minimise the denominator. We get:

∂ ((n− 1)tmax/k + (rcntmax + tmax + ln− l) + lk(1 + rcn))

∂k
= 0

⇒− (n− 1)tmax

k2
+ l(1 + rcn) = 0

⇒k =

√
(n− 1)tmax

l(1 + rcn)
≈

√
tmax

lrc
(as n→∞)

(10.11)

Equation 10.11 is more realistic than Equation 10.8. It is independent of the number of
instructions. The implicit assumption is that the number of instructions tends to infinity,
because in most programs, we execute billions of instructions. Akin to Equation 10.8, the
optimal number of pipeline stages is proportional to

√
tmax, and inversely proportional to

√
l.

Additionally, k ∝ 1/
√
rc. This means that as the penalty for a stall increases, or the number

of stall events per instruction increase, we need to use less pipeline stages.

Let us now find the performance for the optimal number of pipeline stages. In Equa-
tion 10.10, we assume that n→∞. Thus (n+ k − 1)/n→ 1. Hence, we have:

© Smruti R. Sarangi 472

Pideal =
1

(tmax/k + l)× (1 + rck)

=
1

tmax/k + l + rctmax + lrck

=
1

tmax ×
√(

lrc
tmax

)
+ l + rctmax + lrc×

√(
tmax
lrc

)
=

1

rctmax + 2
√
lrctmax + l

=
1(√

rctmax +
√
l
)2

(10.12)

Implications of Equation 10.11 and Equation 10.12

Let us now study the different implications of the result regarding the optimal number of
pipeline stages.

Implication 1
The crucial implication of these results is that for programs with a lot of dependences, we should
use processors with a lesser number of pipeline stages. Inversely, for programs that have high
IPC (less dependences across instructions), we should use processors that have deeper pipelines.

Implication 2
Let us compare two versions of our pipeline. One version uses interlocks for all dependences, and
the other uses forwarding. For the pipeline with forwarding, the stall penalty is much lower.
Consequently, the value of the constant, c, is smaller in the case of the pipeline with forwarding
turned on. This means that a pipeline with forwarding ideally requires more pipeline stages
for optimal performance. As a general rule, we can conclude that as we increase the amount of
forwarding in a pipeline, we should make it deeper.

Implication 3
The optimal number of pipeline stages is directly proportional to

√
(tmax/l). If we have faster

latches, we can support deeper pipelines. Secondly, with the progress of technology, tmax/l is
not changing significantly [ITRS, 2011], because both logic gates, and latches are getting faster
(roughly equally). Hence, the optimal number of pipeline stages for a processor has remained
almost the same for at least the last 5 years.

Implication 4
As we increase l, r, c, and tmax the ideal performance goes down as per Equation 10.12. The
latch delay can be a very sensitive parameter, especially, for processors that are designed to
run workloads with few dependences. In this case, r, and c, will have relatively small values,
and Equation 10.12 will be dominated by the value of the latch delay.

473 © Smruti R. Sarangi

Example 142
Find the optimal number of pipeline stages for the following configuration. tmax/l = 20, r
= 0.2, c = 0.6.
Answer: We have:

k =

√
tmax

lrc
=

√
20/(0.2 ∗ 0.6) = 12.9 ≈ 13

Example 143
Consider two programs that have the following characteristics.

Program 1 Program 2

Instruction Type Fraction Instruction Type Fraction

loads 0.4 loads 0.3

branches 0.2 branches 0.1

ratio(taken branches) 0.5 ratio(taken branches) 0.4

The ideal CPI is 1 for both the programs. Let 50% of the load instructions suffer from
a load-use hazard. Assume that the frequency of P1 is 1, and the frequency of P2 is 1.5.
Here, the units of the frequency are not relevant. Compare the performance of P1 and P2.
Answer:

CPInew =CPIideal + 0.5× (ratio(loads))× 1

+ ratio(branches)× ratio(taken branches)× 2
(10.13)

We thus have:

CPIP1 = 1 + 0.5× 0.4 + 0.2× 0.5× 2 = 1 + 0.2 + 0.2 = 1.4

CPIP2 = 1 + 0.5× 0.3 + 0.1× 0.4× 2 = 1 + 0.15 + 0.08 = 1.23

The performance of P1 can be expressed as f/CPI = 1 / 1.4 = 0.71 (arbitrary units).
Similarly, the performance of P2 is equal to f/CPI = 1.5/1.23 = 1.22 (arbitrary units).
Hence, P2 is faster than P1. We shall often use the term, arbitrary units, a.u., when the
choice of units is irrelevant.

10.9.4 Performance of a Suite of Programs

Most of the time, we do not measure the performance of a processor with respect to one
program. We consider a set of known benchmark programs and measure the performance of
our processor with respect to all the programs to get a consolidated figure. Most processor
vendors typically summarise the performance of their processor with respect to the SPEC
(http://www.spec.org) benchmarks. SPEC stands for “Standard Performance Evaluation

http://www.spec.org

© Smruti R. Sarangi 474

Corporation”. They distribute suites of benchmarks for measuring, summarising, and reporting
the performance of processors, and software systems.

Computer architectures typically use the SPEC CPU benchmark suite to measure the per-
formance of a processor. The SPEC CPU 2006 benchmarks have two types of programs –
integer arithmetic benchmarks (SPECint), and floating point benchmarks (SPECfp). There
are 12 SPECint benchmarks that are written in C/C++. The benchmarks contain parts of
C compilers, gene sequencers, AI engines, discrete event simulators, and XML processors. On
similar lines, the SPECfp suite contains 17 programs. These programs solve different problems
in the domains of physics, chemistry, and biology.

Most processor vendors typically compute a SPEC score, which is representative of the
performance of the processor. The recommended procedure is to take the ratio of the time
taken by a benchmark on a reference processor, and the time taken by the benchmark on the
given processor. The SPEC score is equal to the geometric mean of all the ratios. In computer
architecture, when we report the mean relative performance (as in the case of SPEC scores),
we typically use the geometric mean. For just reporting the average time of execution (absolute
time), we can use the arithmetic mean.

Sometimes, instead of reporting SPEC scores, we report the average number of instructions
that we execute per second, and in the case of scientific programs, the average number of floating
point operations per second. These metrics give us an indication of the speed of a processor,
or a system of processors. We typically use the following terms:

KIPS Kilo(103) instructions per second

MIPS Million(106) instructions per second

MFLOPS Million(106) floating point operations per second

GFLOPS Giga(109) floating point operations per second

TFLOPS Tera(1012) floating point operations per second

PFLOPS Peta(1015) floating point operations per second

10.9.5 Inter-Relationship between Performance, the Compiler, Architecture,
and Technology

Let us now summarise our discussion by looking at the relationships between performance,
compiler design, processor architecture, and manufacturing technology. Let us consider the
performance equation again (see Equation 10.14) (let us assume arbitrary units for performance
and replace the proportional sign by an equality).

P =
f × IPC

#insts
(10.14)

If our final aim is to maximise performance, then we need to maximise the frequency (f), and
the IPC. Simultaneously, we need to minimise the number of dynamic instructions (#insts).
There are three knobs that are under our control namely the processor architecture, manufac-
turing technology, and the compiler. Note that we loosely use the term “architecture” here.

475 © Smruti R. Sarangi

We wish to use the term “architecture” to refer to the actual organisation and design of the
processor. However, in literature, it is common to use the term “architecture” to refer to both
the ISA, and the design of a processor. Hence, we use the same terminology here. Let us look
at each of our knobs in detail.

The Compiler

By using smart compiler technology we can reduce the number of dynamic instructions, and
also reduce the number of stalls. This will improve the IPC. Let us consider two examples:
Examples 144 and 145. Here, we remove one stall cycle by reordering the add and ld instructions.
On similar lines, compilers typically analyse hundreds of instructions, and optimally reorder
them to reduce stalls as much as possible.

Example 144
Reorder the following piece of code without violating the correctness of the program to reduce
stalls.

add r1, r2, r3

ld r4, 10[r5]

sub r1, r4, r2

Answer: We have a load-use hazard here, between the ld and sub instructions. We can
reorder the code as follows.

ld r4, 10[r5]

add r1, r2, r3

sub r1, r4, r2

Now, we do not have any load-use hazards, and the logic of the program remains the
same.

Example 145
Reorder the following piece of code without violating the correctness of the program to reduce
stalls. Assume delayed branches with 2 delay slots

add r1, r2, r3

ld r4, 10[r5]

sub r1, r4, r2

add r8, r9, r10

b .foo

Answer:

© Smruti R. Sarangi 476

add r1, r2, r3

ld r4, 10[r5]

b .foo

sub r1, r4, r2

add r8, r9, r10

We eliminate the load-use hazard, and optimally used the delay slots.

The Architecture

We have designed an advanced architecture in this chapter by using pipelining. Note that
pipelining by itself, does not increase performance. In fact because of stalls, pipelining reduces
the IPC of a program as compared to a single cycle processor. The main benefit of pipelining is
that it allows us to run the processor at a higher frequency. The minimum cycle time reduces
from tmax for a single cycle pipeline to tmax/k + l for a k-stage pipelined machine. Since we
complete the execution of a new instruction every cycle unless there are stalls, we can execute
a set of instructions much faster on a pipelined machine. The instruction execution throughput
is much higher.

Important Point 16
The main benefit of pipelining is that it allows us to run the processor at a higher frequency.
By running the processor at a higher frequency, we can ensure a higher instruction through-
put (more instructions complete their execution per second). Pipelining by itself, reduces
the IPC of a program as compared to a single cycle processor, and it also increases the time
it takes to process any single instruction.

Techniques such as delayed branches, and forwarding help increase the IPC of a pipelined
machine. We need to focus on increasing the performance of complex pipelines through a variety
of techniques. The important point to note here is that architectural techniques affect both
the frequency (via the number of pipeline stages), and the IPC (via the optimisations such as
forwarding and delayed branches).

Manufacturing Technology

Manufacturing technology affects the speed of transistors, and in turn the speed of combina-
tional logic blocks, and latches. Transistors are steadily getting smaller and faster. Conse-
quently, the total algorithmic work (tmax) and the latch delay (l), are also steadily reducing.
Hence, it is possible to run processors at higher frequencies leading to improvements in perfor-
mance (also see Equation 10.12). Manufacturing technology exclusively affects the frequency
at which we can run a processor. It does not have any effect on the IPC, or the number of
instructions.

477 © Smruti R. Sarangi

P f IPC

Architecture

Technology

Architecture

Compiler

Figure 10.35: Relationship between performance, the compiler, architecture and technology

We can thus summarise our discussion in Figure 10.35.

Note that the overall picture is not as simple as we describe in this section. We need to
consider power and complexity issues also. Typically, implementing a pipeline beyond 20 stages
is very difficult because of the increase in complexity. Secondly, most modern processors have
severe power and temperature constraints. This problem is also known as the power wall. It
is often not possible to ramp up the frequency, because we cannot afford the increase in power
consumption. As a thumb rule, power increases as the cube of frequency. Hence, increasing the
frequency by 10% increases the power consumption by more than 30%, which is prohibitively
large. Designers are thus increasingly avoiding deeply pipelined designs that run at very high
frequencies.

10.10 Power and Temperature Issues

10.10.1 Overview

Let us now briefly look at power and temperature issues. These issues have increasingly become
more important over the last decade. High performance processor chips typically dissipate 60-
120W of power during normal operation. If we have four chips in a server class computer,
then we shall roughly dissipate 400W of power. As a general rule of thumb the rest of the
components in a computer such as the main memory, hard disk, peripherals, and fans, also
dissipate a similar amount of power. The total power consumption is roughly 800W. If we add
additional overheads such as the non-ideal efficiency of the power supply, the display hardware,
the power requirement goes up to about 1KW. Now, a typical server farm that has 100 servers
will require 100 kW of power for running the computers. Additionally, it will require extra
power for the cooling units such as air conditioners. Typically, to remove 1 W of heat, we
require 0.5W of cooling power. Thus the total power dissipation of our server farm is about 150
kW. In comparison, a typical home has a rated power of 6-8 kW. This means that the power
dissipated by one server farm is equivalent the power used by 20-25 homes, which is significant.
Note that a server farm containing 100 machines is a relatively small setup, and in practice we
have much larger server farms containing thousands of machines. They require megawatts of
power, which is enough for the needs of a small town.

Let us now consider really small devices such as the processors in cell phones. Here, also
power consumption is an important issue because of the limited amount of battery life. All of

© Smruti R. Sarangi 478

us would love devices that have very long battery lifes especially feature rich smart phones. Let
us now consider even smaller devices such as small processors embedded inside the body for
medical applications. We typically use small microchips in devices such as pacemakers. In such
cases, we do not want to inconvenience the patient by forcing him or her to also carry heavy
batteries, or recharge the batteries often. To prolong battery life, it is important to dissipate
as little power as possible.

Heat sink

Heat spreader

Processor socket
Silicon die

Thermal interface material (TIM)

TIM

Heat flow

Figure 10.36: Diagram of a chip’s package

Now, let us consider temperature, which is a very closely related concept. Let us take a look
at the diagram of the typical package of a chip in Figure 10.36. We typically have a 200-400
mm2 silicon die. The die refers to a rectangular block of silicon that contains the circuit of the
chip. Since this small piece of silicon dissipates 60-100 W of power (equivalent to 6-10 CFL
light bulbs), its temperature can rise to 200◦C unless we take additional measures to cool the
silicon die. We first add a 5cm × 5cm nickel plated copper plate on the silicon die. This is
known as the spreader . The spreader helps in creating a homogeneous temperature profile on
the die by spreading the heat, and thus eliminating hot spots. We need a spreader because all
the parts of a chip do not dissipate the same amount of heat. The ALUs typically dissipate a
lot of heat. However, the memory elements, are relatively cooler. Secondly, the heat dissipation
depends on the nature of the program. For integer benchmarks, the floating point ALU is idle,
and thus it will be much cooler. To ensure that heat properly flows from the silicon die to the
spreader we typically add a thermally conducting gel known as the thermal interface material
(TIM).

Most chips have a structure known as the heat sink on top of the spreader. It is a copper
based structure that has an array of fins as shown in Figure 10.36. We add an array of fins to
increase its surface area. This ensures that most of the heat generated by the processors can
get dissipated to the surrounding air. In chips that are used in desktops, laptops, and servers,
we have a fan mounted on the heat sink, or in the chassis of the computer that blows air over
the heat sink. This ensures that hot air is dissipated away, and colder air from outside flows
over the heat sink. The assembly of the spreader, heat sink, and fan help in dissipating most
of the heat generated by the processor.

479 © Smruti R. Sarangi

In spite of advanced cooling technology, processors still heat up to 60-100◦C . While playing
highly interactive computer games, or while running heavy number crunching applications like
weather simulation, on-chip temperatures can go up to 120◦C . Such temperatures are high
enough to boil water, cook vegetables, and even warm a small room in winter. Instead of buying
heaters, we can just run a computer!!! Note that temperature has a lot of deleterious effects.
In particular, the reliability of on-chip copper wires, and transistors decreases exponentially
with increasing temperature [Srinivasan et al., 2004]. Secondly, chips tend to age over time
due to an effect known as NBTI (Negative Bias Temperature Instability). Ageing effectively
slows down transistors. Hence, it becomes necessary to reduce the frequency of processors over
time to ensure correct operation. Secondly, some power dissipation mechanisms such as leakage
power are dependent on temperature. This means that as the temperature goes up the leakage
component of the total power also goes up, and this further increases temperature.

Let us thus conclude that it is very important to reduce on chip power and temperature in
the interest of lower electricity bills, reduced cooling costs, longer battery life, higher reliability,
and slower ageing.

Let us now quickly review the main power dissipation mechanisms. We shall primarily focus
on two mechanisms namely dynamic and leakage power. Leakage power is also known as static
power.

10.10.2 Dynamic Power

Let us consider a chip’s package as a closed black box. We have electrical energy flowing in, and
heat coming out. Over a sufficiently long period of time, the amount of electrical energy flowing
in to the chip is exactly equal to the amount of energy dissipated as heat according to the law
of conservation of energy. Note that we disregard the energy spent in sending electrical signals
along I/O links. In any case, this energy is negligible as compared to the power dissipation of
the entire chip.

Any circuit consisting of transistors, and copper wires can be modelled as an equivalent
circuit with resistors, capacitors, and inductors. Capacitors and inductors do not dissipate
heat. However, resistors convert a part of the electrical energy that flows through them to
heat. This is the only mechanism through which electrical energy can get converted to thermal
energy in our equivalent circuit.

Let us now consider a small circuit that has a single resistor and a single capacitor as shown
in Figure 10.37. The resistor represents the resistance of the wires in the circuit. The capacitor
represents the equivalent capacitance of transistors in the circuit. We need to note that different
parts of a circuit such as the gates of transistors have a certain potential at a given point in time.
This means that the gate of a transistor is functioning as a capacitor, and hence storing charge.
Similarly, the drain and source of a transistor have an equivalent drain and source capacitance.
We typically do not consider equivalent inductance in a simplistic analysis, because most wires
are typically short, and they do not function as inductors.

If we analyse this simple circuit, then we can conclude that the total energy required to
charge the capacitor is CV 2. 1

2CV 2 is dissipated by the resistor while charging the capacitor,
and the remaining energy is stored in the capacitor. Now, if the capacitor gets discharged, then
the remaining 1

2CV 2 gets dissipated via the resistor.

Now, let us generalise this result. In a large circuit with billions of transistors, we essentially

© Smruti R. Sarangi 480

V

+

-

R

C

Figure 10.37: A circuit with a resistance and capacitance

have billions of subcircuits with resistive and capacitive elements. Each cycle, we can either
have a transition in a bit (0 → 1 or 1 → 0), or we might have no transitions at all. If there
is a transition in the value of a bit, then either a capacitor gets charged or gets discharged.
However, if there are no transitions, then there is no current flow, and thus there is no heat
dissipation.

Let us assume that we have n subcircuits. Let, αi be known as the activity factor. It is 1 if
there is a transition, and 0 if there is no transition in subcircuit i. Let E1 . . . En be the energy
dissipated by all the n subcircuits. We thus have:

E1 =
1

2
α1C1V

2 (10.15)

E2 =
1

2
α2C2V

2 (10.16)

. . .

En =
1

2
αnCnV

2 (10.17)

The total energy dissipated is equal to
∑n

i=1Ei. Let us now group the small subcircuits
into functional units, and assume that the capacitance values across all the subcircuits in a
functional unit are roughly similar. Thus, for a given functional unit j, we can say that:

Ej ∝ αjCjV
2 (10.18)

Here, Cj is a representative value of capacitance for the entire functional unit, and αj is the
activity factor for the entire functional unit. 0 represents no activity, and 1 represents 100%
activity. 0 ≤ αj ≤ 1. Note that we have also replaced the equality by a proportional sign
because we are interested in the nature of power dissipation rather than the exact values.

We can thus express the total energy consumption of a circuit having n′ functional units as:

E ∝
n′∑
i=1

αiCiV
2 (10.19)

This equation represents the energy consumed per cycle. Power is equal to energy divide
by time. In this case the time is equal to the clock cycle time, or the reciprocal of the chip’s
frequency (f). Thus the total power (P) is equal to:

481 © Smruti R. Sarangi

P ∝
n′∑
i=1

αiCiV
2f (10.20)

The power dissipated is thus proportional to the frequency, and the square of the supply
voltage. Note that this power dissipation represents the resistive loss due to the transitions in
the inputs and outputs. Hence, it is known as the dynamic power, Pdyn. Thus, we have:

Pdyn ∝
n′∑
i=1

αiCiV
2f (10.21)

Definition 87
Dynamic power is the cumulative power dissipated due the transitions of inputs and outputs
across all the transistors in a circuit.

10.10.3 Leakage Power

Note that dynamic power is not the only power dissipation mechanism in processors. Static or
leakage power is a major component of the power dissipation of high performance processors.
It accounts for roughly 20-40% of the total processor power budget.

The main insight is as follows. We have up till now been assuming that a transistor does
not allow any current to flow through it when it is in the off state. There is absolutely no
current flow across the terminals of a capacitor, or between the gate and the source of an
NMOS transistors. All of these assumptions are not strictly correct. No structure is a perfect
insulator in practice. There is a small amount of current flow across its terminals, even in the
off state. We can have many other sources of leakage power across other interfaces that are
ideally not supposed to pass current. Such sources of current are together referred to as leakage
current, and the associated power dissipation is known as the leakage power.

Definition 88
Leakage current is the minimal amount of current that flows across two terminals of a
circuit element that are ideally supposed to be completely electrically isolated from each
other. For example, we do not expect any current flow between the drain and the source
of an NMOS transistor in the off state. However, a small amount of current does flow,
and this is known as the sub-threshold leakage current. When leakage current flows across
a resistive element, it dissipates leakage power. Leakage power is static in nature and is
dissipated all the time irrespective of the level of activity in a circuit.

There are different mechanisms for leakage power dissipation such as sub-threshold leak-
age, and gate induced drain leakage. Researchers typically use the following equation from

© Smruti R. Sarangi 482

the BSIM3 model [Cheng and Hu, 1999] for leakage power (primarily captures sub-threshold
leakage):

Pleak = A× ν2T × e
VGS−Vth−Voff

n×νT

(
1− e

−VDS
νT

)
(10.22)

Variable Definition (SI units)

A Area dependent constant of proportionality

νT Thermal voltage (kT/q)

k Boltzmann’s constant (1.38× 10−23) (SI units)

q 1.6× 10−19

T Temperature (in Kelvins)

VGS Voltage between the gate and source

Vth Threshold voltage. It is also dependent on temperature.
∂Vth
∂T = −2.5mV/K

Voff Offset voltage

n Sub-threshold swing coefficient

VDS Voltage between the drain and source

Table 10.3: Definition of variables in Equation 10.22

Table 10.3 defines the variables used in Equation 10.22. Note that the leakage power is
dependent on temperature via the variable νT = kT/q. To show the temperature dependence,
we can simplify Equation 10.22 to obtain Equation 10.23.

Pleak ∝ T 2 × eA/T ×
(
1− eB/T

)
(10.23)

In Equation 10.23, A and B are constants, and can be derived from Equation 10.22. Around
10 years ago (as of 2002), when the transistor threshold voltages used to be higher (around 500
mV), leakage power was exponentially dependent on temperature. Hence, a small increase in
temperature would translate to a large increase in leakage power. However, nowadays, the
threshold voltages are between 100-150 mV. Consequently, the relationship between tempera-
ture and leakage has become approximately linear [Sarangi et al., 2014].

The important point to note here is that leakage power is dissipated all the time by all
the transistors in a circuit. The amount of leakage current might be very small; but when we
consider the cumulative effect of billions of transistors, the total amount of leakage power dis-
sipation is sizeable, and can even become a large fraction of the dynamic power. Consequently,
designers try to control temperature to keep leakage power under control.

Hence, the total power, Ptot, is given by:

Ptot = Pdyn + Pleak (10.24)

10.10.4 Modeling Temperature*

Modeling the temperature on a chip is a fairly complex problem, and requires a fair amount of
background in thermodynamics and heat transfer. Let us state a basic result here, and move

483 © Smruti R. Sarangi

on.

Let us divide the area of a silicon die into a grid. Let us number the grid points 1 . . .m.
Let the power vector Ptot represent the total power dissipated by each grid point. Similarly, let
the temperature of each grid point be represented by the vector T . Power and temperature are
typically related by the following linear equation for a large number of grid points.

T − Tamb = ∆T = A× Ptot (10.25)

Tamb is known as the ambient temperature, and it is the temperature of the surrounding
air. A is an m × m matrix, and is also known as the thermal resistance matrix. According
to Equation 10.25 the change in temperature (∆T), and the power consumption are linearly
related to each other.

Note that Ptot = Pdyn + Pleak, and Pleak is a function of temperature. Hence, Equa-
tions 10.24, and 10.25 form a feedback loop. We thus need to assume an initial value of
temperature, compute the leakage power, estimate the new temperature, compute the leakage
power, and keep iterating till the values converge.

10.10.5 The ED2 Metric

Now, let us try to integrate performance, and energy into one model. The performance of a
program is given by the performance equation (Equation 10.3). Let us simplistically assume
that the time a program takes, or its delay (D) is inversely proportional to the frequency.
Again, this is not strictly correct because the IPC is dependent on the frequency. We cannot
appreciate the relationship between IPC and frequency right now, because we do not have
adequate background. However, we shall touch this topic in Section 11.3, and see that there
are components to the IPC that are frequency dependent such as the latency of main memory.
In any case, let us move ahead with the approximation that D ∝ 1/f .

Let us compare two processor designs for the same program. One design dissipates E1

Joules for the execution of the entire program, and it takes D1 units of time. The second design
dissipates E2 Joules, and takes D2 units of time. How do we say, which design is better? It is
possible that the second design is slightly faster but dissipates 3 times more energy per cycle.
There has to be a common metric.

To derive a common metric, we need to either make the performance the same (D1 = D2),
and then compare the energy, or make the energy the same (E1 = E2), and compare the
performance. To ensure that D1 = D2 we need to either speed up one design or slowdown the
other one. To achieve this, we can use a standard technique called dynamic voltage-frequency
scaling (DVFS).

According to the DVFS technique, to scale up the frequency by a factor of κ1, we scale
the voltage by a factor of κ2. Typically, we assume that κ1 = κ2. For example, to double the
frequency, we double the voltage also. Note that with a higher frequency and consequent lower
clock cycle time, we need to ensure that signals can rise and fall quickly. To ensure quicker
signal transition, we increase the voltage such that it takes a lesser amount of time for a signal
to rise and fall by ∆V volts. This fact can be proved by considering the basic capacitor charging
and discharging equations. From our point of view, we need to appreciate the fact that the
voltage and frequency need to be scaled together.

© Smruti R. Sarangi 484

Definition 89
DVFS is a technique that is used to adjust the voltage and frequency of a processor at run
time. If we scale the frequency by a factor of κ1, then we need to scale the voltage by a
factor of κ2. In most cases, we assume that κ1 = κ2.

Now, let us try to equalise the execution time of designs 1 and 2, and compare the energy.
We have made the following assumptions: D ∝ 1/f , and f ∝ V . Thus, D ∝ 1/V . To make the
delays equal we need to scale the delay of design 2 by D1/D2, or alternatively we need to scale
its voltage and frequency by D2/D1. After equalising the delay, let the energy dissipation of
design 2 be E′

2. Since E ∝ αV 2, we have:

E′
2 = E2 ×

V 2
1

V 2
2

= E2 ×
f2
1

f2
2

= E2 ×
D2

2

D2
1

(10.26)

Now, let us compare E1 and E′
2.

E′
2 <=> E1

⇔E2 ×
D2

2

D2
1

<=> E1

⇔E2D
2
2 <=> E1D

2
1

(10.27)

In this case, we observe that comparing E′
2 and E1 is tantamount to comparing E2D

2
2,

and E1D
2
1. Since E ∝ V 2(∝ 1/D2), ED2 = κ. Here, κ is a constant that arises out of the

different constants of proportionality. It is thus a property that is independent of the voltage
and frequency of the system. It is related to the activity factor, and the capacitance of the
circuits, and is inherent to the design. Consequently, the ED2 metric is used as an effective
baseline metric to compare two designs.

Designers aim to reduce the ED2 metric of a design as much as possible. This ensures that
irrespective of the DVFS settings, a design with a lower value of ED2 is a much better design
than other designs that have a higher ED2 metric. Note that a lot of performance enhancing
schemes do not prove to be effective because they do not show any benefit with regards to the
ED2 metric. They do increase performance, but also disproportionately increase the energy
dissipation. Likewise a lot of power reduction schemes are impractical because they increase
the delay, and the ED2 metric increases. Consequently, whenever we need to jointly optimise
energy/power and performance we use the ED2 metric to evaluate candidate designs.

485 © Smruti R. Sarangi

10.11 Advanced Techniques*

Way Point 8

• We designed a complete single cycle processor for the SimpleRisc instruction set in
Section 9.1. This processor had a hardwired control unit.

• We designed a more flexible variant of our SimpleRisc processor using a micro-
programmed control unit. This required a bus based data path along with a new set of
microinstructions, and microassembly based code snippets for each program instruc-
tion.

• We observed that our processors could be significantly sped up by pipelining. However,
a pipelined processor suffers from hazards that can be significantly eliminated by a
combination of software techniques, pipeline interlocks, and forwarding.

In this section, we shall take a brief look at advanced techniques for implementing processors.
Note that this section is by no means self contained, and its primary purpose is to give the reader
pointers for additional study. We shall cover a few of the broad paradigms for substantially
increasing performance. These techniques are adopted by state of the art processors.

Modern processors typically execute multiple instructions in the same cycle using very deep
pipelines (12-20 stages), and employ advanced techniques to eliminate hazards in the pipeline.
Let us look at some of the common approaches.

10.11.1 Branch Prediction

Let us start with the IF stage, and see how we can make it better. If we have a taken branch
in the pipeline then the IF stage in particular needs to stall for 2 cycles in our pipeline, and
then needs to start fetching from the branch target. As we add more pipeline stages, the
branch penalty increases from 2 cycles to more than 20 cycles. This makes branch instructions
extremely expensive, and they are known to severely limit performance. Hence, it is necessary
to avoid pipeline stalls even for taken branches.

What if, it is possible to predict the direction of branches, and also predict the branch
target? In this case, the fetch unit can immediately start fetching from the predicted branch
target. If the prediction is found to be wrong at a later point of time, then all the instructions
after the mispredicted branch instruction need to be cancelled, and discarded from the pipeline.
Such instructions are also known as speculative instructions.

Definition 90
Modern processors typically execute large sets of instructions on the basis of predictions. For

© Smruti R. Sarangi 486

example, they predict the direction of branches, and accordingly fetch instructions starting
from the predicted branch target. The prediction is verified later when the branch instruction
is executed. If the prediction is found to be wrong, then all the instructions that were incor-
rectly fetched or executed are discarded from the pipeline. These instructions are known as
speculative instructions. Conversely, instructions that were fetched and executed correctly,
or whose predictions have been verified are called non-speculative instructions.

Note that it is extremely essential to prohibit speculative instructions from making changes
to the register file or writing to the memory system. Thus, we need to wait for instructions to
become non-speculative before we allow them to make permanent changes. Second, we also do
not allow them to leave the pipeline before they become non-speculative. However, if there is
a need to discard speculative instructions, then modern pipelines adopt a simpler mechanism.
Instead of selectively converting speculative instructions into pipeline bubbles as we have done
in our simple pipeline, modern processors typically remove all the instructions that were fetched
after the mispredicted branch instruction. This is a simple mechanism that works very well in
practice. It is known as a pipeline flush.

Definition 91
Modern processors typically adopt a simple approach of discarding all speculative instruc-
tions from a pipeline. They completely finish the execution of all instructions till the mis-
predicted instruction, and then clean up the entire pipeline, effectively removing all the
instructions that were fetched after the mispredicted instruction. This mechanism is known
as a pipeline flush.

Main Challenges

Let us now outline the main challenges in branch prediction.

1. We need to first find out in the fetch stage if an instruction is a branch, and if it is a
branch, we need to find the address of the branch target.

2. Next, we need to predict the expected direction of the branch.

3. It is necessary to monitor the result of a predicted instruction. If there is a misprediction,
then we need to perform a pipeline flush at a later point of time such that we can effectively
remove all the speculative instructions.

Detecting a misprediction in the case of a branch is fairly straightforward. We add the
prediction to the instruction packet, and verify the prediction with the actual outcome. If they
are different, then we schedule a pipeline flush. The main challenge is to predict the target of
a branch instruction, and its outcome.

487 © Smruti R. Sarangi

Branch Target Buffer

Modern processors use a simple hardware structure called a branch target buffer (BTB). It is
a simple memory array that saves the program counter of the last N branch instructions, and
their targets (N typically varies from 128 to 8192). There is a high likelihood of finding a
match, because programs typically exhibit some degree of locality. This means that they tend
to execute the same piece of code repeatedly over a period of time such as loops. Hence, entries
in the BTB tend to get repeatedly reused in a small window of time. If there is a match, then
we can also automatically infer that the instruction is a branch.

2-bit Saturating Counter based Branch Predictor

It is much more difficult to effectively predict the direction of a branch. However, we can exploit
a pattern here. Most branches in a program typically are found in loops, or in if statements
where both the directions are not equally likely. In fact, one direction is far more likely that
the other. For example, branches in loops are most of the time taken. Sometimes, we have if
statements that are only evaluated if a certain exceptional condition is true. Most of the time,
the branches associated with these if statements are not taken. Similarly, for most programs,
designers have observed that almost all the branch instructions follow certain patterns. They
either have a strong bias towards one direction, or can be predicted on the basis of past history,
or can be predicted on the basis of the behaviour of other branches. There is of course no
theoretical proof of this statement. This is just an observation made by processor designers,
and they consequently design predictors to take advantage of such patterns in programs.

We shall discuss a simple 2-bit branch predictor in this book. Let us assume that we have
a branch prediction table that assigns a 2-bit value to each branch in the table, as shown in
Figure 10.38. If this value is 00, or 01, then we predict that the branch is not taken. If it is
equal to 10, or 11, then we predict that the branch is taken. Moreover, every time the branch
is taken, we increment the associated counter by 1, and every time, the branch is not taken we
decrement the counter by 1. To avoid overflows, we do not increment 11 by 1 to produce 00,
and we do not decrement 00 to produce 11. We follow the rules of saturating arithmetic that
state that (in binary): (11 + 1 = 11), and (00 - 1 = 00). This 2-bit value is known as a 2-bit
saturating counter. The state diagram for the 2-bit counter is shown in Figure 10.39.

There are two basic operations for predicting a branch – prediction, and training. To predict
a branch, we look up the value of its program counter in the branch prediction table. In specific,
we use the last n bits of the address of the pc to access a 2n entry branch predictor table. We
read the value of the 2-bit saturating counter, and predict the branch on the basis of its value.
When, we have the real outcome of the branch available, we train our predictor by incrementing
or decrementing the value of our counter using saturating arithmetic (as per Table 10.39).

Let us now see why this predictor works. Let us consider a simple piece of C code, and its
equivalent SimpleRisc code.

© Smruti R. Sarangi 488

n bits from
the branch

address

Table of 2-bit
saturating counters

prediction

Figure 10.38: A branch prediction table

10
Taken

11
Taken

01
Not taken

00
Not taken

taken

not taken

taken

not taken

n
o
t

ta
k
e
n

ta
k
e
n

Figure 10.39: 2-bit saturating counter

C
void main(){

foo();

...

foo();

}

int foo() {

int i, sum = 0

for(i=0; i < 10; i++) {

sum = sum + i;

}

return sum;

}

SimpleRisc
1 .main:

2 call .foo

3 ...

4 call .foo

5

6 .foo:

7 mov r0, 0 /* sum = 0 */

8 mov r1, 0 /* i = 0 */

9 .loop:

10 add r0, r0, r1 /* sum = sum + i */

11 add r1, r1, 1 /* i = i + 1 */

12 cmp r1, 10 /* compare i with 10 */

489 © Smruti R. Sarangi

13 bgt .loop /* if(r1 > 10) jump to .loop */

14 ret

Let us take a look at the branch in the loop statement (Line 13). For all the iterations
other than the last one, the branch is taken. If we start our predictor in the state 10, then
the first time, the branch is predicted correctly (taken). The counter gets incremented and
becomes equal to 11. For each of the subsequent iterations, the branch is predicted correctly
(taken). However, in the last iteration, it needs to be predicted as not taken. Here, there is a
misprediction. The 2-bit counter thus gets decremented, and gets set to 10. Let us now consider
the case when we invoke the function foo again. The value of the 2-bit counter is 10, and the
branch (Line 13) is correctly predicted as taken.

We thus observe that our 2-bit counter scheme, adds a little bit of hysteresis (or past
history) to the prediction scheme. If a branch has historically been taking one direction, then
one anomaly, does not change the prediction. This pattern is very useful for loops, as we have
seen in this simple example. The direction of the branch instruction in the last iteration of
a loop is always different. However, the next time we enter a loop, the branch is predicted
correctly, as we have seen in this example. Note that this is only one pattern. There are many
more types of patterns that modern branch predictors exploit.

10.11.2 Multiple Issue In-Order Pipeline

In our simple pipeline, we executed only one instruction per cycle. However, this is not a strict
necessity. We can design a processor such as the original Intel Pentium that had two parallel
pipelines. This processor could execute two instructions simultaneously in one cycle. These
pipeline have extra functional units such that instructions in both the pipelines can be executed
without any significant structural hazards. This strategy increases the IPC. However, it also
makes the processor more complex. Such a processor is said to contain a multiple issue in-order
pipeline, because we can issue multiple instructions to the execution units in the same cycle.
A processor, which can execute multiple instructions per cycle is also known as a superscalar
processor.

Secondly, this processor is known as an in-order processor, because it executes instructions in
program order. The program order is the order of execution of dynamic instances of instructions
as they appear in the program. For example, a single cycle processor, or our pipelined processor,
executes instructions in program order.

Definition 92
A processor that can execute multiple instructions per cycle is known as a superscalar
processor.

Definition 93
An in-order processor executes instructions in program order. The program order is defined

© Smruti R. Sarangi 490

as the order of dynamic instances of instructions that is the same as that is perceived if we
execute each instruction of the program sequentially.

Now, we need to look for dependences and potential hazards across both the pipelines.
Secondly, the forwarding logic is also far more complex, because results can be forwarded from
either pipeline. The original Pentium processor released by Intel had two pipelines namely the
U pipe and the V pipe. The U pipe could execute any instruction, whereas the V pipe was
limited to only simple instructions. Instructions were fetched as 2-instruction bundles. The
earlier instruction in the bundle was sent to the U pipe, and the later instruction was sent to
the V pipe. This strategy allowed the parallel execution of those instructions.

Let us try to conceptually design a simple processor on the lines of the original Pentium
processor with two pipelines – U and V . We envisage a combined instruction and operand fetch
unit that forms 2-instruction bundles, and dispatches them to both the pipelines for execution
simultaneously. However, if the instructions do not satisfy some constraints, then this unit
forms a 1-instruction bundle, and sends it to the U pipeline. Whenever, we form such bundles,
we can broadly adhere to some generic rules. We should avoid having two instructions that
have a RAW dependence. In this case, the pipeline will stall.

Secondly, we need to be particularly careful about memory instructions because dependences
across them cannot be discovered till the end of the EX stage. Let us assume that the first
instruction in a bundle is a store instruction, and the second instruction is a load instruction,
and they happen to access the same memory address. We need to detect this case, at the end
of the EX stage, and forward the value from the store to the load. For the reverse case, when
the first instruction is a load instruction, and the second is a store to the same address, we need
to stall the store instruction till the load completes. If both the instructions in a bundle store
to the same address, then the earlier instruction is redundant, and can be converted into a nop.
We thus need to design a processor that adheres to these rules, and has a complex interlock
and forwarding logic.

Let us show a simple example.

Example 146
Draw a pipeline diagram for the following SimpleRisc assembly code assuming a 2 issue
in-order pipeline.

[1]: add r1, r2, r3

[2]: add r4, r5, r6

[3]: add r9, r8, r8

[4]: add r10, r9, r8

[5]: add r3, r1, r2

[6]: ld r6, 10[r1]

[7]: st r6, 10[r1]

491 © Smruti R. Sarangi

Answer: Here, the pipeline diagram contains two entries for each stage, because two
instructions can be in a stage at the same time. We start out by observing that we can
execute instructions [1] and [2] in parallel. However, we cannot execute instructions [3]
and [4] in parallel. This is because instruction [3] writes to r9, and instruction [4] has r9
as a source operand. We cannot execute both the instructions in the same cycle, because
the value of r9 is produced in the EX stage, and is also required in the EX stage. We thus
insert a bubble. We proceed to execute [4], and [5] in parallel. We can use forwarding to
get the value of r9 in the case of instruction [4]. Lastly, we observe that we cannot execute
instructions [6] and [7] in parallel. They access the same memory address. The load needs
to complete before the store starts. We thus insert another bubble.

1IF

OF

EX

MA

RW

1 2 3 4 5 6 7 8 9

Clock cyclesbubble

[1]: add r1, r2, r3
[2]: add r4, r5, r6
[3]: add r9, r8, r8
[4]: add r10, r9, r8
[5]: add r3, r1, r2
[6]: ld r6, 10[r1]
[7]: st r6, 10[r1]

OF

IF

EX

MA

RW

2

1

2

1

2

1

2

1

2

3

3

3

3

3

4

5

4

5

4

5

4

5

4

5

6 7

6 7

6 7

6 7

6 7

10.11.3 EPIC and VLIW Processors

Now, instead of preparing bundles in hardware, we can prepare them in software. The com-
piler has far more visibility into the code, and can perform extensive analyses to create multi-
instruction bundles. The Itanium® processor designed by Intel and HP was a very iconic
processor, which was based on similar principles.

Let us first start out by defining the terms – EPIC and VLIW.

Definition 94
VLIW → Very Long Instruction Word: Compilers create bundles of instructions that

do not have dependences between them. The hardware executes the instructions in each
bundle in parallel. The complete onus of correctness is on the compiler. EPIC → Explicitly
Parallel Instruction Computing: This paradigm extends VLIW computing. However, in
this case the hardware ensures that the execution is correct regardless of the code generated

© Smruti R. Sarangi 492

by the compiler.

EPIC/VLIW processors require very smart compilers to analyse programs and create bun-
dles of instructions. For example, if a processor has 4 pipelines, then each bundle contains 4
instructions. The compilers create bundles such that there are no dependences across instruc-
tions in a bundle. The broader aim of designing EPIC/VLIW processors is to move all the
complexity to software. Compilers arrange the bundles in a way such that we can minimise the
amount of interlock, forwarding, and instruction handling logic required in the processor.

However, in hindsight, such processors failed to deliver on their promise because the hard-
ware could not be made as simple as the designers had originally planned for. A high per-
formance processor still needed a fair amount of complexity in hardware, and required some
sophisticated architectural features. These features increased the complexity and power con-
sumption of hardware.

10.11.4 Out-of-Order Pipelines

We have up till now been considering primarily in-order pipelines. These pipelines execute
instructions in the order that they appear in the program. This is not strictly necessary. Let
us consider the following code snippet.

[1]: add r1, r2, r3

[2]: add r4, r1, r1

[3]: add r5, r4, r2

[4]: mul r6, r5, r2

[5]: div r8, r9, r10

[6]: sub r11, r12, r13

Here, we are constrained to execute instructions 1 to 4 in sequence because of data de-
pendences. However, we can execute instructions, 5 and 6 in parallel, because they are not
dependent on instructions 1-4. We will not be sacrificing on correctness if we execute instruc-
tions 5 and 6 out-of-order. For example, if we can issue two instructions in one cycle, then
we can issue (1,5) together, then (2,6), and finally, instructions 3, and 4. In this case, we can
execute the sequence of 6 instructions in 4 cycles by executing 2 instructions for the first two
cycles. Recall that such a processor that can potentially execute multiple instructions per cycle
is known as a superscalar processor (see Definition 92).

Definition 95
A processor that can execute instructions in an order that is not consistent with their pro-
gram order is known as an out-of-order(OOO) processor.

493 © Smruti R. Sarangi

An out-of-order(OOO) processor fetches instructions in-order. After the fetch stage, it
proceeds to decode the instructions. Most real world instructions require more than one cycle
for decoding. These instructions are simultaneously added to a queue called the reorder buffer
(ROB) in program order. After decoding the instruction, we need to perform a step called
register renaming. The broad idea is as follows. Since we are executing instructions out of
order, we can have WAR and WAW hazards. Let us consider the following code snippet.

[1]: add r1, r2, r3

[2]: sub r4, r1, r2

[3]: add r1, r5, r6

[4]: add r9, r1, r7

If we execute instructions [3] and [4] before instruction [1], then we have a potential WAW
hazard. This is because instruction [1] might overwrite the value of r1 written by instruction
[3]. This will lead to an incorrect execution. Thus, we try to rename the registers such that
these hazards can be removed. Most modern processors define a set of architectural registers,
which are the same as the registers exposed to software (assembly programs). Additionally, they
have a set of physical registers that are only visible internally. The renaming stage converts
architectural register names to physical register names. This is done to remove WAR and WAW
hazards. The only hazards that remain at this stage are RAW hazards, which indicate a genuine
data dependency. The code snippet will thus look as follows after renaming. Let us assume
that the physical registers range from p1 . . . p128.

[1]: add p1, p2, p3 /* p1 contains r1 */

[2]: sub p4, p1, p2

[3]: add p100, p5, p6 /* r1 is now begin saved in p100 */

[4]: add p9, p100, p7

We have removed the WAW hazard by mapping r1 in instruction 3, to p100. The only
dependences that exist are RAW dependences between instructions [1] → [2], and [3] → [4].
The instructions after renaming enter an instruction window. Note that up till now instructions
have been proceeding in-order.

The instruction window or instruction queue typically contains 64-128 entries (refer to
Figure 10.40). For each instruction, it monitors its source operands. Whenever all the source
operands of an instruction are ready, the instruction is ready to be issued to its corresponding
functional unit. It is not necessary for instructions to access the physical register file all the
time. They can also get values from forwarding paths. After the instructions finish their
execution, they broadcast the value of their result to the waiting instructions in the instruction
window. Instructions waiting for the result, mark their corresponding source operand as ready.
This process is known as instruction wakeup. Now, it is possible that multiple instructions are
ready in the same cycle. To avoid structural hazards, an instruction select unit chooses a set
of instructions for execution.

We need another structure for load and store instructions known as the load-store queue. It
saves the list of loads and stores in program order. It allows loads to get their values through
an internal forwarding mechanism if there is an earlier store to the same address.

© Smruti R. Sarangi 494

Fetch Decode Register
rename

Functional unitsInstruction
window

S
e
le

ct

Register file

W
ak

eu
p

Reorder buffer

Memory
system

Load store queue

Memory
system

Figure 10.40: An out-of-order pipeline

After an instruction finishes its execution, we mark its entry in the reorder buffer. Instruc-
tions leave the reorder buffer in program order. If an instruction does not finish quickly for
some reason, then all the instructions after it in the reorder buffer need to stall. Recall that
instruction entries in the reorder buffer are ordered in program order. Instructions need to leave
the reorder buffer in program order such that we can ensure precise exceptions.

To summarise, the main advantage of an out-of-order processor(OOO) is that it can execute
instructions that do not have any RAW dependences between them, in parallel. Most programs
typically have such sets of instructions at most points of time. This property is known as
instruction level parallelism (abbreviated as ILP). Modern OOO processors are designed to
exploit as much of ILP as possible.

Definition 96
Typically, most programs have multiple instructions in a pipeline that can be executed in
parallel. This is because they do not have any RAW dependences between them. Modern
superscalar processors exploit this fact to increase their IPC by executing multiple instruc-
tions in the same cycle. This property of a program is known as instruction level parallelism
(abbreviated as ILP).

495 © Smruti R. Sarangi

10.12 Summary and Further Reading

10.12.1 Summary

Summary 10

1. We observe that large parts of our basic SimpleRisc processor are idle while processing
an instruction. For example, the IF stage is idle, when the instruction is in the MA
stage.

2. We thus propose the notion of “pipelining”. Here, we execute 5 instructions simul-
taneously (1 in each stage). At the negative edge of the clock, all the instructions
proceed to the next stages simultaneously, the instruction in the RW stage completes
its execution, and a new instruction enters the IF stage.

3. To design a pipeline we split the data path into five parts (1 stage per part), and add
pipeline registers between subsequent stages. A pipeline register stores the instruc-
tion packet (instruction contents, control signals, source operands and intermediate
results).

4. Each pipeline stage reads operands for its functional units from its corresponding
pipeline register at the beginning of a clock cycle. It processes them, and writes the
results to the pipeline register between the given stage and its adjacent stage, before
the end of the clock cycle.

5. We can have RAW hazards, and control hazards in our pipeline because we cannot
ascertain data dependences and branch outcomes before fetching subsequent instruc-
tions.

6. We can avoid RAW, and control hazards using pure software solutions. We can intro-
duce nop instructions between producer and consumer instructions, and after branch
instructions. Alternatively, we can reorder instructions to minimise the addition of
nop instructions, and use delayed branching.

7. In the absence of software solutions, we can use pipeline interlocks to avoid hazards
by stalling and cancelling instructions.

8. An efficient method of minimising stall cycles is forwarding.

(a) If a later stage contains the value of an operand, then we can forward the value
from the producer stage to the consumer stage. We can thus bypass the register
file.

(b) This allows us to avoid hazards because a consumer instruction can quickly get
its operands from other pipeline stages.

© Smruti R. Sarangi 496

(c) To detect dependences, and implement forwarding we propose a dedicated for-
warding unit. Furthermore, it is necessary to augment, every functional unit
with multiplexers to choose between the default inputs, and forwarded inputs.
Forwarding eliminates all the data hazards, other than the load-use hazard.

9. Modern processors have interrupts and exceptions that require us to save the state
of a program, and branch to an interrupt handler. We need to implement precise
exceptions such that we can return to the exact same point at which we had stopped
the execution of our original program.

10. Performance of a processor with respect to a program is defined to be proportional to
the inverse of the time required to execute the program.

11. The performance equation is as follows:

P ∝ IPC × f

#insts

IPC (instructions per cycle), f(frequency), #insts (number of dynamic instructions)

12. The performance of a processor is dependent on the manufacturing technology, ar-
chitecture, and compiler optimisations. In specific, a pipelined processor has higher
performance as compared to a single cycle processor, because it allows us to increase
the frequency roughly as many times as the number of stages. There is a consequent
loss in IPC, and wastage of time due to the latch delay. Hence, it is necessary to
choose an optimal pipelining strategy.

13. The clock frequency is limited by power and temperature constraints.

(a) There are two power dissipation mechanisms in modern processors namely dy-
namic power and leakage power. Dynamic power is dissipated due to the switch-
ing activity in circuits. It is proportional to αCV 2f , where α is the activity
factor, C is the lumped circuit capacitance, V is the supply voltage, and f is the
frequency.

(b) Leakage power or static power is dissipated due to the flow of current through
the terminals of a transistor, when it is in the off state. Leakage power is a
superlinear function of the current temperature.

(c) Power and temperature for different points on a chip are typically related by a
set of linear equations.

(d) Dynamic voltage-frequency scaling is a technique to dynamically modify the volt-
age and frequency of a processor. We typically assume that the frequency is
proportional to voltage.

(e) We use the ED2 metric to simultaneously compare the power and performance
of competing processor designs.

14. Some advanced techniques for speeding up a processor are branch prediction, super-
scalar execution, EPIC/VLIW processors, and out-of-order pipelines.

497 © Smruti R. Sarangi

10.12.2 Further Reading

The design of high performance pipelines is a prime focus of computer architecture researchers.
Researchers mostly look at optimising performance of pipelines and simultaneously reducing
power consumption. The reader can start out with textbooks on advanced computer architec-
ture [Hennessy and Patterson, 2012, Hwang, 2003, Baer, 2010, Sima et al., 1997, Culler et al.,
1998]. After getting a basic understanding of the techniques underlying advanced processors
such as out-of-order and superscalar execution, the reader should be able to graduate to reading
research papers. The first step in this journey should be the book titled, “Readings in Computer
Architecture” [Hill et al., 1999]. This book comprises of a set of foundational research papers
in different areas of computer architecture. Subsequently, the reader can move on to reading
research papers for getting a deeper understanding of state of the art techniques in processor
design.

The reader may start with some of the basic papers in the design of out-of-order proces-
sors [Brown et al., 2001, Smith and Sohi, 1995, Hwu and Patt, 1987]. After getting a basic
understanding, she can move on to read papers that propose important optimisations such as
[Brown et al., 2001, Petric et al., 2005, Akkary et al., 2003]. For a thorough understanding of
branch prediction schemes and fetch optimisation, the reader should definitely look at the work
of Yeh and Patt [Yeh and Patt, 1991, Yeh and Patt, 1992, Yeh and Patt, 1993], and the patent
on Pentium 4 trace caches [Krick et al., 2000].

Simultaneously, the reader can also look at papers describing the complete architecture of
processors such as the Intel Pentium 4 [Boggs et al., 2004], Intel ATOM [Halfhill, 2008], Intel
Sandybridge [Gwennap, 2010], AMD Opteron [Keltcher et al., 2003], and IBM Power 7 [Ware
et al., 2010]. Finally, readers can find descriptions of state of the art processors in the periodical,
“Microprocessor Report”, along with emerging trends in the processor industry.

Exercises

Pipeline Stages

Ex. 1 — Show the design of the IF, OF, EX, MA, and RW pipeline stages. Explain their
functionality in detail.

Ex. 2 — Why do we need to store the op2 field in the instruction packet? Where is it used?

Ex. 3 — Why is it necessary to have the control field in the instruction packet?

Ex. 4 — Why do we require latches in a pipeline? Why are edge sensitive latches preferred?

Ex. 5 — Why is it necessary to split the work in a data path evenly across the pipeline stages?

* Ex. 6 — We know that in an edge sensitive latch, the input signal has to be stable for
thold units of time after the negative edge. Let us consider a pipeline stage between latches L1

and L2. Suppose the output of L1 is ready immediately after the negative edge, and almost

© Smruti R. Sarangi 498

instantaneously reaches the input of L2. In this case, we violate the hold time constraint at L2.
How can this situation be avoided?

Pipeline Design

Ex. 7 — Enumerate the rules for constructing a pipeline diagram.

Ex. 8 — Describe the different types of hazards in a pipeline.

Ex. 9 — In the SimpleRisc pipeline, why don’t we have structural hazards?

Ex. 10 — Why does a branch have two delay slots in the SimpleRisc pipeline?

Ex. 11 — What are the Data-Lock and Branch-Lock conditions?

Ex. 12 — Write pseudo-code for detecting and handling the Branch-Lock condition? (with-
out delayed branches)

Ex. 13 — What is delayed branching?

* Ex. 14 — Let us consider two designs: D1 and D2. D1 uses a software-based approach for
hazards, and assumes delayed branching. D2 uses interlocks, and assumes that a branch is not
taken till the outcome is decided. Intuitively, which design is faster?

Ex. 15 — Assume that 20% of the dynamic instructions executed on a computer are branch
instructions. We use delayed branching with one delay slot. Estimate the CPI, if the compiler
is able to fill 85% of the delay slots. Assume that the base CPI is 1.5. In the base case, we do
not use any delay slot. Instead, we stall the pipeline for the total number of delay slots.

Ex. 16 — Describe the role of the forwarding multiplexers in each stage of the pipeline.

Ex. 17 — Why do we not require a forwarding path from MA to EX for the op2 field?

Ex. 18 — Answer the following questions.

i) What are the six possible forwarding paths in our SimpleRisc processor?

ii) Which four forwarding paths, are required, and why? (Give examples to support your
answer).

Ex. 19 — Assume that we have an instruction immediately after a call instruction that reads
ra. We claim that this instruction will get the correct value of ra in a pipeline with forwarding.
Is this true? Prove your answer.

Ex. 20 — Reorder the following code snippet to minimise the execution time for the following
configurations:

1.We use software techniques, and have 2 delay slots.

2.We use interlocks, and predict not taken.

3.We use forwarding, and predict not taken.

499 © Smruti R. Sarangi

add r1, r2, r3

sub r4, r1, r1

mul r8, r9, r10

cmp r8, r9

beq .foo

Ex. 21 — Reorder the following code snippet to minimise execution time for the following
configurations:

1.We use software techniques, and have 2 delay slots.

2.We use interlocks, and predict not taken.

3.We use forwarding, and predict not taken.

add r4, r3, r3

st r3, 10[r4]

ld r2, 10[r4]

mul r8, r9, r10

div r8, r9, r10

add r4, r2, r6

Ex. 22 — Answer the following:
add r1, r2, r3

sub r4, r1, r6

ld r5, 10[r4]

add r6, r5, r5

sub r8, r8, r9

mul r10, r10, r11

cmp r8, r10

beq .label

add r5, r6, r8

st r3, 20[r5]

ld r6, 20[r5]

ld r7, 20[r6]

lsl r7, r7, r10

i) Assuming a traditional SimpleRisc pipeline, how many cycles will this code take to execute
in a pipeline with just interlocks? Assume that time starts when the first instruction
reaches the RW stage. This means that if we had just one instruction, then it would have
taken exactly 1 cycle to execute (Not 5). Moreover, assume that the branch is not taken.
[Assumptions: No forwarding, No delayed branches, No reordering]

ii) Now, compute the number of cycles with forwarding (no delayed branches, no reordering).

iii) Compute the minimum number of cycles when we have forwarding, and we allow instruc-
tion reordering. We do not have delayed branches, and in the reordered code, the branch
instruction cannot be one of the last three instructions.

iv) Compute the minimum number of cycles when we have forwarding, allow instruction re-
ordering, and have delayed branches. Here, again, we are not allowed to have the branch
instruction as one of the last three instructions in the reordered code.

© Smruti R. Sarangi 500

** Ex. 23 — We have assumed up till now that each memory access requires one cycle. Now,
let us assume that each memory access takes two cycles. How will you modify the data path
and the control path of the SimpleRisc processor in this case.

** Ex. 24 — Assume you have a pipeline that contains a value predictor for memory. If there
is a miss in the L2 cache, then we try to predict the value and supply it to the processor. Later
this value is compared with the value obtained from memory. If the value matches, then we are
fine, else we need to initiate a process of recovery in the processor and discard all the wrong
computation. Design a scheme to do this effectively.

Performance and Power Modelling

Ex. 25 — If we increase the average CPI (Cycles per Instruction) by 5%, decrease the in-
struction count by 20% and double the clock rate, what is the expected speedup, if any, and
why?

Ex. 26 — What should be the ideal number of pipeline stages (x) for a processor with CPI =
(1 + 0.2x) and clock cycle time tclk = (1 + 50/x)?

Ex. 27 — What is the relationship between dependences in a program, and the optimal
number of pipeline stages it requires?

Ex. 28 — Is a 4 GHz machine faster than a 2 GHz machine? Justify your answer.

Ex. 29 — How do the manufacturing technology, compiler, and architecture determine the
performance of a processor?

Ex. 30 — Define dynamic power and leakage power.

* Ex. 31 — We claim that if we increase the frequency, the leakage power increases. Justify
this statement.

Ex. 32 — What is the justification of the ED2 metric?

* Ex. 33 — How do power and temperature considerations limit the number of pipeline
stages? Explain your answer in detail. Consider all the relationships between power, tem-
perature, activity, IPC, and frequency that we have introduced in this chapter.

* Ex. 34 — Define the term DVFS.

** Ex. 35 — Assume that we wish to estimate the temperature at different points of a proces-
sor. We know the dynamic power of different components, and the leakage power as a function
of temperature. Furthermore, we divide the surface of the die into a grid as explained in Sec-
tion 10.10.4. How do we use this information to arrive at a steady state value of temperature
for all the grid points?

501 © Smruti R. Sarangi

Interrupts and Exceptions

Ex. 36 — What are precise exceptions? How does hardware ensure that every exception is a
precise exception?

Ex. 37 — Why do we need the movz and retz instructions?

Ex. 38 — List the additional registers that we add to a pipeline to support interrupts and
exceptions.

Ex. 39 — What is the role of the CPL register? How do we set and reset it?

Ex. 40 — How do we locate the correct interrupt handler? What is the structure and role of
an interrupt handler?

Ex. 41 — Why do we need the registers oldPC, and oldSP?

Ex. 42 — Why do we need to add a flags field to the instruction packet? How do we use
the oldF lags register?

* Ex. 43 — Consider a hypothetical situation where a write back to a register may generate
an exception (register-fault exception). Propose a mechanism to handle this exception precisely.

* Ex. 44 — Define the concept of register windows. How can we use register windows to
speedup the implementation of functions?

Advanced Topics

Ex. 45 — Can you intuitively say why most of the branches in programs are predictable.

Ex. 46 — Is the following code sequence amenable to branch prediction. Why or why not?

int status=flip_random_unbiased_coin();

if (status==Head)

print(\head");

else

print(\tail");

Ex. 47 — We need to design a 2-issue inorder pipeline that accepts a bundle of two instruc-
tions every cycle. These bundles are created by the compiler.

(a) Given the different instruction types, design an algorithm that tells the compiler the
different constraints in designing a bundle. For example, you might decide that you don’t
want to have two instructions in a bundle if they are of certain types, or have certain
operands.

(b) To implement a two issue pipeline, what kind of additional functionality will you need in
the MEM stage?

© Smruti R. Sarangi 502

Ex. 48 — Describe the main insight behind out-of-order pipelines? What are their major
structures?

Design Problems

Ex. 49 — Implement a basic pipelined processor with interlocks using Logisim (refer to the
design problems in Chapter 9).

Ex. 50 — Implement a basic pipelined processor in a hardware description language such as
Verilog or VHDL. Try to add forwarding paths and interrupt processing logic.

Ex. 51 — Learn the language SystemC. It is used to model hardware at a high level. Imple-
ment the SimpleRisc pipeline in SystemC.

Part III

Organisation: System Design

503

11
The Memory System

Up till now, we have considered the memory system to be one large array of bytes. This
abstraction was good enough for designing an instruction set, studying assembly language, and
even for designing a basic processor with a complicated pipeline. However, from a practical
standpoint, this abstraction will need to be further refined to design a fast memory system. In
our basic SimpleRisc pipeline presented in Chapter 9 and 10, we have assumed that it takes
1 cycle to access both data and instruction memory. We shall see in this chapter, that this is
not always true. In fact, we need to make significant optimisations in the memory system to
come close to the ideal latency of 1 cycle. We need to introduce the notion of a “cache” and a
hierarchical memory system to solve the dual problems of having large memory capacity, and
low latency.

Secondly, up till now we have been assuming that only one program runs on our system.
However, most processors typically run multiple programs on a time shared basis. For example,
if there are two programs, A and B, a modern desktop or laptop typically runs program A for
a couple of milliseconds, executes B for a few milliseconds, and subsequently switches back and
forth. In fact as your author is writing this book, there are a host of other programs running on
his system such as a web browser, an audio player, and a calendar application. In general, a user
does not perceive any interruptions, because the time scale at which the interruptions happen
is much lower than what the human brain can perceive. For example, a typical video displays a
new picture 30 times every second, or alternatively one new picture every 33 milliseconds. The
human brain creates the illusion of a smoothly moving object by piecing the pictures together.
If the processor finishes the job of processing the next picture in a video sequence, before 33
milliseconds, then it can execute a part of another program. The human brain will not be
able to tell the difference. The point here is that without our knowledge, the processor in
co-operation with the operating system switches between multiple programs many many times
a second. The operating system is itself a specialised program that helps the processor manage
itself, and other programs. Windows and Linux are examples of popular operating systems.

We shall see that we require special support in the memory system to support multiple

505

© Smruti R. Sarangi 506

programs. If we do not have this support, then multiple programs can overwrite each other’s
data, which is not desired behavior. Secondly, we have been living with the assumption that we
have practically an infinite amount of memory. This is also not true. The amount of memory
that we have is finite, and it can get exhausted by large memory intensive programs. Hence, we
should have a mechanism to still run such large programs. We shall introduce the concept of
virtual memory to solve both of these issues – running multiple programs, and handling large
memory intensive programs.

To summarise, we observe that we need to design a memory system that is fast, and is
flexible enough to support multiple programs with very large memory requirements.

11.1 Overview

11.1.1 Need for a Fast Memory System

Let us now look at the technological requirements for building a fast memory system. We
have seen in Chapter 7 that we can design memory elements with four kinds of basic circuits
– latches, SRAM cells, CAM cells and DRAM cells. There is a tradeoff here. Latches and
SRAM cells are much faster than DRAM or CAM cells. However, as compared to a DRAM
cell, a latch, CAM or SRAM cell is an order of magnitude larger in terms of area, and also
consumes much more power. We observe that a latch is designed to read in and read out data
at a negative clock edge. It is a fast circuit that can store and retrieve data in a fraction of
a clock cycle. On the other hand, an SRAM cell is typically designed to be used as a part of
a large array of SRAM cells along with a decoder and sense amplifiers. With this additional
overhead, an SRAM cell is typically slower than a typical edge triggered latch. In comparison,
CAM cells are best for memories that are content associative, and DRAM cells are best for
memories that have very large capacities.

Now, our SimpleRisc pipeline assumes that memory accesses take 1 cycle. To satisfy this
requirement, we need to build our entire memory from latches, or small arrays of SRAM cells.
Table 11.1 shows the size of a typical latch, SRAM cell, and DRAM cell as of 2012.

Cell type Area Typical latency
(array of cells)

Master Slave D flip flop 0.8 µm2 fraction of a cycle

SRAM cell 0.08 µm2 1-5 cycles

DRAM Cell 0.005 µm2 50-200 cycles

Table 11.1: Sizes of a Latch, SRAM cell, and DRAM cell

We observe that a typical latch (master slave D flip flop) is 10 times larger than an SRAM
cell, which in turn is around 16 times larger than a DRAM cell. This means that given a certain
amount of silicon, we can save 160 times more data if we use DRAM cells. However, DRAM
memory is also 200 times slower (if we consider a representative array of DRAM cells). Clearly,
there is a tradeoff between capacity, and speed. The sad part is that we actually need both.

Let us consider the issue of capacity first. Due to several constraints in technology and
manufacturability, as of 2012, it is not possible to manufacture chips with an area more than

507 © Smruti R. Sarangi

400-500mm2 [ITRS, 2011]. Consequently, the total amount of memory that we can have on
chip is limited. It is definitely possible to supplement the amount of available memory with
additional chips exclusively containing memory cells. Keep in mind that off-chip memory is
slow, and it takes tens of cycles for the processor to access such memory modules. To achieve our
goal of having a 1-cycle memory access, we need to use the relatively faster on-chip memory
most of the time. Here, also our options are limited. We cannot afford to have a memory
system consisting exclusively of latches. For a large number of programs, we will not be able
to fit all our data in memory. For example, modern programs typically require hundreds of
megabytes of memory. Moreover, some large scientific programs require gigabytes of memory.
Second, it is difficult to integrate large DRAM arrays along with a processor on the same chip
due to technological constraints. Hence, designers are compelled to use large SRAM arrays for
on-chip memories. As shown in Table 11.1 SRAM cells(arrays) are much larger than DRAM
cells(arrays), and thus have much less capacity.

There is a conflicting requirement of latency. Let us assume that we decide to maximise
storage, and make our memory entirely consisting of DRAM cells. Let us assume a 100 cy-
cle latency for accessing DRAM. If we assume that a third of our instructions are memory
instructions, then the effective CPI of a perfect 5 stage SimpleRisc pipeline is calculated to
be 1 + 1/3 × (100 − 1) = 34. The point to note is that our CPI increases by 34X, which is
completely unacceptable.

Hence, we need to make an equitable tradeoff between latency and storage. We want to
store as much of data as possible, but not at the cost of a very low IPC. Unfortunately, there is
no way out of this situation, if we assume that our memory accesses are completely random. If
there is some pattern in memory accesses, then we can possibly do something better such that
we can get the best of both worlds – high storage capacity, and low latency.

11.1.2 Memory Access Patterns

Before considering the technical topic of patterns in memory accesses, let us consider a simple
practical problem that your author is facing at this point of time. He unfortunately, has a lot of
books on his desk that are not organised. Not only are these books cluttering up his desk, it is
also hard to search for a book when required. Hence, he needs to organise his books better and
also keep his desk clean. He observes that he does not require all the books all the time. For
example, he needs books on computer architecture very frequently; however, he rarely reads his
books on distributed systems. Hence, it makes sense for him to move his books on distributed
systems to the shelf beside his desk. Unfortunately, it is a small shelf, and there are still a lot
of books on his desk. He observes that he can further classify the books in the small shelf. He
has some books on philosophy that he never reads. These can be moved to the large cabinet
in the corner of the room. This will create more space in the shelf, and also help him clean up
his desk. What is the fundamental insight here? It is that your author does not read all his
books with the same frequency. There are some books that he reads very frequently; hence,
they need to be on his desk. Then there is another class of books that he reads infrequently;
hence, they need to be in the small shelf beside his desk. Lastly, he has a large number of books
that he reads extremely infrequently. He can safely keep them in the large cabinet. Pattern
1:He reads a small set of books very frequently, and the rest of the books rather
infrequently. Hence, if he keeps the frequently accessed set of books on computer architecture

© Smruti R. Sarangi 508

on his desk, and the large infrequent set of books in the shelf and the cabinet, he has solved
his problems.

Well, not quite. This was true for last semester, when he was teaching the computer
architecture course. However, in the current semester, he is teaching a course on distributed
systems. Hence, he does not refer to his architecture books anymore. It thus makes sense for
him to bring his distributed systems books to his desk. However, there is a problem. What
happens to his architecture books that are already there on his desk. Well, the simple answer
is that they need to be moved to the shelf and they will occupy the slots vacated by the
distributed systems books. In the interest of time, it makes sense for your author to bring a
set of distributed systems books on to his desk, because in very high likelihood, he will need
to refer to numerous books in that area. It does not make sense to fetch just one book on
distributed systems. Hence, as a general rule we can conclude that if we require a certain book,
then most likely we will require other books in the same subject. Pattern 2:If your author
requires a certain book, then most likely he will require other books in the same
subject area in the near future.

We can think of patterns 1 and 2, as general laws that are applicable to everybody. Instead
of books, if we consider TV channels, then also both the patterns apply. We do not watch all
TV channels equally frequently. Secondly, if a user has tuned in to a news channel, then most
likely she will browse through other news channels in the near future. In fact this is how retail
stores work. They typically keep spices and seasonings close to vegetables. This is because it is
highly likely that a user who has just bought vegetables will want to buy spices also. However,
they keep bathroom supplies and electronics far away.

Pattern 1 is called temporal locality. This means that users will tend to reuse the same item
in a given time interval. Pattern 2 is called spatial locality. It means that if a user has used a
certain item, then she will tend to use similar items in the near future.

Definition 97

Temporal Locality It is a concept that states that if a resource is accessed at some point
of time, then most likely it will be accessed again in a short time interval.

Spatial Locality It is a concept that states that if a resource is accessed at some point of
time, then most likely similar resources will be accessed in the near future.

The question that we need to ask is – “Is there temporal and spatial locality in memory
accesses?”. If there is some degree of temporal and spatial locality, then we can possibly do some
critical optimisations that will help us solve the twin problems of large memory requirement,
and low latency. In computer architecture, we typically rely on such properties such as temporal
and spatial locality to solve our problems.

509 © Smruti R. Sarangi

11.1.3 Temporal and Spatial Locality of Instruction Accesses

The standard approach for tackling this problem, is to measure and characterise locality in a
representative set of programs such as the SPEC benchmarks(see Section 10.9.4). Let us first
start out by dividing memory accesses into two broad types – instruction and data. Instruction
accesses are much easier to analyse informally. Hence, let us look at it first.

Let us consider a typical program. It has assignment statements, decision statements
(if,else), and loops. Most of the code in large programs is part of loops or some pieces of
common code. There is a standard rule of thumb in computer architecture, which states that
90% of the code runs for 10% of time, and 10% of the code runs for 90% of the time. Let us
consider a word processor. The code to process the user’s input, and show the result on the
screen runs much more frequently than the code for showing the help screen. Similarly, for
scientific applications, most of the time is spent in a few loops in the program. In fact for most
common applications, we find this pattern. Hence, computer architects have concluded that
temporal locality for instruction accesses holds for an overwhelming majority of programs.

Let us now consider spatial locality for instruction accesses. If there are no branch state-
ments, then the next program counter is the current program counter plus 4 bytes for an ISA
such as SimpleRisc . We consider two accesses to be “similar”, if their memory addresses are
close to each other. Clearly, we have spatial locality here. A majority of the instructions in
programs are non-branches; hence, spatial locality holds. Moreover, a nice pattern in branches
in most programs is that the branch target is actually not very far away. If we consider a simple
if-then statement or for loop then the distance of the branch target is equal to the length of
the loop or the if part of the statement. In most programs this is typically 10 to 100 instruc-
tions long, definitely not thousands of instructions long. Hence, architects have concluded that
instruction memory accesses exhibit a good amount of spatial locality also.

The situation for data accesses is slightly more complicated; however, not very different.
For data accesses also we tend to reuse the same data, and access similar data items. Let us
look at this in more detail.

11.1.4 Characterising Temporal Locality

Let us describe a method called the method of stack distances to characterise temporal locality
in programs.

Stack Distance

We maintain a stack of accessed data addresses For each memory instruction (load/store), we
search for the corresponding address in the stack. The position at which the entry is found (if
found) is termed the ”stack distance”. Here, the distance is measured from the top of the stack.
The top of the stack has distance equal to zero, whereas the 100th entry has a stack distance
equal to 99. Whenever, we detect an entry in the stack we remove it, and push it to the top of
the stack.

If the memory address is not found, then we make a new entry and push it to the top of
the stack. Typically, the depth of the stack is bounded. It has length, L. If the number of
entries in the stack exceeds L because of the addition of a new entry, then we need to remove
the entry at the bottom of the stack. Secondly, while adding a new entry, the stack distance

© Smruti R. Sarangi 510

is not defined. Note that since we consider bounded stacks, there is no way of differentiating
between a new entry, and an entry that was there in the stack, but had to be removed because
it was at the bottom of the stack. Hence, in this case we take the stack distance to be equal to
L (bound on the depth of the stack).

Note that the notion of stack distance gives us an indication of temporal locality. If the
accesses have high temporal locality, then the mean stack distance is expected to be lower.
Conversely, if memory accesses have low temporal locality, then the mean stack distance will
be high. We can thus use the distribution of stack distances as a measure of the amount of
temporal locality in a program.

Experiment to Measure Stack Distance

We perform a simple experiment with the SPEC2006 benchmark, Perlbench, which runs differ-
ent Perl programs 1. We maintain counters to keep track of the stack distance. The first million
memory accesses serve as a warm-up period. During this time the stack is maintained, but the
counters are not incremented. For the next million memory accesses, the stack is maintained,
and the counters are also incremented. Figure 11.1 shows a histogram of the stack distance.
The size of the stack is limited to 1000 entries. It is sufficient to capture an overwhelming
majority of memory accesses.

0 50 100 150 200 250

stack distance
0.00

0.05

0.10

0.15

0.20

0.25

0.30

p
ro

b
a
b
ili

ty

Figure 11.1: Stack distance distribution

We observe that most of the accesses have a very low stack distance. A stack distance
between 0-9 is the most common value. Approximately 27% of all the accesses are in this bin.
In fact, more than two thirds of the memory accesses have a stack distance less than 100. Beyond
100, the distribution tapers off, yet remains fairly steady. The distribution of stack distances is

1Dataset size ’ref’, input ’split-mail’

511 © Smruti R. Sarangi

typically said to follow a heavy tailed distribution. This means that the distribution is heavily
skewed towards smaller stack distances; however, large stack distances are not uncommon. The
tail of the distribution continues to be non-zero for large stack distances. We observe a similar
behavior here.

Trivia 3 Researchers have tried to approximate the stack distance using the log-normal
distribution.

f(x) =
1

xσ
√
2π

e−
(ln(x)−µ)2

2σ2

11.1.5 Characterising Spatial Locality

Address Distance

Akin to stack distance, we define the term address distance. The ith address distance is the
difference in the memory address of the ith memory access, and the closest address in the set
of the last K memory accesses. Here, a memory access can be either a load or a store. There
is an intuitive reason for defining address distance in this manner. Programs typically access
different regions of main memory in the same time interval. For example, an operation on
arrays, accesses an array item, then accesses some constants, performs an operation, saves the
result, and then moves on the next array entry using a for loop. There is clearly spatial locality
here, in the sense that consecutive iterations of a for loop access proximate addresses in an
array. However, to quantify it, we need to search for the closest access (in terms of memory
addresses) over the last K accesses. Here, K is the number of memory accesses in each iteration
of the enclosing loop. We can readily observe that in this case that the address distance turns
out to be a small value, and is indicative of high spatial locality. However, K needs to be well
chosen. It should not be too small, nor too large. We have empirically found K = 10 to be an
appropriate value for a large set of programs.

To summarise, we can conclude that if the average address distance is small, then it means
that we have high spatial locality in the program. The program tends to access nearby memory
addresses with high likelihood in the same time interval. Conversely, if the address distances
are high, then the accesses are far apart from each other, and the program does not exhibit
spatial locality.

Experiment to Characterise Address Distance

Here, we repeat the same experiment as described in Section 11.1.4 with the SPEC2006 bench-
mark, Perlbench. We profile the address distance distribution for the first 1 million accesses.
Figure 11.2 shows the address distance distribution.

Here also, more than a quarter of the accesses have an address distance between -5 and
+5, and more than two thirds of the accesses have an address distance between -25 and +25.
Beyond ±50, the address distance distribution tapers off. Empirically, this distribution also
has a heavy tailed nature.

© Smruti R. Sarangi 512

100 50 0 50 100

address distance
0.00

0.05

0.10

0.15

0.20

0.25

0.30

p
ro

b
a
b
ili

ty

Figure 11.2: Address distance distribution

11.1.6 Utilising Spatial and Temporal Locality

Section 11.1.4 and 11.1.5 showed the stack and address distance distributions for a sample
program. Similar experiments have been performed for thousands of programs that users use
in their daily lives. These programs include computer games, word processors, databases,
spreadsheet applications, weather simulation programs, financial applications, and software
applications that run on mobile computers. Almost all of them exhibit a very high degree of
temporal and spatial locality. In other words, temporal and spatial locality, are basic human
traits. Whatever we do, including fetching books, or writing programs, these properties tend
to hold. Note that these are just mere empirical observations. It is always possible to write
a program that does not exhibit any form of temporal and spatial locality. Additionally, it
is always possible to find regions of code in commercial programs that do not exhibit these
properties. However, these examples are exceptions. They are not the norm. We need to
design computer systems for the norm, and not for the exceptions. This is how we can boost
performance for a large majority of programs that users are expected to run.

From now on, let us take temporal and spatial locality for granted, and see what can be done
to boost the performance of the memory system, without compromising on storage capacity.
Let us look at temporal locality first.

11.1.7 Exploiting Temporal Locality – Hierarchical Memory System

Let us reconsider the way in which we tried to exploit temporal locality for our simple example
with books. If your author decides to look at a new topic, then he brings the set of books
associated with that topic to his desk. The books that were already there on his desk, are
moved to the shelf, and to create space in the shelf, some books are shifted to the cabinet. This

513 © Smruti R. Sarangi

behavior is completely consistent with the notion of stack distance as shown in Figure 11.1.
We can do the same with memory systems also. Akin to a desk, shelf, and cabinet, let us

define a storage location for memory values. Let us call it a cache. Each entry in the cache
conceptually contains two fields – memory address, and value. Like your author’s office, let us
define a hierarchy of caches as shown in Figure 11.3.

Definition 98
A cache contains a set of values for different memory locations.

L1 cache

L2 cache

Main memory

Cache hierarchy

Figure 11.3: Memory hierarchy

Definition 99 The main memory(physical memory) is a large DRAM array that contains
values for all the memory locations used by the processor.

The L1 cache corresponds to the desk, the L2 cache corresponds to the shelf, and the main
memory corresponds to the cabinet. The L1 cache is typically a small SRAM array (8-64 KB).
The L2 cache is a larger SRAM array (128 KB - 4 MB). Some processors such as the Intel
Sandybridge processor have another level of caches called the L3 cache (4MB+). Below the
L2/L3 cache, there is a large DRAM array containing all the memory locations. This is known
as the main memory or physical memory. Note that in the example with books, a book could
either exclusively belong to the shelf or the cabinet. However, in the case of memory values,
we need not follow this rule. In fact, we shall see later that it is easier to maintain a subset of
values of the L2 cache in the L1 cache, and so on. This is known as a system with inclusive
caches. We thus have – values(L1) ⊂ values(L2) ⊂ values(main memory) – for an inclusive
cache hierarchy. Alternatively, we can have exclusive caches, where a higher level cache does
not necessarily contain a subset of values in the lower level cache. Inclusive caches are by far
used universally in all processors. This is because of the ease of design, simplicity, and some
subtle correctness issues that we shall discuss in Chapter 12. There are some research level

© Smruti R. Sarangi 514

proposals that advocate exclusive caches. However, their utility for general purpose processors
has not been established as of 2012.

Definition 100 A memory system in which the set of memory values contained in the
cache at the nth level is a subset of all the values contained in the cache at the (n + 1)th

level, is known as an inclusive cache hierarchy. A memory system that does not follow strict
inclusion is referred to as an exclusive cache hierarchy.

Let us now consider the cache hierarchy as shown in Figure 11.3. Since the L1 cache is
small, it is faster to access. The access time is typically 1-2 cycles. The L2 cache is larger and
typically takes 5-15 cycles to access. The main memory is much slower because of its large
size and use of DRAM cells. The access times are typically very high and are between 100-300
cycles. The memory access protocol is similar to the way your author accesses his books.

The memory access protocol is as follows. Whenever, there is a memory access (load or
store), the processor first checks in the L1 cache. Note that each entry in the cache conceptually
contains both the memory address and value. If the data item is present in the L1 cache, we
declare a cache hit, otherwise we declare a cache miss. If there is a cache hit, and the memory
request is a read, then we need to just return the value to the processor. If the memory request
is a write, then the processor writes the new value to the cache entry. It can then propagate the
changes to the lower levels, or resume processing. We shall look at these the different methods
of performing a cache write in detail, when we discuss different write policies in Section 11.2.3.
However, if there is a cache miss, then further processing is required.

Definition 101

Cache hit Whenever a memory location is present in a cache, the event is known as a
cache hit.

Cache miss Whenever a memory location is not present in a cache, the event is known as
a cache miss.

In the event of an L1 cache miss, the processor needs to access the L2 cache and search for
the data item. If an item is found (cache hit), then the protocol is the same as the L1 cache.
Since, we consider inclusive caches in this book, it is necessary to fetch the data item to the
L1 cache. If there is an L2 miss, then we need to access the lower level. The lower level can
be another L3 cache, or can be the main memory. At the lowest level, i.e., the main memory,
we are guaranteed to not have a miss, because we assume that the main memory contains an
entry for all the memory locations.

515 © Smruti R. Sarangi

Performance Benefit of a Hierarchical Memory System

Instead of having a single flat memory system, processors use a hierarchical memory system
to maximise performance. A hierarchical memory system is meant to provide the illusion of a
large memory with an ideal single cycle latency.

Example 147 Find the average memory access latency for the following configurations.

Configuration 1

Level Miss Rate(%) Latency

L1 10 1
L2 10 10

Main Memory 0 100

Configuration 2

Main Memory 0 100

Answer: Let us consider the first configuration. Here, 90% of the accesses hit in the L1
cache. Hence, their memory access time is 1 cycle. Note that even the accesses that miss
in the L1 cache still incur the 1 cycle delay, because we do not know if an access will hit
or miss in the cache. Subsequently, 90% of the accesses that go to the L2 cache hit in the
cache. They incur a 10-cycle delay. Finally, the remaining accesses (1%) hit in the main
memory, and incur an additional delay. The average memory access time(T) is thus:

T = 1 + 0.1 ∗ (10 + 0.1 ∗ 100) = 1 + 1 + 1 = 3

Thus, the average memory latency of a hierarchical memory system such as configuration
1 is 3 cycles.

Configuration 2 is a flat hierarchy, which uses the main memory for all its accesses.
The average memory access time is 100 cycles.

There is thus a speedup of 100/3 = 33.3 times using a hierarchical memory system.

Let us consider an example (see Example 147). It shows that the performance gain using
a hierarchical memory system is 33.33 times that of a flat memory system with a single level
hierarchy. The performance improvement is a function of the hit rates of different caches and
their latencies. Moreover, the hit rate of a cache is dependent on the stack distance profile of the
program, and the cache management policies. Likewise the cache access latency is dependent on
the cache manufacturing technology, design of the cache, and the cache management schemes.
We need to mention that optimising cache accesses has been a very important topic in computer
architecture research for the past two decades. Researchers have published thousands of papers
in this area. We shall only cover some basic mechanisms in this book. The interested reader
can take a look at Section 11.5.2 for appropriate references.

© Smruti R. Sarangi 516

11.1.8 Exploiting Spatial Locality – Cache Blocks

Let us now consider spatial locality. We observe in Figure 11.2 that a majority of accesses
have an address distance within ±25 bytes. Recall that the address distance is defined as the
difference in memory addresses between the current address and the closest address among the
last K addresses. The address distance distribution suggests that if we group a set of memory
locations into one block, and fetch it at one go from the lower level, then we can increase the
number of cache hits because there is a high degree of spatial locality in accesses. This approach
is similar to the way we decided to fetch all the architecture books at the same time from the
shelf in Section 11.1.2.

Consequently, almost all processors create blocks of contiguous addresses, and the cache
treats each block as an atomic unit. The entire block is fetched at once from the lower level,
and also an entire block is evicted from the cache if required. A cache block is also known as a
cache line. A typical cache block or a line is 32-128 bytes long. For ease of addressing, its size
needs to be a strict power of 2.

Definition 102
A cache block or a line is a contiguous set of memory locations. It is treated as an atomic
unit of data in a cache.

Thus, we need to slightly redefine the notion of a cache entry. Instead of having an entry
for each memory address, we have a separate entry for each cache line. Note that in this book,
we shall use the terms cache line and block synonymously. Also note that it is not necessary
to have the same cache line size in the L1 cache and the L2 cache. They can be different.
However, for maintaining the property of inclusiveness of caches, and minimising additional
memory accesses, it is typically necessary to use an equal or larger block size in the L2 cache
as compared to the L1 cache.

Way Point 9
Here is what we have learnt up till now.

1. Temporal and spatial locality are properties inherent to most human actions. They
apply equally well to reading books and writing computer programs.

2. Temporal locality can be quantified by the stack distance, and spatial locality can be
quantified by the address distance.

3. We need to design memory systems to take advantage of temporal and spatial locality.

4. To take advantage of temporal locality, we use a hierarchical memory system consisting
of a set of caches. The L1 cache is typically a small and fast structure that is meant
to satisfy most of the memory accesses quickly. The lower level of the caches store
larger amounts of data, are accessed infrequently, and have larger access times.

517 © Smruti R. Sarangi

5. To take advantage of spatial locality, we group sets of contiguous memory locations
into blocks (also known as lines). A block is treated as an atomic unit of data in a
cache.

Given that we have studied the requirements of a cache qualitatively, we shall proceed to
discuss the design of caches.

11.2 Caches

11.2.1 Overview of a Basic Cache

Let us consider a cache as a black box as shown in Figure 11.4. In the case of a load operation,
the input is the memory address, and the output is the value of the memory location if there is
a cache hit. We envision the cache having a status line that indicates if the request suffered a
hit or miss. If the operation is a store, then the cache takes two inputs – memory address, and
value. The cache stores the value in the entry corresponding to the memory location if there is
a cache hit. Otherwise, it indicates that there is a cache miss.

Memory
address

Store value

Load value

Cache
Hit/Miss

Figure 11.4: A cache as a black box

Let us now look at methods to practically implement this black box. We shall use an SRAM
array as the building block (see Section 7.4). The reader might wish to revisit that section to
recapitulate her knowledge on memory structures.

To motivate a design, let us consider an example. Let us consider a 32-bit machine with a
block size of 64 bytes. In this machine, we thus have 226 blocks. Let the size of the L1 cache
be 8 KB. It contains 27 or 128 blocks. We can thus visualise the L1 cache at any point of time
as a very small subset of the entire memory address space. It contains at the most 128 out of
226 blocks. To find out if a given block is there in the L1 cache, we need to see if any of the
128 entries contains it.

We assume that our L1 cache, is a part of a memory hierarchy. The memory hierarchy as a
whole supports two basic requests – read and write. However, we shall see that at the level of
a cache, we require many basic operations to implement these two high level operations.

Basic Cache Operations

Akin to a memory address, let us define a block address as the 26 MSB bits of the memory
address. The first problem is to find if a block with the given block address is present in the

© Smruti R. Sarangi 518

cache. We need to perform a lookup operation that returns a pointer to the block if it is present
in the cache. If the block is present in the cache then we can declare a cache hit and service
the request. For a cache hit, we need two basic operations to service the request namely data
read, and data write. They read or write the contents of the block, and require the pointer to
the block as an argument.

If there is a cache miss, then we need to fetch the block from the lower levels of the memory
hierarchy and insert it in the cache. The procedure of fetching a block from the lower levels
of the memory hierarchy, and inserting it into a cache, is known as a fill operation. The fill
operation is a complex operation, and uses many atomic sub-operations. We need to first send
a load request to the lower level cache to fetch the block, and then we need to insert in into the
L1 cache.

The process of insertion is also a complex process. We need to first check, if we have space
to insert a new block in a given set of blocks. If we have sufficient space in a set, then we can
populate one of the entries using an insert operation. However, if all the locations at which we
want to insert a block in the cache are already busy, then we need to evict an already existing
block from the cache. We thus need to invoke a replace operation to find the cache block that
needs to be evicted. Once, we have found an appropriate candidate block for replacement, we
need to evict it from the cache using an evict operation.

Thus, to summarise the discussion up till now, we can conclude that we broadly need these
basic operations to implement a cache – lookup, data read, data write, insert, replace, and evict.
The fill operation is just a sequence of lookup, insert, and replace operations at different levels
of the memory hierarchy. Likewise, the read operation is either primarily a lookup operation,
or the combination of a lookup and fill operation.

11.2.2 Cache Lookup and Cache Design

As outlined in Section 11.2.1, we wish to design a 8 KB cache with a block size of 64 bytes
for a 32-bit system. To do an efficient cache lookup, we need to find an efficient way to find
out if the 26 bit block address exists among the 128 entries in the cache. There are thus two
problems here. The first problem is to quickly locate a given entry, and the second is to perform
a read/write operation. Instead of using a single SRAM array to solve both the problems, it is
a better idea to split it into two arrays as shown in Figure 11.5.

In a typical design, a cache entry is saved in two SRAM based arrays. One SRAM array
known as the tag array, contains information pertaining to the block address, and the other
SRAM array known as the data array contains the data for the block. The tag array contains
a tag that uniquely identifies a block. The tag is typically a part of the block address, and
depends on the type of the cache. Along with the tag and data arrays, there is a dedicated
cache controller that executes the cache access algorithm.

Fully Associative(FA) Cache

Let us first consider a very simple way of locating a block. We can check each of the 128 entries
in the cache possibly simultaneously to see if the block address is equal to the block address in
the cache entry. This cache is known as a fully associative cache or a content addressable cache.
The phrase “fully associative” means that a given block can be associated with any entry in
the cache.

519 © Smruti R. Sarangi

Tag array

Address

Data array

Cache controller
Store
value

Load
value

Hit / Miss

Figure 11.5: Structure of a cache

Tag array
(CAM cells)

Tag

E
n
co

d
er

Hit/Miss

Index of the
matching entry

Data array

Tag Offset
Address format

Figure 11.6: A fully associative cache

Each cache entry in a fully associative(FA) cache thus needs to contain two fields – tag and
data. In this case, we can set the tag to be equal to the block address. Since the block address
is unique to each block, it fits the definition of a tag. Block data refers to the contents of the
block (64 bytes in this case). The block address requires 26 bits, and the block data requires 64
bytes, in our running example. The search operation needs to span the entire cache, and once

© Smruti R. Sarangi 520

an entry is located, we need to either read out the data, or write a new value.

Let us first take a look at the tag array. Each tag in this case is equal to the 26 bit block
address. After a memory request reaches a cache, the first step is to compute the tag by
extracting the 26 most significant bits. Then, we need to match the extracted tag with each
entry in the tag array using a set of comparators. If there is no match, then we can declare a
cache miss and do further processing. However, if there is a cache hit, then we need to use the
number of the entry that matches the tag to access the data entry. For example, in our 8 KB
cache that contains 128 entries, it is possible that the 53rd entry in the tag array matches the
tag. In this case, the cache controller needs to fetch the 53rd entry from the data array in the
case of a read access, or write to the 53rd entry in the case of a write access..

There are two ways to implement the tag array in a fully associative cache. Either we can
design it as a normal SRAM array in which the cache controller iterates through each entry,
and compares it with the given tag. Or, we can use a CAM array (see Section 7.4.2) that has
comparators in every row. They can compare the value of the tag with the data stored in the
row and produce an output (1 or 0) depending on the result of the comparison. A CAM array
typically uses an encoder to compute the number of the row that matches the result. A CAM
implementation of the tag array of a fully associative cache is more common, primarily because
sequentially iterating through the array is very time consuming.

Figure 11.6 illustrates this concept. We enable each row of the CAM array by setting
the corresponding word line to 1. Subsequently, the embedded comparators in the CAM cells
compare the contents of each row with the tag, and generate an output. We use an OR gate
to determine if any of the outputs is equal to 1. If any of the outputs is 1, then we have a
cache hit, otherwise, we have a cache miss. Each of these output wires are also connected to
an encoder that generates the index of the row that has a match. We use this index to access
the data array and read the data for the block. In the case of a write, we write to the block,
instead of reading it.

A fully associative cache is very useful for small structures (typically 2-32) entries. However,
it is not possible to use CAM arrays for larger structures. The area and power overheads of
comparison, and encoding are very high. It is also not possible to sequentially iterate through
every entry of an SRAM implementation of the tag array. This is very time consuming. Hence,
we need to find a better way for locating data in larger structures.

Direct Mapped(DM) Cache

We saw that in a fully associative cache, we can store any block at any location in the cache.
This scheme is very flexible; however, it cannot be used when the cache has a large number of
entries primarily because of prohibitive area and power overheads. Instead of allowing a block
to be stored anywhere in the cache, let us assign only one fixed location for a given block. This
can be done as follows.

In our running example, we have a 8 KB cache with 128 entries. Let us restrict the placement
of 64 byte blocks in the cache. For each block, let us assign a unique location in the tag array
at which the tag corresponding to its address can be stored. We can generate such a unique
location as follows. Let us consider the address of a block A, and the number of entries in our
cache (128), and compute A%128. The % operator computes the remainder of the division of
A by 128. Since A is a binary value, and 128 is a power of 2, computing the remainder is very

521 © Smruti R. Sarangi

easy. We need to just extract the 7 LSB bits out of the 26-bit block address. These 7 bits can
then be used to access the tag array. We can then compare the value of the tag saved in the tag
array with the tag computed from the block address to determine if we have a hit or a miss.

Instead of saving the block address in the tag array as we did for a fully associative cache,
we can slightly optimise its design. We observe that 7 out of the 26 bits in the block address
are used to access the tag in the tag array. This means that all the blocks that can possibly be
mapped to a given entry in the tag array will have their last 7 bits common. Hence, these 7 bits
need not explicitly be saved as a part of the tag. We need to only save the remaining 19 bits of
the block address that can vary across blocks. Thus a tag in a direct mapped implementation
of our cache needs to contain 19 bits only.

Tag(19) Index(7) Offset(6)

Address format

Tag array Data array

Hit/Miss

Index

Tag

Index

Figure 11.7: A direct mapped cache

Figure 11.7 describes this concept graphically. We divide a 32-bit address into three parts.
The most significant 19 bits comprise the tag, the next 7 bits are referred to as the index (index
in the tag array), and the remaining 6 bits point to the offset of the byte in the block. The rest
of the access protocol is conceptually similar to that of a fully associative cache. In this case, we
use the index to access the corresponding location in the tag array. We read the contents and
compare it with the computed tag. If they are equal, then we declare a cache hit, otherwise,
we declare a cache miss. Subsequently, in the case of a cache hit, we use the index to access
the data array. In this case, we use the cache hit/miss result, to enable/disable the data array.

Way Point 10
Up till now we have taken a look at the fully associative and direct mapped caches.

• The fully associative cache is a very flexible structure since a block can be saved in
any entry in the cache. However, it has higher latency and power consumption. Since

© Smruti R. Sarangi 522

a given block can potentially be allocated in more entries of the cache, it has a higher
hit rate than the direct mapped cache.

• The direct mapped cache on the other hand is a faster and less power consuming
structure. Here, a block can reside in only one entry in the cache. Thus, the expected
hit rate of this cache is less than that of a fully associative cache.

We thus observe that there is a tradeoff between power, latency, and hit rate between the
fully associative and direct mapped caches.

Set Associative Cache

A fully associative cache is more power consuming because we need to search for a block in
all the entries of the cache. In comparison, a direct mapped cache is faster and power efficient
because we need to check just one entry. However, it clearly has a lower hit rate, and that is
not acceptable either. Hence, let us try to combine both the paradigms.

Let us design a cache in which a block can potentially reside in any one of a set of multiple
entries in a cache. Let us associate a set of entries in the cache with a block address. Like a
fully associative cache, we will have to check all the entries in the set before declaring a hit
or a miss. This approach combines the advantages of both the fully associative and direct
mapped schemes. If a set contains 4 or 8 entries, then we do not have to use an expensive CAM
structure, nor, do we have to sequentially iterate through all the entries. We can simply read
out all the entries of the set from the tag array in parallel and compare all of them with the tag
part of the block address in parallel. If there is a match, then we can read the corresponding
entry from the data array. Since multiple blocks can be associated with a set, we call this
design a set associative cache. The number of blocks in a set is known as the associativity of
the cache. Secondly, each entry in a set is known as a way.

Definition 103

Associativity The number of blocks contained in a set is defined as the associativity of
the cache.

Way Each entry in a set is known as also known as a way.

Let us now describe a simple method to group cache entries into sets for our simple example,
in which we considered a 32-bit memory system with an 8-KB cache and 64-byte blocks. As
shown in Figure 11.8, we first remove the lowest 6 bits from the 32-bit address because these
specify the address of a byte within a block. The remaining 26 bits specify the block address.
Our 8-KB cache has a total of 128 entries. If we want to create sets containing 4 entries each,

523 © Smruti R. Sarangi

Tag

19 2 5
Index

6
Block

Figure 11.8: Division of a block address into sets

then we need to divide all the cache entries into sets of 4 entries. There will be 32(25) such
sets.

In a direct mapped cache, we devoted the lowest 7 bits out of the 26 bit block address to
specify the index of the entry in the cache. We can now split these 7 bits into two parts as
shown in Figure 11.8. One part contains 5 bits and indicates the address of the set, and the
second part containing 2 bits is ignored. The group of 5 bits indicating the address of the set
is known as the set index.

After computing the set index, i, we need to access all the elements belonging to the set in
the tag array. We can arrange the tag array as follows. If the number of blocks in a set is S,
then we can group all the entries belonging to a set contiguously. For the ith set, we need to
access the elements iS, (iS + 1) . . . (iS + S − 1) in the tag array.

For each entry in the tag array, we need to compare the tag saved in the entry to the tag
part of the block address. If there is a match, then we can declare a hit. The notion of a tag
in a set associative cache is rather tricky. As shown in Figure 11.8, it consists of the bits that
are not a part of the index. In the case of our running example, it is the (21=26-5) MSB bits
of the block address. The logic for deciding the number of tag bits is as follows.

Each set is specified by a 5-bit set index. These 5 bits are common to all the blocks that
can be potentially mapped to the given set. We need to use the rest of the bits (26-5=21) to
distinguish between the different blocks that are mapped to the same set. Thus, a tag in a set
associative cache has a size between that of a direct mapped cache (19) and a fully associative
cache (26).

Figure 11.9 shows the design of a set associative cache. We first compute the set index from
the address of the block. For our running example, we use bits 7-11. Subsequently, we use the
set index to generate the indices of its corresponding four entries in the tag array using the
tag array index generator. Then, we access all the four entries in the tag array in parallel, and
read their values. It is not necessary to use a CAM array here. We can use a single multi-
port (multiple input, output) SRAM array. Next, we compare each element with the tag, and
generate an output (0 or 1). If any of the outputs is equal to 1 (determined by an OR gate),
then we have a cache hit. Otherwise, we have a cache miss. We use an encoder to find the
index of the tag in the set that matched. Since, we are assuming a 4 way associative cache,
the output of the encoder is between 00 to 11. Subsequently, we use a multiplexer to choose
the index of the matching entry in the tag array. This index, can now be used to access the
data array. The corresponding entry in the data array contains the data for the block. We can
either read it or write to it.

We can perform a small optimisation here, for read operations. Note that in the case of a
read operation, the access to the data array and tag array can proceed in parallel. If a set has

© Smruti R. Sarangi 524

Tag array

Set index

Tag array index
generator

Tag

E
n
co

d
er

Hit/Miss

Index of the
matched entry

Data array

Figure 11.9: A set associative cache

4 ways, then while we are computing a tag match, we can read the 4 data blocks corresponding
to the 4 ways of the set. Subsequently, in the case of a cache hit, and after we have computed
the matching entry in the tag array, we can choose the right data block using a multiplexer. In
this case, we are effectively overlapping some or all of the time required to read the blocks from
the data array with the tag computation, tag array access, and match operations. We leave the
resulting circuit as an exercise to the reader.

To conclude, we note that the set associative cache is by far the most common design for
caches. It has acceptable power consumption values and latencies for even very large caches.
The associativity of a set associative cache is typically 2, 4 or 8. A set with an associativity of
K is also known as a K − way associative cache.

Important Point 17 We need to answer a profound question while designing a set asso-
ciative cache. What should be the relative ordering of the set index bits and the ignored
bits? Should the ignored bits be towards the left (MSB) of the index bits, or towards the
right (LSB) of the index bits? In Figure 11.8, we have chosen the former option. What is
the logic behind this?
Answer: If we have the ignored bits to the left(MSB) of the index bits, then contiguous
blocks map to different sets. However, for the reverse case in which the ignored bits are to the
right(LSB) of the index bits, contiguous blocks map to the same set. Let us call the former
scheme NON-CONT, and the latter scheme CONT. We have chosen NON-CONT in
our design.

Let us consider two arrays, A, and B. Let the sizes of A and B be significantly smaller
than the size of the cache. Moreover, let some of their constituent blocks map to the same
group of sets. The figure below shows a conceptual map of the regions of the cache that store
both the arrays for the CONT and NON-CONT schemes. We observe that even though,
we have sufficient space in the cache, it is not possible to save both the arrays in the cache

525 © Smruti R. Sarangi

concurrently using the CONT scheme. Their memory footprints overlap in a region of the
cache, and it is not possible to save data for both the programs simultaneously in the cache.
However, the NON-CONT scheme tries to uniformly distribute the blocks across all the
sets. Thus, it is possible to save both the arrays in the cache at the same time.

Conflict

Cache locations occupied by A

Cache locations occupied by B

Ca
ch

e
lo

ca
tio

ns

This is a frequently occurring pattern in programs. The CONT scheme reserves an
entire area of the cache and thus it is not possible to accommodate other data structures
that map to conflicting sets. However, if we distribute the data in the cache, then we can
accommodate many more data structures and reduce conflicts.

Example 148
A cache has the following parameters in a 32-bit system.

Parameter Value

Size N
Associativity K
Block Size B

What is the size of the tag?
Answer:

• The number of bits required to specify a byte within a block is log(B).

• The number of blocks is equal to N/B, and the number of sets is equal to N/(BK).

• Thus, the number of set index bits is equal to: log(N)− log(B)− log(K).

© Smruti R. Sarangi 526

• The remaining number of bits are tag bits. It is equal to: 32 − (log(N) − log(B) −
log(K) + log(B)) = 32− log(N) + log(K).

11.2.3 Data read and data write Operations

The data read Operation

Once, we have established that a given block is present in a cache, we use the basic read operation
to get the value of the memory location from the data array. We establish the presence of a
block in a cache if the lookup operation returns a cache hit. If there is a miss in the cache, then
the cache controller needs to raise a read request to the lower level cache, and fetch the block.
The data read operation can start as soon as data is available.

The first step is to read out the block in the data array that corresponds to the matched tag
entry. Then, we need to choose the appropriate set of bytes out of all the bytes in the block.
We can use a set of multiplexers to achieve this. The exact details of the circuit are left to the
reader as an exercise.

Secondly, as described in Section 11.2.2, it is not strictly necessary to start the data read
operation after the lookup operation. We can have a significant overlap between the operations.
For example, we can read the tag array and data array in parallel. We can subsequently select
the right set of values using multiplexers after the matching tag has been computed.

The data write Operation

Before, we can write a value, we need to ensure that the entire block is already present
in the cache. This is a very important concept. Note that we cannot make an argument that
since we are creating new data, we do not need the previous value of the block. The reason
is as follows. We typically write 4 bytes or at the most 8 bytes for a single memory access.
However, a block is at least 32 or 64 bytes long. A block is an atomic unit in our cache. Hence,
we cannot have different parts of it at different places. For example, we cannot save 4 bytes of
a block in the L1 cache, and the rest of the bytes in the L2 cache. Secondly, for doing so, we
need to maintain additional state that keeps track of the bytes that have been updated with
writes. Hence, in the interest of simplicity, even if we wish to write just 1 byte, we need to
populate the cache with the entire block.

After that we need to write the new values in the data array by enabling the appropriate
set of word lines and bit lines. We can design a simple circuit to achieve this using a set of
demultiplexers. The details are left to the reader.

There are two methods of performing a data write – write-back and write-through. Write-
through is a relatively simpler scheme. In this approach, whenever we write a value into the
data array, we also send a write operation to the lower level cache. This approach increases
the amount of cache traffic. However, it is simpler to implement the cache because we do not
have to keep track of the blocks that have been modified after they were brought into the
cache. We can thus seamlessly evict a line from the cache if required. Here cache evictions and
replacements are simple, at the cost of writes. We shall also see in Chapter 12 that it is easy
to implement caches for mutiprocessors if the L1 caches follow a write-through protocol.

527 © Smruti R. Sarangi

In the write-back scheme, we explicitly keep track of blocks that have been modified using
write operations. We can maintain this information by using an additional bit in the tag array.
This bit is typically known as the modified bit. Whenever, we get a block from the lower level
of the memory hierarchy, the modified bit is 0. However, when we do a data write and update
the data array, we set the modified bit in the tag array to 1. Evicting a line requires us to
do extra processing that we shall describe in Section 11.2.6. For a write-back protocol, writes
are cheap, and evict operations are more expensive. The tradeoff here is the reverse of that in
write-through caches.

The structure of an entry in the tag array with the additional modified bit is shown in
Figure 11.10.

TagModified
 bit

Figure 11.10: An entry in the tag array with the modified bit

11.2.4 The insert Operation

In this section, we shall discuss the protocol to insert a block in a cache. This operation is
invoked when a block arrives from a lower level. We need to first take a look at all the ways
of the set that a given block is mapped to, and see if there are any empty entries. If there
are empty entries then we can choose one of the entries arbitrarily, and populate it with the
contents of the given block. If we do not find any empty entries, we need to invoke the replace
and evict operations to choose and remove an already existing block from the set.

We need to maintain some extra status information to figure out if a given entry is empty
or non-empty. In computer architecture parlance, these states are also known as invalid and
valid respectively. We need to store just 1 extra bit in the tag array to indicate the status of a
block. It is known as the valid bit. We shall use the tag array for saving additional information
regarding an entry, because it is smaller and typically faster than the data array.

The structure of an entry in the tag array with the addition of the valid bit is shown in
Figure 11.11.

The cache controller needs to check the valid bits of each of the tags while searching for
invalid entries. Note that all the entries of a cache are invalid initially. If an invalid entry is
found, then the corresponding entry in the data array can be populated with the contents of
the block. The entry subsequently becomes valid. However, if there is no invalid entry, then
we need to replace one entry with the given block that needs to be inserted into the cache.

11.2.5 The replace Operation

The task is here to find an entry in the set that can be replaced by a new entry. We do not
wish to replace an element that is accessed very frequently. This will increase the number of
cache misses. We ideally want to replace an element that has the least probability of being

© Smruti R. Sarangi 528

TagModified
 bit

Valid bit

Figure 11.11: An entry in the tag array with the modified, and valid bits

accessed in the future. However, it is difficult to predict future events. Hence, we need to make
reasonable guesses based on past behavior. We can have different policies for the replacement
of blocks in a cache. These are known as replacement schemes or replacement policies.

Definition 104
A cache replacement scheme or replacement policy is a method to replace an entry in the
set by a new entry.

Random Replacement Policy

The most trivial replacement policy is known as the random replacement policy. Here, we pick
a block at random and replace it. This scheme is very simple to implement. However, it is not
very optimal in terms of performance, because it does not take into account the behaviour of
the program and the nature of the memory access pattern. This scheme ends up often replacing
very frequently accessed blocks.

FIFO Replacement Policy

The next scheme is slightly more complicated, and is known as the FIFO (first in first out)
replacement policy. Here, the assumption is that the block that was brought into the cache at
the earliest point of time, is the least likely to be accessed in the future. To implement the
FIFO replacement policy, we need to add a counter to the tag array. Whenever, we bring in a
block, we assign it a counter value equal to 0. We increment the counter values for the rest of
the blocks. The larger is the counter, the earlier the block was brought into the cache.

Now to find a candidate for replacement, we need to find an entry with the largest value of
the counter. This must be the earliest block. Unfortunately, the FIFO scheme does not strictly
align with our principles of temporal locality. It penalises blocks that are present in the cache
for a long time. However, they may also be very frequently accessed blocks, and should not be
evicted in the first place.

Let us now consider the practical aspects of implementing a FIFO replacement policy. The
maximum size of the counter needs to be equal to the number of elements in a set, i.e., the

529 © Smruti R. Sarangi

associativity of the cache. For example, if the associativity of a cache is 8, we need to have a 3
bit counter. The entry that needs to be replaced should have the largest counter value.

Note that in this case, the process of bringing in a new value into the cache is rather expen-
sive. We need to increment the counters of all the elements in the set except one. However, cache
misses, are more infrequent as compared to cache hits. Hence, the overhead is not significant
in practice, and this scheme can be implemented without large performance overheads.

LRU Replacement Policy

The LRU (least recently used) replacement policy is known to be as one of the most efficient
schemes. The LRU scheme follows directly from the definition of stack distance. We ideally
want to replace a block that has the lowest chance of being accessed in the future. According
to the notion of stack distance, the probability of being accessed in the future is related to the
probability of accesses in the recent past. If a processor has been accessing a block frequently
in the last window of n (n is not a very large number) accesses, then there is a high probability
that the block will be accessed in the immediate future. However, if the last time that a block
was accessed is long back in the past, then the chances are unlikely that it will be accessed
soon.

In the LRU replacement policy, we maintain the time that a block was last accessed. We
choose the block that was last accessed at the earliest point of time as a candidate for replace-
ment. In a hypothetical implementation of a LRU replacement policy, we maintain a timestamp
for every block. Any time that a block is accessed, its timestamp is updated to match the cur-
rent time. For finding an appropriate candidate for replacement, we need to find the entry with
the smallest timestamp in a set.

Let us now consider the implementation of an LRU scheme. The biggest issue is that
we need to do additional work for every read and write access to the cache. There will be
a significant performance impact because typically 1 in 3 instructions are memory accesses.
Secondly, we need to dedicate bits to save a timestamp that is sufficiently large. Otherwise,
we need to frequently reset the timestamps of every block in a set. This process will induce
a further slowdown, and additional complexity in the cache controller. Implementing an LRU
scheme that is as close to an ideal LRU implementation as possible, and that does not have
significant overheads, is thus a difficult task.

Hence, let us try to design LRU schemes that use small timestamps (typically 1-3 bits), and
approximately follow the LRU policy. Such kind of schemes are called pseudo-LRU schemes.
Let us outline a simple method for implementing a basic pseudo-LRU scheme. Note that we can
have many such approaches, and the reader is invited to try different approaches and test them
on a cache simulator such as Dinero [Edler and Hill, 1999], or sim-cache [Austin et al., 2002].
Instead of trying to explicitly mark the least recently used element, let us try to mark the more
recently used elements. The elements that are not marked will automatically get classified as
the least recently used elements.

Let us start out by associating a counter with each block in the tag array. Whenever, a
block is accessed (read/write), we increment the counter. However, once the counter reaches the
maximum value, we stop incrementing it further. For example, if we use a 2-bit counter, then
we stop incrementing the counter beyond 3. Now, we need to do something more. Otherwise,
the counter associated with every block will ultimately reach 3 and stay there. To solve this

© Smruti R. Sarangi 530

problem, we can periodically decrement the counters of every block in a set by 1, or we can even
reset them to 0. Subsequently, some of the counters will start increasing again. This procedure
will ensure that for most of the time, we can identify the least recently used blocks by taking a
look at the value of counters. The block associated with the lowest value of the counter is one
of the least recently used blocks, and most likely “the most least recently used block”. Note
that this approach does involve some amount of activity per access. However, incrementing a
small counter has little additional overhead. Secondly, it is not in the critical path in terms of
timing. It can be done in parallel or sometime later also. Finding a candidate for replacement
involves looking at all the counters in a set, and finding the block with the lowest value of the
counter. After we replace the block with a new block, most processors typically set the counter
of the new block to the largest possible value. This indicates to the cache controller, that the
new block should have the least priority with respect to being a candidate for replacement.

11.2.6 The evict Operation

Lastly, let us take a look at the evict operation. If the cache follows a write-through policy,
then nothing much needs to be done. The block can simply be discarded. However, if the cache
follows a write-back policy, then we need to take a look at the modified bit. If the data is not
modified, then it can be seamlessly evicted. However, if the data has been modified, then it
needs to written back to the lower level cache.

11.2.7 Putting all the Pieces Together

Cache Read Operation

lookup

data read

lookup

miss

Lower level
cache

hit

replaceinsert evict

read block

insert

Time

Lower level
cache

if write
back cache

Figure 11.12: The read operation

The sequence of steps in a cache read operation is shown in Figure 11.12. We start with a
lookup operation. As mentioned in Section 11.2.2, we can have a partial overlap between the
lookup and data read operations. If there is a cache hit, then the cache returns the value to the
processor, or the higher level cache (whichever might be the case). However, if there is a cache
miss, then we need to cancel the data read operation, and send a request to the lower level
cache. The lower level cache will perform the same sequence of accesses, and return the entire
cache block (not just 4 bytes). The cache controller can then extract the requested data from

531 © Smruti R. Sarangi

the block, and send it to the processor. Simultaneously, the cache controller invokes the insert
operation to insert the block into the cache. If there is an invalid entry in the set, then we can
replace it with the given block. However, if all the ways in a set are valid, it is necessary to
invoke the replace operation to find a candidate for replacement. The figure appends a question
mark with this operation, because this operation is not invoked all the time (only when all the
ways of a set contain valid data). Then, we need to evict the block, and possibly write it to
the lower level cache if the line is modified, and we are using a write-back cache. The cache
controller then invokes the insert operation. This time it is guaranteed to be successful.

Cache Write Operation (write-back Cache)

lookup

data writehit

lookup

miss

Lower level
cache

replaceinsert evict

Lower level
cache

insert
write
block

Time

Figure 11.13: The write operation (write-back Cache)

Figure 11.13 shows the sequence of operations for a cache write operation for a write-back
cache. The sequence of operations are roughly similar to that of a cache read. If there is a
cache hit, then we invoke a data write operation, and set the modified bit to 1. Otherwise,
we issue a read request for the block to the lower level cache. After the block arrives, most
cache controllers typically store it in a small temporary buffer. At this point, we write the
4 bytes (that we are interested in) to the buffer, and return. In some processors, the cache
controller might wait till all the sub-operations complete. After writing into the temporary
buffer (write block operation in Figure 11.13), we invoke the insert operation for writing the
contents (modified) of the block. If this operation is not successful (because all the ways are
valid), then we follow the same sequence of steps as the read operation (replace, evict, and
insert).

Cache Write Operation (write-through Cache)

Figure 11.14 shows the sequence of operations for a write-through cache. The first point of
difference is that we write the block to the lower level, even if the request hits in the cache.
The second point of difference is that after we write the value into the temporary buffer (after
a miss), we write back the new contents of the block to the lower level cache also. The rest of
the steps are similar to the sequence of steps that we followed for the write-back cache.

© Smruti R. Sarangi 532

lookup

data writehit lookup

miss

Lower level
cache

replaceinsert evict

Lower level
cache

insert
write
block

Time

Figure 11.14: The write operation (write-through Cache)

11.3 The Memory System

We now have a fair understanding of the working of a cache, and all its constituent operations.
A memory system is built using a hierarchy of caches as mentioned in Section 11.1.7. The
memory system as a whole supports two basic operations: read, and write, or alternatively, load
and store.

L1 Data
cache

L2 cache

Main memory

Memory system

Instruction
cache

Figure 11.15: The memory system

We have two caches at the highest level – The data cache (also referred to as the L1 cache),
and the instruction cache (also referred to as the I Cache). Almost all the time both of them
contain different sets of memory locations. The protocol for accessing the I Cache and L1 cache
is the same. Hence, to avoid repetition let us just focus on the L1 cache from now on. The
reader needs to just remember that accesses to the instruction cache follow the same sequence
of steps.

The processor starts by accessing the L1 cache. If there is a L1 hit, then it typically receives
the value within 1-2 cycles. Otherwise, the request needs to go to the L2 cache, or possibly
even lower levels such as the main memory. In this case, the request can take tens or hundreds
of cycles. In this section, we shall look at the system of caches in totality, and treat them as
one single black box referred to as the memory system.

533 © Smruti R. Sarangi

If we consider inclusive caches, which is the convention in most commercial systems, the total
size of the memory system is equal to the size of the main memory. For example, if a system has
1 GB of main memory, then the size of the memory system is equal to 1 GB. It is possible that
internally, the memory system might have a hierarchy of caches for improving performance.
However, they do not add to the total storage capacity, because they only contain subsets of
the data contained in main memory. Moreover, the memory access logic of the processor also
views the entire memory system as a single unit, conceptually modelled as a large array of
bytes. This is also known as the physical memory system, or the physical address space.

Definition 105
The physical address space comprises of the set of all memory locations contained in the
caches, and main memory.

11.3.1 Mathematical Model of the Memory System

Performance

The memory system can be thought of as a black box that just services read and write requests.
The time a request takes is variable. It depends on the level of the memory system at which
the request hits. The pipeline is attached to the memory system in the memory access (MA)
stage, and issues requests to it. If the reply does not come within a single cycle, then additional
pipeline bubbles need to be introduced in our 5 stage SimpleRisc in-order pipeline.

Let the average memory access time be AMAT (measured in cycles), and the fraction of
load/store instructions be fmem. Then the CPI can be expressed as:

CPI = CPIideal + stall rate ∗ stall cycles
= CPIideal + fmem × (AMAT − 1)

(11.1)

CPIideal is the CPI assuming a perfect memory system having a 1 cycle latency for all
accesses. Note that in our 5 stage in-order pipeline the ideal instruction throughput is 1
instruction per cycle, and the memory stage is allotted 1 cycle. In practice, if a memory
access takes n cycles, then we have n − 1 stall cycles, and they need to be accounted for by
Equation 11.1. In this equation, we implicitly assume that every memory access suffers a stall
for AMAT − 1 cycles. In practice this is not the case since most of the instructions will hit in
the L1 cache, and the L1 cache typically has a 1 cycle latency. Hence, accesses that hit in the
L1 cache will not stall. However, long stall cycles will be introduced by accesses that miss in
the L1 and L2 caches.

Nonetheless, Equation 11.1 still holds because we are only interested in the average CPI for
a large number of instructions. We can derive this equation by considering a large number of
instructions, summing up all the memory stall cycles, and computing the average number of
cycles per instruction.

© Smruti R. Sarangi 534

Average Memory Access Time

In Equation 11.1, CPIideal is determined by the nature of the program and the nature of the
other stages (other than MA) of the pipeline. fmem is also an inherent property of the program
running on the processor. We need a formula to compute AMAT . We can compute it in a way
similar to Equation 11.1.

Assuming, a memory system with an L1 and L2 cache, we have:

AMAT = L1hit time + L1miss rate × L1miss penalty

= L1hit time + L1miss rate × (L2hit time + L2miss rate × L2miss penalty)
(11.2)

All the memory accesses need to access the L1 cache irrespective of a hit or a miss. Hence,
they need to incur a delay equal to L1hit time. A fraction of accesses, L1miss rate, will miss in
the L1 cache, and move to the L2 cache. Here also, irrespective of a hit or a miss, we need
to incur a delay of L2hit time cycles. If a fraction of accesses (L2miss rate) miss in the L2 cache,
then they need to proceed to main memory. We have assumed that all the accesses hit in the
main memory. Hence, the L2miss penalty is equal to the main memory access time.

Now, if we assume that we have a n level memory system where the first level is the L1
cache, and the last level is the main memory, then we can use a similar equation.

AMAT = L1hit time + L1miss rate × L1miss penalty

L1miss penalty = L2hit time + L2miss rate × L2miss penalty

L2miss penalty = L3hit time + L3miss rate × L3miss penalty

. . . = . . .

L(n− 1)miss penalty = Lnhit time

(11.3)

We need to note that the miss rate used in these equations for a certain level i is equal to
the number of accesses that miss at that level divided by the total number of accesses to that
level. This is known as the local miss rate. In comparison, we can define a global miss rate for
level i, which is equal to the number of misses at level i divided by the total number of memory
accesses.

Definition 106

local miss rate It is equal to the number of misses in a cache at level i divided by the total
number of accesses at level i.

global miss rate It is equal to the number of misses in a cache at level i divided by the
total number of memory accesses.

Let us take a deeper look at Equation 11.1. We observe that we can increase the performance
of a system by either reducing the miss rate, the miss penalty or by decreasing the hit time.
Let us first look at the miss rate.

535 © Smruti R. Sarangi

11.3.2 Cache Misses

Classification of Cache Misses

Let us first try to categorise the different kinds of misses in a cache.

The first category of misses are known as compulsory misses or cold misses. These misses
happen, when data is loaded into a cache for the first time. Since the data values are not there
in the cache, a miss is bound to happen. The second category of cache misses are known as
capacity misses. We have a capacity miss, when the amount of memory required by a program
is more than the size of the cache. For example, let us assume that a program repeatedly
accesses all the elements of an array. The size of the array is equal to 1 MB, and the size of
the L2 cache is 512 KB. In this case, there will be capacity misses in the L2 cache, because
it is too small to hold all the data. The set of blocks that a program accesses in a typical
interval of time is known as its working set. We can thus alternatively say that conflict misses
happen when the size of the cache is smaller than the working set of the program. Note that the
definition of the working set is slightly imprecise because the length of the interval is considered
rather subjectively. However, the connotation of the time interval is that it is a small interval
compared to the total time of execution of the program. Nevertheless, it is large enough to
ensure that the behaviour of the system achieves a steady state. The last category of misses
are known as conflict misses. These misses occur in direct mapped and set associative caches.
Let us consider a 4 way set associative cache. If there are 5 blocks that map to the same set
in the working set of a program, then we are bound to have cache misses. This is because the
number of blocks accessed is larger than the maximum number of entries that can be part of a
set. These misses are known as conflict misses.

Definition 107
The memory locations accessed by a program in a short interval of time comprise the working
set of the program at that point of time.

The categorisation of misses into these three categories – compulsory, capacity, and conflict
– is also known as the three ’C’s.

Reduction of the Miss Rate

To sustain a high IPC, it is necessary to reduce the cache miss rate. We need to adopt different
strategies to reduce the different kinds of cache misses.

Let us start out with compulsory misses. We need a method to predict the blocks that will be
accessed in the future, and fetch the blocks in advance. Typically schemes that leverage spatial
locality serve as effective predictors. Hence, increasing the block size should prove beneficial in
reducing the number of compulsory misses. However, increasing the block size beyond a certain
limit can have negative consequences also. It reduces the number of blocks that can be saved
in a cache, and secondly the additional benefit might be marginal. Lastly, it will take more
time to read and transfer bigger blocks from the lower levels of the memory system. Hence,
designers avoid very large block sizes. Any value between 32-128 bytes is reasonable.

© Smruti R. Sarangi 536

Modern processors typically have sophisticated predictors that try to predict the addresses
of blocks that might be accessed in the future based on the current access pattern. They
subsequently fetch the predicted blocks from the lower levels of the memory hierarchy in an
attempt to reduce the miss rate. For example, if we are sequentially accessing the elements
of a large array, then it is possible to predict the future accesses based on the access pattern.
Sometimes we access elements in an array, where the indices differ by a fixed value. For example,
we might have an algorithm that accesses every fourth element in an array. In this case also, it is
possible to analyse the pattern and predict future accesses because the addresses of consecutive
accesses differ by the same value. Such kind of a unit is known as a hardware prefetcher. It
is present in most modern processors, and uses sophisticated algorithms to “prefetch” blocks
and consequently reduce the miss rate. Note that the hardware prefetcher should not be very
aggressive. Otherwise, it will tend to displace more useful data from the cache than it brings
in.

Definition 108
A hardware prefetcher is a dedicated hardware unit that predicts the memory accesses in the
near future, and fetches them from the lower levels of the memory system.

Let us now consider capacity misses. The only effective solution is to increase the size of the
cache. Unfortunately, the cache design that we have presented in this book requires the size of
the cache to be equal to a power of two (in bytes). It is possible to violate this rule by using
some advanced techniques. However, by and large most of the caches in commercial processors
have a size that is a power of two. Hence, increasing the size of a cache is tantamount to at
least doubling its size. Doubling the size of a cache requires twice the area, slows it down, and
increases the power consumption. Here again, prefetching can help if used intelligently and
judiciously.

The classical solution to reduce the number of conflict misses is to increase the associativity
of a cache. However, increasing the associativity of a cache increases the latency and power
consumption of the cache also. Consequently, it is necessary for designers to carefully balance
the additional hit rate of a set associative cache, with the additional latency. Sometimes, it is
the case that there are conflict misses in a few sets in the cache. In this case, we can have a
small fully associative cache known as the victim cache along with the main cache. Any block
that is displaced from the main cache, can be written to the victim cache. The cache controller
needs to first check the main cache, and if there is a miss, then it needs to check the victim
cache, before proceeding to the lower level. A victim cache at level i can thus filter out some
of the requests that go to level (i+ 1).

Note that along with hardware techniques, it is possible to write programs in a “cache
friendly” way. These methods can maximise temporal and spatial locality. It is also possible
for the compiler to optimise the code for a given memory system. Secondly, the compiler can
insert prefetching code such that blocks can be prefetched into the cache before they are actually
used. Discussion of such techniques are beyond the scope of this book.

Let us now quickly mention two rules of thumb. Note that these rules are found to approx-
imately hold empirically, and are by no means fully theoretically justified. The first is known

537 © Smruti R. Sarangi

as the Square Root Rule [Hartstein et al., 2006]. It says that the miss rate is proportional to
the square root of the cache size.

miss rate ∝ 1√
cache size

[SquareRootRule] (11.4)

Hartstein et. al. [Hartstein et al., 2006] try to find a theoretical justification for this rule, and
explain the basis of this rule by using results from probability theory. From their experimental
results, they arrive at a generic version of this rule that says that the exponent of the cache
size in the Square Root Rule varies from -0.3 to -0.7.

The other rule is known as the “Associativity Rule”. It states that the effect of doubling
associativity is almost the same as doubling the cache size with the original associativity. For
example, the miss rate of a 64 KB 4-way associative cache is almost the same as that of a 128
KB 2-way associative cache.

We would further like to caution the reader that the Associativity Rule and the Square
Root Rule are just thumb rules, and do not hold exactly. They can be used as mere conceptual
aids. We can always construct examples that violate these rules.

11.3.3 Reduction of Hit Time and Miss Penalty

Hit Time

The average memory access time can also be reduced by reducing the hit time and the miss
penalty. To reduce the hit time, we need to use small and simple caches. However, by doing
so, we increase the miss rate also.

Miss Penalty

Processor

L1 cache Write
buffer

L2 cache

Figure 11.16: Write buffer

Let us now discuss ways to reduce the miss penalty. Note that the miss penalty at level i,
is equal to the memory latency of the memory system starting at level (i+ 1). The traditional

© Smruti R. Sarangi 538

methods for reducing hit time, and miss rate can always be used to reduce the miss penalty at a
given level. However, we are looking at methods that are exclusively targeted towards reducing
the miss penalty. Let us first look at write misses in the L1 cache. In this case the entire block
has to be brought into the cache from the L2 cache. This takes time (> 10 cycles), and secondly
unless the write has completed, the pipeline cannot resume. Hence, processor designers use a
small set associative cache known as a write buffer as shown in Figure 11.16. The processor
can write the value to the write buffer, and then resume, or alternatively, it can write to the
write buffer only if there is a miss in the L1 cache (as we have assumed). Any subsequent read
needs to check the write buffer along with accessing the L1 cache. This structure is typically
very small and fast (4-8 entries). Once, the data arrives in the L1 cache, the corresponding
entry can be removed from the write buffer. Note that if a free entry is not available in the
write buffer, then the pipeline needs to stall. Secondly, before the write miss has been serviced
from the lower levels of the cache, it is possible that there might be another write to the same
address. This can be seamlessly handled by writing to the allocated entry for the given address
in the write buffer.

Let us now take a look at read misses. Let us start out by observing that the processor
is typically interested in only up to 4 bytes per memory access. The pipeline can resume if it
is provided those crucial 4 bytes. However, the memory system needs to fill the entire block
before the operation can complete. The size of a block is typically between 32-128 bytes. It
is thus possible to introduce an optimisation here, if the memory system is aware of the exact
set of bytes that the processor requires. In this case, the memory system can first fetch the
memory word (4 bytes) that is required. Subsequently, or in parallel it can fetch the rest of
the block. This optimisation is known as critical word first. Then, this data can be quickly
sent to the pipeline such that it can resume its operation. This optimisation is known as early
restart. Implementing both of these optimisations increases the complexity of the memory
system. However, critical word first and early restart are fairly effective in reducing the miss
penalty.

11.3.4 Summary of Memory System Optimisation Techniques

Table 11.2 shows a summary of the different techniques that we have introduced to optimise
the memory system. Note that every technique has some negative side effects. If a technique
improves the memory system in one aspect, then it is detrimental in some other aspect. For
example, by increasing the cache size we reduce the number of capacity misses. However, we
also increase the area, latency, and power.

To summarise, we can conclude that it is necessary to design the memory system very
carefully. The requirements of the target workload have to be carefully balanced with the
constraints placed by the designers, and the limits of manufacturing technology. We need
to maximise performance, and at the same time be mindful of power, area, and complexity
constraints.

11.4 Virtual Memory

Up till now, we have considered only one program in our system. We have designed our
entire system using this assumption. However, this assumption is not correct. For example,

539 © Smruti R. Sarangi

Technique Application Disadvantages

large block size compulsory
misses

reduces the number of blocks
in the cache

prefetching compulsory
misses, capacity
misses

extra complexity and the
risk of displacing useful data
from the cache

large cache size capacity misses high latency, high power,
more area

increased associativity conflict misses high latency, high power

victim cache conflict misses extra complexity

compiler based all types of misses not very generic
techniques

small and simple cache hit time high miss rate

write buffer miss penalty extra complexity

critical word first miss penalty extra complexity and state

early restart miss penalty extra complexity

Table 11.2: Summary of different memory system optimisation techniques

at the moment there are 232 programs running on your author’s workstation. The reader can
easily find out the number of programs running on her system by opening the Task Manger
on Windows, or by entering the command “ps -ef” on a Linux or a Macintosh system. It is
possible for one processor to run multiple programs by switching between different programs
very quickly. For example, while a user is playing a game, her processor might be fetching her
new email. The reason she does not feel any interruption, is because the time scale at which the
processor switches back and forth between programs (typically several milliseconds) is much
smaller than what humans can perceive.

Secondly, we have assumed up till now that all the data that a program needs is resident in
main memory. However, this assumption is also not correct. Back in the old days, the size of
main memory used to be several megabytes, whereas, users could run very large programs that
needed hundreds of megabytes of data. Even now, it is possible to work with data that is much
larger than the amount of main memory. Readers can easily verify this statement, by writing
a C program that creates data structures that are larger than the amount of physical memory
contained in their machine. In most systems, this C program will compile and run successfully.

We shall see in this section that by making a small change in the memory system, we can
satisfy both of these requirements.

11.4.1 Process – A Running Instance of a Program

Up till now, we have assumed the existence of only one program in the system. We assumed
that it was in complete control of the memory system, and the processor pipeline. However,
this is not the case in practice.

Let us first start out by accurately defining the notion of a process and differentiating it from
a program. Up till now we have been loosely using the term – program – and sometimes using

© Smruti R. Sarangi 540

it in place of a process. A program is an array of bytes and is saved as a file in the file system.
The file is typically known as a binary or as an executable. The executable contains some meta
data about the program such that its name and type, the constants used by the program, and
the set of instructions. In comparison, a process is a running instance of a program. If we run
one program several times, we create multiple processes. A process has access to the processor,
peripheral devices, and the memory system. There is a dedicated area in the memory system
that contains the data and code of the process. The program counter of the processor points
to a given location in the code region of the process in memory when the process is executing.
Memory values required by the process are obtained from its data region in the memory system.
The operating system starts and ends a process, and manages it throughout its lifetime.

Definition 109
A process is a running instance of a program.

Operating System

Most of our readers must have heard of the term operating system. Most people mostly view
an operating system such as Windows, Linux, or Mac OS X from the point of view of its user
interface. However, this is a minor aspect of the operating system. It does many more things
invisibly. Let us look at some of its important functionalities.

The operating system consists of a set of dedicated programs that manage the machine,
peripheral devices, and all the processes running on the machine. Furthermore, the operating
system facilitates efficient transfer of information between the hardware and software compo-
nents of a computer system. The core component of an operating system is known as the kernel.
Its main role is to manage the execution of processes, and manage memory. We shall look at
the memory management aspect in Section 11.4.5. Let us now look at the process management
aspect.

To run a program, a user needs to compile the program, and then either double click the
program, or write the name of the program in the command line, and click the “enter” button.
Once, this is done, the control passes to the operating system kernel. A component of the
kernel known as the loader reads the content of the program, and copies it to a region in the
memory system. Notably, it copies all the instructions in the text section, allocates space for all
the data, and initialises memory with all the constants that a program will require during its
execution. Subsequently, it initialises the values of registers, copies command line arguments
to the stack, possibly initialises the stack pointer, and jumps to the entry point of the program.
The user program can then begin to execute, in the context of a running process. Every process
has a unique number associated with it. It is known as the pid (process id). After completion,
it is the kernel’s job to tear down the process, and reclaim all of its memory.

The other important aspect of process management is scheduling. A dedicated component
of the kernel manages all the processes, including the kernel itself, which is a special process.
It typically runs each process for a certain amount of time, and then switches to another
process. As a user, we typically do not perceive this because every second, the kernel switches
between processes hundreds of times. The time interval is too small for us to detect. However,

541 © Smruti R. Sarangi

behind the scenes, the kernel is busy at work. For example, it might be running a game for
sometime, running a program to fetch data from the network for some time, and then running
some of its own tasks for sometime. The kernel also manages aspects of the file system, inter-
process communication, and security. The discussion of such topics is beyond the scope of
this book. The reader is referred to textbooks on operating systems such as the book by
Tanenbaum [Tanenbaum, 2007] or Silbserchatz and Galvin [Silberschatz et al., 2008].

The other important components in an operating system are device drivers, and system
utilities. Device drivers are dedicated programs that communicate with dedicated devices and
ensure the seamless flow of information between them and user processes. For example, a
printer and scanner have dedicated device drivers that make it possible to print and scan
documents, respectively. Network interfaces have dedicated device drivers that allow us to
exchange messages over the internet. Lastly, system utilities provide generic services to all
the processes such as file management, device management (Control Panel in Windows), and
security.

Definition 110

Operating System The operating system consists of a set of dedicated programs that man-
age the machine, peripheral devices, and the processes running on it. It facilitates the
transfer of information between the hardware and software components of a computer
system.

Kernel The kernel is a program that is the core of the operating system. It has complete
control over the rest of the processes in the operating system, the user processes, the
processor, and all external devices. It mainly performs the task of managing multiple
processes, devices, and filesystems.

Process Management The two important components in the kernel to perform process
management are the loader, and the scheduler. The loader creates a process out of
a program by transferring its contents to memory, and setting up the appropriate
execution environment. The scheduler schedules the execution of multiple processes
including that of the kernel itself.

Device Drivers These dedicated programs help the kernel and user processes communicate
with devices.

System Utilities These are generic services provided by the operating system such as the
print queue manager and file manager. They can be used by all the processes in the
system.

© Smruti R. Sarangi 542

Virtual ‘View’ of Memory

Since multiple processes are live at the same point of time. It is necessary to partition the
memory between processes. If this is not done, then it is possible that processes might end
up modifying each others’ values. At the same time, we do not want the programmer or
the compiler to be aware of the existence of multiple processes. This introduces unwanted
complexity. Secondly, if a given program is compiled with a certain memory map, it might not
run on another machine that has a process with an overlapping memory map. Even worse, it
will not be possible to run two copies of the same program. Hence, it is essential that each
program sees a virtual view of memory, in which it assumes that it owns the entire memory
system.

As we can observe, there are two conflicting requirements. The memory system, and the
operating system want different processes to access different memory addresses, whereas, the
programmer and the compiler do not want to be aware of this requirement. Additionally, the
programmer wishes to layout her memory map according to her wish. It turns out that there
is a method to make both the programmer and the operating system happy.

We need to define a virtual and a physical view of of memory. In the physical view of
memory, different processes operate in non-overlapping regions of the memory space. However,
in the virtual view, every process accesses any address that it wishes to access, and the virtual
views of different processes can overlap. The solution is obtained through a method called
paging that we shall explain in Section 11.4.3. However, before proceeding to the solution, let
us discuss the virtual view of memory that a process typically sees. The virtual view of memory,
is also referred to as virtual memory. It is defined as a hypothetical memory system, in which
a process assumes that it owns the entire memory space, and there is no interference from any
other process.

Definition 111
The virtual memory system is defined as a hypothetical memory system, in which a process
assumes that it owns the entire memory space, and there is no interference from any other
process. The size of the memory is as large as the total addressable memory of the system.
For example, in a 32-bit system, the size of virtual memory is 232 bytes (4 GB). The set of
all memory locations in virtual memory is known as the virtual address space.

In the virtual memory space, the operating system lays out the code and data in different
regions. This arrangement of code, data, constants, and other information pertaining to a
process is known as the memory map.

Definition 112
The memory map of a process refers to the way an operating system lays out the code and
data in memory.

543 © Smruti R. Sarangi

Memory Map of a Process

Header
0

0x08048000

Text

Data
Static variables

with initial values

Bss
Static variables not

initialised, filled with zeros

Heap

Memory mapping
segment

Stack
0xC0000000

Figure 11.17: Memory map of a process in the Linux operating system (32 bits)

Figure 11.17 shows a simplified view of the memory map of a process in the 32-bit Linux
operating system. Let us start from the bottom (lowest address). The first section contains
the header. It starts out with details about the process, its format, and the target machine.
Subsequently, the header contains the details of each section in the memory map. For example,
it contains the details of the text section that contains the code of the program including its
size, starting address, and additional attributes. The text section starts after the header. The
operating system sets the program counter to the start of the text section while loading a
program. All the instructions in a program are typically contained within the text section.
The text section is followed by two more sections that are meant to contain static and global
variables. Optionally some operating systems, also have an additional area to contain read only
data such as constants.

The text section is typically followed by the data section. It contains all the static/global
variables that have been initialised by the programmer. Let us consider a declaration of the
form (in C or C++):

static int val = 5;

Here the 4 bytes corresponding to the variable – val – are saved in the data section. The
data section is followed by the bss section. The bss section saves static and global variables

© Smruti R. Sarangi 544

that have not been explicitly initialised by the programmer. Most operating systems, fill the
memory area corresponding to the bss section with zeros. This needs to be done in the interest
of security. Let us assume that program A runs and writes its values in the bss section.
Subsequently, program B runs. Before, writing to a variable in the bss section, B can always
try to read its value. In this case, it will get the value written by program A. However, this
is not desirable behavior. Program A might have saved some sensitive data in the bss section
such as a password or a credit card number. Program B can thus gain access to this sensitive
data without program A’s knowledge, and possibly misuse the data. Hence, it is necessary to
fill up the bss section with zeros such that such kind of security lapses do not happen.

The bss section is followed by a memory area known as the heap. The heap area is used
to save dynamically allocated variables in a program. C programs typically allocate new data
with the malloc call. Java and C++ use the new operator. Let us look at some examples.

int *intarray = (int *)malloc(10 * sizeof(int)); [C]

int *intarray = new int[10]; [C++]

int[] intarray = new int[10]; [Java]

Note that in these languages, dynamically allocating arrays is very useful because their sizes
are not known at compile time. The other advantage of having data in the heap is that they
survive across function calls. The data in the stack remains valid for only the duration of the
function call. After that it gets deleted. However, data in the heap stays for the entire life
of the program. It can be used by all the functions in the program, and pointers to different
data structures in the heap can be shared across functions. Note that the heap grows upward
(towards higher addresses). Secondly, managing the memory in a heap is a fairly difficult task.
This is because dynamically, regions of the heap are allocated with malloc/new calls and freed
with the free/delete calls in high level languages. Once an allocated memory region is freed, a
hole gets created in the memory map. It is possible to allocate some other data structure in the
hole if its size is less than the size of the hole. In this case, another smaller hole gets created in
the memory map. Over time as more and more data structures are allocated and de-allocated,
the number of holes tend to increase. This is known as fragmentation. Hence, it is necessary
to have an efficient memory manager that can reduce the number of holes in the heap. A view
of the heap with holes, and allocated memory is shown in Figure 11.18.

The next segment is reserved for storing data corresponding to memory mapped files, and
dynamically linked libraries. Most of the time, operating systems transfer the contents of a file
(such as a music, text, or video file) to a memory region, and treat the contents of the file as a
regular array. This memory region is referred to as a memory mapped file. Secondly, programs
might occasionally read the contents of other programs (referred to as libraries) dynamically,
and transfer the contents of their text sections to their memory map. Such libraries are known
as dynamically linked libraries, or dlls. The contents of such memory mapped structures are
stored in a dedicated section in the process’s memory map.

The next section is the stack, which starts from the top of the memory map and grows
downwards (towards smaller addresses) as discussed in Section 3.3.10. The stack continuously
grows and shrinks depending on the behavior of the program. Note that Figure 11.17 is not
drawn to scale. If we consider a 32-bit memory system, then the total amount of virtual memory
is 4 GB. However, the total amount of memory that a program might use is typically limited to

545 © Smruti R. Sarangi

Heap

Allocated
memory regions

Figure 11.18: The memory map of a heap

hundreds of megabytes. Hence, there is a massive empty region in the map between the start
of the heap and stack sections.

Note that the operating system needs to run very frequently. It needs to service device
requests, and perform process management. As we shall see in Section 11.4.3 changing the
virtual view of memory from process to process is slightly expensive. Hence, most operating
systems partition the virtual memory between a user process and the kernel. For example,
Linux gives the lower 3GB to a user process, and keeps the upper 1 GB for the kernel. Similarly,
Windows keeps the upper 2GB for the kernel, and the lower 2 GB for user processes. Hence, it
is not necessary to change the view of memory as the processor transitions from the user process
to the kernel. Secondly, this small modification does not greatly impair the performance of a
program because 2GB or 3GB is much more than the typical memory footprint of a program.
Moreover, this trick does not also conflict with our notion of virtual memory. A program just
needs to assume that it has a reduced memory space (reduced from 4GB to 3GB in the case of
Linux). Refer to Figure 11.19.

User programs

OS kernel

3 GB

1 GB

User programs

OS kernel

2 GB

2 GB

Linux Windows

Figure 11.19: The memory map – user and kernel

© Smruti R. Sarangi 546

11.4.2 The “Overlap” and “Size” Problems

Let us summarise all our discussion up till now. We basically want to solve two problems.

Overlap Problem Programmers and compilers write a program assuming that they own the
entire memory space and they can write to any location at will. Unfortunately, the same
assumption is made by all processes that are simultaneously active. Unless steps are taken,
they may end up inadvertently writing to each other’s memory space and corrupting each
other’s data. In fact, given that they use the same memory map, the chances of this
happening in a naive system are extremely high. The hardware somehow needs to ensure
that different processes are isolated from each other. This is the overlap problem.

Size Problem Occasionally we need to run processes that require more memory than the
available physical memory. It is desirable if some space in other storage media such as
the hard disk can be repurposed for storing the memory footprint of a process. This is
known as the size problem.

Any implementation of virtual memory needs to effectively solve the size and overlap prob-
lems.

11.4.3 Implementation of Virtual Memory with Paging

To balance the requirements of the processor, operating system, compiler, and programmer we
need to design a translation system that can translate the address generated by a process into an
address that the memory system can use. By using a translator, we can satisfy the requirements
of the programmer/compiler, who need virtual memory, and the processor/memory system, who
need physical memory. A translation system is similar to what a translator in real life would
do. For example, if we have a Russian delegation visiting Dubai, then we need a translator who
can translate Russian to Arabic. Both the sides can then speak their own language, and thus
be happy. A conceptual diagram of the translation system is shown in Figure 11.20.

Address
translation
system

Physical
address

Virtual
address

Figure 11.20: Address translation system

Let us now try to design this address translation system. Let us first succinctly list the
requirements that a program and compiler place on the nature of virtual memory.

1. Any address in the range of valid addresses should be accessible. For example, in a Linux
based machine, a process’s virtual memory size is limited to 3 GB. Hence, it should be
possible to access any address in this range.

2. The virtual memory should be perceived as one contiguous memory space where the entire
space is available to the program.

547 © Smruti R. Sarangi

3. Unless explicitly desired by the program, there should be no interference from any other
program.

Here are the requirements from the side of the memory system.

1. Different programs should access non-overlapping sets of addresses.

2. A program cannot be allotted a large continuous chunk of memory addresses. This will
cause a high degree of wastage in space due to fragmentation.

3. If the total amount of physical memory is less than the size of the virtual memory, then
there should be additional storage space available to support programs that require more
space than the total amount of physical memory.

Let us now try to satisfy these requirements by designing a translation system that takes
an address as specified in the program, and translates it to a real address that can be presented
to the memory system. The address specified in the program is known as the virtual address,
and the address sent to the memory system is known as the physical address.

Definition 113

Virtual Address An address specified by the program in the virtual address space.

Physical Address An address presented to the memory system after address translation.

We can trivially achieve a translation system by uniquely mapping every virtual address
to a physical address at the level of every byte or memory word (4 bytes). In this case, the
program perceives one contiguous memory space. Secondly, we need to only map those virtual
addresses that are actually used by the program. If a program actually requires 3 MB of space,
then we end up using only 3 MB of physical memory. Whenever, the process requires a new set
of bytes that have not been already mapped, a smart memory management unit can allocate
new space in physical memory. Lastly, note that it is necessary for every memory access to pass
through this translation system.

Even though our basic translation system satisfies all our requirements, it is not efficient.
We need to maintain a large table that maps every byte in the virtual address space to a byte
in the physical address space. This mapping table between the virtual and physical addresses
will be very large and slow. It is also not a very power efficient scheme. Secondly, our scheme
does not take advantage of spatial and temporal locality. Hence, let us try to make our basic
system more efficient.

Pages and Frames

© Smruti R. Sarangi 548

Definition 114

Page It is a block of memory in the virtual address space.

Frame It is a block of memory in the physical address space. A page and frame have the
same size.

Page Table It is a mapping table that maps the address of each page to an address of a
frame. Each process has its own page table.

Instead of translating addresses at the granularity of bytes, let us translate addresses at the
granularity of larger blocks. This will reduce the amount of state that we need to maintain,
and also take advantage of spatial locality. Let us define a block of memory in the virtual
address space and call it a page. Similarly, let us define a block of the same size in the physical
address space and call it a frame. The size of a page or a frame is typically 4 KB. Secondly,
note that the virtual address space is unique to each process; whereas, the physical address
space is the same for all processes. For each process, we need to maintain a mapping table
that maps each page to a frame. This is known as the page table. A page table can either
be implemented in hardware or in software. A hardware implementation of the page table has
dedicated structures to store the mapping between virtual and physical addresses. The lookup
logic is also in hardware. In the case of a software implementation, the mappings are stored
in a dedicated region of the physical address space. In most processors that use software page
tables, the lookup logic is also in hardware. They typically do not use custom routines in
software to lookup page tables because this approach is slow and complicated. Since the lookup
logic of page tables is primarily in hardware, the design of page tables needs to be relatively
simple. The page tables that we describe in the next few sections are oblivious to how they are
implemented (software or hardware).

Let us consider a 32-bit memory address. We can now split it into two parts. If we
consider a 4 KB page, then the lower 12 bits specify the address of a byte in a page (reason:
212 = 4096 = 4KB). This is known as the offset. The upper 20 bits specify the page number
(see Figure 11.21). Likewise, we can split a physical address into two parts – frame number
and offset. The process of translation as shown in Figure 11.21, first replaces the 20 bit page
number with an equivalent 20 bit frame number. Then it appends the 12 bit offset to the
physical frame number.

A Single Level Page Table

Figure 11.22 shows a basic page table that contains 220 (≈ 1, 000, 000) rows. Each row is
indexed by the page number, and it contains the corresponding 20 bit (2.5 byte) frame number.
The total size of the table is thus 2.5 MB. If we have 200 processes in the system at any point of
time, then we need to waste 500 MB of precious memory for just saving page tables! If our total
main memory is 2 GB, then we are spending 25% of it in saving page tables, which appears to
be a big waste of space. Secondly, it is possible that in some systems, we might not even have

549 © Smruti R. Sarangi

Page
table

Physical
address

Virtual
address Page number Offset

Frame number Offset

20 12

20 12

Figure 11.21: Translation of a virtual to a physical address

Page number Frame number

20

20

Page table

Figure 11.22: A single level page table

500 MB of main memory available. In this case, we cannot support 200 live processes at the
same time. We need to look for better solutions.

Let us now look for insights that might help us reduce the amount of storage. We start
out by noticing that large parts of the virtual address space of a process are actually empty.
In a 32-bit system, the size of the virtual address space is 4 GB. However, large programs do
not use more than 100 MB. There is a massive empty region between the stack and the heap
sections in the memory map, and thus it is not necessary to allocate space for mapping this
region. Ideally, the number of entries in the page table should be equal to the number of pages
actually used by a process rather than the theoretically maximum number of pages a process
can use. If a process uses only 400 KB of memory space, then ideally its page table should just
contain 100 entries. Let us design a two level page table to realise this goal.

© Smruti R. Sarangi 550

Page number

Frame number

20

20

Primary page
 table

10 10

Secondary page tables

Figure 11.23: A two level page table

Two Level Page Table

Let us further split a page number into two equal parts. Let us split the 20 bits into two parts
containing 10 bits each as shown in Figure 11.23. Let us use the upper 10 bits to access a top
level page table known as the primary page table. Each entry in the top level page table points
to a secondary page table. Subsequently, each secondary page table is indexed by the lower
10 bits of the page number. An entry in the secondary page table contains the frame number.
If no addresses map to a given entry in the primary page table, then it does not point to a
secondary page table, and thus there is no need to allocate space for it. In a typical program,
most of the entries in the primary page table are expected to be empty. Let us now calculate
the size of this structure.

The primary page table contains 1024 entries, where each entry is 10 bits long. The total
size is 1.25 KB (10 bits = 1.25 bytes). Let the number of secondary page tables be N . Each
secondary page tables contains 1024 entries, where each entry is 20 bits long. Therefore, the
size of each secondary page table is 2.5 KB, and the total storage requirement is (1.25+2.5×N)
KB. Because of spatial locality in a program, N is not expected to be a large number. Let
us consider a program that has a memory footprint of 10 MB. It contains roughly 2500 pages.
Each secondary page table can map at the most 1024 pages (4 MB of data). It is highly likely
that this program might map to only 3 secondary page tables. Two page tables will contain the
mappings for the text, data, and heap sections, and one page table will contain the mappings
for the stack section. In this case, the total storage requirement for the page tables will be
equal to 8.75 KB, which is very reasonable. Even, if we require double the number of secondary
page tables because of lower spatial locality in the memory map, then also the total storage
requirement is equal to 16.25 KB. This is an order of magnitude better than a single level page
table that required 2.5 MB of storage per process. Hence, two level page tables are used in
most commercial systems.

551 © Smruti R. Sarangi

Inverted Page Table

Page number

Frame number

20

20

Inverted
page tablePid

Hashing
engine

Hashtable
Compare the page
num, process id with
each entry

Frame number Page number

20

20

Inverted
page table

(a)

(b)

Figure 11.24: Inverted page table

Some processors such as the Intel Itanium, and PowerPC 603, use a different design for a
page table. Instead of addressing the page table using the page number, they address it using
the frame number. In this case, there is one page table for the entire system. Since one frame is
typically uniquely mapped to a page in a process, each entry in this inverted page table contains
the process id, and page number. Figure 11.24(a) shows the structure of an inverted page table.
The main advantage of an inverted page table is that we do not need to keep a separate page
table for each process. We can save space if there are a lot of processes, and the size of physical
memory is small.

The main difficulty in inverted page tables is in performing a lookup for a virtual address.
Scanning all the entries is a very slow process, and is thus not practical. Hence, we need to
have a hashing function that maps the (process id, page number) pair to an index in a hash
table. This index in the hash table needs to point to an entry in the inverted page table. Since
multiple virtual addresses can point to the same entry in the hash table, it is necessary to verify
that the (process id, page number) matches that stored in the entry in the inverted page table.
Readers can refer to [Cormen et al., 2009] for a detailed explanation of the theory and operation
of hash tables.

We show one scheme for using an inverted page table in Figure 11.24(b). After computing
a hash of the page number, and process id pair, we access a hashtable indexed by the contents
of the hash. The contents of the hashtable entry point to a frame, f , that might possibly map
to the given page. However, we need to verify, since it is possible that the hash function maps

© Smruti R. Sarangi 552

multiple pages to the same frame. Subsequently, we access the inverted page table, and access
the entry, f . An entry of the inverted page table, contains the page number, process id pair
that is mapped to the given entry (or given frame). If we find that the contents do not match,
then we keep searching for the page number, process id pair in the subsequent K entries. This
method is called linear probing (see [Cormen et al., 2009]), where we keep searching in the
target data structure till we get a match. If we do not get a match within K entries, then we
may conclude that the page is not mapped. We need to then create a mapping, by evicting an
entry (similar to caches), and writing it to a dedicated region in main memory that buffers all
the entries that are evicted from the inverted page table. We need to always guarantee that
the entry pointed to by the hash table, and the actual entry that contains the mapping, do not
differ by more than K entries. If we do not find any free slots, then we need to evict an entry.

An astute reader might argue that we can directly use the output of the hashing engine to
access the inverted page table. Typically, we add accessing a hashtable as an intermediate step,
because it allows us to have better control over the set of frames that are actually used. Using
this process, it is possible to disallow mappings for certain frames. These frames can be used
for other purposes. Lastly, we need to note that the overhead of maintaining, and updating
hash tables outweighs the gains in having a system wide page table. Hence, an inverted page
table is typically not used in commercial systems.

Translation Lookaside Buffer (TLB)

For every single memory access it is necessary to lookup the page table for translating the virtual
address. The page table itself is stored in physical memory. Hence, we need to do a separate
memory access to read the corresponding entry of the page table. This approach doubles the
number of memory accesses, and is thus very inefficient. However, we can minimise the number
of extra memory accesses by maintaining a small cache of mappings in the processor. We
typically use a structure known as the Translation Lookaside Buffer (TLB) that is a small fully
associative cache. A TLB contains 32-64 entries. Each entry is indexed by the page number,
and contains the corresponding frame number.

Once a memory address is calculated in the EX stage of the pipeline. It is sent to the
TLB. The TLB is a very fast structure, and typically its access time is a fraction of a cycle.
If there is a TLB hit, then the physical address is ready by the time we reach the memory
access (MA) stage. The MA stage of the pipeline can then issue the read/write request to the
memory system using the physical address obtained from the TLB. However, if there is a TLB
miss, then the pipeline needs to stall, and the page table needs to be accessed. This is a slow
process and takes tens of cycles. Fortunately, the hit rate of a TLB is very high (≈ 99%) in
most programs because of two reasons. First, programs have a high degree of temporal locality.
Second, a 64 entry TLB covers 256 KB of the virtual address space (assuming a 4 KB page).
The working set of most programs fits within this limit for small windows of time.

11.4.4 Swap Space

We have solved the first problem, i.e., ensuring that processes do not overwrite each other’s
data. Now, we need to solve the second problem, which is to ensure that our system can run
even when the memory footprint of a program is more than the amount of physical memory.
For example, we might need to run a program with a memory footprint of 3 GB on a machine

553 © Smruti R. Sarangi

with only 512 MB of main memory. Even on regular desktop machines it is possible that the
combined memory footprint of all the processes is more than the size of main memory.

To support this requirement, we first need to find a location to save all the data that does
not fit in main memory. Most processors typically have peripheral devices connected to the
processor such as the hard disk, or USB flash drives that have a large amount of storage capacity.
We shall study about storage devices in detail in Chapter 13. In this section, we only need to
appreciate the following aspects of such connected storage devices.

1. Connected storage devices are very slow as compared to main memory. The access time
to main memory is about 100-300 ns; whereas, the access time to a hard disk is of the
order of milliseconds.

2. Storage devices typically have several orders of magnitude more storage than main mem-
ory. A hard disk contains about 500 GB of storage in a system with 4 GB of main
memory.

3. They are conceptually treated as a large array of bytes similar to the way we treat the
memory system. However, an address in the memory system is unrelated to the address
in a hard disk. The storage device is not a part of the memory system.

4. It is not necessary to have a storage device physically close to the processor. It can be
accessible over the network, and be in another part of the world.

A storage device can define an area known as the swap space that has space to contain all
the frames that cannot be saved in main memory. Furthermore, this storage region need not
be a superset of the main memory. If it is an extension of main memory, then we can define
a larger physical memory. For example, if we have 2 GB of main memory, and 3 GB of swap
space, then the total amount of physical memory can be 5 GB. In this case, if we need to
displace a frame from main memory, then we need to allocate a location for it in swap space.
Alternatively, the swap space can be inclusive. In the above example, we will effectively have 3
GB of physical memory, and the main memory acts like a cache for the swap space. In either
case, the role of the swap space is to increase the amount of available physical memory.

Now, the obvious question that arises is, “How does the memory system know if a frame is
present in main memory or the swap space? ” We can augment each entry in the page table
with an extra bit. If this bit is 1, then the frame is in main memory, else it is in the swap
space. Note that this system can be made more complicated also. Instead of one swap space,
we can have multiple swap spaces, and use multiple bits in a page table entry to indicate the
corresponding swap space.

11.4.5 Memory Management Unit (MMU)

Up till now we have not discussed how page tables are actually managed and stored. Let us
consider the typical life cycle of a process. When a process begins, the kernel allocates a primary
page table in main memory, and clears off the TLB. It can then insert the mappings for the text,
and data, sections. Secondly, the kernel can optionally allocate some space and insert some
mappings for the heap, and stack sections. As long as there is a TLB hit, there is no problem.
Once, there is a TLB miss, it is necessary to access the page tables, and secondly, the pipeline

© Smruti R. Sarangi 554

needs to stall. The job of accessing the page tables is typically handled by a dedicated unit
known as the MMU (memory management unit). It can either be a hardware structure, or a
software structure. If it is a hardware structure, then we have dedicated logic in the processor.
Otherwise, it is necessary to invoke the MMU process by suspending the current process.

In either case, the operation of the MMU is the same. It needs to first locate the starting
address of the primary page table. Note that this address cannot be a virtual address. Other-
wise, we will need a page table for a page table. It is typically a physical address that does need
additional translation. This starting address is either kept in a dedicated processor register
(CR3 in x86), or in a designated location in physical memory. The MMU then needs to access
the appropriate entry in the primary page table, and get the address of the secondary page
table. The address of the secondary page table is another physical address. If a secondary page
table exists, then the MMU accesses the relevant entry in the secondary page table, and gets
the frame number. Subsequently, it evicts an entry from the TLB, and adds the new mapping.
It can follow a LRU replacement scheme as described in Section 11.2.5. Note that it is necessary
to have all the page tables in the main memory. They cannot be in the swap space.

Page Fault

There are several things that can go wrong in this process. If a page is being accessed for the
first time, it is possible that it might not have a secondary page table, or its corresponding entry
in the secondary page table might be empty. In this case, it is necessary to first find a free frame
in main memory, create a secondary page table if required, and then insert the mapping in the
secondary page table. To find a free frame in memory the MMU must maintain information
about each frame. This information can be kept in the form of a bit vector, where each bit
corresponds to a frame in main memory. If it is free, then the bit is 0, else if it is mapped, the
bit is 1. If a free frame is available, then it can be used to map the new page. Otherwise, we
need to forcibly free a frame by writing its data to the swap space. The method of finding a
frame to evict from main memory is known as the page replacement policy. Subsequently, we
need to change the page table entry of the page that was previously mapped to this frame. It
needs to now say that the page is available in swap space. Once a frame has been freed, it can
be mapped to another page.

Alternatively, it is also possible that the entry in the page table indicates that the frame is
there in swap space. In this case, it is necessary to bring the frame into main memory. We first
need to find a free frame, or if necessary evict a frame from main memory. Then, we need to
create an appropriate page table mapping.

Definition 115
Whenever a page is not found in main memory, the event is known as a page fault.

Whenever a page is not found in main memory, we term the event as a page fault. It is
subsequently necessary to create appropriate mappings in the page table and fetch the data from
the swap space. Fetching an entire page from the swap space is a rather slow operation, and
takes millions of cycles. Hence, it is very important for the MMU to manage pages efficiently.

555 © Smruti R. Sarangi

In specific, the page fault rate is very sensitive to the page replacement policy. Similar to
cache block replacement policies, we can have different kinds of page replacement policies such
as FIFO (first in first out), and LRU (least recently used). For more information on page
replacement policies, the reader is referred to a textbook on operating systems [Silberschatz
et al., 2008, Tanenbaum, 2007].

TLB hit?
Yes

Memory
access

Send mapping
to processor

Page table
 hit?

Yes

No

Populate
TLB

No

Send mapping
to processor

Free frame
available?

No (1) Evict a frame
to swap space
(2) Update its page
table entry

Yes

Create/update mapping
in the page table

Populate
TLB

Send mapping
to processor

Read in the new frame
from swap space (if possible),
or create a new empy frame

Figure 11.25: The process of address translation

Figure 11.25 summarises the major steps in the process of address translation.

11.4.6 Advanced Features of the Paging System

It turns out that we can do several interesting things with the page table mechanism. Let us
look at a few examples.

© Smruti R. Sarangi 556

Shared Memory

Let us assume that two processes want to share some memory between each other such that
they can exchange data between them. Then each process needs to let the kernel know about
this. The kernel can then map two pages in both the virtual address spaces to the same frame.
Now, each process can write to a page in its own virtual address space, and magically, the data
will get reflected in the virtual address space of the other process. It is sometimes necessary
for several processes to communicate among each other, and the shared memory mechanism is
one of the fastest methods.

Protection

Computer viruses typically change the code of a running process such that they can execute
their own code. This is typically achieved by a giving a specific sequence of erroneous inputs to
the program. If appropriate checks are not in place, then the values of specific variables within
the program get overwritten. Some variables can get changed to pointers to the text section,
and it is possible to exploit this mechanism to change instructions in the text section. It is
possible to solve this problem by marking all the pages in text section as read-only. It will thus
not be possible to modify their contents in run time.

Segmentation

We have been assuming that a programmer is free to layout the memory map according to
her wish. She might for example decide to start the stack at a very high address such as
0xFFFFFFF8. However, this code might not run on a machine that uses 16-bit addresses
even if the memory footprint of the program is very small. Secondly, it is possible that a certain
system might have reserved some parts of the virtual memory and made them unavailable to the
process. For example, operating systems typically reserve the upper 1 or 2 GB for the kernel.
To solve these problems, we need to create another virtual layer on top of virtual memory.

In a segmented memory (used in x86 systems), there are specific segment registers for the
text, data, and stack sections. Each virtual address is specified as an offset to the specific
segment register. By default instructions use the code segment register, and data uses the data
segment register. The memory access (MA) stage of the pipeline adds the offset to the value
stored in the segment register to generate the virtual address. Subsequently, the MMU uses
this virtual address to generate the physical address.

11.5 Summary and Further Reading

11.5.1 Summary

Summary 11

557 © Smruti R. Sarangi

1. A program perceives the memory system to be one large array of bytes. In practice,
we need to design a memory system that preserves this abstraction, and is also fast
and power efficient.

2. A physical memory system needs to be built out of SRAM and DRAM cells. An SRAM
array is faster than a DRAM array. However, it takes much more area and consumes
much more power. Building a memory with just DRAM cells will be too slow, and
building a memory with just SRAM cells will be consume too much power.

3. We can use the properties of temporal and spatial locality to design more efficient
memory systems. Temporal locality refers to the fact that there is a high likelihood
of the same data item being accessed again in the near future. Spatial locality means
that there is a high likelihood of adjacent memory locations being accessed in the near
future.

4. To utilise temporal locality, we build a hierarchical memory system of caches. A cache
is a memory structure that contains a subset of all the memory locations.

(a) The cache at the highest level is known as the L1 cache. It is small and fast.

(b) The L2 cache is at the next level. It is larger and slower.

(c) Some recent processors also have a third level of cache known as the L3 cache.

(d) The last level in the memory system is known as the main memory. It is a large
DRAM array of cells, and contains an entry for all the memory locations in the
system.

(e) Caches are typically inclusive. This means that a cache at a level i contains a
subset of memory locations present at level (i+ 1).

5. To utilise spatial locality we group adjacent memory locations at the granularity of
32-128 byte blocks.

6. A cache contains a tag array and a data array. The tag array contains some of the
bits of the address of the block, and the data array contains the contents of the block.

7. The basic operations needed to implement a cache are – lookup, data read, data write,
insert, replace, and evict.

(a) There are three ways to store data in a cache – direct mapped, set associative,
and fully associative.

(b) It is necessary to evict a block in a set if all the ways are non-empty.

(c) There are two major write policies – write-through (every write is immediately
sent to the lower level), and write-back (writes are sent to the lower level, only
upon an eviction)

(d) Some of the prominent replacement policies are – Random, FIFO, and LRU.

© Smruti R. Sarangi 558

8. The average memory access time is given by:

AMAT = L1hit time + L1miss rate × L1miss penalty

= L1hit time + L1miss rate × (L2hit time + L2miss rate × L2miss penalty)

9. There are three types of cache misses – compulsory, capacity, and conflict.

10. Some of the methods and structures to optimise the memory system are: hardware
prefetching, increased associativity/block size, victim cache, compiler techniques, write
buffers, early restart and critical word first.

11. We need virtual memory to ensure that:

(a) Multiple programs do not overwrite each other’s data unintentionally, or mali-
ciously.

(b) The memory footprint of a program can be larger than the amount of available
main memory.

12. To implement virtual memory, we divide a memory address into two parts – virtual
page number, and an offset within a page. The virtual page number gets mapped to a
physical frame number. The mapping is stored in a structure called a page table.

13. If a page is not found in main memory, then the event is known as a page fault.
Servicing a page fault takes millions of cycles. Hence, it is necessary to avoid page
faults by using sophisticated page replacement algorithms.

14. Some of the advanced features of the virtual memory system include shared memory,
protection, and segmented addressing.

11.5.2 Further Reading

The reader can refer to advanced text books on computer architecture by Henessey and Pat-
terson [Hennessy and Patterson, 2012], Kai Hwang [Hwang, 2003], and Jean Loup Baer [Baer,
2010] for a discussion on advanced memory systems. Specifically, the books discuss advanced
techniques for prefetching, miss rate reduction, miss penalty reduction, and compiler directed
approaches. The reader can also refer to the book on memory systems by Bruce Jacob [Jacob,
2009]. This book gives a comprehensive survey of most of the major techniques employed in
designing state of the art memory systems till 2009. The book by Balasubramaniam, Jouppi,
and Muralimanohar on cache hierarchies also discusses some of the more advanced topics on the
management of caches [Balasubramonian et al., 2011]. Managing the MMU is mostly studied in
courses on operating systems [Tanenbaum, 2007, Silberschatz et al., 2008]. Research in DRAM
memories [Mitra, 1999], and systems using advanced memory technologies is a hot topic of
current research. A lot of research work is now focusing on phase change memories that do not
require costly refresh cycles like DRAM. Readers can refer to the book by Qureshi, Gurumurthi,
and Rajendran [Qureshi et al., 2011] for a thorough explanation of memory systems using phase

559 © Smruti R. Sarangi

change memories.

Exercises

Overview

Ex. 1 — Define temporal locality, and spatial locality.

Ex. 2 — Experimentally verify that the log-normal distribution is a heavy tailed distribution.
What is the implication of a heavy tailed distribution in the context of the stack distance and
temporal locality?

Ex. 3 — Define the term, address distance. Why do we find the nearest match in the last K
accesses?

Ex. 4 — How do we take advantage of temporal locality in the memory system?

Ex. 5 — How do we take advantage of spatial locality in the memory system?

Caches and the Memory System

Ex. 6 — Consider a fully associative cache following the LRU replacement scheme and con-
sisting of only 8 words. Consider the following sequence of memory accesses (the numbers
denote the word address):
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 22, 30, 21, 23, 31

Assume that we begin when the cache is empty. What are the contents of the cache after the
end of the sequence of memory accesses.

Ex. 7 — Answer Exercise 6 assuming a FIFO replacement scheme.

Ex. 8 — Consider a two-level cache using a write back policy. The L1 cache can store 2
words, and the L2 cache can store 4 words. Assume the caches to be fully associative (block
size = 1 word); they follow the LRU replacement scheme. Consider the following sequence of
memory accesses. The format of a write access is write <address> <value>, and the format
for a read access is read <address> .

write 20 200

write 21 300

write 22 400

write 23 500

write 20 201

write 21 301

read 22

read 23

© Smruti R. Sarangi 560

write 22 401

write 23 501

What are the contents of the caches at the end of the sequence of memory accesses? What are
the contents of the caches, if we assume a write through policy ?

Ex. 9 — What is the total size (in bytes) of a direct mapped cache with the following con-
figuration in a 32 bit system? It has a 10 bit index, and a block size of 64 bytes. Each block
has 1 valid bit and 1 dirty bit.

Ex. 10 — Which sorting algorithm will have a better cache performance – bubble sort or
selection sort? Explain your answer.

Ex. 11 — You have a cache with the following parameters:

•size : n bytes

•associativity : k

•block size : b bytes

Assuming a 32-bit address space, answer the following:

(a) What is the size of the tag in bits?

(b) What is the size of the set index in bits?

* Ex. 12 — Consider a direct mapped cache with 16 cache lines, indexed 0 to 15, where each
cache line contains 32 integers (block size : 128 bytes).

Consider a two-dimensional, 32× 32 array of integers a. This array is laid out in memory such
that a[0, 0] is next to a[0, 1], and so on. Assume the cache is initially empty, and a[0, 0] maps
to the first word of cache line 0.

Consider the following column-first traversal:

int sum = 0;

for (int i = 0; i < 32; i++) {

for(int j=0; j < 32; j++) {

sum += a[i,j];

}

}

and the following row-first traversal:

int sum = 0;

for (int i = 0; i < 32; i++) {

for(int j=0; j < 32; j++) {

sum += a[j,i];

}

}

561 © Smruti R. Sarangi

Compare the number of cache misses produced by the two traversals, assuming the oldest cache
line is evicted first. Assume that i, j, and sum are stored in registers, and that no part of array
a is saved in registers. It is always stored in the cache.

Ex. 13 — A processor has a baseline IPC of 1.5, an L1 miss rate of 5%, and an L2 miss rate
of 50%. The hit time of the L1 cache is 1 cycle (part of the baseline IPC computation), the L2
hit time is 10 cycles, and the L2 miss penalty is 100 cycles. Compute the final IPC. Assume
that all the miss rates are local miss rates.

Ex. 14 — Consider the designs shown below

Design Base CPI L1 local
miss rate
(%)

L2 local
miss rate
(%)

L1 hit
time
(cycles)

L2 hit
time
(cycles)

L2 miss
penalty
(cycles)

D1 1 5 20 1 10 200

D2 1.5 10 25 1 20 150

D3 2 15 20 1 5 300

The base CPI assumes that all the instructions hit in the L1 cache. Furthermore, assume that
a third of the instructions are memory instructions.

Write the formula for the average memory access time. What is the CPI of D1, D2 and D3?

* Ex. 15 — Assume a cache that has n levels. For each level, the hit time is x cycles, and
the local miss rate is y per cycle.

(a) What is the recursive formula for the average memory access time?

(b) What is the average memory access time as n tends to ∞?

** Ex. 16 — Assume that you are given a machine with an unknown configuration. You
need to find out a host of cache parameters by measuring the time it takes to execute different
programs. These programs will be tailor made in such a way that they will reveal something
about the underlying system. For answering the set of questions, you need to broadly describe
the approach. Assume that the cache follows the LRU scheme for replacement.

(a) How will you estimate the size of the L1 cache?

(b) How will you estimate the L1 block size?

(c) How will you estimate the L1 cache associativity?

Virtual Memory

Ex. 17 — In a 32-bit machine with a 4 KB page size, how many entries are there in a single
level page table? What is the size of each entry in the page table in bits?

Ex. 18 — Consider a 32-bit machine with a 4 KB page size, and a two level page table. If
we address the primary page table with 12 bits of the page address, then how many entries are
there in each secondary page table?

© Smruti R. Sarangi 562

Ex. 19 — In a two level page table, should we index the primary page table with the most
significant bits of the page address, or the least significant bits? Explain your answer.

Ex. 20 — We have a producer-consumer interaction between processes A and B. A writes
data that B reads in a shared space. However, B should never be allowed to write anything
into that shared space. How can we implement this using paging? How do we ensure that B
will never be able to write into the shared space?

Ex. 21 — Assume a process A, forks a process B. Forking a process means that B inherits a
copy of A’s entire address space. However, after the fork call, the address spaces are separate.
How can we implement this using our paging mechanism?

Ex. 22 — How is creating a new thread different from a fork() operation in terms of memory
addressing?

Ex. 23 — Most of the time, the new process generated by a fork call does not attempt to
change or modify the data inherited from the parent process. So is it really necessary to copy
all the frames of the parent process to the child process? Can you propose an optimisation?

Ex. 24 — Explain the design of an inverted page table.

* Ex. 25 — Calculate the expected value of the final CPI:

•Baseline CPI: 1

•Percentage of memory accesses: 30%

•TLB lookup time: 1 cycle (part of the baseline CPI)

•TLB miss rate: 20%

•Page table lookup time: 20 cycles (do not assume any page faults). Assume we can
instantaneously insert entries into the TLB.

•L1 cache hit time: 1 cycle (Part of the baseline CPI)

•L1 local miss rate: 10%

•L2 cache hit time: 20 cycles

•L2 local miss rate: 50%

•L2 miss penalty: 100 cycles

** Ex. 26 — Most of the time, programmers use libraries of functions in their programs.
These libraries contain functions for standard mathematical operations, for supporting I/O
operations, and for interacting with the operating system. The machine instructions of these
functions are a part of the final executable. Occasionally, programmers prefer to use dynamically
linked libraries (DLLs). DLLs contain the machine code of specific functions. However, they are
invoked at run time, and their machine code is not a part of the program executable. Propose
a method to implement a method to load and unload DLLs with the help of virtual memory.

563 © Smruti R. Sarangi

Design Problems

Ex. 27 — You need to learn to use the CACTI tool (http://www.hpl.hp.com/research/
cacti/) to estimate the area, latency, and power of different cache designs. Assume a 4-way
associative 512 KB cache with 64 byte blocks. The baseline design has 1 read port, and 1 write
port. You need to assume the baseline design, vary one parameter as mentioned below, and
plot its relationship with the area, latency, or power consumption of a cache.

a)Plot the area versus the number of read ports.

b)Plot the energy per read access versus the number of read ports.

c)Plot the cache latency versus the associativity.

d)Vary the size of the cache from 256 KB to 4 MB (powers of 2), and plot its relationship
with area, latency, and power.

Ex. 28 — Write a cache simulator that accepts memory read/write requests and simulates
the execution of a hierarchical system of caches.

http://www.hpl.hp.com/research/cacti/
http://www.hpl.hp.com/research/cacti/

© Smruti R. Sarangi 564

12
Multiprocessor Systems

Up till now, we have discussed the design and implementation of a processor in great detail
including several methods to optimise its performance such as pipelining. We observed that
by optimising the processor, and the memory system, it is possible to significantly increase the
performance of a program. Now, the question is, “Is this enough?” Or, is it possible to do
better?

A short answer to this question is “Maybe Not.” For a long answer to this question, the
reader needs to read through this entire chapter, and possibly take a look at the references. Let
us start out by saying that processor performance has its limits. It is not possible to increase
the speed of a processor indefinitely. Even with very complicated superscalar processors (see
Chapter 10), and highly optimised memory systems, it is typically not possible to increase
the IPC by more than 50%. Secondly, because of power and temperature considerations, it
is very difficult to increase processor frequency beyond 3 GHz. The reader should note that
processor frequencies have remained more of less the same over the last ten years (2002-2012).
Consequently, CPU performance has also been increasing very slowly over the last ten years.

We illustrate these points in Figures 12.1, and 12.2. Figure 12.1 shows the peak frequency
of processors released by multiple vendors such as Intel, AMD, Sun, Qualcomm, and Fujitsu
from 2001 till 2010. We observe that the frequency has stayed more or less constant (mostly
between 1 GHz to 2.5 GHz). The trends do not indicate a gradual increase in frequency. We
expect that in the near future also, the frequency of processors will be limited to 3 GHz.

Figure 12.2 shows the average Spec Int 2006 score for the same set of processors from 2001
till 2010. We observe that CPU performance is slowly saturating over time, and it is getting
increasingly difficult to increase performance.

Even though the performance of a single processor is not expected to significantly increase
in the future, the future of computer architecture is not bleak. This is because processor
manufacturing technology is steadily getting better, and this is leading to smaller and faster
transistors. Till the late nineties processor designers were utilising the gains in transistor
technology to increase the complexity of a processor by implementing more features. However,

565

© Smruti R. Sarangi 566

Figure 12.1: CPU frequencies (source [Danowitz et al., 2012])

Figure 12.2: CPU performance (source [Danowitz et al., 2012])

due to limitations in complexity, and power, designers resorted to using simpler processors after
2005. Instead of implementing more features in processors, vendors instead decided to put more
than one processor on a single chip. This helps us run more than one program at the same
time. Alternatively, sometimes it is possible to split a single program into multiple parts and
run all the parts in parallel.

This paradigm of using multiple computing units running in parallel is known as multipro-
cessing. The term “multiprocessing” is a rather generic term. It can either refer to multiple
processors in the same chip working in parallel, or it can refer to multiple processors across
chips working in parallel. A multiprocessor is a piece of hardware that supports multiprocess-
ing. When we have multiple processors within a chip, each processor is known as a core, and
the chip is called a multicore processor.

567 © Smruti R. Sarangi

Definition 116
The term multiprocessing refers to multiple processors working in parallel. This is a generic
definition, and it can refer to multiple processors in the same chip, or processors across
different chips. A multicore processor is a specific type of multiprocessor that contains all
of its constituent processors in the same chip. Each such processor is known as a core.

We are now entering the era of multiprocessors, especially multicore systems. The number
of cores per chip is increasing by roughly a factor of two every two years. New applications are
being written to leverage this extra hardware. Most experts opine that the future of computing
lies in multiprocessor systems.

Before proceeding to the design of different types of multiprocessors, let us quickly take a
look at the background and history of multiprocessors.

12.1 Background

In the 60s and 70s large computers were primarily used by banks and financial institutions.
They had a growing base of consumers, and consequently they needed computers that could
perform more and more transactions per second. Typically just one processor proved to be
insufficient in providing the computing throughput that was required. Hence, early computer
designers decided to put multiple processors in a computer. The processors could share the
computing load, and thus increase the computing throughput of the entire system.

One of the earliest multiprocessors was the Burroughs 5000, which had two processors –
A and B. A was the main processor, and B was an auxiliary processor. When the load was
high, processor A gave processor B some work to do. Almost all the other major vendors at
that time also had multiprocessor offerings such as the IBM 370, PDP 11/74, VAX-11/782, and
Univac 1108-II. These computers supported a second CPU chip. This was connected to the
main processor. In all of these early machines, the second CPU was on a second chip that was
physically connected to the first with wires or cables. They came in two flavors: symmetric and
asymmetric. A symmetric multiprocessor consists of multiple processors, where each processor is
of the same type, and has access to the services offered by the operating system, and peripherals;
whereas, an asymmetric multiprocessor assigns different roles to different processors. There is
typically a distinguished processor that controls the operating system, and the peripherals.
The rest of the processors are slaves. They take work from the main processor, and return the
results.

Definition 117

Symmetric Multiprocessing This paradigm treats all the constituent processors in a
multiprocessor system as the same. Each processor has equal access to the operating
system, and the I/O peripherals. These are also known as SMP systems.

© Smruti R. Sarangi 568

Asymmetric Multiprocessing This paradigm does not treat all the constituent proces-
sors in a multiprocessor system as the same. There is typically one master processor
that has exclusive control of the operating system and I/O devices. It assigns work to
the rest of the processors.

In the early days, the second processor was connected to the main processor using a set of
cables. It was typically housed in a different area of the main computer. Note that in those
days, computers used to be the size of a room. With increased miniaturisation, gradually both
the processors started coming closer. In the late eighties and early nineties, companies started
putting multiple processors on the same motherboard. A motherboard is a printed circuit board
that contains all the chips that a computer uses. The reader can take the lid off her laptop or
desktop. The large green board with chips and metallic lines is the motherboard. By the late
nineties, it was possible to have four or eight processors on a single motherboard. They were
connected to each other using dedicated high speed buses.

Gradually, the era of multicore processors commenced. It was now possible to have multiple
processors in the same chip. IBM was the first to announce a dual core (2 cores) multicore
processor called the Power 4 in 2001. Intel and AMD followed with similar offerings in 2005.
As of 2012, 8 core, and 10 core versions of multicore processors are available.

12.1.1 Moore’s Law

Let us now take a deeper look at what happened between 1960 and 2012 in the world of
processors. In the sixties, a computer was typically the size of a room, and today a computer
fits in the pocket. A processor in a cell phone is around 1.6 million times faster than the IBM
360 machines in the early sixties. It is also several orders of magnitude more power efficient.
The main driver for this continued evolution of computer technology is the miniaturisation of
the transistor. Transistors used to have a channel length of several millimetres in the sixties,
and now they are about 20-30 nanometers long. In 1971, a typical chip used to have 2000-3000
transistors. Nowadays, a chip has billions of transistors.

Over the last forty to fifty years, the number of transistors per chip has been roughly
doubling every 1-2 years. In fact, the co-founder of Intel, Gordon Moore, had predicted this
trend in 1965. The Moore’s law (named in the honour of Gordon Moore) predicts that the
number of transistors on a chip is expected to double every one to two years. Originally, Moore
had predicted the period of doubling to be every year. However, over time, this period has
become about 2 years. This was expected to happen because of the steady rate of advances in
manufacturing technology, new materials, and fabrication techniques.

Historical Note 3
In 1965, Gordon Moore (co-founder of Intel) conjectured that the number of transistors on
a chip will double roughly every one to two years. Initially, the number of transistors was
doubling every year. Gradually, the rate slowed down to 18 months, and now it is about two
years.

569 © Smruti R. Sarangi

The Moore’s law has approximately held true since it was proposed in the mid sixties.
Nowadays, almost every two years, the dimensions of transistors shrink by a factor of

√
2. This

ensures that the area of a transistor shrinks by a factor of 2, and thus it is possible to fit twice
the number of transistors on a chip. Let us define the feature size as the size of the smallest
structure that can be fabricated on a chip. Table 12.1 shows the feature sizes of Intel processors
over the last 10 years. We observe that the feature size decreases by a factor of roughly

√
2

(1.41) every two years. This results in a doubling of the number of transistors.

Year Feature Size

2001 130 nm

2003 90 nm

2005 65 nm

2007 45 nm

2009 32 nm

2011 22 nm

Table 12.1: Feature sizes between 2001 and 2012

12.1.2 Implications of the Moore’s Law

Note that the Moore’s law is an empirical law. However, because of the fact that it has
predicted trends correctly for the last forty years, it is widely quoted in technical literature. It
directly predicts a miniaturisation in the transistor size. A smaller transistor is more power
efficient and faster. Designers were traditionally using these benefits to design bigger processors
with extra transistors. They were using the additional transistor budget to add complexity to
different units, increase cache sizes, increase the issue width, and the number of functional
units. Secondly, the number of pipeline stages were also steadily increasing till about 2002,
and there was an accompanying increase in the clock frequency also. However, after 2002 there
was a radical change in the world of computer architecture. Suddenly, power and temperature
became major concerns. The processor power consumption figures started to exceed 100 W,
and on chip temperatures started to exceed 100◦C. These constraints effectively put an end to
the scaling in complexity, and clock frequencies of processors.

Instead, designers started to pack more cores per chip without changing its basic design.
This ensured that the number of transistors per core remained constant, and according to
Moore’s law the number of cores doubled once every two years. This started the era of multicore
processors, and processor vendors started doubling the number of cores on chip. As of 2012,
we have processors that have 8-10 cores per chip. The number of cores per chip are expected to
reach 32 or 64 in the next 5 to 10 years (by 2020). A large multiprocessor today has multiple
cores per chip, and multiple chips per system. For example, your author is at the moment
writing this book on a 32 core server. It has 4 chips, and each chip has 8 cores.

Along with regular multicore processors, there has been another important development.
Instead of having 4 large cores per chip, there are architectures that have 64-256 very small
cores on a chip such as graphics processors. These processors also follow the Moore’s law,
and are doubling their cores every 2 years. Such processors are increasingly being used in

© Smruti R. Sarangi 570

computer graphics, numerical and scientific computing. It is also possible to split the resources
of a processor to make it support two program counters, and run two programs at the same
time. These special kind of processors are known as multithreaded processors. It is not possible
to cover the entire design space of multiprocessors in this book. This is the topic of a book
on advanced architecture, and the reader can consult [Hwang, 2003, Hennessy and Patterson,
2012, Culler et al., 1998] for a detailed description of different kinds of multiprocessors.

In this chapter, we wish to make the reader aware of the broad trends in multiprocessor
design. We shall first look at multiprocessing from the point of view of software. Once we estab-
lish the software requirements, we shall proceed to design hardware to support multiprocessing.
We shall broadly consider multicore, multithreaded, and vector processors in this chapter.

12.2 Software for Multiprocessor Systems

12.2.1 Strong and Loosely Coupled Multiprocessing

Loosely Coupled Multiprocessing

There are two primary ways to harness the power of multiprocessors. The first method is to
run multiple unrelated programs in parallel. For example, it is possible to run a text editor
and a web browser at the same time. The text editor can run on processor 1, and the web
browser can run on processor 2. Both of them can occasionally request for OS services, and
connect to I/O devices. Users often use large multiprocessor systems containing more than
64-128 processors to run a set of jobs (processes) that are unrelated. For example, a user might
want to conduct a weather simulation with 128 different sets of parameters. Then she can start
128 separate instances of the weather simulation software on 128 different processors on a large
multiprocessor system. We thus have a speedup of 128 times as compared to a single processor
system, which is significant. This paradigm is known as loosely coupled multiprocessing. Here,
the dependences between programs is almost negligible. Note that using a multiprocessor in this
manner, is not conceptually very different from using a cluster of computers that comprises of
completely unrelated machines that communicate over a local area network. The only difference
is that the latency between machines in a multiprocessor is lower than cluster computers. A
loosely coupled multiprocessor such as a cluster of PCs is also known as a multicomputer.

Definition 118
A multicomputer consists of a set of computers typically connected over the network. It
is capable of running a set of programs in parallel, where the programs do not share their
memory space with each other.

Strongly Coupled Multiprocessing

However, the real benefit of a multiprocessor is accrued when there is a strong degree of overlap
between different programs. This paradigm is known as strongly coupled multiprocessing. Here
programs can share their memory space, file and network connections. This method of using

571 © Smruti R. Sarangi

multiprocessors harnesses their true power, and helps us speed up a large amount of existing
software. The design and programming of strongly coupled multiprocessors is a very rich field,
and is expected to grow significantly over the coming decade.

Definition 119

Loosely Coupled Multiprocessing Running multiple unrelated programs in parallel on
a multiprocessor is known as loosely coupled multiprocessing.

Strongly Coupled Multiprocessing Running a set of programs in parallel that share
their memory space, data, code, file, and network connections is known as strongly
coupled multiprocessing.

In this book, we shall mainly look at strongly coupled multiprocessing, and primarily focus
on systems that allow a set of programs to run co-operatively by sharing a large amount of data
and code.

12.2.2 Shared Memory vs Message Passing

Let us now explain the methods of programming multiprocessors. For ease of explanation, let
us draw an analogy here. Consider a group of workers in a factory. They co-operatively perform
a task by communicating with each other orally. A supervisor often issues commands to the
group of workers, and then they perform their work. If there is a problem, a worker indicates
it by raising an alarm. Immediately, other workers rush to his assistance. In this small and
simple setting, all the workers can hear each other, and see each other’s actions. This proximity
enables them to accomplish complex tasks.

We can alternatively consider another model, where workers cannot necessarily see or hear
each other. In this case, they need to communicate with each other through a system of
messages. Messages can be passed through letters, phone calls, or emails. In this setting, if
a worker discovers a problem, he needs to send a message to his supervisor such that she can
come and rectify the problem. Workers need to be typically aware of each other’s identities, and
explicitly send messages to all or a subset of them. It is not possible any more to shout loudly,
and communicate with everybody at the same time. However, there are some advantages of
this system. We can support many more workers because they do not have to be co-located.
Secondly, since there are no constraints on the location of workers, they can be located at
different parts of the world, and be doing very different things. This system is thus far more
flexible, and scalable.

Inspired by these real life scenarios, computer architects have designed a set of protocols for
multiprocessors following different paradigms. The first paradigm is known as shared memory,
where all the individual programs see the same view of the memory system. If program A
changes the value of x to 5, then program B immediately sees the change. The second setting
is known asmessage passing. Here multiple programs communicate among each other by passing
messages. The shared memory paradigm is more suitable for strongly coupled multiprocessors,

© Smruti R. Sarangi 572

and the message passing paradigm is more suitable for loosely coupled multiprocessors. Note
that it is possible to implement message passing on a strongly coupled multiprocessor. Likewise,
it is also possible to implement an abstraction of a shared memory on an otherwise loosely
coupled multiprocessor. This is known as distributed shared memory [Keleher et al., 1994].
However, this is typically not the norm.

Shared Memory

Let us try to add n numbers in parallel using a multiprocessor. The code for it is shown in
Example 149. We have written the code in C++ using the OpenMP language extension.

Example 149
Write a shared memory program to add a set of numbers in parallel.

Answer: Let us assume that all the numbers are already stored in an array called numbers.
The array numbers has SIZE entries. Assume that the number of parallel sub-programs
that can be launched is equal to N .

/* variable declaration */

int partialSums[N];

int numbers[SIZE];

int result = 0;

/* initialise arrays */

...

/* parallel section */

#pragma omp parallel {

/* get my processor id */

int myId = omp_get_thread_num();

/* add my portion of numbers */

int startIdx = myId * SIZE/N;

int endIdx = startIdx + SIZE/N;

for(int jdx = startIdx; jdx < endIdx; jdx++)

partialSums[myId] += numbers[jdx];

}

/* sequential section */

for(int idx=0; idx < N; idx++)

result += partialSums[idx];

It is easy to mistake the code for a regular sequential program, except for the directive

573 © Smruti R. Sarangi

#pragma omp parallel. This is the only extra semantic difference that we have added in our
parallel program. It launches each iteration of this loop as a separate sub-program. Each such
sub-program is known as a thread. A thread is defined as a sub-program that shares its address
space with other threads. It communicates with them by modifying the values of memory
locations in the shared memory space. Each thread has its own set of local variables that are
not accessible to other threads.

The number of iterations, or the number of parallel threads that get launched is a system
parameter that is set in advance. It is typically equal to the number of processors. In this case,
it is equal to N. Thus, N copies of the parallel part of the code are launched in parallel. Each
copy runs on a separate processor. Note that each of these copies of the program can access all
the variables that have been declared before the invocation of the parallel section. For example,
they can access partialSums, and the numbers arrays. Each processor invokes the function
omp get thread num, which returns the id of the thread. Each thread uses the thread id to
find the range of the array that it needs to add. It adds all the entries in the relevant portion
of the array, and saves the result in its corresponding entry in the partialSums array. Once
all the threads have completed their job, the sequential section begins. This piece of sequential
code can run on any processor. This decision is made dynamically at runtime by the operating
system, or the parallel programming framework. To obtain the final result it is necessary to
add all the partial sums in the sequential section.

Definition 120
A thread is a sub-program that shares its address space with other threads. It has a dedicated
program counter, and a local stack that it can use to define its local variables. We refer to
a thread as a software thread to distinguish it from a hardware thread that we shall define
later.

A graphical representation of the computation is shown in Figure 12.3. A parent thread
spawns a set of child threads. They do their own work, and finally join when they are done.
The parent thread takes over, and aggregates the partial results.

There are several salient points to note here. The first is that each thread has its separate
stack. A thread can use its stack to declare its local variables. Once it finishes, all the local
variables in its stack are destroyed. To communicate data between the parent thread and the
child threads, it is necessary to use variables that are accessible to both the threads. These
variables need to be globally accessible by all the threads. The child threads can freely modify
these variables, and even use them to communicate amongst each other also. They are addi-
tionally free to invoke the operating system, and write to external files and network devices.
Once, all the threads have finished executing, they perform a join operation, and free their
state. The parent thread takes over, and finishes the role of aggregating the results. Here, join
is an example of a synchronisation operation between threads. There can be many other types
of synchronisation operations between threads. The reader is referred to [Culler et al., 1998] for
a detailed discussion on thread synchronisation. All that the reader needs to understand is that
there are a set of complicated constructs that threads can use to perform very complex tasks
co-operatively. Adding a set of numbers is a very simple example. Multithreaded programs can

© Smruti R. Sarangi 574

Parent thread

Ti
m

e
Spawn child threads

Child
threads

Thread join operation

Sequential
section

Initialisation

Figure 12.3: Graphical representation of the program to add numbers in parallel

be used to perform other complicated tasks such as matrix algebra, and even solve differential
equations in parallel.

Message Passing

Let us now briefly look at message passing. Note that message passing based loosely coupled
systems are not the main focus area of this book. Hence, we shall just give the reader a flavor
of message passing programs. Note that in this case, each program is a separate entity and
does not share code, or data with other programs. It is a process, where a process is defined as
a running instance of a program. Typically, it does not share its address space with any other
process.

Definition 121
A process represents the running instance of a program. Typically, it does not share its
address space with any other process.

Let us now quickly define our message passing semantics. We shall primarily use two

575 © Smruti R. Sarangi

functions, send and receive as shown in Table 12.2. The send(pid, val) function is used to send
an integer (val) to the process whose id is equal to pid. The receive(pid) is used to receive
an integer sent by a process whose id is equal to pid. If pid is equal to ANYSOURCE, then
the receive function can return with the value sent by any process. Our semantics is on the
lines of the popular parallel programming framework, MPI (Message Passing Interface) [Snir
et al., 1995]. MPI calls have many more arguments, and their syntax is much more complicated
than our simplistic framework. Let us now consider the same example of adding n numbers in
parallel in Example 150.

Function Semantics

send (pid, val) Send the integer, val, to the process with an id
equal to pid

receive (pid) (1) Receive an integer from process pid
(2) The function blocks till it gets the value
(3) If the pid is equal to ANYSOURCE, then
the receive function returns with the value sent
by any process

Table 12.2: send and receive calls

Example 150
Write a message passing based program to add a set of numbers in parallel. Make appro-
priate assumptions.

Answer: Let us assume that all the numbers are stored in the array, numbers, and this
array is available with all the N processors. Let the number of elements in the numbers
array be SIZE. For the sake of simplicity, let us assume that SIZE is divisible by N .

/* start all the parallel processes */

SpawnAllParallelProcesses();

/* For each process execute the following code */

int myId = getMyProcessId();

/* compute the partial sums */

int startIdx = myId * SIZE/N;

int endIdx = startIdx + SIZE/N;

int partialSum = 0;

for(int jdx = startIdx; jdx < endIdx; jdx++)

partialSum += numbers[jdx];

/* All the non-root nodes send their partial sums to the root */

© Smruti R. Sarangi 576

if(myId != 0) {

/* send the partial sum to the root */

send (0, partialSum);

} else {

/* for the root */

int sum = partialSum;

for (int pid = 1; pid < N; pid++) {

sum += receive(ANYSOURCE);

}

/* shut down all the processes */

shutDownAllProcesses();

/* return the sum */

return sum;

}

12.2.3 Amdahl’s Law

We have now taken a look at examples for adding a set of n numbers in parallel using both the
paradigms namely shared memory and message passing. We divided our program into two parts
– a sequential part and a parallel part (refer to Figure 12.3). In the parallel part of the execution,
each thread completed the work assigned to it, and created a partial result. In the sequential
part, the root or master or parent thread initialised all the variables and data structures, and
spawned all the child threads. After all the child threads completed (or joined), the parent
thread aggregated the results produced by all the child threads. This process of aggregating
results is also known as reduction. The process of initialising variables, and reduction, are both
sequential.

Let us now try to derive the speedup of a parallel program vis-a-vis its sequential counter-
part. Let us consider a program that takes Tseq units of time to execute. Let fseq be the fraction
of time that it spends in its sequential part, and 1− fseq be the fraction of time that it spends
in its parallel part. The sequential part is unaffected by parallelism; however, the parallel part
gets equally divided among the processors. If we consider a system of P processors, then the
parallel part is expected to be sped up by a factor of P . Thus, the time (Tpar) that the parallel
version of the program takes is equal to:

Tpar = Tseq ×
(
fseq +

1− fseq
P

)
(12.1)

Alternatively, the speedup (S) is given by:

S =
Tseq

Tpar
=

1

fseq +
1−fseq

P

(12.2)

577 © Smruti R. Sarangi

Equation 12.2 is known as the Amdahl’s Law. It is a theoretical estimate (or rather the
upper bound in most cases) of the speedup that we expect with additional parallelism.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200

Sp
e
e
d
u
p
(S

)

Number of processors(P)

10%
5%
2%

Figure 12.4: Speedup (S) vs number of processors (P)

Figure 12.4 plots the speedups as predicted by Amdahl’s Law for three values of fseq (10%,
5%, and 2%). We observe that with an increasing number of processors the speedup gradually
saturates and tends to the limiting value, 1/fseq. We observe diminishing returns as we increase
the number of processors beyond a certain point. For example, for fseq = 5%, there is no
appreciable difference in speedups between a system with 35 processors, and a system with 200
processors. We approach similar limits for all three values of fseq. The important point to
note here is that increasing speedups by adding additional processors has its limits. We cannot
expect to keep getting speedups indefinitely by adding more processors, because we are limited
by the length of the sequential sections in programs.

To summarise, we can draw two inferences. The first is that to speedup a program it is
necessary to have as much parallelism as possible. Hence, we need to have a very efficient
parallel programming library, and parallel hardware. However, parallelism has its limits and
it is not possible to increase the speedup appreciably beyond a certain limit. The speedup is
limited by the length of the sequential section in the program. To reduce the sequential section,
we need to adopt approaches both at the algorithmic level, and at the system level. We need
to design our algorithms in such a way that the sequential section is as short as possible. For
example, in Examples 149, and 150, we can also perform the initialisation in parallel (reduces
the length of the sequential section). Secondly, we need a fast processor that can minimise the
time it takes to execute the sequential section.

We looked at the latter requirement (designing fast processors) in Chapters 9, 10, and 11.
Now, let us look at designing fast and power efficient hardware for the parallel section.

© Smruti R. Sarangi 578

12.3 Design Space of Multiprocessors

Michael J. Flynn proposed the famous Flynn’s classification of multiprocessors in 1966. He
started out by observing that an ensemble of different processors might either share code,
data, or both. There are four possible choices – SISD (single instruction single data), SIMD
(single instruction multiple data), MISD (multiple instruction single data), and MIMD (multiple
instruction multiple data).

Let us describe each of these types of multiprocessors in some more detail.

SISD This is a standard uniprocessor with a single pipeline as described in Chapter 9 and
Chapter 10. A SISD processor can be thought of as a special case of the set of multipro-
cessors with just a single processor.

SIMD A SIMD processor can process multiple streams of data in a single instruction. For
example, a SIMD instruction can add 4 sets of numbers with a single instruction. Modern
processors incorporate SIMD instructions in their instruction set, and have special SIMD
execution units also. Examples include x86 processors that contain the SSE set of SIMD
instruction sets. Graphics processors, and vector processors are special examples of highly
successful SIMD processors.

MISD MISD systems are very rare in practice. They are mostly used in systems that have
very high reliability requirements. For example, large commercial aircraft typically have
multiple processors running different versions of the same program. The final outcome
is decided by voting. For example, a plane might have a MIPS processor, an ARM
processor, and an x86 processor, each running different versions of the same program
such as an autopilot system. Here, we have multiple instruction streams, yet a single
source of data. A dedicated voting circuit computes a majority vote of the three outputs.
For example, it is possible that because of a bug in the program or the processor, one
of the systems can erroneously take a decision to turn left. However, both of the other
systems might take the correct decision to turn right. In this case, the voting circuit will
decide to turn right. Since MISD systems are hardly ever used in practice other than such
specialised examples, we shall not discuss them any more in this book.

MIMD MIMD systems are by far the most prevalent multiprocessor systems today. They
have multiple instruction streams and multiple data streams. Multicore processors, and
large servers are all MIMD systems. Examples 149 and 150 pertained to MIMD systems.
We need to carefully explain the meaning of multiple instruction streams. This means
that instructions come from multiple sources. Each source has its unique location, and
associated program counter. Two important branches of the MIMD paradigm have formed
over the last few years.

The first is SPMD (single program multiple data), and the second is MPMD (multiple
program multiple data). Most parallel programs are written in the SPMD style (Exam-
ple 149 and 150). Here, multiple copies of the same program run on different cores, or
separate processors. However, each individual processing unit has a separate program
counter, and thus perceives a different instruction stream. Sometimes SPMD programs
are written in such a way that they perform different actions depending on their thread

579 © Smruti R. Sarangi

ids. We saw a method in Example 149 on how to achieve this using OpenMP functions.
The advantage of SPMD is that we do not have to write different programs for differ-
ent processors. Parts of the same program can run on all the processors, though their
behaviour might be different.

A contrasting paradigm is MPMD. Here, the programs running on different processors are
actually different. They are more useful for specialised processors that have heterogeneous
processing units. There is typically a single master program that assigns work to slave
programs. The slave programs complete the quanta of work assigned to them, and then
return the results to the master program. The nature of work of both the programs is
actually very different, and it is often not possible to seamlessly combine them into one
program.

From the above description, it is clear that the systems that we need to focus on are SIMD
and MIMD. MISD systems are very rarely used, and thus will not be discussed anymore. Let
us first discuss MIMD multiprocessing. Note that we shall only describe the SPMD variant of
MIMD multiprocessing because it is the most common approach.

12.4 MIMD Multiprocessors

Let us now take a deeper look at strongly-coupled shared memory based MIMD machines. We
shall first take a look at them from the point of view of software. After we have worked out
a broad specification of these machines from the point of view of software, we can proceed to
give a brief overview of the design of the hardware. Note that the design of parallel MIMD
machines can take an entire book to describe. For additional information, or for added clarity,
the reader can refer to the following references [Culler et al., 1998, Sorin et al., 2011].

Let us call the software interface of a shared memory MIMD machine as the “logical point
of view”, and refer to the actual physical design of the multiprocessor as the “physical point
of view”. When we describe the logical point of view, we are primarily interested in how
the multiprocessor behaves with respect to software. What guarantees does the hardware make
regarding its behaviour, and what can software expect? This includes correctness, performance,
and even resilience to failures. The physical point of view is concerned with the actual design
of the multiprocessor. This includes the physical design of the processors, the memory system,
and the interconnection network. Note that the physical point of view has to conform to the
logical point of view. The reader will recall that we are taking a similar approach here as we did
for uniprocessors. We first explained the software view (architecture) by looking at assembly
code. Then we provided an implementation for the assembly code by describing a pipelined
processor (organisation). We shall follow a similar approach here.

12.4.1 Logical Point of View

Figure 12.5 shows a logical view of a shared memory MIMD multiprocessor. Each processor
is connected to the memory system that saves both code and data. The program counter of
each processor points to the location of the instruction that it is executing. This is in the code
section of memory. This section is typically read only, and thus is not affected by the fact that
we have multiprocessors.

© Smruti R. Sarangi 580

Proc 1

Shared memory

Proc 2 Proc n

Figure 12.5: Logical view of a multiprocessor system

The main challenge in implementing a shared memory multiprocessor is in correctly handling
data accesses. Figure 12.5 shows a scheme in which each computing processor is connected to
the memory, and it is treated as a black box. If we are considering a system of processes with
different virtual address spaces, then there is no problem. Each processor can work on its private
copy of data. Since the memory footprints are effectively disjoint, we can easily run a set of
parallel processes in this system. However, the main complexity arises when we are looking at
shared memory programs that have multiple threads, and there is data sharing across threads.
Note that we can also share memory across processes by mapping different virtual pages to the
same physical frame as described in Section 11.4.6. We shall threat this scenario as a special
case of parallel multi-threaded software.

A set of parallel threads typically share their virtual and physical address spaces. However,
threads do have private data also, which is saved in their stacks. There are two methods to
implement disjoint stacks. The first is that all the threads can have identical virtual address
spaces, and different stack pointers can start at different points in the virtual address space.
We need to further ensure that the size of the stack of a thread is not large enough to overlap
with the stack of another thread. Another approach is to map the stack portion of the virtual
address space of different threads to different memory frames. Thus, each thread can have
different entries in its page table for the stack portion, yet have common entries for the rest
of the sections of the virtual address space such as code, read-only data, constants, and heap
variables.

In any case, the main problems of complexity of parallel software are not because of code
that is read-only, or local variables that are not shared across threads. The main problem is
due to data values that are potentially shared across multiple threads. This is what gives the
power to parallel programs, and also makes them very complex. In the example that we showed
for adding a set of numbers in parallel, we can clearly see the advantage that we obtain by
sharing values and results of computation through shared memory.

However, sharing values across threads is not that simple. It is actually a rather profound
topic, and advanced texts on computer architecture[Sarangi,] devote several chapters to this
topic. We shall briefly look at two important topics in this area namely coherence and memory
consistency. Coherence is also known as cache coherence, when we refer to it in the context of
caches. However, the reader needs to be aware that coherence is just not limited to caches, it
is a generic term.

581 © Smruti R. Sarangi

12.4.2 Coherence

The term coherence in the memory system refers to the way multiple threads access the same
location. We shall see that many different behaviours are possible, when multiple threads access
the same memory location. Some of the behaviours are intuitively wrong, yet possible. Before
looking at coherence, we need to note that inside the memory system, we have many different
entities such as caches, write buffers, and different kinds of temporary buffers. Processors
typically write values to temporary buffers, and resume their operation. It is the job of the
memory system to transfer the data from these buffers to locations in the cache subsystem.
Now, we need to understand that large caches are very slow. Hence, it is common practice to
associate a small private cache with each core in a multicore system. For example, each core
may have a small, private L1 cache. The ensemble of these L1 caches (across cores) needs to
act like a single L1 cache. In other words, an external entity such as a software program should
perceive the distributed L1 cache comprising multiple private caches as one entity (insofar as
memory accesses are concerned).

It is thus possible that internally, a given memory address might be associated with many
different physical locations at a given point of time. For example, a variable x can have many
replicas that are distributed across the private caches. Any write operation has to update
all the replicas. Synchronizing these replicas is the key problem that cache coherence solves.
Secondly, the process of transferring data from the processor to the correct location in the
memory system (typically a cache block) is not instantaneous. It sometimes takes more than
tens of cycles for the memory read or write request to reach its location. Sometimes these
memory request messages can wait even longer, if there is a lot of memory traffic. Messages
can also get reordered with other messages that were sent after them. This internal complexity
of a multiprocessor memory system leads to several interesting behaviours for programs that
access the same set of shared variables. Let us consider a set of examples.

In each of these examples, all shared values are initialised to 0. All the local variables start
with t such as t1, t2, and t3. They are stored in registers. Let us say that thread 1 writes to a
variable x that is shared across threads. Immediately later, thread 2 tries to read its value.

Thread 1:

x = 1

Thread 2:

t1 = x

Is thread 2 guaranteed to read 1? Or, can it get the previous value 0? What if thread
2, reads the value of x, 2 ns later, or even 10 ns later? What is the time that it takes for a
write in one thread to propagate to the other threads? This depends on the implementation
of the memory system. If a memory system has fast buses, and fast caches, then a write can
propagate very quickly to other threads. However, if the buses and caches are slow, then it can
take some time for other threads to see a write to a shared variable.

Now, let us further complicate the example. Let us assume that thread 1 writes to x twice.

© Smruti R. Sarangi 582

Example 151

Thread 1:

x = 1

x = 2

Thread 2:

t1 = x

t2 = x

Let us now look at the set of possible outcomes. (t1, t2) = (1, 2) is possible. (t1, t2) = (0, 1)
is also possible. This is possible when t1 was read before thread 1 started, and t2 was read
after the first statement of thread 1 completed. Likewise we can systematically enumerate the
set of all possible outcomes, which are as follows: (0,0), (0,1), (0,2), (1,1), (1,2), (2,2). The
reader is requested to write a simple program using a parallel multithreaded framework such
as OpenMP or pthreads and look at the set of possible outcomes. The interesting question is
whether the outcome (2,1) is possible? This might be possible if somehow the first write to x
got delayed in the memory system, and the second write overtook it. The question is whether
we should allow such behaviour.

The answer is NO. If we were to allow such behaviour, then implementing a multiprocessor
memory system would undoubtedly become simpler. However, it will become very difficult to
write and reason about parallel programs. Hence, most multiprocessor systems disallow such
behaviour.

Let us now look at the issue of accesses to the same memory location by multiple threads
slightly more formally. Let us define the term, coherence, as he behaviour of memory accesses
to the same memory address such as x in our examples. We ideally want our memory system
to be coherent. This basically means that it should observe a set of rules while dealing with
different accesses to the same memory address such that it is easier to write programs.

Definition 122
The behaviour of memory accesses to the same memory address is known as coherence.

Typically, coherence has two axioms. These are as follows:

1. Completion A write must ultimately complete.

2. Order All the writes to the same memory address need to be seen by all the threads in
the same order.

Both of these axioms are fairly sublime in nature. The completion axiom says that no write
is ever lost in the memory system. For example, it is not possible that we write 10 to variable
x, and the write request gets dropped by the memory system. It needs to reach the memory
location(s) corresponding to x, and then it needs to update its value. It might get overwritten
later by another write request. However, the bottom line is that the write request needs to
update the memory location at some point of time in the future.

583 © Smruti R. Sarangi

The order axiom says that all the writes to a memory location are perceived to be in the
same order by all the threads. This means that it is not possible to read (2,1) in Example 151.
Let us now explain the reasons for this. Thread 1 is aware that 2 was written after 1 to the
memory location x. By the second axiom of coherence, all other threads need to perceive the
same order of writes to x. Their view of x cannot be different from that of thread 1. Hence,
they cannot read 2 after 1. If we think about it, the axioms of coherence make intuitive sense.
They basically mean that all writes eventually complete, as is true for uniprocessor systems.
Second, all the processors see the same view of a single memory location. If its value changes
from 0 to 1 to 2, then all the processors see the same order of changes (0 → 1 → 2). No
processor sees the updates in a different order. This further means that irrespective of how a
memory system is implemented internally, externally each memory location is seen as a globally
accessible single location. In terms of theory, this is just the tip of the iceberg. The advanced
text on computer architecture by your author [Sarangi,] has more details.

12.4.3 Memory Consistency

Overview

Coherence was all about accesses to the same memory location. What about access to different
memory locations? Let us explain with a series of examples.

Example 152

Thread 1:

x = 1

y = 1

Thread 2:

t1 = y

t2 = x

Let us look at the permissible values of t1, and t2 from an intuitive standpoint. We can
always read (t1,t2)=(0,0). This can happen when thread 2 is scheduled before thread 1. We
can also read (t1, t2)=(1,1). This will happen when thread 2 is scheduled after thread 1 finishes.
Likewise it is possible to read (t1, t2)=(0,1). Figure 12.6 shows how we can get all the three
outcomes.

x = 1
y = 1
t1 = y
t2 = x

x = 1
t1 = y
t2 = x
y = 1

t1 = y
t2 = x
x = 1
y = 1

(0,1)(0,0) (1,1)

Figure 12.6: Graphical representation of all the possible outcomes

The interesting question is whether (t1, t2)=(1,0) is allowed? This will happen when the

© Smruti R. Sarangi 584

write to x is somehow delayed by the memory system, whereas the write to y completes quickly.
In this case t1 will get the updated value of y, and t2 will get the old value of x. The question is
whether such kind of behaviour should be allowed. Clearly if such kind of behaviour is allowed,
it will become hard to reason about software, and the correctness of parallel algorithms. It
will also become hard to program because the behaviour appears non-intuitive. However, if
we allow such behaviour then our hardware design becomes simpler because we do not have to
provide strong guarantees to software.

There is clearly no right or wrong answer? It all depends on how we want to program
software, and what hardware designers want to build for software writers. But, still there is
something very profound about this example, and the special case of (t1, t2) equal to (1,0). To
find out why, let us take a look again at Figure 12.6. In this figure, we have been able to reason
about three outcomes by creating an interleaving between the instructions of the two threads.
In each of these interleavings, the order of instructions in the same thread is the same as the
way it is specified in the program. This is known as program order.

Definition 123
An order of instructions (possibly belonging to multiple threads) that is consistent with the
control-flow semantics of each constituent thread is said to be in program order. The control-
flow semantics of a thread is defined as the set of rules that determine which instructions
can execute after a given instruction. For example, the set of instructions executed by a
single cycle processor is always in program order.

Observation: It is clear that we cannot generate the outcome (t1, t2)=(1,0) by interleaving
threads in program order.

It would be nice if we can somehow exclude the output (1,0) from the set of possible (allowed)
outputs. It will allow us to write parallel software, where we can predict the possible outcomes
very easily. A model of the memory system that determines the set of possible outcomes for
parallel programs is known as a memory model.

Definition 124
The model of a memory system that determines the set of likely outcomes for parallel pro-
grams is known as a memory model.

Sequential Consistency

We can have different kinds of memory models corresponding to different kinds of processors.
One of the most important memory models is known as sequential consistency(SC). Sequential
consistency states that only those outcomes are allowed that can be generated by an interleaving
of threads in program order. This means that all the outcomes shown in Figure 12.6 are
allowed because they are generated by interleaving thread 1 and 2 in all possible ways, without

585 © Smruti R. Sarangi

violating their program order. However, the outcome (t1, t2)=(1,0) is not allowed because it
violates program order. Hence, it is not allowed in a sequentially consistent memory model.
Note that once we interleave multiple threads in program order, it is the same as saying that
we have one processor that executes an instruction from one thread in one cycle and possibly
another instruction from some other thread in the next cycle. However, the program order
(control flow semantics) of each thread is preserved. Hence, a uniprocessor processing multiple
threads produces an SC execution. In fact, if we think about the name of the model, the
word “sequential” comes from the notion that the execution is equivalent to a uniprocessor
sequentially executing the instructions of all the threads in some order that is consistent with
each thread’s program order.

Definition 125
A memory model is sequentially consistent if the outcome of the execution of a set of parallel
threads is equivalent to that of a single processor executing instructions from all the threads
in some order. Alternatively, we can define sequential consistency as a memory model whose
set of possible outcomes are those that can be generated by interleaving a set of threads in
program order.

Sequential consistency is a very important concept and is widely studied in the fields of
computer architecture and distributed systems. It reduces a parallel system to an equivalent
uniprocessor system with one processor by equating the execution on a parallel system with
the execution on a sequential system. An important point to note is that SC does not mean
that the outcome of the execution of a set of parallel programs is the same all the time. This
depends on the way that the threads are interleaved and the relative delays f the threads. All
that it says is that certain outcomes are not allowed.

Weak Consistency (WC)*

The implementation of SC comes at a cost. It makes software simple, but it makes hardware
very slow. To support SC, it is often necessary to wait for a read or write to complete, before
the next read or write can be sent to the memory system. A write request W completes when
all subsequent reads by any processor are guaranteed to get the value written by W , or the
value written by a later write to the same location. A read request completes, after it reads
the data, and the write request that originally wrote the data completes.

These requirements/restrictions become a bottleneck in high-performance systems. Hence,
the computer architecture community has moved to weak memory models that violate SC. A
weak memory model will allow the outcome (t1, t2)=(1,0) in the following multithreaded code
snippet.

Thread 1:

x = 1

y = 1

Thread 2:

t1 = y

t2 = x

© Smruti R. Sarangi 586

Definition 126
A weakly consistent (WC) memory model does not obey SC. It typically allows arbitrary
memory orderings.

There are different kinds of weak memory models. Let us look at a generic variant, and
call it weak consistency (WC). Let us now try to find out why WC allows the (1,0) outcome.
Assume that thread 1 is running on core 1, and thread 2 is running on core 2. Moreover,
assume that the memory location corresponding to x is near core 2, and the memory location
corresponding to y is near core 1. Also assume that it takes tens of cycles to send a request from
the vicinity of core 1 to core 2, and the delay is variable. Let us first investigate the behaviour
of the pipeline of core 1. From the point of view of the pipeline of core 1, once a memory write
request is handed over to the memory system, the memory write instruction is deemed to have
finished. The instruction moves on to the RW stage. Hence, in this case, the processor will
hand over the write to x to the memory system in the nth cycle, and subsequently pass on the
write to y in the (n + 1)th cycle. The write to y will reach the memory location of y quickly,
while the write to x will take a long time.

In the meanwhile, core 2 (running thread 2) will try to read the value of y. Assume that
the read request arrives at the memory location of y just after the write request (to y) reaches
it. Thus, we will get the new value of y, which is equal to 1. Subsequently, core 2 will issue a
read to x. It is possible that the read to x reaches the memory location of x just before the
write to x reaches it. In this case, it will fetch the old value of x, which is 0. Thus, the outcome
(1,0) is possible in a weak memory model.

Now, to avoid this situation, we could have waited for the write to x to complete fully, before
issuing the write request to y. It is true that in this case, this would have been the right thing
to do. However, in general, when we are writing to shared memory locations, other threads are
not reading them at exactly the same point of time. We have no way of distinguishing both
the situations at runtime since processors do not share their memory access patterns between
each other. Hence, in the interest of performance, it is not worthwhile to delay every memory
request till the previous memory requests complete. High-performance implementations thus
prefer memory models that allow memory accesses from the same thread to be reordered by
the memory system. Note that we shall investigate ways of avoiding the (1,0) outcome in the
next subsection.

Let us summarise our discussion that we have had on weak memory models by defining
the assumptions that most processors make. Most processors assume that a memory request
completes instantaneously at some point of time after it leaves the pipeline. Furthermore, all
the threads assume that a memory request completes instantaneously at exactly the same point
of time. This property of a memory request is known as atomicity. Second, we need to note
that the order of completion of memory requests might differ from their program order. When
the order of completion is the same as the program order of each thread, the memory model
obeys SC. If the completion order is different from the program order, then the memory model
is a variant of WC.

587 © Smruti R. Sarangi

Definition 127
A memory request is said to be atomic or observe atomicity, when it is perceived to execute
instantaneously by all threads at some point of time after it is issued.

Important Point 18
To be precise, for every memory request, there are three events of interest namely start,
finish, and completion. Let us consider a write request. The request starts when the in-
struction sends the request to the L1 cache in the MA stage. The request finishes when
the instruction moves to the RW stage. In modern processors, there is no guarantee that
the write would have reached the target memory location when the memory request finishes.
The point of time at which the write request reaches the memory location and the write
is visible to all the processors, is known as the time of completion. In simple processors,
the time of completion of a request is in between the start and finish times. However, in
high-performance processors, this is seldom the case. This concept is shown in the following
illustration.

time

start finish complete

What about a read request? Most readers will naively assume that the completion time of
a read is between the start and finish times, because it needs to return with the value of the
memory location. This is however not strictly true in complex multiprocessors where reads
and writes issued by the same core can be reordered if they access different memory locations.
Things actually get very complicated when we consider everything that can possibly happen.
We also have a bunch of memory models where writes themselves are not atomic – this
means that they appear to complete at different points of time to different threads. This
further complicates matters.

Trivia 4
Here, is an incident from your author’s life. He had 200 US dollars in his bank account.
He had gotten a cheque for 300$ from his friend. He went to his bank’s nearest ATM and
deposited the cheque. Three days later, he decided to pay his rent (400$). He wrote a cheque
to his landlord and sent it to his postal address. A day later, he got an angry phone call
from his landlord informing him that his cheque had bounced. How was this possible?

© Smruti R. Sarangi 588

Your author then enquired. It had so happened that because of a snow storm, his bank
was not able to send people to collect cheques from the ATM. Hence, when his landlord
deposited the cheque, the bank account did not have sufficient money.

This example is related with the problem of memory consistency. Your author leaving
his house to drop the cheque in the ATM is the start time. He finished the job when he
dropped the cheque in the ATM’s drop box. However, the completion time was 5 days later,
when the amount was actually credited to his account. Concurrently, another thread (his
landlord) deposited his rent cheque, and it bounced. This is an example of weak consistency
in real life.

There is an important point to note here. In a weak memory model, the ordering between
independent memory operations in the same thread is not respected. For example, when we
wrote to x, and then to y, thread 2 perceived them to be in the reverse order. However, the
ordering of operations of memory instructions to the same address and belonging to the same
thread is always respected. For example, if we set the value of a variable x to 1, and later read
it in the same thread, we will either get 1 or the value written by a later write to x. All the
other threads will perceive the memory requests to be in the same order. Such accesses (to the
same variable in the same thread) are not reordered in any memory model that your author
is aware of (refer to Figure 12.7). It is possible to prove that doing so breaks the notion of a
shared memory altogether (refer to[Sarangi,]).

Thread 1

x = 1
y = 1
t3 = x

Thread 2

t1 = y
t2 = x

completion
time

Figure 12.7: Actual completion times of memory requests in a multithreaded program

Examples

Let us now illustrate the difficulty with using a weak memory model that does not obey any
ordering rules. Let us write our program to add numbers in parallel assuming a sequentially
consistent system. Note that here we do not use OpenMP because OpenMP does a lot behind

589 © Smruti R. Sarangi

the scenes to ensure that programs run correctly on machines with weak memory models. Let
us define a parallel construct that runs a block of code in parallel, and a getThreadId() function
that returns the identifier of the thread. The range of the thread ids is from 0 to N − 1. The
code for the parallel add function is shown in Example 153. We assume that before the parallel
section begins, all the arrays are initialised to 0. In the parallel section, each thread adds its
portion of numbers, and writes the result to its corresponding entry in the array, partialSums.
Once, it is done, it sets its entry in the finished array to 1.

Let us now consider the thread that needs to aggregate the results. It needs to wait for
all the threads to finish the job of computing the partial sums. It does this by waiting till all
the entries of the finished array are equal to 1. Once, it establishes that all the entries in the
finished array are equal to 1, it proceeds to add all the partial sums to get the final result.
The reader can readily verify that if we assume a sequentially consistent system, then this piece
of code executes correctly. She needs to note that we compute the result, only when we read
all the entries in the array finished to be 1. An entry in the finished array is equal to 1 if
the partial sum is computed, and written to the partialSums array. Since we add the elements
of the partialSums array to compute the final result, we can conclude that it is calculated
correctly. Note that this is not a formal proof (left as an exercise for the reader).

Example 153
Write a shared memory program to add a set of numbers in parallel on a sequentially
consistent machine.
Answer: Let us assume that all the numbers are already stored in an array called numbers.
The array numbers has SIZE entries. The number of parallel threads is given by N .

/* variable declaration */

int partialSums[N];

int finished[N];

int numbers[SIZE];

int result = 0;

int doneInit = 0;

/* initialise all the elements in partialSums and finished to 0 */

...

doneInit = 1;

/* parallel section */

parallel {

/* wait till initialisation */

while (!doneInit()){};

/* compute the partial sum */

int myId = getThreadId();

int startIdx = myId * SIZE/N;

int endIdx = startIdx + SIZE/N;

© Smruti R. Sarangi 590

for(int jdx = startIdx; jdx < endIdx; jdx++)

partialSums[myId] += numbers[jdx];

/* set an entry in the finished array */

finished[myId] = 1;

}

/* wait till all the threads are done */

do {

flag = 1;

for (int i=0; i < N; i++){

if(finished[i] == 0){

flag = 0;

break;

}

}

} while (flag == 0);

/* compute the final result */

for(int idx=0; idx < N; idx++)

result += partialSums[idx];

Now, let us consider a weak memory model. We implicitly assumed in our example with
sequential consistency that when the last thread reads finished[i] to be 1, partialSums[i]
contains the value of the partial sum. However, this assumption does not hold if we assume a
weak memory model because the memory system might reorder the writes to finished[i] and
partialSums[i]. It is thus possible that the write to the finished array happens before the
write to the partialSums array in a system with a weak memory model. In this case, the fact
that finished[i] is equal to 1 does not guarantee that partialSums[i] contains the updated
value. This distinction is precisely what makes sequential consistency extremely programmer
friendly.

Important Point 19
In a weak memory model, the memory accesses issued by the same thread are always per-
ceived to be in program order by that thread. However, the order of memory accesses can
be perceived differently by other threads.

Let us come back to the problem of ensuring that our example to add numbers in parallel
runs correctly. We observe that the only way out of our quagmire is to have a mechanism to

591 © Smruti R. Sarangi

ensure that the write to partialSums[i] is completed before another thread reads finished[i]
to be 1. We can use a generic instruction known as a fence. This instruction ensures that all
the reads and writes issued before the fence complete before any read or write after the fence
begins. Trivially, we can convert a weak memory model to a sequentially consistent one by
inserting a fence after every instruction. However, this can induce a large overhead. It is best
to introduce a minimal number of fence instructions, as and when required. Let us look at
our example for adding a set of numbers in parallel for weak memory models by adding fence
instructions.

Example 154
Write a shared memory program to add a set of numbers in parallel on a machine with a
weak memory model.
Answer: Let us assume that all the numbers are already stored in an array called numbers.
The array numbers has SIZE entries. The number of parallel threads is given by N .

/* variable declaration */

int partialSums[N];

int finished[N];

int numbers[SIZE];

int result = 0;

/* initialise all the elements in partialSums and finished to 0 */

...

/* fence */

/* ensures that the parallel section can read the initialised arrays */

fence();

/* All the data is present in all the arrays at this point */

/* parallel section */

parallel {

/* get the current thread id */

int myId = getThreadId();

/* compute the partial sum */

int startIdx = myId * SIZE/N;

int endIdx = startIdx + SIZE/N;

for(int jdx = startIdx; jdx < endIdx; jdx++)

partialSums[myId] += numbers[jdx];

/* fence */

/* ensures that finished[i] is written after

partialSums[i] */

fence();

© Smruti R. Sarangi 592

/* set the value of done */

finished[myId] = 1;

}

/* wait till all the threads are done */

do {

flag = 1;

for (int i=0; i < N; i++){

if(finished[i] == 0){

flag = 0;

break;

}

}

} while (flag == 0) ;

/* sequential section */

for(int idx=0; idx < N; idx++)

result += partialSums[idx];

Example 154 shows the code for a weak memory model. The code is more or less the same
as it was for the sequentially consistent memory model. The only difference is that we have
added two additional fence instructions. We assume a function called fence() that internally
invokes a fence instruction. We first call fence() before creating all the parallel threads. This
ensures that all the writes for initialising data structures have completed. After that we start
the parallel threads. The parallel threads finish the process of computing and writing the partial
sum, and then we invoke the fence operation again. This ensures that before finished[myId]
is set to 1, all the partial sums have been computed and written to their respective locations in
memory. Secondly, if the the last thread reads finished[i] to be 1, then we can say for sure that
the value of partialSums[i] is up to date and correct. Hence, this program executes correctly,
in spite of a weak memory model.

We thus observe that weak memory models do not sacrifice on correctness if the program-
mer is aware of them, and inserts fences at the right places. Nonetheless, it is necessary for
programmers to be aware of weak memory models, and they need to also understand that a
lot of subtle bugs in parallel programs occur because programmers do not take the underly-
ing memory model into account. Weak memory models are currently used by most processors
because they allow us to build high-performance memory systems. In comparison, sequential
consistency is very restrictive, and other than the MIPS R10000 [Yeager, 1996] no other ma-
jor vendor offers machines with sequential consistency. All our current x86 and ARM based
machines use different versions of weak memory models.

593 © Smruti R. Sarangi

12.4.4 Physical View of Memory

Overview

We have looked at two important aspects of the logical view of a memory system for multi-
processors namely coherence and consistency. We need to implement a memory system that
respects both of these properties. In this section, we shall study the design space of multipro-
cessor memory systems, and provide an overview of the design alternatives. We shall observe
that there are two ways of designing a cache for a multiprocessor memory system. The first
design is called a shared cache, where a single cache is shared among multiple processors. The
second design uses a set of private caches, where each processor or set of processors typically
have a private cache. All the private caches co-operate to provide the illusion of a shared cache.
This is known as cache coherence.

We shall study the design of shared caches in Section 12.4.5, and private caches in Sec-
tion 12.4.6. Subsequently, we shall briefly look at ensuring memory consistency in Section 12.4.7.
We shall conclude that an efficient implementation of a given consistency model such as sequen-
tial or weak consistency is difficult, and is thus a subject of study in an advanced computer
architecture course. In this book, we propose a simple solution to this problem, and request
the reader to look at research papers for more information. The casual reader can skip most
of this section without any loss in continuity. Later on we shall summarise the main results,
observations and insights.

Design of a Multiprocessor Memory System – Shared and Private Caches

Let us start out by considering the first level cache. We can give every processor its individual
instruction cache. Instructions represent read only data, and typically do not change during
the execution of the program. Since sharing is not an issue here, each processor can benefit
from its small private instruction cache. The main problem is with the data caches. There
are two possible ways to design a data cache. We can either have a shared cache, or a private
cache. A shared cache is a single cache that is accessible to all the processors. A private cache is
accessible to either only one processor, or a set of processors. It is possible to have a hierarchy
of shared caches, or a hierarchy of private caches as shown in Figure 12.8. We can even have
combinations of shared and private caches in the same system.

Proc 1

Shared L1 cache

Proc 2 Proc n Proc 1 Proc 2 Proc n

L1 L1 L1

Shared L2 cacheShared L2 cache

Proc 1 Proc 2 Proc n

L1 L1 L1

L2 L2 L2

(a) (b) (c)

Figure 12.8: Examples of systems with shared and private caches

© Smruti R. Sarangi 594

Let us now evaluate the tradeoffs between a shared and private cache. A shared cache is
accessible to all the processors, and contains a single entry for a cached memory location. The
communication protocol is simple, and is like any regular cache access. The additional com-
plexity arises mainly from the fact that we need to properly schedule the requests coming from
different individual processors. However, at the cost of simplicity, a shared cache has its share of
problems. To service requests coming from all the processors, a shared cache needs to have a lot
of read and write ports for handling requests simultaneously. Unfortunately, the size of a cache
increases approximately as a square of the number of ports [Tarjan et al., 2006]. Additionally,
the shared cache needs to accommodate the working sets of all the currently running threads.
Hence, shared caches tend to become very large and slow. Because of physical constraints, it
becomes difficult to place a shared cache close to all the processors. In comparison, private
caches are typically much smaller, service requests for fewer cores, and have a lower number
of read/write ports. Hence, they can be placed close to their associated processors. A private
cache is thus much faster because it can be placed closer to a processor and is also much smaller
in size.

To solve the problems with shared caches, designers often use private caches, especially in
the higher levels of the memory hierarchy. A private cache can only be accessed by either one
processor, or a small set of processors. They are small, fast, and consume a lesser amount of
power. The major problem with private caches is that they need to provide the illusion of a
shared cache to the programmer. For example, let us consider a system with two processors,
and a private data cache associated with each processor. If one processor writes to a memory
address, x, the other processor needs to be aware of the write. However, if it only accesses its
private cache, then it will never be aware of a write to address x. This means that a write to
address x is lost, and thus the system is not coherent. Hence, there is a need to tie the private
caches of all the processors such that they look like one unified shared cache, and observe the
rules of coherence. Coherence in the context of caches, is popularly known as cache coherence.
Maintaining cache coherence represents an additional source of complexity for private caches,
and limits the scalability of this approach. It works well for small private caches. However,
for larger private caches, the overhead of maintaining coherence becomes prohibitive. For large
lower level caches, the shared cache is more appropriate. Secondly, there is typically some data
replication across multiple private caches. This wastes space.

Definition 128
Coherence in the context of a set of private caches is known as cache coherence.

By implementing a cache coherence protocol, it is possible to convert a set of disjoint private
caches to appear as a shared cache to software. Let us now outline the major tradeoffs between
shared and private caches in Table 12.3.

From the table it is clear that the first level cache should ideally be private because we
desire low latency and high throughput. However, the lower levels need to be larger in size,
and service a significantly lesser number of requests, and thus they should comprise of shared
caches. Let us now describe the design of coherent private caches, and large shared caches.
To keep matters simple we shall only consider a single level private cache, and not consider

595 © Smruti R. Sarangi

Attribute Private Cache Shared Cache

Area low high

Speed fast slow

Proximity to the processor near far

Scalability in size low high

Data replication yes no

Complexity high (needs cache coherence) low

Table 12.3: Comparison of shared and private caches

hierarchical private caches. They introduce additional complexity, and are best covered in an
advanced textbook on computer architecture.

Let us discuss the design of shared caches first because they are simpler. Before proceeding
further, let us review where we stand.

Way Point 11

1. We defined a set of correctness requirements for caches in Section 12.4.1. They were
termed as coherence and consistency.

2. In a nutshell, both the concepts place constraints on reordering memory requests in the
memory system. The order and semantics of requests to the same memory location is
referred to as coherence, and the semantics of requests to different memory locations
by the same thread is referred to as consistency.

3. For ensuring that a memory system is consistent with a certain model of memory,
we need to ensure that the hardware follows a set of rules with regards to reordering
memory requests issued by the same program. This can be ensured by having additional
circuitry that stalls all the memory requests, till a set of memory requests issued in the
past complete. Secondly, programmer support is also required for making guarantees
about the correctness of a program.

4. There are two approaches for designing caches – shared or private. A shared cache
has a single physical location for each memory location. Consequently, maintaining
coherence is trivial. However, it is not a scalable solution because of high contention,
and high latency.

5. Consequently, designers often use private caches at least for the L1 level. In this case,
we need to explicitly ensure cache coherence.

© Smruti R. Sarangi 596

12.4.5 Shared Caches

In the simplest embodiment of a shared cache, we can implement it as a regular cache in a
uniprocessor. However, this will prove to be a very bad approach in practice. The reason for
this is that in a uniprocessor, only one thread accesses the cache; however, in a multiprocessor
multiple threads might access the cache, and thus we need to provide more bandwidth. If all
the threads need to access the same data and tag array, then either requests have to stall or we
have to increase the number of ports in the arrays. This will have very negative consequences
in terms of area and power. Lastly, cache sizes (especially L2 and L3) are roughly doubling as
per Moore’s law. As of 2012, on-chip caches can be as large as 4-8 MB. If we have a single tag
array for the entire cache, then it will be very large and slow. Let us define the term last level
cache (LLC) as the on chip cache that has the lowest position in the memory hierarchy (with
main memory being the lowest). For example, if a multicore processor has an on-chip L3 cache
that is connected to main memory, then the LLC is the L3 cache. We shall use the term LLC
frequently from now onwards.

To create a multi-megabyte LLC that can simultaneously support multiple threads, we need
to split it into multiple subcaches. Let us assume that we have a 4 MB LLC. In a typical design,
this will be split into 8-16 smaller subcaches. Thus each subcache will be 256-512 KB in size,
which is an acceptable size. Each such subcache is a cache in its own right, and is known as a
cache bank. Hence, we have in effect split a large cache into a set of cache banks. A cache bank
can either be direct mapped, or can be set associative.

There are two steps in accessing a multibank cache. We first calculate the bank address,
and then perform a regular cache access at the bank. Let us explain with an example. Let us
consider a 16-bank, 4 MB cache. Each bank thus contains 256 KB of data. Now 4 MB = 222

bytes. We can thus dedicate bits 19-22 for choosing the bank address. Note that bank selection
is independent of associativity in this case. After choosing a bank, we can split the remaining
28 bits between the offset within the block, set index, and tag.

There are two advantages of dividing a cache into multiple banks. The first is that we
decrease the amount of contention at each bank. If we have 4 threads, and 16 banks, then the
probability that 2 threads access the same bank is low. Secondly, since each bank is a smaller
cache, it is more power efficient, and faster. We have thus achieved our twin aims of supporting
multiple threads, and designing a fast cache. We shall look at the problem of placing processors,
and cache banks in a multicore processor in Section 12.6.

12.4.6 Coherent Private Caches

Overview of a Snoopy Protocol

The aim here is to make a set of private caches behave as if it is one large shared cache. From
the point of view of software we should not be able to figure out whether a cache is private
or shared. A conceptual diagram of the system is shown in Figure 12.9. It shows a set of
processors along with their associated caches. The set of caches form a cache group. The entire
cache group needs to appear as one cache.

These caches are connected via an interconnection network, which can range from a simple
shared bus type topology to more complex topologies. We shall look at the design of different
interconnection networks in Section 12.6. In this section, let us assume that all the caches are

597 © Smruti R. Sarangi

Proc 1

Shared L1 cache

Proc 2 Proc n Proc 1 Proc 2 Proc n

L1 L1 L1

Shared L2 cacheShared L2 cache

One logical
cache

Figure 12.9: A system with many processors and their private caches

connected to a shared bus. A shared bus allows a single writer and multiple readers at any
point of time. If one cache writes a message to the bus, then all the other caches can read it.
The topology is shown in Figure 12.10. Note that the bus gives exclusive access to only one
cache at any point of time for writing a message. Consequently, all the caches perceive the
same order of messages. A protocol that implements cache coherence with caches connected on
a shared bus is known as a snoopy protocol.

Proc 1 Proc 2 Proc n

L1 L1 L1

Shared bus

Figure 12.10: Caches connected with a shared bus

Let us now consider the operation of the snoopy protocol from the point of view of the
two axioms of coherence – writes always complete (completion axiom), and writes to the same
block are seen in the same order by all processors (order axiom). If cache i, wishes to perform
a write operation on a block, then this write needs to be ultimately visible to all the other
caches. We need to do this to satisfy the completion axiom, because we are not allowed to lose
a write request. Secondly, different writes to the same block need to arrive at all the caches
that might contain the block in the same order (order axiom). This ensures that for any given
block, all the caches perceive the same order of updates. The shared bus automatically satisfies
this requirement (the order axiom).

We present the design of two snoopy protocols – write-update and write-invalidate.

© Smruti R. Sarangi 598

Write-Update Protocol

Let us now design a protocol, were a private cache keeps a copy of a write request, and broadcasts
the write request to all the caches. This strategy ensures that a write is never lost, and the write
messages to the same block are perceived in the same order by all the caches. This strategy
requires us to broadcast, whenever we want to write. This is a large additional overhead;
however, this strategy will work. Now, we need to incorporate reads into our protocol. A read
to a location, x, can first check the private cache to see if a copy of it is already available. If a
valid copy is available, then the value can be forwarded to the requesting processor. However,
if there is a cache miss, then it is possible that it might be present with another sister cache in
the cache group, or it might need to be fetched from the lower level. We need to first check if
the value is present with a sister cache. We follow the same process here. The cache broadcasts
a read request to all the caches. If any of the caches, has the value, then it replies, and sends
the value to the requesting cache. The requesting cache inserts the value, and forwards it to
the processor. However, if it does not get any reply from any other cache, then it initiates a
read to the lower level.

This protocol is known as the write-update protocol. Each cache block needs to maintain
three states, M , S, and I. M refers to the modified state. It means that the cache has modified
the block. S(shared) means that the cache has not modified the block, and I(invalid) denotes
the fact that the block does not contain valid data.

I S

M

Read miss/ Broadcast miss

Write
 hit

/ B
roa

dca
st w

rite

Evict/ Write back

Read hit/

Evict/

Write hit/ Broadcast write
Read hit/

Write miss/ Broadcast miss

Figure 12.11: State transition diagram in the write-update protocol

Figure 12.11 shows a finite state machine (FSM) for each cache block. This FSM is executed
by the cache controller. The format for state transitions is event / action. If the cache controller
is sent an event, then it takes a corresponding action, which may include a state transition.
Note that in some cases, the action field is blank. This means that in those cases, no action is
taken. Note that the state of a cache block is a part of its entry in the tag array. If a block is
not present in the cache, then its state is assumed to be invalid (I). Lastly, it is important to
mention that Figure 12.11 shows the transitions for events generated by the processor. It does
not show the actions for events sent over the bus by other caches in the cache group. Now, let
us discuss the protocol in detail.

599 © Smruti R. Sarangi

All blocks, initially are in the I state. If there is a read miss then it moves to the S state.
We additionally need to broadcast the read miss to all the caches in the cache group, and either
get the value from a sister cache, or from the lower level. Note that we give first preference to
a sister cache, because it might have modified the block without writing it back to the lower
level. Similarly, if there is a write miss in the I state, then we need to read the block from
another sister cache if it is available, and move to the M state. If no other sister cache has the
block, then we need to read the block from the lower level of the memory hierarchy.

If there is a read hit in the S state, then we can seamlessly pass the data to the processor.
However, if we need to write to the block in the S state, we need to broadcast the write to all
the other caches such that they get the updated value. Once, the cache gets a copy of its write
request from the bus, it can write the value to the block, and change its state to M . To evict a
block in the S state, we need to just evict it from the cache. It is not necessary to write back
its value because the block has not been modified.

Now, let us consider the M state. If we need to read a block in the M state, then we can
read it from the cache, and send the value to the processor. There is no need to send any
message. However, if we wish to write to it, then it is necessary to send a write request on the
bus. Once, the cache sees its own write request arrive on the shared bus, it can write its value
to the memory location in its private cache. To evict a block in the M state, we need to write
it back to the lower level in the memory hierarchy, because it has been modified.

Queue of requests
Broadcast to
all the caches

Figure 12.12: The bus arbiter

Every bus has a dedicated structure called an arbiter that receives requests to use the bus
from different caches. It allots the bus to the caches in FIFO order. A schematic of the bus
arbiter is shown in Figure 12.12. It is a very simple structure. It contains a queue of requests
to transmit on the bus. Each cycle it picks a request from the queue, and gives permission to
the corresponding cache to transmit a message on the bus.

Let us now consider a sister cache. Whenever it gets a miss message from the bus, it checks
its cache to find if it has the block. If there is a cache hit, then it sends the block on the bus,
or directly to the requesting cache. If it receives the notification of a write by another cache,
then it updates the contents of the block if it is present in its cache.

Directory Protocol

Note that in the snoopy protocol we always broadcast a write, a read miss, or a write miss. This
is strictly not required. We need to send a message to only those caches that contain a copy of
the block. The directory protocol uses a dedicated structure called a directory to maintain this
information. For each block address, the directory maintains a list of sharers. A sharer is the
id of a cache that might contain the block. The list of sharers is in general a superset of caches

© Smruti R. Sarangi 600

that might contain the given block. We can maintain the list of sharers as a bit vector (1 bit
per sharer). If a bit is 1, then a cache contains a copy, otherwise it does not.

The write-update protocol with a directory gets modified as follows. Instead of broadcasting
data on the bus, a cache sends all of its messages to the directory. For a read or write miss,
the directory fetches the block from a sister cache if it has a copy. It then forwards the block
to the requesting cache. Similarly, for a write, the directory sends the write message to only
those caches that might have a copy of the block. The list of sharers needs to be updated when
a cache inserts or evicts a block. Lastly, to maintain coherence the directory needs to ensure
that all the caches get messages in the same order, and no message is ever lost. The directory
protocol minimises the number of messages that need to be sent, and is thus more scalable.

Definition 129

Snoopy Protocol In a snoopy protocol, all the caches are connected to a shared bus. A
cache broadcasts each message to the rest of the caches.

Directory Protocol In a directory protocol, we reduce the number of messages by adding
a dedicated structure known as a directory. The directory maintains the list of caches
that might potentially contain a copy of the block. It sends messages for a given block
address to only the caches in the list.

Question 8
Why is it necessary to wait for the broadcast from the bus to perform a write?
Answer: Let us assume this is not the case, and processor 1, wishes to write 1 to x, and
processor 2 wishes to write 2 to x. They will then first write 1 and 2 to their copies of x
respectively, and then broadcast the write. Thus, the writes to x will be seen in different
orders by both the processors. This violates the order axiom. However, if they wait for a
copy of their write request to arrive from the bus, then they write to x in the same order.
The bus effectively resolves the conflict between processor 1 and 2, and orders one request
after the other.

Write-Invalidate Protocol

We need to note that broadcasting a write request for every single write is an unnecessary
overhead. It is possible that most of the blocks might not be shared in the first place. Hence,
there is no need to send an extra message on every write. Let us try to reduce the number of
messages in the write update protocol by proposing the write-invalidate protocol. Here again,
we can either use the snoopy protocol, or the directory protocol. Let us show an example with
the snoopy protocol.

601 © Smruti R. Sarangi

Let us maintain three states for each block – M , S, and I. Let us however, change the
meaning of our states. The invalid state (I) retains the same meaning. It means that the entry
is effectively not present in the cache. The shared state (S) means that a cache can read the
block, but it cannot write to it. It is possible to have multiple copies of the same block in
different caches in the shared state. Since the shared state assumes that the block is read-only,
having multiple copies of the block does not affect cache coherence. The M (modified) state
signifies the fact that the cache can write to the block. If a block is in the M state, then all the
other caches in the cache group need to have the block in the I state. No other cache is allowed
to have a valid copy of the block in the S or M states. This is where the write-invalidate
protocol differs from the write-update protocol. It allows either only one writer at a time, or
multiple readers at a time. It never allows a reader and a writer to co-exist at the same time.
By restricting the number of caches that have write access to a block at any point of time, we
can reduce the number of messages.

The basic insight is as follows. The write-update protocol did not have to send any messages
on a read hit. It sent extra messages on a write hit, which we want to eliminate. It needed to
send extra messages because multiple caches could read or write a block concurrently. For the
write-invalidate protocol, we have eliminated this behaviour. If a block is in the M state, then
no other cache contains a valid copy of the block.

I S

M

Read miss/ Broadcast read miss

Write
 hit

/ B
roa

dca
st w

rite

Evict/ Write back

Read hit/

Evict/

Write hit/
Read hit/

Write miss/ Broadcast write miss

Figure 12.13: State transition diagram of a block due to actions of the processor

Figure 12.13 shows the state transition diagram because of actions of the processor. The
state transition diagram is mostly the same as the state transition diagram of the write-update
protocol. Let us look at the differences. The first is that we define three types of messages that
are put on the bus namely write, writemiss, and readmiss. When we transition from the I
to the S state, we place a read miss on the bus. If a sister cache does not reply with the data,
the cache controller reads the block from the lower level. The semantics of the S state remains
the same. To write to a block in the S state, we need to transition to the M state, after writing
a write message on the bus. Now, when a block is in the M state, we are assured of the fact
that no other cache contains a valid copy. Hence, we can freely read and write a block in the

© Smruti R. Sarangi 602

I S

M

Write/

Rea
d m

iss
/ S

end
 da

ta
and

 w

rite
 ba

ck

Write miss/ Send data

Read miss/ Send data
 Write miss/ Send data

Figure 12.14: State transition diagram of a block due to messages on the bus

M state. It is not necessary to send any messages on the bus. If the processor decides to evict
a block in the M state, then it needs to write its data to the lower level.

Figure 12.14 shows the state transitions due to messages received on the bus. In the S state,
if we get a readmiss, then it means that another cache wants read access to the block. Any
of the caches that contains the block sends it the contents of the block. This process can be
orchestrated as follows. All the caches that have a copy of the block try to get access to the
bus. The first cache that gets access to the bus sends a copy of the block to the requesting
cache. The rest of the caches immediately get to know that the contents of the block have been
transferred. They subsequently stop trying. If we get a write or write miss message in the S
state, then the block transitions to the I state.

Let us now consider the M state. If some other cache sends a writemiss message then
the cache controller of the cache that contains the block, sends the contents of the block to
it, and transitions to the I state. However, if it gets a readmiss, then it needs to perform a
sequence of steps. We assume that we can seamlessly evict a block in the S state. Hence, it is
necessary to write the data to the lower level before moving to the S state. Subsequently, the
cache that originally has the block also sends the contents of the block to the requesting cache,
and transitions the state of the block to the S state.

Write-Invalidate Protocol with a Directory

Implementing the write-invalidate protocol with a directory is fairly trivial. The state transition
diagrams remain almost the same. Instead of broadcasting a message, we send it to the directory.
The directory sends the message to the sharers of the block.

The life cycle of a block is as follows. Whenever, a block is brought in from the lower level,
a directory entry is initialised. At this point it has only one sharer, which is the cache that
brought it from the lower level. Now, if there are read misses to the block, then the directory
keeps adding sharers. However, if there is a write miss, or a processor decides to write to the

603 © Smruti R. Sarangi

block, then it sends a write or writemiss message to the directory. The directory cleans the
sharers list, and keeps only one sharer, which is the processor that is performing the write
access. When a block is evicted, its cache informs the directory, and the directory deletes a
sharer. When the set of sharers becomes empty, the directory entry can be removed.

It is possible to make improvements to the write-invalidate and update protocols by adding
an additional state known as the exclusive (E) state. The E state can be the initial state for
every cache block fetched from the lower level of the memory hierarchy. This state stores the
fact that a block exclusively belongs to a cache. However, the cache has read-only access to
it, and does not have write access to it. For an E to M transition, we do not have to send a
writemiss or write message on the bus, because the block is owned exclusively by one cache.
We can seamlessly evict data from the E state if required. Implementing the MESI protocol is
left as an exercise for the reader.

12.4.7 Implementing a Memory Consistency Model*

A typical memory consistency model specifies the types of re-orderings that are allowed between
memory operations issued by the same thread. For example, in sequential consistency all
read/write accesses are completed in program order, writes are atomic, and all other threads
also perceive the memory accesses of any thread in its program order. Let us give a simple
solution to the problem of implementing sequential consistency first.

Overview of an Implementation of Sequential Consistency*

Let us build a memory system that is coherent, and provides certain guarantees. Let us assume
that all the write operations are associated with a time of completion, and appear to execute
instantaneously at the time of completion. It is not possible for any read operation to get the
value of a write before it completes. After a write completes, all the read operations to the
same address either get the value written by the write operation or a newer write operation.
Since we assume a coherent memory, all the write operations to the same memory address are
seen in the same order by all the processors. Second, each read operation returns the value
written by the latest completed write to that address. Let us now consider the case in which
processor 1 issues a write to address x, and at the same time processor 2 issues a read request
to the same address, x. In this case, we have a concurrent read and write. The behaviour is not
defined. The read can either get the value set by the concurrent write operation, or it can get
the previous value. However, if the read operation gets the value set by the concurrent write
operation, then all subsequent reads issued by any processor, need to get that value or a newer
value. In this case, we can say that a read operation completes once it has finished reading the
value of the memory location, and the write that generated its data also completes.

Now, let us design a multicore processor where each core issues a memory request to co-
herent memory (defined above) after all the previous memory requests that it had issued have
completed. This means that memory requests are issued in program order. This means that
after issuing a memory request (read/write), a core waits for it to complete before issuing the
next memory request. We claim that a multiprocessor with such cores and coherent memory is
sequentially consistent. Let us now outline a brief informal proof.

Let us first introduce a theoretical tool called an access graph before proving the sequential
consistency of this system.

© Smruti R. Sarangi 604

Access Graph*

1B: y = 7
2B: t3 = x
3B: t4 = z
4B: t5 = 3

1A: x = 5
2A: t1 = y
3A: z = 4
4A: t2 = z

1A

2A

3A

4A

1B

2B

3B

4B

1A 1B 2A 2B 3A 3B 4A 4B

Sequential order

Thread 1 Thread 2
Access
graph

(a) (b)
(c)

(d)

Figure 12.15: Graphical representation of memory accesses

Figure 12.15 shows the execution of two threads and their associated sequence of memory
accesses. For each read or write operation, we create a node in the access graph (see Fig-
ure 12.15(c)). We add an arrow (or edge) between two nodes if one access follows the other in
program order, or if there is a read-write dependence across two accesses from different threads.
For example, if we set x to 5 in thread 1, and the read operation in thread 2 reads this value
of x, there is a dependence between this read and write. We thus add an arrow in the access
graph. The arrow signifies that the destination node (access) must complete after the source
node (access).

Let us now define a happens-before relationship between nodes a and b, if there is a path
from a to b in the access graph.

Definition 130
Let us define a happens-before relationship between nodes a and b, if there is a path from
a to b in the access graph. A happens-before relationship signifies that b must complete its
execution after a completes.

The access graph is a general tool and is used to reason about concurrent systems. It
consists of a set of nodes, where each node is a dynamic instance of an instruction, specifically
a memory instruction. There are edges between nodes. An edge of the form A → B means
that B needs to complete its execution after A. In our simple example in Figure 12.15, we have
added two kinds of edges namely program order edges, and causality edges. Program order
edges indicate the order of completion of memory requests in the same thread. In our system,

605 © Smruti R. Sarangi

where we wait for an instruction to complete, before executing the next instruction, there are
edges between consecutive instructions issued by the same thread.

Causality edges are between load and store instructions across threads. For example, if a
given instruction writes a value, and another instruction reads it in another thread, we add an
edge from the store to the load.

To prove sequential consistency, we need to add additional edges to the access graph as
follows (see [Arvind and Maessen, 2006]). Let us first assume that we have an oracle(a hypo-
thetical entity that knows everything) with us. Now, since we assume coherent memory, all
the stores to the same memory location are sequentially ordered. Furthermore, there is an
order between loads and stores to the same memory location. For example, if we set x to 1,
then set x to 3, then read t1 = x, and then set x to 5, there is a store-store-load-store order
for the location, x. The oracle knows about such orderings between loads and stores for each
memory location. Let us assume that the oracle adds the corresponding happens-before edges
to our access graph. We add an edge for each consecutive pair of accesses to the same address
(regardless of the threads involved). In this case, the edge between the store and the load is
a causality edge, and the additional store-store and load-store edges are examples of coherence
edges.

To summarize, we add four kinds of edges in our access graph.

Program-order Edges Consecutive memory instructions (in program order) issued by the
same thread have such edges between them in the access graph.

Store→Load Edges These edges are added between memory accesses issued by different
threads to the same address. They indicate a store→load dependence that represents
causality.

Load→Store Edges These are edges introduced between nodes that represent load and store
accesses (across threads) to the same address, respectively.

Store→Store Edges These are edges introduced between nodes that represent consecutive
writes to the same address. The accesses may be issued by different threads.

The last two types of edges are known as coherence edges.
Next, let us describe how to use an access graph for proving properties of multiprocessor

systems. An access graph can be used to determine if a given program’s execution adheres
to a certain consistency model like sequential or weak consistency or not. First, we need to
construct an access graph of a program’s execution. We add the four types of edges that we
mentioned if we want to test if the execution is sequentially consistent. However, if we want to
test if the execution adheres to another consistency model, M, then we to add a set of edges
that is a subset of the edges that we add to test if the execution is in SC. The set of edges that
we add is a field of study in itself for realistic memory models. In general, for weak consistency,
we only add coherence edges. Some memory models define additional types of nodes such as
synchronization nodes. They need to define additional edges as well to connect these nodes.

The following result follows from graph theory, specifically topological sorting. If the access
graph does not contain cycles, then we can arrange the nodes in a sequential order.
Let us prove this fact. In the access graph, if there is a path from a to b, then let a be known as
b’s ancestor. We can generate a sequential order by following an iterative process. We first find

© Smruti R. Sarangi 606

a node, which does not have an ancestor. There has to be such a node because some operation
must have been the first to complete (otherwise there is a cycle). We remove it from our access
graph, and proceed to inductively find another node that does not have any ancestors left. We
add each such node in our sequential order as shown in Figure 12.15(d). In each step, the
number of nodes in the access graph decreases by 1 till we are finally left with just one node,
which becomes the last node in our sequential order. Now, let us consider the case, where this
process does not terminate. This is only possible if there is a cycle in the access graph.

If the access graph is acyclic, then it means that the execution is consistent with
the memory model, M, that was used to create the access graph.

This is true for atomic memory models. The proof is beyond the scope of the book. The
key idea is as follows. We create an access graph from an execution of a parallel program, and
add all the edges that need to be added to it as per the memory model. Now, if this access
graph is acyclic, then it means that we can arrange all the memory accesses in a sequential
order (as seen above).

We can assume that the order of completion times is the same as the order of all the
accesses in this sequential order. This means that if all the accesses complete as per this order,
the execution is feasible. In other words, an order of completion times exists such that none of
the happens-before relationships in the access graph are violated.

This is sufficient to prove that the execution and its access graph are consistent with the
memory model M. The key point is that a set of such completion times should exist. An
astute reader may argue that the memory accesses may not actually complete at those times.
That does not matter. As long as we can find a hypothetical set of completion times for the
nodes in the access graph that respect its happens-before relationships, we are done. Given
that completion times are not visible anyway to external observers, their precise values are not
important. With regards to completion times there are two points that are important: their
existence and their order.

Hence, if an access graph (for memory model M) does not contain cycles, we
can conclude that a given execution followsM. If we can prove that all the possible
access graphs that can be generated by a system are acyclic, then we can conclude
that the entire system is consistent with the memory model M.

Proof of Sequential Consistency*

Let us thus prove that all possible access graphs (assuming SC) that can be generated by our
simple system that waits for memory requests to complete before issuing subsequent memory
requests are acyclic. Let us consider one such access graph G. We need to prove that G is
acyclic.

Let us assume that G has a cycle, and it contains a set of nodes S belonging to the same
thread, t1. Let a be the earliest node in program order in S, and b be the latest node in
program order in S. Clearly, a happens before b because we execute memory instructions in
program order, and we wait for a request to complete before starting the next request in the
same thread. For a cycle to form due to a causality edge, b needs to write to a value that is
read by another memory read request (node), c, belonging to another thread. Alternatively,
there can be a coherence edge between b and a node c belonging to another thread. For a cycle
to exist, c needs to happen before a. Let us assume that there is a chain of nodes between c

607 © Smruti R. Sarangi

and a and the last node in the chain of nodes is d. By definition, d /∈ t1. This means that
either d writes to a memory location, and node a reads from it, or there is a coherence edge
from d to a. Because there is a path from node b to node a (through c and d), it must be
the case that the request associated with node b happens before the request of node a. This
is not possible since we cannot execute the memory request associated with node b till node
a’s request completes. Thus, we have a contradiction, and a cycle is not possible in the access
graph. Hence, the execution is in SC (proof by contradiction).

Now, let us clarify the notion of an oracle. The reader needs to understand that the problem
here is not to generate a sequential order, it is to rather prove that a sequential order exists.
Since we are solving the latter problem, we can always presume that a hypothetical entity adds
additional edges to our access graph. The resulting sequential order respects program orders
for each thread, causality and coherence-based happens-before relationships. It is thus a valid
ordering.

Consequently, we can conclude that it is always possible to find a sequential order for the
memory accesses made in our system. Therefore, our multiprocessor is in SC. Now that we
have proved that our system is sequentially consistent, let us describe a method to “practically”
implement a multiprocessor with the assumptions that we have made. We can implement a
system as shown in Figure 12.16.

Design of a Simple (yet impractical) Sequentially Consistent Machine*

Proc 1

Shared L1 cache

Proc 2 Proc n

Figure 12.16: A simple sequentially consistent system

Figure 12.16 shows a design that has a large shared L1 cache across all the processors of
a multiprocessor. There is only one copy of each memory location that can support only one
read or write access at any single time. This ensures coherence. Secondly, a write completes,
when it changes the value of its corresponding memory location in the L1 cache. Likewise,
a read completes when it reads the value of the memory address in the L1 cache. We need
to modify the simple in-order RISC pipeline described in Chapter 10 such that an instruction
leaves the memory access (MA) stage only after it completes its read/write access. If there is
a cache miss, then the instruction waits till the block comes to the L1 cache, and then the access
completes. This simple system ensures that memory requests from the same thread complete
in program order, and is thus sequentially consistent.

Note that the system described in Figure 12.16 makes some unrealistic assumptions and is
thus impractical. If we have 16 processors, and if the frequency of memory instructions is 1 in 3,
then every cycle, 5-6 instructions will need to access the L1 cache. Hence, the L1 cache requires
at least 6 read/write ports, which will make the structure too large and too slow. Additionally,

© Smruti R. Sarangi 608

the L1 cache needs to be large enough to contain the working sets of all the threads, which
further makes the case for a very large and slow L1 cache. Consequently, a multiprocessor
system with such a cache will be very slow in practice. Hence, modern processors opt for more
high-performance implementations with more complicated memory systems that have a lot of
smaller caches. These caches co-operate among each other to provide the illusion of a larger
cache (see Section 12.4.6).

It is fairly difficult to prove that a complex system follows sequential consistency(SC). Hence,
designers opt to design systems with weak memory models. In the latter case, we need to prove
that a fence instruction works correctly. If we take all the subtle corner cases that are possible
with complicated designs, this also turns out to be a fairly challenging problem. Interested
readers can take a look at pointers mentioned at the end of this chapter for research work in
this area.

Implementing a Weak Consistency Model*

Let us consider the access graph for a weakly consistent system. We do not have edges to
represent program order for nodes in the same thread. Instead, for nodes in the same thread,
we have edges between regular read/write nodes and fence operations. We need to add causality
and coherence edges to the access graph as we did in the case of SC.

An implementation of a weakly consistent machine needs to ensure that this access graph
does not have cycles. We can prove that the following implementation does not introduce cycles
to the access graph.

Let us ensure that a fence instruction starts after all the previous instructions in program
order complete for a given thread. The fence instruction is a dummy instruction that simply
needs to reach the end of the pipeline. It is used for ordering purposes only. We stall the
fence instruction in the MA stage till all the previous instructions complete. This strategy also
ensures that no subsequent instruction reaches the MA stage. Once, all the previous instructions
complete, the fence instruction proceeds to the RW stage, and subsequent instructions can issue
requests to memory.

Summary of the Discussion on Implementing a Memory Consistency Model

Let us summarise this section on implementing memory consistency models for readers who
decided to skip it. Implementing a memory consistency model such as sequential or weak
consistency is possible by modifying the pipeline of a processor, and ensuring that the memory
system sends an acknowledgement to the processor once it is done processing a memory request.
Many subtle corner cases are possible in high=performance implementations and ensuring that
they implement a given consistency model is fairly complicated.

12.4.8 Multithreaded Processors

Let us now look at a different method for designing multiprocessors. Up till now we have
maintained that we need to have physically separate pipelines for creating multiprocessors. We
have looked at designs that assign a separate program counter to each pipeline. However, let
us look at a different approach that runs a set of threads on the same pipeline. This approach
is known as multithreading. Instead of running separate threads on separate pipelines, we run

609 © Smruti R. Sarangi

them on the same pipeline. Let us illustrate this concept by discussing the simplest variant of
multi-threading known as coarse-grained multithreading.

Definition 131
Multithreading is a design paradigm that proposes to run multiple threads on the same
pipeline. A processor that implements multithreading is known as a multithreaded processor.

Coarse-Grained Multithreading

Let us assume that we wish to run four threads on a single pipeline. Recall that multiple
threads belonging to the same process have their separate program counters, stacks, registers;
yet, they have a common view of memory. All these four threads have their separate instruction
streams, and it is necessary to provide an illusion that these four threads are running separately.
Software should be oblivious of the fact that threads are running on a multithreaded processor.
It should perceive that each thread has its dedicated CPU. Along with the traditional guarantees
of coherence and consistency, we now need to provide an additional guarantee, which is that
software should be oblivious to multithreading.

Let us consider a simple scheme, as shown in Figure 12.17.

1

3

24

Figure 12.17: Conceptual view of coarse grain multithreading

Here, we run thread 1 for n cycles, then we switch to thread 2 and run it for n cycles, then
we switch to thread 3, and so on. After executing thread 4 for n cycles, we start executing
thread 1 again. To execute a thread we need to load its state or context. Recall that we had a
similar discussion with respect to loading and unloading the state of a program in Section 10.8.
We had observed that the context of the program comprises of the flags register, the program
counter, and the set of registers. We had observed that it is not necessary to keep track of main
memory because the memory regions of different processes do not overlap, and in the case of
multiple threads, we explicitly want all the threads to share the same memory space.

© Smruti R. Sarangi 610

Instead of explicitly loading and unloading the context of a thread, we can adopt a simpler
approach. We can save the context of a thread in the pipeline. For example, if we wish to
support coarse-grained multithreading then we can have four separate flags registers, four
program counters, and four separate register files (one per each thread). Additionally, we can
have a dedicated register that contains the id of the currently running thread. For example, if
we are running thread 2, then we use the context of thread 2, and if we are running thread 3, we
use the context of thread 3. In this manner it is not possible for multiple threads to overwrite
each other’s state.

Let us now look at some subtle issues. It is possible that we can have instructions belonging
to multiple threads at the same point of time in the pipeline. This can happen when we are
switching from one thread to the next. Let us add a thread id field to the instruction packet, and
further ensure that the forwarding and interlock logic takes the id of the thread into account.
We never forward values across threads. In this manner it is possible to execute four separate
threads on a pipeline with a negligible overhead of switching between threads. We do not
need to engage the exception handler to save and restore the context of threads, or invoke the
operating system to schedule the execution of threads.

Let us now look at coarse-grained multithreading in entirety. We execute n threads in
quick succession, and in round robin order. Furthermore, we have a mechanism to quickly
switch between threads, and threads do not corrupt each other’s state. However, we still do
not execute four threads simultaneously. Then, what is the advantage of this scheme?

Let us consider the case of memory intensive threads that have a lot of irregular accesses
to memory. They will thus frequently have misses in the L2 cache, and their pipelines need
to be stalled for 100-300 cycles till the values come back from memory. Out-of-order pipelines
can hide some of this latency by executing some other instructions that are not dependent on
the memory value. Nonetheless, it will also stall for a long time. However, at this point, if we
can switch to another thread, then it might have some useful work to do. If that thread suffers
from misses in the L2 cache also, then we can switch to another thread and finish some of its
work. In this way, we can maximise the throughput of the entire system as a whole. We can
envision two possible schemes. We can either switch periodically every n cycles, or switch to
another thread upon an event such as an L2 cache miss. Secondly, we need not switch to a
thread if it is waiting on a high latency event such as an L2 cache miss. We need to switch to a
thread that has a pool of ready-to-execute instructions. It is possible to design a large number
of heuristics for optimising the performance of a coarse-grained multithreaded machine.

Important Point 20
Let us differentiate between software threads and hardware threads. A software thread
is a subprogram that shares a part of its address space with other software threads. The
threads can communicate with each other to co-operatively to achieve a common objective.
In comparison, a hardware thread is defined as the instance of a software thread or a single
threaded program running on a pipeline along with its execution state. A multithreaded
processor supports multiple hardware threads on the same processor by splitting its resources
across the threads. A software thread might physically be mapped to a separate processor, or
to a hardware thread. It is agnostic to the entity that is used to execute it. The important
point to be noted here is that a software thread is a programming language concept, whereas

611 © Smruti R. Sarangi

a hardware thread is physically associated with resources in a pipeline. We shall use the
word “thread” for both software and hardware threads. The correct usage needs to be inferred
from the context.

Fine-Grained Multithreading

Fine-grained multithreading is a special case of coarse-grained multithreading where the switch-
ing interval, n, is a very small value. It is typically 1 or 2 cycles. This means that we quickly
switch between threads. We can leverage grained multithreading to execute threads that are
memory intensive. However, fine-grained multithreading is also useful for executing a set of
threads that for example have long arithmetic operations such as division. In a typical proces-
sor, division operations and other specialised operations such as trigonometric or transcendental
operations are slow (3-10 cycles). During this period when the original thread is waiting for
the operation to finish, we can switch to another thread and execute some of its instructions
in the pipeline stages that are otherwise unused. We can thus leverage the ability to switch
between threads very quickly for reducing the idle time in scientific programs that have a lot
of mathematical operations.

We can thus visualise fine-grained multithreading to be a more flexible form of coarse-
grained multithreading where we can quickly switch between threads and utilise idle stages to
perform useful work. Note that this concept is not as simple as it sounds. The devil is in the
details. We need elaborate support for multithreading in all the structures in a regular in-order
or out-of-order pipeline. We need to manage the context of each thread very carefully, and
ensure that we do not omit instructions, and errors are not introduced. A thorough discussion
on the implementation of multithreading is beyond the scope of this book.

The reader needs to appreciate that the logic for switching between threads is non-trivial.
Most of the time the logic to switch between threads is a combination of time based criteria
(number of cycles), and event based criteria (high latency event such as L2 cache miss or page
fault). The heuristics have to be finely adjusted to ensure that the multithreaded processor
performs well for a host of benchmarks.

Simultaneous Multithreading

For a single issue pipeline, if we can ensure that every stage is kept busy by using sophisticated
logic for switching between threads, then we can achieve high efficiency. Recall that any stage in
a single issue pipeline can process only one instruction per cycle. In comparison, a multiple issue
pipeline can process multiple instructions per cycle. We had looked at multiple issue pipelines
(both in-order and out-of-order) in Section 10.11. Moreover, we had defined the number of
issue slots to be equal to the number of instructions that can be processed by the pipeline every
cycle. For example, a 3 issue processor, can at the most fetch, decode, and finally execute 3
instructions per cycle.

For implementing multithreading in multiple issue pipelines, we need to consider the nature
of dependences between instructions in a thread also. It is possible that fine and coarse-grained
schemes do not perform well because a thread cannot issue instructions to the functional units

© Smruti R. Sarangi 612

for all the issue slots. Such threads are said to have low instruction level parallelism. If we use
a 4 issue pipeline, and the maximum IPC for each of our threads is 1 because of dependences
in the program, then 3 of our issue slots will remain idle in each cycle. Thus the overall IPC of
our system of 4 threads will be 1, and the benefits of multithreading will be limited.

Hence, it is necessary to utilise additional issue slots such that we can increase the IPC of
the system as a whole. A naive approach is to dedicate one issue slot to each thread. Secondly,
to avoid structural hazards, we can have four ALUs and allot one ALU to each thread. However,
this is a suboptimal utilisation of the pipeline because a thread might not have an instruction to
issue every cycle. It is best to have a more flexible scheme, where we dynamically partition the
issue slots among the threads. This scheme is known as simultaneous multithreading (popularly
known as SMT). For example, in a given cycle we might find 2 instructions from thread 2, and
1 instruction each from threads 3, and 4. This situation might reverse in the next cycle. Let us
graphically illustrate this concept in Figure 12.18, and simultaneously also compare the SMT
approach with fine and coarse-grained multithreading.

The columns in Figure 12.18 represent the issue slots for a multiple issue machine, and the
rows represent the cycles. Instructions belonging to different threads have different colours.
Figure 12.18(a) shows the execution of instructions in a coarse-grained machine, where each
thread executes for two consecutive cycles. We observe that a lot of issue slots are empty because
we do not find sufficient number of instructions that can execute. Fine-grained multithreading
(shown in Figure 12.18(b)) also has the same problem. However, in an SMT processor, we
are typically able to keep most of the issue slots busy, because we always find instructions
from the set of available threads that are ready to execute. If one thread is stalled for some
reason, other threads compensate by executing more instructions. In practice, all the threads
do not have low ILP1 phases simultaneously. Hence, the SMT approach has proven to be a very
versatile and effective method for leveraging the power of multiple issue processors. Since the
Pentium 4 (released in the late nineties), most of the Intel processors support different variants
of simultaneous multithreading. In Intel’s terminology SMT is known as hyperthreading . The
latest (as of 2012) IBM Power 7 processor has 8 cores, where each core is a 4-way SMT (can
run 4 threads per each core).

Note that the problem of selecting the right set of instructions to issue is very crucial to
the performance of an SMT processor. Secondly, the memory bandwidth requirement of an
n-way SMT processor is higher than that of an equivalent uniprocessor. The fetch logic is also
far more complicated, because now we need to fetch from four separate program counters in
the same cycle. Lastly, the issues of maintaining coherence, and consistency further complicate
the picture. The reader can refer to the research papers mentioned in the “Further Reading”
section at the end of this chapter.

12.5 SIMD Multiprocessors

Let us now discuss SIMD multiprocessors. SIMD processors are typically used for scientific
applications, high intensity gaming, and graphics. They do not have a significant amount of
general purpose utility. However, for a limited class of applications, SIMD processors tend to

1ILP (instruction level parallelism, defined as the number of instructions that are ready to execute in parallel
each cycle)

613 © Smruti R. Sarangi

Ti
m

e

(a) (b) (c)

Coarse-grained
multithreading

Fine-grained
multithreading

Simultaneous
multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Figure 12.18: Instruction execution in multithreaded processors

outperform their MIMD counterparts.
SIMD processors have a rich history. In the good old days we had processors arranged

as arrays. Data typically entered through the first row, and first column of processors. Each
processor acted on input messages, generated an output message, and sent the message to its
neighbours. Such processors were known as systolic arrays. Systolic arrays were used for matrix
multiplication, and other linear algebra operations. Subsequently, several vendors notably, Cray,
incorporated SIMD instructions in their processors to design faster and more power efficient
supercomputers. Nowadays, most of these early efforts have subsided. However, some aspects
of classical SIMD computers where a single instruction operates on several streams of data,
have crept into the design of modern processors.

We shall discuss an important development in the area of modern processor design, which is
the incorporation of SIMD functional units, and instructions, in high-performance processors.

12.5.1 SIMD – Vector Processors

Background

Let us consider the problem of adding two n element arrays. In a single threaded implemen-
tation, we need to load the operands from memory, add the operands, and store the result in
memory. Consequently, for computing each element of the destination array, we require two
load instructions, one add instruction, and one store instruction. Traditional processors try to
attain speedups by exploiting the fact that we can compute (c[i] = a[i] + b[i]), in parallel with
(c[j] = a[j] + b[j]) because these two operations do not have any dependences between them.
Hence, it is possible to increase IPC by executing many such operations in parallel.

Let us now consider superscalar processors. If they can issue 4 instructions per cycle,
then their IPC can at the most be 4 times that of a single cycle processor. In practice, the
peak speedup over a single cycle processor that we can achieve with such inherently parallel
array processing operations is around 3 to 3.5 times for a 4 issue processor. Secondly, this

© Smruti R. Sarangi 614

method of increasing IPC by having wide issue widths is not scalable. We do not have 8 or
10 issue processors in practice because the logic of the pipeline gets very complicated, and the
area/power overheads become prohibitive.

Hence, designers decided to have special support for vector operations that operate on large
vectors (arrays) of data. Such processors were known as vector processors. The main idea here
is to process an entire array of data at once. Normal processors use regular scalar data types
such as integers and floating point numbers; whereas, vector processors use vector data types,
which are essentially arrays of scalar data types.

Definition 132
A vector processor considers a vector of primitive data types (integer or floating point num-
bers) as its basic unit of information. It can load, store, and perform arithmetic operations
on entire vectors at once. Such instructions that operate on vectors of data, are known as
vector instructions.

One of the most iconic products that predominantly used vector processors was the Cray
1 Supercomputer. Such supercomputers were primarily used for scientific applications that
mainly consisted of linear algebra operations. Such operations work on vectors of data and
matrices, and are thus well suited to be run on vector processors. Sadly, beyond the realm of
high intensity scientific computing, vector processors did not find a general purpose market till
the late nineties.

In the late nineties, personal computers started to be used for research, and for running
scientific applications. Secondly, instead of designing custom processors for supercomputers,
designers started to use regular commodity processors for building supercomputers. Since then,
the trend continued till the evolution of graphics processors. Most supercomputers between
1995 and 2010, consisted of thousands of commodity processors. Another important reason to
have vector instructions in a regular processor was to support high intensity gaming. Gaming
requires a massive amount of graphics processing. For example, modern games render complex
scenes with multiple characters, and thousands of visual effects. Most of these visual effects
such as illumination, shadows, animation, depth, and colour processing, are at its core basic
linear algebra operations on matrices containing points or pixels. Due to these factors regular
processors started to incorporate a limited amount of vector support. Specifically, the Intel
processors provided the MMX, SSE 1-4 vector instruction sets, AMD processors provided the
3DNow! vector extensions, and ARM processors provide the ARM® Neon™vector ISA. There
are a lot of commonalities between these ISAs, and hence let us not focus on any specific
ISA. Let us instead the discuss the broad principles behind the design and operation of vector
processors.

12.5.2 Software Interface

Let us first consider the model of the machine. We need a set of vector registers. For example,
the x86 SSE (Streaming SIMD Extensions) instruction set defines sixteen 128-bit registers
(XMM0 . . . XMM15). Each such register can contain four integers, or four floating point values.

615 © Smruti R. Sarangi

Alternatively, it can also contain eight 2-byte short integers, or sixteen 1-byte characters. On
the same lines, every vector ISA defines additional vector registers that are wider than normal
registers. Typically, each register can contain multiple floating point values. Hence, in our
SimpleRisc ISA, let us define eight 128-bit vector registers: vr0 . . . vr7.

Now, we need instructions to load, store, and operate on vector registers. For loading,
vector registers, there are two options. We can either load values from contiguous memory
locations, or from non-contiguous memory locations. The former case is more specific, and is
typically suitable for array based applications, where all the array elements are anyway stored
in contiguous memory locations. Most vector extensions to ISAs support this variant of the
load instruction because of its simplicity, and regularity. Let us try to design such a vector load
instruction v.ld for our SimpleRisc ISA. Let us consider the semantics shown in Table 12.4.
Here, the v.ld instruction reads in the contents of the memory locations ([r1+12], [r1+16],
[r1+20], [r1+ 24]) into the vector register vr1. In the table below note that ⟨vreg⟩ is a vector
register.

Example Semantics Explanation

v.ld vr1, 12[r1] v.ld ⟨vreg⟩, ⟨mem⟩ vr1 ← ([r1+12], [r1+16], [r1+20], [r1+ 24])

Table 12.4: Semantics of the contiguous variant of the vector load instruction

Now, let us consider the case of matrices. Let us consider a 10,000 element matrix,
A[100][100], and assume that data is stored in row major order (see Section 3.2.2). Assume
that we want to operate on two columns of the matrix. In this case, we have a problem because
the elements in a column are not saved in contiguous locations. Hence, a vector load instruc-
tion that relies on the assumption that the input operands are saved in contiguous memory
locations, will cease to work. We need to have dedicated support to fetch all the data for the
locations in a column and save them in a vector register. Such kind of an operation, is known
as a scatter-gather operation. This is because, the input operands are essentially scattered in
main memory. We need to gather, and put them in one place, which is the vector register. Let
us consider a scatter-gather variant of the vector load instruction, and call it v.sg.ld. Instead
of making assumptions about the locations of the array elements, the processor reads another
vector register that contains the addresses of the elements (semantics shown in Table 12.5). In
this case, a dedicated vector load unit reads the memory addresses stored in vr2, fetches the
corresponding values from memory, and writes them in sequence to the vector register, vr1.

Example Semantics Explanation

v.sg.ld vr1, vr2 v.sg.ld ⟨vreg⟩, ⟨vreg⟩ vr1 ← ([vr2[0]], [vr2[1]], [vr2[2]], [vr2[3]])

Table 12.5: Semantics of the non-contiguous variant of the vector load instruction

Once, we have data loaded in vector registers, we can operate on two such registers directly.
For example, if we consider 128-bit vector registers, vr1, and vr2. Then, the assembly statement
v.add vr3, vr1, vr2, adds each pair of corresponding 4-byte floating point numbers stored in the
input vector registers (vr1 and vr2), and stores the results in the relevant positions in the

© Smruti R. Sarangi 616

output vector register (vr3). Note that we use the vector add instruction (v.add) here. We
show an example of a vector add instruction in Figure 12.19.

vr1

vr2

vr3

Figure 12.19: Example of a vector addition

Vector ISAs define similar operations for vector multiplication, division, and logical opera-
tions. Note that it is not necessary for a vector instruction to always have two input operands,
which are vectors. We can multiply, a vector with a scalar, or we can have an instruction
that operates on just one vector operand. For example, the SSE instruction set has dedicated
instructions for computing trigonometric functions such as sin, and cos, for a set of floating
point numbers packed in a vector register. If a vector instruction can simultaneously perform
operations on n operands, then we say that we have n data lanes, and the vector instruction
simultaneously performs an operation on all the n data lanes.

Definition 133
If a vector instruction can simultaneously perform operations on n operands, then we say
that we have n data lanes, and the vector instruction simultaneously performs an operation
on all the n data lanes.

The last step is to store the vector register in memory. Here again, there are two options. We
can either store to contiguous memory locations, which is simpler, or save to non-contiguous
locations. We can design two variants of the vector store instruction (contiguous and non-
contiguous) on the lines of the two variants of vector load instructions (v.ld and v.sg.ld).
Sometimes it is necessary to introduce instructions that transfer data between scalar and vector
registers. We shall not describe such instructions for the sake of brevity. We leave designing
such instructions as an exercise for the reader.

12.5.3 A Practical Example using SSE Instructions

Let us now consider a practical example using the x86 based SSE instruction set. We shall not
use actual assembly instructions. We shall instead use functions provided by the gcc compiler
that act as wrappers for the assembly instructions. These functions are called gcc intrinsics.

Let us now solve the problem of adding two arrays of floating point numbers. In this case,
we wish to compute c[i] = a[i] + b[i], for all values of i.

The SSE instruction set contains 128-bit registers. Each register can be used to store four
32-bit floating point numbers. Hence, if we have an array of N numbers, we need to have ⌈N/4⌉

617 © Smruti R. Sarangi

iterations, because we can add at the most 4 pairs of numbers in each cycle. In each iteration,
we need to load vector registers, add them, and store the result in memory. This process of
breaking up a vector computation into a sequence of loop iterations based on the sizes of vector
registers is known as strip mining.

Definition 134
The process of breaking up a vector computation into a sequence of loop iterations based on
the sizes of vector registers is known as strip mining. For example, if a vector register can
hold 16 integers, and we wish to operate on 1024 integer vectors, then we need a loop with
64 iterations.

Example 155
Write a function in C/C++ to add the elements in the arrays a and b pairwise, and save
the results in the array, c, using the SSE extensions to the x86 ISA. Assume that the number
of entries in a and b are the same, and are a multiple of 4.
Answer:

vector addition
1 void sseAdd (const float a[], const float b[], float c[], int N)

2 {
3 /* strip mining */

4 int numIters = N / 4;

5

6 /* iteration */

7 for (int i = 0; i < numIters; i++) {
8 /* load the values */

9 __m128 val1 = _mm_load_ps (a);

10 __m128 val2 = _mm_load_ps (b);

11

12 /* perform the vector addition */

13 __m128 res = _mm_add_ps(val1, val2);

14

15 /* store the result */

16 _mm_store_ps(c, res);

17

18 /* increment the pointers */

19 a += 4 ; b += 4; c+= 4;

20 }
21 }

Let us consider the C code snippet in Example 155. We first calculate the number of
iterations in Line 4. In each iteration, we consider a block of 4 array elements. In Line 9,

© Smruti R. Sarangi 618

we load a set of four floating point numbers into the 128-bit vector variable, val1. val1 is
mapped to a vector register by the compiler. We use the function mm load ps to load a set
of 4 contiguous floating point values from memory. For example, the function mm load ps(a)
loads four floating point values in the locations, a, a+4, a+8, and a+12 into a vector register.
Similarly, we load the second vector register, val2, with four floating point values starting from
the memory address, b. In Line 13, we perform the vector addition, and save the result in a 128-
bit vector register associated with the variable res. We use the intrinsic function, mm add ps,
for this purpose. In Line 16, we store the variable, res, in the memory locations namely c, c+4,
c+ 8, and c+ 12.

Before proceeding to the next iteration, we need to update the pointers a, b, and c. Since
we process 4 contiguous array elements every cycle, we update each of the pointer by 4 (4 array
elements) in Line 19.

We can quickly conclude that vector instructions facilitate bulk computations such as bulk
loads/stores and adding a set of numbers pairwise, in one go. We compared the performance
of this function, with a version of the function that does not use vector instructions on a
quad core Intel Core i7 machine. The code with SSE instructions ran 2-3 times faster for
million element arrays. If we would have had wider SSE registers, then we could have gained
more speedups. The latest AVX vector ISA on x86 processors supports 256 and 512-bit vector
registers. Interested readers can implement the function shown in Example 155 using the AVX
vector ISA, and compare the performance.

12.5.4 Predicated Instructions

We have up till now considered vector load, store, and ALU operations. What about branches?
Typically, branches have a different connotation in the context of vector processors. For exam-
ple, let us consider a processor with vector registers that are wide enough to hold 32 integers,
and we have a program which requires us to pair-wise add only 18 integers, and then store them
in memory. In this case, we cannot store the entire vector register to memory because we risk
overwriting valid data.

Let us consider another example. Assume that we want to apply the function inc10(x) on
all elements of an array. In this case, we wish to add 10 to the input operand, x, if it is less
than 10. Such patterns are very common in programs that run on vector processors, and thus
we need additional support in vector ISAs to support them.

function inc10(x):

if (x < 10)

x = x + 10;

Let us add a new variant of a regular instruction, and call it a predicated instruction (similar
to conditional instructions in ARM). For example, we can create predicated variants of regular
load, store, and ALU instructions. A predicated instruction executes if a certain condition is
true, otherwise it does not execute at all. If the condition is false, a predicated instruction is
equivalent to a nop.

619 © Smruti R. Sarangi

Definition 135
A predicated instruction is a variant of a normal load, store, or ALU instruction. It
executes normally, if a certain condition is true. However, if the associated condition is
false, then it gets converted to a nop. For example, the addeq instruction in the ARM ISA,
executes like a normal add instruction if the last comparison has resulted in an equality.
However, if this is not the case, then the add instruction does not execute at all.

Let us now add support for predication in the SimpleRisc ISA. Let us first create a vector
form of the cmp instruction, and call it v.cmp. It compares two vectors pair-wise, and saves the
results of the comparison in the v.flags register, which is a vector form of the flags register.
Each component of the v.flags register contains an E and GT field, similar to the flags register
in a regular processor.

v.cmp vr1, vr2

This example compares vr1, and vr2, and saves the results in the v.flags register. We can
have an alternate form of this instruction that compares a vector with a scalar.

v.cmp vr1, 10

Now, let us define the predicated form of the vector add instruction. This instruction adds
the ith elements of two vectors, and updates the ith element of the destination vector register,
if the v.flags[i] (ith element of v.flags) register satisfies certain properties. Otherwise, it does
not update the ith element of the destination register. Let the generic form of the predicated
vector add instruction be: v.p.add. Here, p is the predicate condition. Table 12.6 lists the
different values that p can take.

Predicate Condition Meaning

lt less than

gt greater than

le less than or equal

ge greater than or equal

eq equal

ne not equal

Table 12.6: List of conditions for predicated vector instructions in SimpleRisc

Now, let us consider the following code snippet.

v.lt.add vr3, vr1, vr2

Here, the value of the vector register vr3 is the sum of the vectors represented by vr1 and
vr2. The predication condition is less than (lt). This means that if both the E and GT flags

© Smruti R. Sarangi 620

are false for element i in the v.flags register, then only we perform the addition for the ith

element, and set its value in the vr3 register. The elements in the vr3 register that are not set
by the add instruction maintain their previous value. Thus, the code to implement the function
inc10(x) is as follows. We assume that vr1 contains the values of the input array.

v.cmp vr1, 10

v.lt.add vr1, vr1, 10

Likewise, we can define predicated versions of the load/store instructions, and other ALU
instructions.

12.5.5 Design of a Vector Processor

Let us now briefly consider the design of vector processors. We need to add a vector pipeline
similar to the scalar pipeline. In specific, the OF stage reads the vector register file for vector
operands, and the scalar register file for scalar operands. Subsequently, it buffers the values
of operands in the pipeline registers. The EX stage sends scalar operands to the scalar ALU,
and sends vector operands to the vector ALU. Similarly, we need to augment the MA stage
with vector load and store units. For most processors, the size of a cache block is an integral
multiple of the size of a vector register. Consequently, vector load and store units that operate
on contiguous data do not need to access multiple cache blocks. Hence, a vector load and store
access is almost as fast as a scalar load and store access because the atomic unit of storage in a
cache is a block. In both cases (scalar and vector), we read the value of a block and choose the
relevant bytes using the column muxes. We need to change the structure of the L1 cache to
read in more data at a time. Lastly, the writeback stage writes back scalar data to the scalar
register file and vector data to the vector register file.

In a pipelined implementation of a vector processor, the interlock and forwarding logic is
complicated. We need to take into account the conflicts between scalar instructions, between
vector instructions, and between a scalar and vector instruction. The forwarding logic needs
to forward values between different functional unit types, and thus ensure correct execution.
Note that vector instructions need not always be as fast as their scalar counterparts. Espe-
cially, scatter-gather based vector load store instructions are slower. Since modern out-of-order
pipelines already have dedicated support for processing variable latency instructions, vector
instructions can seamlessly plug into this framework.

12.6 Interconnection Networks

12.6.1 Overview

Let us now consider the problem of interconnecting different processing and memory elements.
Typically multicore processors use a checkerboard design. Here, we divide the set of processors
into tiles. A tile typically consists of a set of 2-4 processors. A tile has its private caches (L1
and possibly L2). It also contains a part of the shared last level cache (L2 or L3). The part of
the shared last level cache that is a part of a given tile is known as a slice . Typically, a slice
consists of 2-4 banks (see Section 12.4.5). Additionally, a tile, or a group of tiles might share a
memory controller in modern processors. The role of the memory controller is to co-ordinate

621 © Smruti R. Sarangi

the transfer of data between the on-chip caches, and the main memory. Figure 12.20 shows a
representative layout of a 32 core multiprocessor. The cores have a darker colour as compared
to the cache banks. We use a tile size of 2 (2 processors and 2 cache banks), and assume that
the shared L2 cache has 32 cache banks evenly distributed across the tiles. Moreover, each tile
has a dedicated memory controller, and a structure called a router.

A router is a specialised unit, and is defined in Definition 136.

Definition 136

1. A router sends messages originating from processors or caches in its tile to other tiles
through the on chip network.

2. The routers are interconnected with each other via an on-chip network.

3. A message travels from the source router to the destination router (of a remote tile)
via a series of routers. Each router on the way forwards the message to another
router, which is closer to the destination.

4. Finally the router associated with the destination tile forwards the message to a pro-
cessor or cache in the remote tile.

5. Adjacent routers are connected via a link. A link is a set of passive copper wires that
are used to transmit messages (more details in Chapter 13).

6. A router typically has many incoming links, and many outgoing links. One set of
incoming and outgoing links connect it to processors and caches in its tile. Each link
has a unique identifier.

7. A router has a fairly complicated structure, and typically consists of a 3 to 5-stage
pipeline. Most designs typically dedicate pipeline stages to buffering a message, com-
puting the id of the outgoing link, arbitrating for the link, and sending the message
over the outgoing link.

8. The arrangement of routers and links is referred to as the on chip network, or network
on chip. It is abbreviated as the NOC.

9. Let us refer to each router connected to the NOC as a node. Nodes communicate with
each other by sending messages.

During the course of the execution of a program, it sends billions of messages over the NOC.
The NOC carries coherence messages, LLC (last level cache) request/response messages, and
messages between caches, and memory controllers. The operating system also uses the NOC to
send messages to cores for loading and unloading threads. Due to the high volume of messages,
large parts of the NOC often experience a sizeable amount of congestion. Hence, it is essential
to design NOCs that reduce congestion to the maximum extent possible, are easy to design

© Smruti R. Sarangi 622

Cache bank

Core

Memory
controller
Router

Tile

Figure 12.20: The layout of a multicore processor

and manufacture, and ensure that messages quickly reach their destination. Let us define two
important properties of an NOC namely bisection bandwidth and diameter.

12.6.2 Bisection Bandwidth and Network Diameter

Bisection Bandwidth

Let us consider a network topology where the vertices are the nodes, and the edges between
the vertices are the links. Suppose there is a link failure, or for some other reason such as
congestion, a link is unavailable, then it should be possible to route messages through alternate
paths. For example, let us consider a network arranged as a ring. If one link fails, then we can
always send a message through the other side of the ring. If we were sending the message in a
clockwise fashion, we can send it in an anti-clockwise fashion. However, if there are two link
failures, it is possible that the network can get disconnected into two equal parts. We would
thus like to maximise the number of link failures that are required to completely disconnect the
network into sizeably large parts (possibly equal). Let us refer to the number of such failures as
the bisection bandwidth. The bisection bandwidth is a measure of the reliability of the network.
It is precisely defined as the minimum number of links that need to fail to partition the network
into two equal parts.

There can be an alternative interpretation of the bisection bandwidth. Let us assume that
nodes in one half of the network are trying to send messages to nodes in the other half of the
network. Then the number of messages that can be simultaneously sent is at least equal to the
bisection bandwidth. Thus, the bisection bandwidth is also a measure of the bandwidth of a
network.

623 © Smruti R. Sarangi

Definition 137
The bisection bandwidth is defined as the minimum number of link failures that are required
to partition a network into two equal parts.

Network Diameter

We have discussed reliability, and bandwidth. Now, let us focus on latency. Let us consider
pairs of nodes in the network. Let us subsequently consider the shortest path between each pair
of nodes. Out of all of these shortest paths, let us consider the path that has the maximum
length. The length of this path is an upper bound on the proximity of nodes in the network,
and is known as the diameter of the network. Alternatively, we can interpret the diameter of a
network as an estimate of the worst case latency between any pair of nodes.

Definition 138
Let us consider all pairs of nodes, and compute the shortest path between each pair. The
length of the longest such path is known as the network diameter. It is a measure of the
worst case latency of the network.

12.6.3 Network Topologies

Let us review some of the most common network topologies in this section. Some of these
topologies are used in multicore processors. However, most of the complex topologies are used
in loosely coupled multiprocessors that use regular Ethernet links to connect processors. For
each topology, let us assume that it has N nodes. For computing the bisection bandwidth, we
can further make the simplistic assumption that N is divisible by 2. Note that measures like the
bisection bandwidth, and the diameter are approximate measures, and are merely indicative
of broad trends. Hence, we have the leeway to make simplistic assumptions. Let us start out
with considering simpler topologies that are suitable for multicores. We need to aim for a high
bisection bandwidth, and low network diameter.

Chain and Ring

Figure 12.21 shows a chain of nodes. Its bisection bandwidth is 1, and the network diameter is
N − 1. This is our worst configuration. We can improve both the metrics by considering a ring
of nodes (Figure 12.22). The bisection bandwidth is now 2, and the network diameter is N/2.
Both of these topologies are fairly simple, and have been superseded by other topologies. Let us
now consider a topology known as a fat tree, which is commonly used in cluster computers. A
cluster computer refers to a loosely coupled multiprocessor that consists of multiple processors
connected over the local area network.

© Smruti R. Sarangi 624

Figure 12.21: Chain

Figure 12.22: Ring

Definition 139
A cluster computer refers to a loosely coupled computer that consists of multiple processors
connected over the local area network.

Fat Tree

Figure 12.23: Fat Tree

625 © Smruti R. Sarangi

Figure 12.23 shows a fat tree. In a fat tree, all the nodes are at the leaves, and all the
internal nodes of the tree are routers dedicated to routing messages. Let us refer to these
internal nodes as switches. A message from node a to node b first travels to the closest node
that is a common ancestor of both a and b. Then it travels downwards towards b. Note that the
density of messages is the highest near the root. Hence, to avoid contention, and bottlenecks, we
gradually increase the number of links connecting a node and its children, as we move towards
the root. This strategy reduces the message congestion at the root node.

In our example, two subtrees are connected to the root node. Each subtree has 4 nodes. At
the most the root can receive 4 messages from each subtree. Secondly, at the most, it needs
to send 4 messages to each subtree. Assuming a duplex link, the root needs to have 4 links
connecting it to each of its children. Likewise, the next level of nodes need 2 links between
them and each of their child nodes. The leaves need 1 link each. We can thus visualise the tree
growing fatter, as we proceeds towards the root, and hence it is referred to as a fat tree.

The network diameter is equal to 2log(N). The bisection bandwidth is equal to the minimum
number of links that connect the root node to each of its children. If we assume that the tree
is designed to ensure that there is absolutely no contention for links at the root, then we need
to connect the root with N/2 links to each subtree. Thus, the bisection bandwidth in this case
is N/2. Note that we do not allot N/2 links between the root and its children in most practical
scenarios. This is because the probability of all the nodes in a subree transmitting messages at
the same time is low. Hence, in practice we reduce the number of links at each level.

Mesh and Torus

Figure 12.24: Mesh Figure 12.25: Torus

Let us now look at topologies that are more suitable for multicores. One of the most common
topologies is a mesh where all the nodes are connected in a matrix like fashion (see Figure 12.24).
Nodes at the corner have two neighbours, nodes on the rim have three neighbours, and the rest

© Smruti R. Sarangi 626

of the nodes have four neighbours. Let us now compute the diameter and bisection bandwidth
of a mesh. The longest path is between two corner nodes. The diameter is thus equal to (2

√
N

- 2). To divide the network into two equal halves we need to either split the mesh in the
middle (horizontally or vertically). Since we have

√
N nodes in a row, or column, the bisection

bandwidth is equal to
√
N . The mesh is better than a chain and a ring in terms of these

parameters.
Unfortunately, the mesh topology is asymmetric in nature. Nodes that are at the rim of

the mesh are far away from each other. Consequently, we can augment a mesh with cross links
between the extremities of each row and column. The resulting structure is known as a torus,
and is shown in Figure 12.25. Let us now look at the properties of tori (plural of torus). In
this case, nodes on opposite sides of the rim of the network, are only one hop apart. The
longest path is thus between any of the corner nodes and a node at the center of the torus.
The diameter is thus again equal to (ignoring small additive constants)

√
N/2+

√
N/2 =

√
N .

Recall that the length of each side of the torus is equal to
√
N .

Now, to divide the network into two equal parts let us split it horizontally. We need to thus
snap

√
N vertical links, and

√
N cross links (links between the ends of each column). Hence,

the bisection bandwidth is equal to 2
√
N .

Figure 12.26: Folded Torus

By adding 2
√
N cross links (

√
N for rows, and

√
N for columns), we have halved the

diameter, and doubled the bisection bandwidth of a torus. However, this scheme still has some
problems. Let us elaborate.

627 © Smruti R. Sarangi

While defining the diameter, we made an implicit assumption that the length of every link
is almost the same, or alternatively the time a message takes to traverse a link is almost the
same for all the links in the network. Hence, we defined the diameter in terms of the number of
links that a message traverses. This assumption is not very unrealistic because in general the
propagation time through a link is small as compared to the latencies of routers along the way.
Nevertheless, there are limits to the latency of a link. If a link is very long, then our definition
of the diameter needs to be revised. In the case of tori, we have such a situation. The cross
links are physically

√
N times longer than regular links between adjacent nodes. Hence, as

compared to a mesh, we have not significantly reduced the diameter in practice because nodes
at the ends of a row are still far apart.

We can fortunately solve this problem by using a slightly modified structure called a folded
torus as shown in Figure 12.26. Here, the topology of each row and column is like a ring. One
half of the ring consists of regular links that were originally a part of the mesh topology, and
the other half comprises of the cross links that were added to convert a mesh into a torus. We
alternately place nodes on the regular links and on the cross links. This strategy ensures that
the distance between adjacent nodes in a folded torus is twice the distance between adjacent
nodes in a regular torus. However, we avoid the long cross links (

√
N hops long) between the

two ends of a row or column.
The bisection bandwidth and the diameter of the network remain the same as that of the

torus. In this case, there are several paths that can qualify as the longest path. However, the
path between a corner to the center is not the longest. One of the longest paths is between op-
posite corners. The folded torus is typically the preferred configuration in multicore processors
because it avoids long cross links.

Hypercube

H0 H1 H2 H3

H4

0 0 1

00 01

10 11

000 001

010 011

110 111

101100

(a) (b)
(d)

(c)

(e)

Figure 12.27: Hypercube

© Smruti R. Sarangi 628

Let us now consider a network that has O(log(N)) diameter. These networks use a lot
of links; hence, they are not suitable for multicores. However, they are used often in larger
cluster computers. This network is known as a hypercube. A hypercube is actually a family of
networks, where each network has an order. A hypercube of order k is referred to as Hk.

Figure 12.27(a) shows a hypercube of order 0 (H0). It is a single point. To create a hypercube
of order 1, we take two copies of a hypercube of order 0, and connect the corresponding points
with lines. In this case, H0 has a single point. Therefore, H1 is a simple line segment (see
Figure 12.27(b)). Now, let us follow the same procedure to create a hypercube of order 2.
We place two copies of H1 close to each other and connect corresponding points with lines.
Hence, H2 is a rectangle (see Figure 12.27(c)). Let us follow the same procedure to create
a hypercube of order 3 in Figure 12.27(d). This network is equivalent to a normal cube (the
“cube” in hypercube). Finally, Figure 12.27(e), shows the topology of H4, where we connect the
corresponding points of two cubes. We can proceed in a similar manner to create hypercubes
of order k.

Let us now investigate the properties of a hypercube. The number of nodes in Hk is equal
to twice the number of nodes in Hk−1. This is because, we form Hk by joining two copies of
Hk−1. Since H1 has 1 node, we can conclude that Hk has 2k nodes. Let us propose a method
to label the nodes of a hypercube as shown in Figure 12.27. We label the single node in H0 as
0. When we join two copies of a hypercube of order, k − 1, we maintain the same labelling of
nodes for (k − 1) least significant digits. However, for nodes in one copy, we set the MSB as 1,
and for nodes in the other copy, we set the MSB to be 0.

Let us consider, H2 (Figure 12.27(c)). The nodes are labelled 00, 01, 10, and 11. We
have created a similar 3-bit labelling for H3 (Figure 12.27(d)). In our labelling scheme, a
node is connected to all other nodes that have a label differing in only one bit. For example,
the neighbours of the node 101, are 001, 111, and 100. A similar labelling for Hk requires
k = log(N)) bits per node.

This insight will help us compute the diameter of a hypercube. Let us explain through an
example. Consider the 8 node hypercube, H3. Assume that we want a message to travel from
node A (000) to node B (110). Let us scan the labels of both the nodes from the MSB to the
LSB. The first bit (MSB) does not match. Hence, to make the first bit match, let us route the
message to node A1 (100). Let us now scan the next bit. Here, again there is a mismatch.
Hence, let us route the message to node A2 (110). Now, we take a look at the third bit (LSB),
and find it to match. The message has thus reached its destination. We can follow the same
approach for an N -bit hypercube. Since each node has a log(N) bit label, and in each step we
flip at most one bit in the label of the current node, we require a maximum of log(N) routing
steps. Thus the network diameter is log(N).

Let us now compute the bisection bandwidth. We shall state the result without proof be-
cause the computation of the bisection bandwidth of a hypercube requires a thorough theoretical
treatment of hypercubes. This is beyond the scope of this book. The bisection bandwidth of
an N -node hypercube is equal to N/2.

Butterfly

Let us now look at our last network called the butterfly that also has O(log(N)) diameter, yet,
is suitable for multicores. Figure 12.28 shows a butterfly network for 8 nodes. Each node is

629 © Smruti R. Sarangi

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

00

01

10

11

00

01

10

11

00

01

10

11

Figure 12.28: Butterfly

represented by a circle. Along with the nodes, we have a set of switches or internal nodes
(shown with rectangles) that route messages between nodes. The messages start at the left
side, pass through the switches, and reach the right side of the diagram. Note that the nodes
on the leftmost and rightmost sides of the figure are actually the same set of nodes. We did
not want to add left to right cross links to avoid complicating the diagram; hence, we show the
set of nodes in duplicate.

Let us start from the left side of the diagram. For N nodes (assuming N is a power of 2),
we have N/2 switches in the first column. Two nodes are connected to each switch. In our
example in Figure 12.28, we have labelled the nodes 1 . . . 8. Each node is connected to a switch.
Once a message enters a switch, it gets routed to the correct switch in the rightmost column
through the network of switches. For 8 nodes, we have 4 switches in each column. For each
column, we have labelled them 00 . . . 11 in binary.

Let us consider an example. Assume that we want to send a message from node 4 to node 7.
In this case, the message enters switch 01 in the first column. It needs to reach switch 11 in the
third column. We start out by comparing the MSBs of the source switch, and the destination
switch. If they are equal, then the message proceeds horizontally rightwards to a switch in
the adjacent column and same row. However, if the MSBs are unequal (as is the case in our
example), then we need to use the second output link to send it to a switch in a different row
in the next column. The label of the new switch differs from the label of the original switch
by just 1 bit, which is the MSB bit in this case. Similarly, to proceed from the second to the
third column, we compare the second bit position (from the MSB). If they are equal, then the
message proceeds horizontally, otherwise it is routed to a switch such that the first two bits

© Smruti R. Sarangi 630

match. In this case, the label of the switch that we choose in the second column is 11. The
first two bits match the label of the switch in the third column. Hence, the message proceeds
horizontally, and is finally routed to node 7.

We can extend this method for a butterfly consisting of k columns. In the first column, we
compare the MSB. Similarly, in the ith column, we compare the ith bit (MSB is the 1st bit).
Note that the first k − i bits of the label of the switch that handles the message in the ith

column are equal to the first k− i bits of the destination switch. This strategy ensure that the
message gets routed to ultimately the correct switch in the kth column.

Now, let us investigate the properties of the network. Let us assume that we have N
nodes, where N is a power of 2. We require log(N) columns, where each column contains N/2
switches. Thus, we require an additional Nlog(N)/2 switches. An astute reader would have
already concluded that routing a message in a butterfly network is almost the same as routing
in a message in a hypercube. In every step we increase the size of the matching prefix between
the labels of the source and destination switches by 1. We thus require log(N) + 1 steps (1
additional step for sending the message to the destination node from the last switch) for sending
a message between a pair of nodes. We can thus approximate the diameter of the network to
log(N).

Let us now compute the bisection bandwidth. Let us consider our example with 8 nodes
first. Here, we can split the network horizontally. We thus need to snap 4 links, and hence the
bisection bandwidth of the network shown in Figure 12.28 is 4. Let us now consider N > 8
nodes. In this case, also the best solution is to split the network horizontally. This is because
if we draw an imaginary horizontal line between the (N/4)th and (N/4 + 1)th row of switches
then it will only intersect the links between the first and second columns. The outgoing links
of the rest of the columns will not intersect with our imaginary line. They will either be below
it or above it. Since each switch in the first column has only one outgoing link that intersects
the imaginary line, a total of N/2 links intersect the imaginary line. All of these links need to
be disconnected to divide the network into two equal parts. Hence, the bisection bandwidth is
equal to N/2.

Comparison of Topologies

Let us now compare the topologies with respect to four parameters – number of internal nodes
(or switches), number of links, diameter, and bisection bandwidth in Table 12.7. In all the
cases, we assume that the networks have N nodes that can send and receive messages, and N
is a power of 2.

12.7 Summary and Further Reading

12.7.1 Summary

Summary 12

1. Processor frequency and performance is beginning to saturate.

631 © Smruti R. Sarangi

Topology # Switches # Links Diameter Bisection Bandwidth

Chain 0 N-1 N-1 1

Ring 0 N N/2 2

Fat Tree N - 1 N log(N)‡ 2 log(N) N/2†

Mesh 0 2N − 2
√
N 2

√
N − 2

√
N

Torus 0 2N
√
N 2

√
N

Folded Torus 0 2N
√
N 2

√
N

Hypercube 0 Nlog(N)/2 log(N) N/2

Butterfly Nlog(N)/2 N +Nlog(N) log(N) + 1 N/2
‡ Assume that the size of each link is equal to the size of the subtree under it.

† Assume that the capacity of each link is equal to the number of leaves in its subtree

Table 12.7: Comparison of topologies

2. Concomitantly, the number of transistors per chip is roughly doubling very two years
as per the original predictions of Gordon Moore. This empirical law is known as the
Moore’s Law.

3. The additional transistors are not being utilised to make a processor larger, or more
complicated. They are instead being used to add more processors on chip. Each such
processor is known as a core, and a chip with multiple cores is known as a multicore
processor.

4. We can have multiprocessor systems where the processors are connected over the net-
work. In this case the processors do not share any resources between them, and such
multiprocessors are known as loosely coupled multiprocessors. In comparison, multi-
core processors, and most small sized server processors that have multiple processors
on the same motherboard, share resources such as the I/O devices, and the main
memory. Programs running on multiple processors in these systems might also share
a part of their virtual address space. These systems are thus referred to as strongly
coupled multiprocessors.

5. Multiprocessor systems can be used to run multiple sequential programs simultaneously,
or can be used to run parallel programs. A parallel program contains many sub-
programs that run concurrently. The sub-programs co-operate among themselves to
achieve a bigger task. When sub-programs share their virtual memory space, they are
known as threads.

6. Parallel programs running on strongly coupled multiprocessors typically communicate
values between themselves by writing to a shared memory space. In comparison, pro-
grams running on loosely coupled multiprocessors communicate by passing messages
between each other.

© Smruti R. Sarangi 632

7. Most parallel programs have a sequential section, and a parallel section. The parallel
section can be divided into smaller units and distributed among the processors of a
multiprocessor system. If we have N processors, then we ideally expect the parallel
section to be sped up by a factor of N . An equation describing this relationship is
known as the Amdahl’s Law. The speedup, S is given by:

S =
Tseq

Tpar
=

1

fseq +
1−fseq

P

8. The Flynn’s taxonomy classifies computing systems into four types : SISD (single
instruction, single data), SIMD (single instruction, multiple data), MISD (multiple
instruction, single data), and MIMD (multiple instruction, multiple data).

9. The memory system in modern shared memory MIMD processors is in reality very
complex. Coherence and consistency are two important aspects of the behaviour of the
memory system.

10. Coherence refers to the rules that need to be followed for accessing the same memory
location. Coherence dictates that a write is never lost, and all writes to the same
location are seen in the same order by all the processors.

11. Consistency refers to the behaviour of the memory system with respect to different
memory locations. If memory accesses from the same thread get reordered by the
memory system (as is the case with modern processors), many counter-intuitive be-
haviours as possible. Hence, most of the time we reason in terms of the sequentially
consistent memory model that prohibits reordering of messages sent to the memory
system by the same thread. In practice, multiprocessors follow a weak consistency
model that allows arbitrary reorderings between accesses that access different memory
addresses. We can still write correct programs because such models define synchroni-
sation instructions (example: fence) that try to enforce an ordering between memory
accesses when required.

12. We can either have a large shared cache, or multiple private caches (one for each core
or set of cores). Shared caches can be made more performance and power efficient
by dividing it into a set of subcaches known as banks. For a set of private caches to
logically function as one large shared cache, we need to implement cache coherence.

(a) The snoopy cache coherence protocol connects all the processors to a shared bus.

(b) The MSI write-update protocol works by broadcasting every write to all the cores.

(c) The MSI write-invalidate protocol guarantees coherence by ensuring that only
one cache can write to a block at any single point of time.

13. To further improve performance, we can implement a multithreaded processor that
shares a pipeline across many threads. We can either quickly switch between threads
(fine and coarse-grained multithreading), or execute instructions from multiple threads
in the same cycle using a multi-issue processor (simultaneous multithreading).

633 © Smruti R. Sarangi

14. SIMD processors follow a different approach. They operate on arrays of data at once.
Vector processors have a SIMD instruction set. Even though, they are obsolete now,
most modern processors have vector instructions in their ISA.

(a) Vector arithmetic/logical instructions fetch their operands from the vector regis-
ter file, and operate on large vectors of data at once.

(b) Vector load-store operations can either assume that data is stored in contiguous
memory regions, or assume that data is scattered in memory.

(c) Instructions on a branch path are implemented as predicated instructions in vec-
tor ISAs.

15. Processors and memory elements are connected through an interconnection network.
The basic properties of an interconnection network are the diameter (worst case end
to end delay), and the bisection bandwidth (number of links that need to be snapped to
partition the network equally). We discussed several topologies: chain, ring, fat tree,
mesh, torus, folded torus, hypercube, and butterfly.

12.7.2 Further Reading

The reader should start by reading the relevant sections in advanced textbooks on computer
architecture. The first recommendation is the textbook written by your author on advanced
computer architecture [Sarangi,]. Other textbooks [Culler et al., 1998, Hwang, 2003, Baer,
2010, Jacob, 2009] in this space can also be consulted, especically the book by Jacob [Jacob,
2009] for details of the memory system.

For parallel programming, the reader can start with Michael Quinn’s book on parallel pro-
gramming with OpenMP and MPI [Quinn, 2003]. The formal MPI specifications are available
at http://www.mpi-forum.org. For an advanced study of cache coherence the reader can start
with the survey on coherence protocols by Stenstrom [Stenstrom, 1990], and then look at one of
the earliest practical implementations [Borrill, 1987]. The most popular reference for memory
consistency models is a tutorial by Adve and Gharachorloo [Adve and Gharachorloo, 1996], and
a paper published by the same authors [Gharachorloo et al., 1992]. For a different perspective
on memory consistency models in terms of ordering, and atomicity, readers can refer to [Arvind
and Maessen, 2006]. [Guiady et al., 1999] looks at memory models from the point of view
of performance. [Peterson et al., 1991] and [russell, 1978] describe two fully functional SIMD
machines. For interconnection networks the reader can refer to [Jerger and Peh, 2009].

Exercises

Overview of Multiprocessor Systems

Ex. 1 — Differentiate between strongly coupled, and loosely coupled multiprocessors.

http://www.mpi-forum.org

© Smruti R. Sarangi 634

Ex. 2 — Differentiate between shared memory, and message passing based multiprocessors.

Ex. 3 — Why is the evolution of multicore processors a direct consequence of Moore’s Law?

Ex. 4 — The fraction of the potentially parallel section in a program is 0.6. What is the
maximum speedup that we can achieve over a single core processor, if we run the program on
a quad-core processor?

Ex. 5 — You need to run a program, 60% of which is strictly sequential, while the rest 40%
can be fully parallelised over a maximum of 4 cores. You have 2 machines:

(a) A single core machine running at 3.2 GHz

(b) A 4-core machine running at 2.4 GHz

Which machine is better if you have to minimise the total time taken to run the program?
Assume that the two machines have the same IPC per thread and only differ in the clock
frequency and the number of cores.

* Ex. 6 — Consider a program, which has a sequential and a parallel portion. The sequential
portion is 40% and the parallel portion is 60%. Using Amdahl’s law, we can compute the
speedup with n processors, as S(n). However, increasing the number of cores increases the cost
of the entire system. Hence, we define a utility function, g(n), of the form:

g(n) = e−n/3(2n2 + 7n+ 6)

The buyer wishes to maximise S(n)× g(n). What is the optimal number of processors, n?

Ex. 7 — Define the terms: SISD, SIMD, MISD, and MIMD. Give an example of each type
of machine.

Ex. 8 — What are the two classes of MIMD machines introduced in this book?

Coherence and Consistency

Ex. 9 — What are the axioms of cache coherence?

Ex. 10 — Define sequential and weak consistency.

Ex. 11 — Is the outcome (t1,t2) = (2,1) allowed in a system with coherent memory?

Thread 1:

x = 1;

x = 2;

Thread 2:

t1 = x;

t2 = x;

Ex. 12 — Assume that all the global variables are initialised to 0, and all variables local to
a thread start with ‘t’. What are the possible values of t1 for a sequentially consistent system,
and a weakly consistent system? (source [Adve and Gharachorloo, 1996])

635 © Smruti R. Sarangi

Thread 1:

x = 1;

y = 1;

Thread 2:

while(y == 0){}

t1 = x;

Ex. 13 — Is the outcome (t1,t2) = (1,1) possible in a sequentially consistent system?

Thread 1:

x = 1;

if(y == 0)

t1 = 1;

Thread 1:

y = 1;

if(x == 0)

t2 = 1;

Ex. 14 — Is the outcome t1 ̸= t2 possible in a sequentially consistent system? (source [Adve
and Gharachorloo, 1996])

Thread 1:

z = 1;

x = 1;

Thread 2:

z = 2;

y = 1;

Thread 3:

while (x != 1) {}

while (y != 1) {}

t1 = z;

Thread 4:

while (x != 1) {}

while (y != 1) {}

t2 = z;

* Ex. 15 — Is the outcome (t1 = 0) allowed in a system with coherent memory and atomic
writes? Consider both sequential and weak consistency?

Thread 1:

x = 1;

Thread 2:

while(x != 1) {}

y = 1;

Thread 3:

while (y != 1) {}

t1 = x;

* Ex. 16 — Consider the following code snippet for implementing a critical section. A critical
section is a region of code that can only be executed by one thread at any single point of time.
Assume that we have two threads with ids 0 and 1 respectively. The function getT id() returns
the id of the current thread.

void enterCriticalSection() {

tid = getTid();

otherTid = 1 - tid;

interested[tid] = true;

flag = tid;

while ((flag == tid) && (interested[otherTid] == 1)) {}

}

void leaveCriticalSection{

tid = getTid();

interested[tid] = false;

}

Is it possible for two threads to be in the critical section at the same point of time?

© Smruti R. Sarangi 636

Ex. 17 — In the snoopy protocol, why do we write back data to the main memory upon a
M to S transition?

Ex. 18 — Assume that two nodes desire to transition from the S state to the M state at
exactly the same point of time. How will the snoopy protocol ensure that only one of these
nodes enters the M state, and finishes its write operation? What happens to the other node?

Ex. 19 — The snoopy protocol clearly has an issue with scalability. If we have 64 cores with
a private cache per core, then it will take a long time to broadcast a message to all the caches.
Can you propose solutions to circumvent this problem?

Ex. 20 — Let us assume a cache coherent multiprocessor system. The L1 cache is private
and the coherent L2 cache is shared across the processors. Let us assume that the system issues
a lot of I/O requests. Most of the I/O requests perform DMA (Direct Memory Access) from
main memory. It is possible that the I/O requests might overwrite some data that is already
present in the caches. In this case we need to extend the cache coherence protocol that also
takes I/O accesses into account. Propose one such protocol.

Ex. 21 — Let us define a new state in the traditional MSI states based snoopy protocol.
The new E state refers to the “exclusive” state, in which a processor is sure that no other cache
contains the block in a valid state. Secondly, in the E state, the processor hasn’t modified the
block yet. What is the advantage of having the E state? How are evictions handled in the E
state?

Ex. 22 — Show the state transition diagrams for a MSI protocol with a directory. You need
to show the following:

1.Structure of the directory

2.State transition diagram for events received from the host processor.

3.State transition diagram for events received from the directory.

4.State transition diagram for an entry in the directory (if required).

Ex. 23 — Assume that we have a system with private L1 and L2 caches. The L1 layer is
not coherent. However, the L2 layer maintains cache coherence. How do we modify our MSI
snoopy protocol to support cache coherence for the entire system?

Ex. 24 — In the snoopy write-invalidate protocol, when should a processor actually perform
the write operation? Should it perform the write as soon as possible, or should it wait for the
write-invalidate message to reach all the caches? Explain your answer.

* Ex. 25 — Assume that a processor wants to perform an atomic exchange operation between
two memory locations a and b. a and b cannot be allocated to registers. How will you modify
the MSI coherence protocol to support this operation? Before proceeding with the answer
think about what are the things that can go wrong. An exchange is essentially equivalent to
the following sequence of operations: (1) temp = a; (2) a = b; (3) b = temp. If a read arrives
between operations (2) and (3) it might get the wrong value of b. We need to prevent this
situation.

637 © Smruti R. Sarangi

** Ex. 26 — Assume that we want to implement an instruction called MCAS. The MCAS
instruction takes k (known and bounded) memory locations as arguments, a set of k old values,
and a set of k new values. Its pseudo-code is shown below. We assume here that mem is a
hypothetical array representing the entire memory space.

/* multiple compare and set */

boolean MCAS(int memLocs[], int oldValues[], int newValues[]){

/* compare */

for(i=0; i < k; i++) {

if(mem[memLocs[i]] != oldValues[i]) {

return false;

}

}

/* set */

for(i=0; i < k; i++) {

mem[memLocs[i]] = newValues[i];

}

return true;

}

The challenge is to implement this instruction such that it appears to execute instantaneously.
Let us look at some subtle cases. Assume that we want to write (4,5,6) to three memory
locations if their previous contents are (1,2,3). It is possible that after writing 4, and 5, there is
a small delay. During this time another thread reads the three memory locations, and concludes
that their values are 4,5, and 3 respectively. This result is incorrect because it violates our
assumption that MCAS executes instantaneously. We should either read (1,2,3) or (4,5,6).

Now, let us look at the case of reading the three memory locations. Let us say that their initial
values are 1,2, and 0. Our MCAS instruction reads the first two locations and since they are
equal to the old values, proceeds to the third location. Before reading it, a store operation from
another thread changes the values of the three locations as follows. (1,2,0)→ (5,2,0)→ (5,2,3).
Subsequently, the MCAS instruction takes a look at the third memory location and finds it to
be 3. Note that the three memory locations were never equal to (1,2,3). We thus arrive at a
wrong conclusion.

How should we fix these problems? We want to implement a MCAS instruction purely in
hardware, which provides an illusion of instantaneous execution. It should be free of deadlocks,
and should complete in a finite amount of time. How can we extend our coherence protocols to
implement it?

*** Ex. 27 — Assume a processor that has a sequentially consistent(SC) memory. We im-
plement SC by making each thread wait for a memory request to complete before issuing the
next request. Now, assume that we modify the architecture by allowing a processor to read a
value that the immediately preceding instruction has written without waiting for it to complete.
Prove that the memory system still follows SC.

*** Ex. 28 — Assume a processor with a weak consistency model. Let us run a “properly

© Smruti R. Sarangi 638

labelled” program on it. A properly labelled(PL) program does not allow conflicting accesses
(read-write, write-read, or write-write) to a shared variable at the same time. For example, the
following code sequence is not properly labelled because it allows x to be modified concurrently.
Thread 1:

x = 0

Thread 2:

x = 1
In reality, the coherence protocol orders one write access before the other. Nevertheless, both
the threads try to modify x concurrently at the programmer’s level. This is precisely the
behaviour that we wish to avoid.

In a PL program, two threads do not try to modify x at the same time. This is achieved by
having two magic instructions known as lock and unlock. Only one thread can lock a memory
location at any point of time. If another thread tries to lock the location before it is unlocked,
then it stalls till the lock is free. If multiple threads are waiting on the same lock, only one
of them is given the lock after an unlock instruction. Secondly, both the lock and unlock
instructions have a built in fence operation, and all the lock and unlock instructions execute
in program order. The PL version of our program is as follows:

Thread 1:

lock(x)

x = 0

unlock(x)

Thread 2:

lock(x)

x = 1

unlock(x)
We can thus think of a lock-unlock block as a sequential block that can only be executed by one
thread at a given time. Moreover, assume that a lock-unlock block can only have one memory
instruction inside it.

Now, prove that all PL programs running on a weakly consistent machine have a sequentially
consistent execution. In other words we can interleave the memory accesses of all the threads
such that they appear to be executed by a single cycle processor that switches among the
threads. [HINT: Construct access graphs for your system, and prove that they are acyclic.]

Multithreading

Ex. 29 — What is the difference between a fine grained and coarse grained multithreaded
machine?

Ex. 30 — Describe a simultaneous multithreaded (SMT) processor in detail.

Ex. 31 — Describes the steps that we need to take to ensure that a SMT processor executes
correctly.

Ex. 32 — Assume a mix of workloads in a 4-way SMT processor. 2 threads are computa-
tionally intensive, 1 thread is I/O intensive, and the last thread sleeps for a long time. Design
an efficient instruction selection scheme.

Interconnection Networks

Ex. 33 — What is the bisection bandwidth and diameter of a 2D n× n mesh?

639 © Smruti R. Sarangi

Ex. 34 — What is the bisection bandwidth and diameter of a 3D n× n× n mesh?

Ex. 35 — What is the diameter of a ring containing n nodes? Give a precise answer that
holds for even and odd n.

Ex. 36 — What is the bisection bandwidth and diameter of a hypercube of order n.

Ex. 37 — What is the bisection bandwidth and diameter of a n× n× n, 3D torus?

Ex. 38 — What is the bisection bandwidth and diameter of a clique of n nodes (n is even)?
In a clique, all pairs of nodes are connected.

** Ex. 39 — Assume we have a n × n mesh. There are n2 routers, and each processor is
connected to one router. Note that at any point of time, a router can only store 1 message. It
will discard a message only if the message gets stored in another router. In our previous example,
router (i, j) will keep the message until it has been delivered and stored at a neighbouring
router such as (i+1, j). Now, an interesting deadlock situation can develop. Let us assume the
following scenario.

•(1,1) wants to send a message to (1,2).

•(1,2) wants to send a message to (2,2).

•(2,2) wants to send a message to (2,1).

•(2,1) wants to send a message to (1,1).

In this case all the four nodes have 1 message each. They are not able to forward the packet
to the next node, because the next node already stores a packet, and is thus busy. Since there
is a cyclic wait, we have a deadlock. Design a message routing protocol between a source and
destination node that is provably deadlock free.

Vector Processors

Ex. 40 — What is the advantage of vector processors over scalar processors?

Ex. 41 — Why are vector load-store instructions easy to implement in systems that have
caches with large block sizes?

Ex. 42 — How can we efficiently implement a scatter-gather based load-store unit?

Ex. 43 — What is a predicated instruction, and how does it help speed up a vector processor?

* Ex. 44 — Assume that we have a processor with a 32 entry vector register file. We wish
to add two arrays that have 17 entries each. How can we implement this operation, with the
SimpleRisc vector instructions introduced in the chapter? Feel free to introduce new vector
instructions if required.

* Ex. 45 — Design a dedicated SIMD hardware unit to sort n integers in roughly n time
steps by using the bubble sort algorithm. You have a linear array of n processors connected
end to end. Each processor is capable of storing two integers, and has some logic inside it.
Design the logic for each processor and explain the overall working of the system.

© Smruti R. Sarangi 640

Design Problems

Ex. 46 — Write a program to sort a billion integers using OpenMP and MPI.

Ex. 47 — Implement a distributed shared memory system on a cluster of computers con-
nected via an Ethernet LAN.

13
I/O and Storage Devices

We have now arrived at a very interesting point in our study of processors. We have learnt
how to design a full processor and its accompanying memory system using basic transistors.
This processor can execute the entire SimpleRisc instruction set, and can run very complicated
programs ranging from chess games to weather simulations. However, there is a vital aspect
missing in our design. There is no way for us to communicate with our computer. To render
our computer usable, we need to have a method to write input data, and display the outputs.

Computer

Memory Hard disk

Keyboard

Mouse

Monitor

Printer

Figure 13.1: A typical computer system

We thus need an I/O (Input/Ouput) system in our computer. Let us look at the structure
of a typical computer in Figure 13.1. The processor is the core of the computer. It is connected
to a host of I/O devices for processing user inputs, and for displaying results. These I/O
devices are known as peripherals. The most common user input devices are the keyboard and
the mouse. Likewise, the most common display devices, are the monitor, and the printer. The
computer can also communicate with a host of other devices such as cameras, scanners, mp3
players, camcorders, microphones, and speakers through a set of generic I/O ports. An I/O
port consists of: (1) a set of metallic pins that help the processor to connect with external

641

© Smruti R. Sarangi 642

devices, and (2) a port controller that manages the connection with the peripheral device. The
computer can also communicate with the outside world through a special peripheral device
called a network card. The network card contains the circuits to communicate with other
computers via wired or wireless connections.

Definition 140
An I/O port consists of a set of metallic pins that are used to attach to connectors provided
by external devices. Every port is associated with a port controller that co-ordinates the
exchange of data on the communication link.

We give a special preference to a particular class of devices in this chapter known as storage
devices. Storage devices such as the hard disk, and flash drives help us permanently store data
even when the system is powered off. We looked at them briefly in Chapter 11 while discussing
swap space. In this chapter, we shall study them in more detail, and look at the methods of
data storage, and retrieval. The reason we stress on storage devices in this chapter is because
they are integral to computer architecture. The nature of peripherals across computers varies.
For example, a given computer might have a microphone, whereas another computer might
not have a monitor because it is accessed remotely over the network. However, invariably all
computers from small handheld phones to large servers have some form of permanent storage.
This storage is used to save files, system configuration data, and the swap space during the
operation of a program. Hence, architects pay special attention to the design an optimisation
of storage systems, and no book in computer architecture is complete without discussing this
vital aspect of computer architecture.

13.1 I/O System – Overview

13.1.1 Overview

Let us now distance ourselves from the exact details of an I/O device. While designing a
computer system, it is not possible for designers to consider all possible types of I/O devices.
Even if they do, it is possible that a new class of devices might come up after the computer has
been sold. For example, tablet PCs such as the Apple iPad were not there in 2005. Nonetheless,
it is still possible to transfer data between an iPad and older PCs. This is possible because most
designers provide standard interfaces in their computer system. For example, a typical desktop
or laptop has a set of USB ports. Any device that is compliant with the USB specification can
be connected to the USB port, and can then communicate with the host computer. Similarly, it
is possible to attach almost any monitor or projector with any laptop computer. This is because
laptops have a generic DVI port that can be connected to any monitor. Laptop companies obey
their part of the DVI specification by implementing a DVI port that can seamlessly transfer
data between the processor and the port. On similar lines, monitor companies obey their part
of the DVI specification by ensuring that their monitors can seamlessly display all the data that
is being sent on the DVI port. Thus, we need to ensure that our computer provides support for

643 © Smruti R. Sarangi

a finite set of interfaces with peripherals. It should then be possible to attach any peripheral
at run time.

The reader should note that just because it is possible to attach a generic I/O device by
implementing the specification of a port, it does not mean that the I/O device will work. For
example, we can always connect a printer to the USB port. However, the printer might not
be able to print a page. This is because, we need additional support at the software level to
operate the printer. This support is built into the printer device drivers in the operating system
that can efficiently transfer data from user programs to the printer.

Roles of Software and Hardware

We thus need to clearly differentiate between the roles of software and hardware. Let us first
look at software. Most operating systems define a very simple user interface for accessing I/O
devices. For example, the Linux operating system has two system calls, read and write, with
the following specifications.

read(int file_descriptor, void *buffer, int num_bytes)

write(int file_descriptor, void *buffer, int num_bytes)

Linux treats all devices as files, and allots them a file descriptor. The file descriptor is the
first argument, and it specifies the id of the device. For example, the speaker has a certain file
descriptor, and a printer has a different file descriptor. The second argument points to an area
in memory that contains the source or destination of the data, and the last argument represents
the number of bytes that need to be transferred. From the point of view of an user, this is all
that needs to be done. It is the job of the operating system’s device drivers, and the hardware
to co-ordinate the rest of the process. This approach has proved to be an extremely versatile
method for accessing I/O devices.

Unfortunately, the operating system needs to do more work. For each I/O call it needs
to locate the appropriate device driver and pass on the request. It is possible that multiple
processes might be trying to access the same I/O device. In this case, the different requests
need to be properly scheduled.

The job of the device driver is to interface with native hardware and perform the desired
action. The device driver typically uses assembly instructions to communicate with the hard-
ware device. It first assesses its status, and if it is free, then it asks the peripheral device to
perform the desired action. The device driver initiates the process of transfer of data between
the memory system and the peripheral device.

Figure 13.2 encapsulates the discussion up till now. The upper part of the diagram shows
the software modules (application, operating system, device driver), and the lower part of the
diagram shows the hardware modules. The device driver uses I/O instructions to communicate
with the processor, and the processor then routes the commands to the appropriate I/O device.
When the I/O device has some data to send to the processor, it sends an interrupt, and then
the interrupt service routine reads the data, and passes it on to the application.

We summarised the entire I/O process in just one paragraph. However, the reader should
note that this is an extremely complicated process, and entire books are devoted to the study
and design of device drivers. In this book, we shall limit our discussion to the hardware
part of the I/O system, and take a cursory look at the software support that is required. The

© Smruti R. Sarangi 644

Application

Operating
system Kernel

Device
driver

ProcessorI/O
system

I/O
device

Software

Hardware

Request

Response

Figure 13.2: The I/O system (software and hardware)

important points of difference between the software and hardware components of the I/O system
are enumerated in Point 21.

Important Point 21
The role of software and hardware in the I/O system:

1. The software component of the I/O system consists of the application, and the operat-
ing system. The application is typically provided a very simple interface to access I/O
devices. The role of the operating system is to collate the I/O requests from differ-
ent applications, appropriately schedule them, and pass them on to the corresponding
device drivers.

2. The device drivers communicate with the hardware device through special assembly
instructions. They co-ordinate the transfer of data, control, and status information
between the processor and the I/O devices.

3. The role of the hardware (processor, and associated circuitry) is to just act as a
messenger between the operating system, and the I/O devices, which are connected to
dedicated I/O ports. For example, if we connect a digital camera to an USB port,
then the processor is unaware of the details of the connected device. Its only role is
to ensure seamless communication between the device driver of the camera, and the
USB port that is connected to the camera.

4. It is possible for the I/O device to initiate communication with the processor by send-
ing an interrupt. This interrupts the currently executing program, and invokes the
interrupt service routine. The interrupt service routine passes on control to the cor-
responding device driver. The device driver then processes the interrupt, and takes
appropriate action.

Let us now discuss the architecture of the hardware component of the I/O system in detail.

645 © Smruti R. Sarangi

13.1.2 Requirements of the I/O System

Device Bus Technology Bandwidth Typical Values

Video display via graphics card PCI Express (version 4) High 1-10 GB/s

Hard disks ATA/SCSI/SAS Medium 150-600 MB/s

Network card (wired/wireless) PCI Express Medium 10-100 MB/s

USB devices USB Medium 60-625 MB/s

DVD audio/video PCI Medium 1-4 MB/s

Speaker/Microphone AC’97/Intel High. Def. Audio Low 100 KB/s to 3 MB/s

Keyboard/Mouse USB/PCI Very Low 10-100 B/s

Table 13.1: List of I/O devices along with bandwidth requirements (as of 2012)

Let us now try to design the architecture of the I/O system. Let us start out by listing out
all the devices that we want to support, and their bandwidth requirements in Table 13.1. The
component that requires the maximum amount of bandwidth is the display device (monitor,
projector, TV). It is attached to a graphics card. The graphics card contains the graphics
processor that processes image and video data.

Figure 13.3: Photograph of a network card This article uses material from the Wikipedia
article “Network Interface Controller” [nic,], which is released under the Creative Commons
Attribution-Share-Alike License 3.0 [ccl,]

Note that we shall use the term card often in the discussion of I/O devices. A card is
a printed circuit board(PCB), which can be attached to the I/O system of a computer to

© Smruti R. Sarangi 646

implement a specific functionality. For example, a graphics card helps us process images and
videos, a sound card helps us process high definition audio, and a network card helps us connect
to the network. The picture of a network card is shown in Figure 13.3. We can see a set of chips
interconnected on a printed circuit board. There are a set of ports that are used to connect
external devices to the card.

Definition 141
A card is a printed circuit board(PCB), which can be attached to the I/O system of a
computer to implement a specific functionality.

Along with the graphics card, the other high bandwidth device that needs to be connected
to the CPU is the main memory. The main memory bandwidth is of the order of 10-20 GB/s.
Hence, we need to design an I/O system that gives special treatment to the main memory and
the graphics card.

The rest of the devices have a relatively lower bandwidth. The bandwidth requirement of the
hard disk, USB devices, and the network card is limited to 500-600 MB/s. The keyboard, mouse,
CD-DVD drives, and audio peripherals have an extremely minimal bandwidth requirement
(< 3− 4 MB/s).

13.1.3 Design of the I/O System

I/O Buses

Let us take a look at Table 13.1 again. We notice that there are different kinds of bus tech-
nologies such as USB, PCI Express, and SATA. Here, a bus is defined as a link between two
or more than two elements in the I/O system. We use different kinds of buses for connecting
different kinds of I/O devices. For example, we use the USB bus to connect USB devices such
as pen drives, and cameras. We use SATA or SCSI buses to connect to the hard disk. We need
to use so many different types of buses for several reasons. The first is that the bandwidth
requirements of different I/O devices are very different. We need to use extremely high speed
buses for graphics cards. Whereas, for the keyboard, and mouse, we can use a significantly
simpler bus technology because the total bandwidth demand is minimal. The second reason is
historical. Historically, hard disk vendors have used the SATA or IDE buses, whereas graphics
card vendors have been using the AGP bus. After 2010, graphics card companies shifted to
using the PCI Express bus. Hence, due to a combination of factors, I/O system designers need
to support a large variety of buses.

Definition 142
A bus is a set of wires that is used to connect multiple devices in parallel. The devices can
use the bus to transmit data and control signals between each other.

647 © Smruti R. Sarangi

Now, let us look deeper into the structure of a bus. A bus is much more than a set of copper
wires between two end points. It is actually a very complex structure and its specifications are
typically hundreds of pages long. We need to be concerned about its electrical properties, error
control, transmitter and receiver circuits, speed, power, and bandwidth. We shall have ample
opportunity to discuss high speed buses in this chapter. Every node (source or destination)
connected to a bus requires a bus controller to transmit and receive data. Although the design
of a bus is fairly complicated, we can abstract it as a logical link that seamlessly and reliably
transfers bytes from a single source to a set of destinations.

The Chipset and Motherboard

For designing the I/O system of a computer, we need to first provide external I/O ports that
consist of a set of metallic pins or sockets. These I/O ports can be used to attach external
devices. The reader can look at the side of her laptop or the back of her desktop to find the
set of ports that are supported by her computer. Each port has a dedicated port controller
that interfaces with the device, and then the port controller needs to send the data to the CPU
using one of the buses listed in Table 13.1.

Here, the main design issue is that it is not possible to connect the CPU to each and every
I/O port through an I/O bus. There are several reasons for this.

1. If we connect the CPU to each and every I/O port, then the CPU needs to have bus
controllers for every single bus type. This will increase the complexity, area, and power
utilisation of the CPU.

2. The number of output pins of a CPU is limited. If the CPU is connected to a host of
I/O devices, then it requires a lot of extra pins to support all the I/O buses. Most CPUs
typically do not have enough pins to support this functionality.

3. From a commercial viewpoint, it is a good idea to separate the design of the CPU from
the design of the I/O system. It is best to keep both of them separate. This way, it is
possible to use the CPU in a large variety of computers.

Hence, most processors are connected to only a single bus, or at most 2 to 3 buses. We need
to use ancillary chips that connect the processor to a host of different I/O buses. They need to
aggregate the traffic from I/O devices, and properly route data generated by the CPU to the
correct I/O devices and vice versa. These extra chips comprise the chipset of a given processor.
The chips of the chipset are interconnected with each other on a printed circuit board known
as the motherboard.

Definition 143

Chipset These are a set of chips that are required by the main CPU to connect to main
memory, the I/O devices, and to perform system management functions.

Motherboard All the chips in the chipset are connected to each other on a printed circuit
board, known as the motherboard.

© Smruti R. Sarangi 648

Architecture of the Motherboard

Processor

North Bridge
chip

Front side
bus

Graphics
processor

Memory
modules

PCI express
bus

South Bridge
chip Hard

disk

SATA
busNetwork

card

PCI express
bus

USB USB USB USB
USB ports

Audio/ Mic
ports

PCI express
bus

Intel high
def. audio on

a PCI bus

Figure 13.4: Architecture of the I/O system

Most processors typically have two important chips in their chipset – North Bridge and
South Bridge – as shown in Figure 13.4. The CPU is connected to the North Bridge chip using
the Front Side Bus (FSB). The North Bridge chip is connected to the DRAM memory modules,
the graphics card, and the South Bridge chip. In comparison, the South Bridge chip is meant to
handle much slower I/O devices. It is connected to all the USB devices including the keyboard
and mouse, audio devices, network cards, and the hard disk.

For the sake of completeness, let us mention two other common types of buses in computer
systems. The first type of bus is called a back side bus, which is used to connect the CPU to
the L2 cache. In the early days, processors used off chip L2 caches. They communicated with
them through the back side bus. Nowadays, the L2 cache has moved on chip, and consequently
the back side bus has also moved on chip. It is typically clocked at the core frequency, and is a
very fast bus. The second type of bus is known as a backplane bus. It is used in large computer
or storage systems that typically have multiple motherboards, and peripheral devices such as
hard disks. All these entities are connected in parallel to a single backplane bus. The backplane
bus itself consists of multiple parallel copper wires with a set of connectors that can be used to
attach devices.

649 © Smruti R. Sarangi

Definition 144

Front side bus A bus that connects the CPU to the memory controller, or the North
Bridge chip in the case of Intel systems.

Back side bus A bus that connects the CPU to the L2 cache.

Backplane bus A system wide bus that is attached to multiple motherboards, storage, and
peripheral devices.

Both the North Bridge, and South Bridge chips need to have bus controllers for all the buses
that they are attached with. Each bus controller co-ordinates the access to its associated bus.
After successfully receiving a packet of data, it sends the packet to the destination (towards the
CPU, or the I/O device). Since these chips interconnect various types of buses, and temporarily
buffer data values if the destination bus is busy, they are known as bridges (bridge between
buses).

The memory controller is a part of the North Bridge chip and implements read/write re-
quests to main memory. In the last few years processor vendors have started to move the
memory controller into the main CPU chip, and also make it more complicated. Most of the
augmentations to the memory controller are focused on reducing main memory power, reducing
the number of refresh cycles, and optimising performance. Starting from the Intel Sandybridge
processor the graphics processor has also moved on chip. The reason for moving things into the
CPU chip is because (1) we have extra transistor’s available, and (2) on-chip communication
is much faster than off-chip communication. A lot of embedded processors also integrate large
parts of the South Bridge chip, and port controllers, along with the CPU in a single chip. This
helps in reducing the size of the motherboard, and allows more efficient communication between
the I/O controllers and the CPU. Such kind of systems are known as SOCs (System on Chip).

Definition 145
A system on a chip (SOC) typically packages all the relevant parts of a computing system
into one single chip. This includes the main processor, and most of the chips in the I/O
system.

13.1.4 Layers in the I/O System

Most complex architectures are typically divided into layers such as the architecture of the
internet. One layer is mostly independent of the other layer. Hence, we can choose to implement
it in any way we want, as long as it adheres to a standard interface. The I/O architecture of a
modern computer is also fairly complicated, and it is necessary to divide its functionality into
different layers.

© Smruti R. Sarangi 650

We can broadly divide the functionality of the I/O system into four different layers. Note
that our classification of the functionality of an I/O system into layers is broadly inspired from
the 7 layer OSI model for classifying the functions of wide area networks into layers. We try to
conform as much as possible to the OSI model such that readers can relate our notion of layers
to concepts that they would study in a course on networking.

Physical Layer The physical layer of a bus primarily defines the electrical specifications of the
bus. It is divided into two sublayers namely the transmission sublayer and the synchro-
nisation sublayer. The transmission sublayer defines the specifications for transmitting a
bit. For example, a bus can be active high (logical 1, if the voltage is high), and another
bus can be active low (logical 1, if the voltage is zero). Today’s high speed buses use high
speed differential signalling. Here, we use two copper wires to transmit a single bit. A
logical 0 or 1 is inferred by monitoring the sign of the difference of voltages between the
two wires (similar to the concept of bit lines in SRAM cells). Modern buses extend this
idea and encode a logical bit using a combination of electrical signals. The synchronisa-
tion sublayer specifies the timing of signals, and methods to recover the data sent on the
bus by the receiver.

Data Link Layer The data link layer is primarily designed to process logical bits that are read
by the physical layer. This layer groups sets of bits into frames, performs error checking,
controls the access to the bus, and helps implement I/O transactions. In specific, it
ensures that at any point of time, only one entity can transmit signals on the bus, and it
implements special features to leverage common message patterns.

Network Layer This layer is primarily concerned with the successful transmission of a set of
frames from the processor to an I/O device or vice versa through various chips in the chip
set. We uniquely define the address of an I/O device, and consider approaches to embed
the addresses of I/O devices in I/O instructions. Broadly we discuss two approaches –
I/O port based addressing, and memory mapped addressing. In the latter case, we treat
accesses to I/O devices, as regular accesses to designated memory locations.

Protocol Layer The top most layer referred to as the protocol layer is concerned with execut-
ing I/O requests end to end. This includes methods for high level communication between
the processor, and the I/O devices in terms of the message semantics. For example, I/O
devices can interrupt the processor, or the processor can explicitly request the status
of each I/O device. Secondly, for transferring data between the processor and devices,
we can either transfer data directly or delegate the responsibility of transferring data to
dedicated chips in the chipset known as DMA controllers.

Figure 13.5 summaries the 4 layered I/O architecture of a typical processor.

13.2 Physical Layer – Transmission Sublayer

The physical layer is the lower most layer of the I/O system. This layer is concerned with the
physical transmission of signals between the source and receiver. Let us divide the physical
layer into two sublayers. Let us call the first sublayer as the transmission sublayer because it

651 © Smruti R. Sarangi

Physical layer

Transmission Synchronisation

Data link layer

Network layer

Protocol layer

Figure 13.5: The 4 layers of the I/O system

deals with the transmission of bits from the source to the destination. This layer is concerned
with the electrical properties of the links (voltage, resistance, capacitance), and the methods of
representing a logical bit (0 or 1) using electrical signals.

Let us refer to the second sublayer as the synchronisation sublayer. This sublayer is con-
cerned with reading an entire frame of bits from the physical link. Here, a frame is defined
as a group of bits demarcated by special markers. Since I/O channels are plagued with jitter
(unpredictable signal propagation time), it is necessary to properly synchronise the arrival of
data at the receiver, and read each frame correctly.

In this section, we shall discuss the transmission sublayer. We shall discuss the synchroni-
sation sublayer in the next section.

Note that the reason that we create multiple sublayers, instead of creating multiple layers
is because sublayers need not be independent of each other. However, in general layers should
be independent of each other. It should be theoretically possible to use any physical layer, with
any other data link layer protocol. They should ideally be completely oblivious of each other.
In this case, the transmission and synchronisation sublayers have strong linkages, and thus it
is not possible to separate them into separate layers.

Transmitter Receiver
I/O Link

Figure 13.6: A generic view of an I/O link

Figure 13.6 shows the generic view of an I/O link. The source (transmitter) sends a sequence
of bits to the destination (receiver). At the time of transmission, the data is always synchronised
with respect to the clock of the source. This means that if the source runs at 1 GHz, then it

© Smruti R. Sarangi 652

sends bits at the rate of 1 GHz. Note that the frequency of the source is not necessarily equal
to the frequency of the processor, or I/O element that is sending the data. The transmission
circuitry, is typically a separate submodule, which has a clock that is derived from the clock of
the module that it is a part of. For example, the transmission circuitry of a processor might
be transmitting data at 500 MHz, whereas the processor might be running at 4 GHz. In any
case, we assume that the transmitter transmits data at its internal clock rate. This clock rate
is also known as the frequency of the bus, or bus frequency , and this frequency is in general
lower than the clock frequency of the processors, or other chips in the chipset. The receiver can
run at the same frequency, or can use a faster frequency. Unless explicitly stated, we do not
assume that the source and destination have the same frequency. Lastly, note that we shall use
the terms sender, source, and transmitter interchangeably. Likewise, we shall use the terms
destination, and receiver interchangeably.

13.2.1 Single Ended Signalling

Let us consider a naive approach, where we send a sequence of 1s and 0s, by sending a sequence
of pulses from the source to the destination. This method of signalling is known as single ended
signalling, and it is the simplest approach.

In specific, we can associate a high voltage pulse with a 1, and a low voltage pulse with a
0. This convention is known as active high. Alternatively, we can associate a low voltage pulse
with a logical 1, and a high voltage pulse with a logical 0. Conversely, this convention is known
as active low. Both of these conventions are shown in Figure 13.7.

Sadly, both of these methods are extremely slow and outdated. Recall from our discussion of
SRAM cells in Section 7.4.1 that a fast I/O bus needs to reduce the voltage difference between
a logical 0, and 1 to as low a value as possible. This is because the voltage difference is detected
after it has charged the detector that has an internal capacitance. The higher the voltage
required, the longer it takes to charge the capacitors. If the voltage difference is 1 Volt, then
it will take a long time to detect a transition from 0 to 1. This will limit the speed of the bus.
However, if the voltage difference is 30 mV, then we can detect the transition in voltage much
sooner, and we can thus increase the speed of the bus.

Hence, modern bus technologies try to minimise the voltage difference between a logical 0
and 1 to as low a value as possible. Note that we cannot arbitrarily reduce the voltage difference
between a logical 0 and 1, in the quest for increasing bus speed. For example, we cannot make
the required voltage difference 0.001 mV. This is because there is a certain amount of electrical
noise in the system that is introduced due to several factors. Readers might have noticed that
if a cell phone starts ringing when the speakers of a car or computer are on, then there is some
amount of noise in the speakers also. If we take a cell phone close to a microwave oven while it is
running, then there is a decrease in the sound quality of the cell phone. This happens because of
electromagnetic interference. Likewise there can be electromagnetic interference in processors
also, and voltage spikes can be introduced. Let us assume that the maximum amplitude of such
voltage spikes is 20 mV. Then the voltage difference between a 0 and 1, needs to be more than
20 mV. Otherwise, a voltage spike due to interference can flip the value of a signal leading to
an error. Let us take a brief look at one of the most common technologies for on-chip signalling
namely LVDS.

653 © Smruti R. Sarangi

Clock

Data

10 1 1 0 1 0 1 0 0 0

(a) Active high signalling

Clock

Data

10 1 1 0 1 0 1 0 0 0

(b) Active low signalling

Figure 13.7: Active High and Active Low Signalling Methods

13.2.2 Low Voltage Differential Signalling (LVDS)

LVDS uses two wires to transmit a single signal. The difference between the voltages of these
wires is monitored. The value transferred is inferred from the sign of the voltage difference.

The basic LVDS circuit is shown in Figure 13.8. There is a fixed current source of 3.5 mA.
Depending on the value of the input A, the current flows to the destination through either line
1 or line 2. For example, if A is 1, then the current flows through line 1 since transistor T1
starts conducting, whereas T2 is off. In this case, the current reaches the destination, passes
through the resistor Rd, and then flows back through line 2. Typically the voltage of both
the lines when no current is flowing is maintained at 1.2 V. When current flows through them,
there is a voltage swing. The voltage swing is equal to 3.5 mA times Rd. Rd is typically 100
Ohms. Hence, the total differential voltage swing is 350 mV. The role of the detector is to sense
the sign of the voltage difference. If it is positive, it can declare a logical 1. Otherwise, it can
declare a logical 0. Because of the low swing voltage (350 mV), LVDS is a very fast physical
layer protocol.

© Smruti R. Sarangi 654

Vcc

3.5mA

A

A

A

A

+

-

Op amp

100Ω

line 1

line 2

T1T2

Rd

Figure 13.8: LVDS Circuit

13.2.3 Transmission of Multiple Bits

Let us now consider the problem of transmitting multiple bits in sequence. Most I/O channels
are not busy all the time. They are busy only when data is being transmitted, and thus their
duty cycle (percentage of time that a device is in operation) tends to be highly variable, and
most of the time it is not very high. However, detectors are on almost all the time and they
keep sensing the voltage of the bus. This can have implications on both power consumption and
correctness. Power is an issue because the detectors keep sensing either a logical 1 or 0 every
cycle, and it thus becomes necessary for the higher level layers to process the data. To avoid
this, most systems typically have an additional line that indicates if the data bits are valid or
invalid. This line is traditionally known as the strobe. The sender can indicate the period of the
validity of data to the receiver by setting the value of the strobe. Again, it becomes necessary
to synchronise the data lines and the strobe. This is getting increasingly difficult for high speed
I/O buses, because it is possible that signals on the data lines, and the strobe can suffer from
different amounts of delay. Hence, there is a possibility that both the lines might move out of
synchronisation. It is thus a better idea to define three types of signals – zero, one, and idle.
Zero and one refer to the transmission of a logical 0 and 1 on the bus. However, the idle state
refers to the fact that no signal is being transmitted. This mode of signalling is also known as
ternary signalling because we are using three states.

Definition 146
Ternary signalling refers to a convention that uses three states for the transmission of signals
– one (logical one), zero (logical zero), and idle (no signal).

We can easily implement ternary signalling with LVDS. Let us refer to the wires in LVDS,

655 © Smruti R. Sarangi

as A and B respectively. Let VA be the voltage of line A. Likewise, let us define the term, VB. If
| VA− VB |< τ , where τ is the detection threshold, then we infer that the lines are idle, and we
are not transmitting anything. However, if VA− VB > τ , we conclude that we are transmitting
a logical 1. Similarly, if VB − VA > τ , we conclude that we are transmitting a logical 0. We
thus do not need to make any changes to our basic LVDS protocol.

Let us now describe a set of techniques that are optimised for transmitting multiple bits in
the physical layer. We present examples that use ternary signalling. Some of the protocols can
also be used with simple binary signalling (zero and one state) also.

13.2.4 Return to Zero (RZ) Protocols

In this protocol we transmit a pulse (positive or negative), and then pause for a while in a
bit period. Here, we define the bit period as the time it takes to transmit a bit. Most I/O
protocols assume that the bit period is independent of the value of the bit (0 or 1) that is
being transmitted. Typically, a 1-bit period is equal to the length of one I/O clock cycle.
The I/O clock is a dedicated clock that is used by the elements of the I/O system. We shall
interchangeably use the terms clock cycle, and bit period, where we do not wish to emphasise a
difference between the terms.

Definition 147

bit period The time it takes to transfer a single bit over a link.

I/O clock We assume that there is a dedicated I/O clock in our system that is typically
synchronised with the processor clock. The I/O clock is slower than the processor
clock, and is used by elements of the I/O subsystem.

In the RZ protocol, if we wish to transmit a logical 1, then we send a positive voltage pulse
on the link for a fraction of a bit period. Subsequently, we stop transmitting the pulse, and
ensure that the voltage on the link returns to the idle state. Similarly, while transmitting a
logical 0, we send a negative voltage pulse along the lines for a fraction of a cycle. Subsequently,
we wait till the line returns to the idle state. This can be done by allowing the capacitors to
discharge, or by applying a reverse voltage to bring the lines to the idle state. In any case, the
key point here is that while we are transmitting, we transmit the actual value for some part
of the bit period, and then we allow the lines to fall back to the default state, which in our
discussion we have assumed to be the idle state. We shall see that returning to the idle state
helps the receiver circuitry synchronise with the clock of the sender, and thus read the data
correctly. The implicit assumption here is that the sender sends out one bit every cycle (sender
cycle). Note that the clock period of the sender and the receiver may be different. We shall
take a look at such timing issues in Section 13.4.

Figure 13.9 shows an example of the RZ protocol with ternary signalling. If we were to use
binary signalling, then we can have an alternative scheme as follows. We could transmit a short
pulse in a cycle for a logical 1, and not transmit anything for a logical 0. Here, the main issue

© Smruti R. Sarangi 656

Clock

Data

10 1 1 0 1 0 1 0 0 0

Figure 13.9: Return to zero (RZ) protocol (example)

is to figure out if a logical 0 is being sent or not by taking a look at the length of the pause
after transmitting a logical 1. This requires complicated circuitry at the end of the receiver.

Nevertheless, a major criticism of the RZ (return to zero) approaches is that it wastes
bandwidth. We need to introduce a short pause (period of idleness) after transmitting a logical
0 or 1. It turns out that we can design protocols that do not have this limitation.

13.2.5 Manchester Encoding

Before proceeding to discuss Manchester encoding, let us differentiate between a physical bit,
and a logical bit. Up till now we have assumed that they mean the same thing. However,
this will cease to be true from now onwards. A physical bit such as a physical one or zero, is
representative of the voltage across a link. For example, in an active high signalling method,
a high voltage indicates that we are transmitting the bit, 1, and a low voltage (physical bit 0)
indicates that we are transmitting the 0 bit. However, this ceases to be the case now because we
assume that a logical bit (logical 0 or 1) is a function of the values of physical bits. For example,
we can infer a logical 0, if the current and the previous physical bit are equal to 10. Likewise,
we can have a different rule for inferring a logical 1. It is the job of the receiver to translate
physical signals (or rather physical bits), into logical bits, and pass them to the higher layers of
the I/O system. The next layer (data link layer discussed in Section 13.4) accepts logical bits
from the physical layer. It is oblivious to the nature of the signalling, and the connotations of
physical bits transmitted on the link.

Let us now discuss one such mechanism known as Manchester encoding. Here, we encode
logical bits as a transition of physical bits. Figure 13.10 shows an example. A 0→ 1 transition
of physical bits encodes a logical 1, and conversely a 1 → 0 transition of physical bits encodes
a logical 0.

A Manchester code always has a transition to encode data. Most of the time at the middle
of a bit period, we have a transition. If there is no transition, we can conclude that no signal
is being transmitted and the link is idle. One advantage of Manchester encoding is that it is
easy to decode the information that is sent on the link. We just need to detect the nature of
the transition. Secondly, we do not need external strobe signals to synchronise the data. The

657 © Smruti R. Sarangi

Clock

Data

10 1 1 0 1 0 1 0 0 0

Figure 13.10: Manchester code (example)

data is said to be self clocked. This means that we can extract the clock of the sender from the
data, and ensure that the receiver reads in data at the same speed at which it is sent by the
sender.

Definition 148
A self clocked signal allows the receiver to extract the clock of the sender by examining the
transition of the physical bits in the signal. If there are periodic transitions in the signal,
then the period of these transitions is equal to the clock period of the sender, and thus the
receiver can read in data at the speed at which it is sent.

Manchester encoding is used in the IEEE 802.3 communication protocol that forms the
basis of today’s Ethernet protocol for local area networks. Critics argue that since every logical
bit is associated with a transition, we unnecessarily end up dissipating a lot of power. Every
single transition requires us to charge/discharge a set of capacitors associated with the link,
the drivers, and associated circuitry. The associated resistive loss is dissipated as heat. Let us
thus try to reduce the number of transitions.

13.2.6 Non Return to Zero (NRZ) Protocol

Here, we take advantage of a run of 1s and 0s. For a transmitting a logical 1, we set the voltage
of the link equal to high. Similarly, for transmitting a logical 0, we set the voltage of the link
to low. Let us now consider a run of two 1 bits. For the second bit, we do not induce any
transitions in the link, and we maintain the voltage of the link as high. Similarly, if we have a
run of n 0s. Then for the last (n− 1) 0s we maintain the low voltage of the link, and thus we
do not have transitions. Figure 13.11 shows an example. We observe that we have minimised
the number of transitions by completely avoiding voltage transitions when the value of the
logical bit that needs to be transmitted remains the same. This protocol is fast because we are

© Smruti R. Sarangi 658

Clock

Data

10 1 1 0 1 0 1 0 0 0

Figure 13.11: Non return to zero protocol (example)

not wasting any time (such as the RZ protocols), and is power efficient because we eliminate
transitions for a run of the same bit (unlike RZ and Manchester codes).

However, the added speed and power efficiency comes at the cost of complexity. Let us
assume that we want to transmit a string of hundred 1s. In this case, we will have a transition
only for the first and last bit. Since the receiver does not have the clock of the sender, it has
no way of knowing the length of a bit period. Even if the sender and receiver share the same
clock, due to delays induced in the link, the receiver might conclude that we have a run of
99 or 101 bits with a non-zero probability. Hence, we have to send additional synchronisation
information such that the receiver can properly read all the data that is being sent on the link.

13.2.7 Non Return to Zero (NRZI) Inverted Protocol

This is a variant of the NRZ protocol. Here, we have a transition from 0 to 1, or 1 to 0, when
we wish to encode a logical 1. For logical 0s, there are no transitions. Figure 13.12 shows an
example.

Clock

Data

10 1 1 0 1 0 1 0 0 0

Figure 13.12: Non return to zero inverted protocol (example)

659 © Smruti R. Sarangi

13.3 Physical Layer – Synchronisation Sublayer

The transmission sublayer ensures that a sequence of pulses is successfully sent from the trans-
mitter to either one receiver, or to a set of receivers. However, this is not enough. The receiver
needs to read the signal at the right time, and needs to assume the correct bit period. If it reads
the signal too early or too late, then it risks getting the wrong value of the signal. Secondly, if
it assumes the wrong values of the bit period, then the NRZ protocol might not work. Hence,
there is a need to maintain a notion of time between the source and destination. The destina-
tion needs to know exactly when to transfer the value into a latch. Let us consider solutions
for a single source and destination. Extending the methods to a set of destinations is left as an
exercise to the reader.

To summarise, the synchronisation sublayer receives a sequence of logical bits from the
transmission sublayer without any timing guarantees. It needs to figure out the values of the
bit periods, and read in an entire frame (a fixed size chunk) of data sent by the sender, and
send it to the data link layer. Note that the actual job of finding out the frame boundaries,
and putting sets of bits in a frame is done by data link layer.

13.3.1 Synchronous Buses

Simple Synchronous Bus

Let us first consider the case of a synchronous system where the sender and the receiver share
the same clock, and it takes a fraction of a cycle to transfer the data from the sender to the
receiver. Moreover, let us assume that the sender is transmitting all the time. Let us call this
system a simple synchronous bus.

In this case, the task of synchronising between the sender and receiver is fairly easy. We
know that data is sent at the negative edge of a clock, and in less than a cycle it reaches the
receiver. The most important issue that we need to avoid is metastability (see Section 7.3.8).
A flip flop enters a metastable state when the data makes a transition within a small window
of time around the negative edge of the clock. In specific, we want the data to be stable for
an interval known as the setup time before the clock edge, and the data needs to be stable for
another interval known as the hold time after the clock edge. The interval comprising of the
setup and hold intervals, is known as the keep-out region of the clock as defined in Section 7.3.8
and [Dally and Poulton, 1998].

In this case, we assume that the data reaches the receiver in less than tclk − tsetup units of
time. Thus, there are no metastability issues, and we can read the data into a flip-flop at the
receiver. Since digital circuits typically process data in larger chunks (bytes or words), we use
a serial in – parallel out register at the receiver. We serially read in n bits, and read out an
n-bit chunk in one go. Since the sender and the receiver clocks are the same, there is no rate
mismatch. The circuit for the receiver is shown in Figure 13.13.

Mesochronous Bus

In a mesochronous system, the phase difference between the signal and the clock is a constant.
The phase difference can be induced in the signal because of the propagation delay in the link,
and because there might be a phase difference in the clocks of the sender and the receiver. In

© Smruti R. Sarangi 660

D Q
I/O link

Figure 13.13: The receiver of a simple synchronous bus

this case, it is possible that we might have a metastability issue because the data might arrive
in the crucial keep-out region of the receiver clock.

Hence, we need to add a delay element that can delay the signal by a fixed amount of time
such that there are no transitions in the keep-out region of the receiver clock. The rest of the
circuit remains the same as that used for the simple synchronous bus. The design of the circuit
is shown in Figure 13.14.

D Q
I/O Link

Tunable delay
element

Figure 13.14: The receiver of a mesochronous bus

A delay element can be constructed by using a delay locked loop (DLL). DLLs can have
different designs and some of them can be fairly complex. A simple DLL consists of a chain of
inverters. Note that we need to have an even number of inverters to ensure that the output is
equal to the input. To create a tunable delay element, we can tap the signals after every pair of
inverters. These signals are logically equivalent to the input, but have a progressive phase delay
due to the propagation delay of the inverters. We can then choose the signal with a specific
amount of phase delay by using a multiplexer.

Plesiochronous Bus*

Let us now consider a more realistic scenario. In this case the clocks of the sender and receiver
might not exactly be the same. We might have a small amount of clock drift. We can assume
that over a period of tens or hundreds of cycles it is minimal. However, we can have a couple
cycles of drift over millions of cycles. Secondly, let us assume that the sender does not transmit
data all the time. There are idle periods in the bus. Such kind of buses are found in server
computers where we have multiple motherboards that theoretically run at the same frequency,
but do not share a common clock. There is some amount of clock drift (around 200 ppm [Dally

661 © Smruti R. Sarangi

and Poulton, 1998]) between the processors when we consider timescales of the order of millions
of cycles.

Let us now make some simplistic assumptions. Typically a given frame of data contains
100s or possibly 1000s of bits. We need not worry about clock drift when we are transmitting
a few bits (< 100). However, for more bits (> 100), we need to periodically resynchronise the
clocks such that we do not miss data. Secondly, ensuring that there are no transitions in the
keep-out region of the receiver’s clock is a non-trivial problem.

To solve this problem, we use an additional signal known as the strobe that is synchronised
with the sender’s clock. We toggle a strobe pulse at the beginning of the transmission of a
frame (or possibly a few cycles before sending the first data bit). We then periodically toggle
the strobe pulse once every n cycles. In this case, the receiver uses a tunable delay element.
It tunes its delay based on the interval between the time at which it receives the strobe pulse,
and the clock transition. After sending the strobe pulse for a few cycles, we start transmitting
data. Since the clocks can drift, we need to readjust or retune the delay element. Hence, it is
necessary to periodically send strobe pulses to the receiver. We show a timing diagram for the
data and the strobe in Figure 13.15.

Clock

Strobe

Data

Figure 13.15: The timing diagram of a plesiochronous bus

Similar to the case of the mesochronous bus, every n cycles the receiver can read out all the
n bits in parallel using a serial in – parallel out register. The circuit for the receiver is shown
in Figure 13.16. We have a delay calculator circuit that takes the strobe and the receiver clock
(rclk) as input. Based on the phase delay, it tunes the delay element such that data from the
source arrives at the middle of the receiver’s clock cycle. This needs to be done because of the
following reason. Since the sender and receiver clock periods are not exactly the same, there
can be an issue of rate mismatch. It is possible that we might get two valid data bits in one
receiver clock cycle, or get no bits at all. This will happen, when a bit arrives towards the
beginning or end of a clock cycle. Hence, we want to ensure that bits arrive at the middle of a
clock cycle. Additionally, there are also metastability avoidance issues.

Sadly, the phase can gradually change and bits might start arriving at the receiver at the
beginning of a clock cycle. It can then become possible to receive two bits in the same cycle.
In this case, dedicated circuitry needs to predict this event, and a priori send a message to the
sender to pause sending bits. Meanwhile, the delay element should be retuned to ensure that

© Smruti R. Sarangi 662

bits arrive at the middle of a cycle.

D QI/O link

Tunable delay
element

rclk
Strobe

Delay calculatorrclk

to sender

Figure 13.16: The receiver of a plesiochronous bus

13.3.2 Source Synchronous Bus*

Sadly, even plesiochronous buses are hard to manufacture. We often have large and unpre-
dictable delays while transmitting signals, and even ensuring tight clock synchronisation is
difficult. For example, the AMD hypertransport [Consortium et al., 2006] protocol that is used
to provide a fast I/O path between different processors on the same motherboard does not as-
sume synchronised or plesiosynchronised clocks. Secondly, the protocol assumes an additional
jitter (unpredictability in the signal propagation time) of up to 1 cycle.

In such cases, we need to use a more complicated strobe signal. In a source synchronous
bus, we typically send the sender clock as the strobe signal. The main insight is that if delays
are introduced in the signal propagation time, then the signal and the strobe will be equally
affected. This is a very realistic assumption, and thus most high performance I/O buses use
source synchronous buses as of 2013. The circuit for a source synchronous bus is again not
very complicated. We clock in data to the serial in – parallel out register using the clock of the
sender (sent as the strobe). It is referred to as xclk. We read the data out using the clock of the
receiver as shown in Figure 13.17. As a rule whenever a signal travels across clock boundaries
we need a tunable delay element to keep transitions out of the keep-out region. We thus have
a delay calculator circuit that computes the parameters of the delay element depending upon
the phase difference between the sender clock received as a strobe (xclk), and the receiver clock
(rclk).

Note that it is possible to have multiple parallel data links such that a set of bits can be
sent simultaneously. All the data lines can share the strobe that carries the synchronising clock
signal.

663 © Smruti R. Sarangi

D QI/O link

Tunable delay
elementDelay calculator

xclk

D Q

rclk

to receiver

rclk

Figure 13.17: The receiver of a source synchronous bus

13.3.3 Asynchronous Buses

Clock Detection and Recovery*

Now, let us consider the most general class of buses known as asynchronous buses. Here, we
do not make any guarantees regarding the synchronisation of the clocks of the sender and the
receiver. Nor, do we send the clock of the sender along with the signal. It is the job of the
receiver, to extract the clock of the sender from the signal, and read the data in correctly. Let
us take a look at the circuit for reading in the data as shown in Figure 13.18.

D QI/O Link

Tunable delay
elementDelay calculator

D Q

rclk

to receiverrclk

Clock recovery
circuit

Figure 13.18: The receiver circuit in an asynchronous bus

For the sake of explanation, let us assume that we use the NRZ method of encoding bits.
Extending the design to other kinds of encodings is fairly easy, and we leave it as an exercise for
the reader. The logical bit stream passed on by the transmission sublayer is sent to the first D

© Smruti R. Sarangi 664

flip-flop, and simultaneously to the clock detector and recovery circuit. These circuits examine
the transitions in the I/O signal and try to guess the clock of the sender. Specifically, the clock
recovery circuit contains a PLL (phase locked loop). A PLL is an oscillator that generates a
clock signal, and tries to adjust its phase and frequency such that it is as close as possible to
the sequence of transitions in the input signal. Note that this is a rather involved operation.

In the case of the RZ or Manchester encodings, we have periodic transitions. Hence, it
is easier to synchronise the PLL circuits at the receiver. However, for the NRZ encoding, we
do not have periodic transitions. Hence, it is possible that the PLL circuits at the receiver
might fall out of synchrony. A lot of protocols that use the NRZ encoding (notably the USB
protocol) insert periodic transitions or dummy bits in the signal to resynchronise the PLLs at
the receiver. Secondly, the PLL in the clock recovery circuit also needs to deal with the issue of
long periods of inactivity in the bus. During this time, it can fall out of synchronisation. There
are advanced schemes to ensure that we can correctly recover the clock from an asynchronous
signal. These topics are taught in advanced courses in communication, and digital systems. We
shall only take a cursory look in this chapter, and assume that the clock recovery circuit does
its job correctly.

We connect the output of the clock detection and recovery circuit to the clock input of the
first D flip-flop. We thus clock in data according to the sender’s clock. To avoid metastability
issues we introduce delay elements between the two D flip-flops. The second D flip-flop is in
the receiver’s clock domain. This part of the circuit is similar to that of source synchronous
buses.

Note that in the case of ternary signalling, it is easy to find out when a bus is active (when
we see a physical 0 or 1 on the bus). However, in the case of binary signalling, we do not know
when the bus is active, because in principle we have a 0 or 1 bit being transmitted all the time.
Hence, it is necessary to use an additional strobe signal to indicate the availability of data. Let
us now look at protocols that use a strobe signal to indicate the availability of data on the
bus. The strobe signals can also be optionally used by ternary buses to indicate the beginning
and end of an I/O request. In any case, the reader needs to note that both the methods that
we present using strobe signals are rather basic, and have been superseded by more advanced
methods.

Asynchronous Communication with Strobe Signals

Let us assume that the source wishes to send data to the destination. It first places data on
the bus, and after a small delay sets (sets to 1) the strobe as shown in the timing diagram
in Figure 13.19. This is done to ensure that the data is stable on the bus before the receiver
perceives the strobe to be set. The receiver immediately starts to read data values. Till the
strobe is on, the receiver continues to read data, places it in a register, and transfers chunks of
data to higher layers. When the source decides to stop sending data, it resets (sets to 0) the
strobe. Note that timing is important here. We typically reset the strobe just before we cease
sending data. This needs to be done because we want the receiver to treat the contents of the
bus after the strobe is reset as the last bit. In general, we want the data signal to hold its value
for some time after we have read it (for metastability constraints).

665 © Smruti R. Sarangi

Strobe

Data

Figure 13.19: Timing diagram of a strobe based asynchronous communication system

Asynchronous Communication with Handshaking (4 Phase)

Note that in simple asynchronous communication with strobe signals the source has no way of
knowing if the receiver has read the data. We thus introduce a handshaking protocol where the
source is explicitly made aware of the fact that the receiver has read all its data. The associated
timing diagram is shown in Figure 13.20.

Strobe

Data

Ack

Figure 13.20: Timing diagram of a strobe based asynchronous communication system with
handshaking

At the outset, the sender places data on the bus, and then sets the strobe. The receiver
begins to read data off the bus, as soon as it observes the strobe to be set. After it has read
the data, it sets the ack line to 1. After the transmitter observes the ack line set to 1, it can be
sure of the fact that the receiver has read the data. Hence, the transmitter resets the strobe,
and stops sending data. When the receiver observes that the strobe has been reset, it resets
the ack line. Subsequently, the transmitter is ready to transmit again using the same sequence
of steps.

This sequence of steps ensures that the transmitter is aware of the fact that the receiver
has read the data. Note that this diagram makes sense when the receiver can ascertain that
it has read all the data that the transmitter wished to transmit. Consequently, designers
mostly use this protocol for transmitting single bits. In this case, after the receiver has read
the bit, it can assert the ack line. Secondly, this approach is also more relevant for the RZ
and Manchester coding approaches because the transmitter needs to return to the default state
before transmitting a new bit. After it receives the acknowledgement, the transmitter can begin
the process of returning to the default state, as shown in Figure 13.19.

To transmit multiple bits in parallel, we need to have a strobe for each data line. We can

© Smruti R. Sarangi 666

however, have a common acknowledgement line. We need to set the ack signal when all the
receivers have read their bits, and we need to reset the ack line, when all the strobe lines have
been reset. Lastly, let us note that there are four separate events in this protocol (as shown in
the diagram). Hence, this protocol is known as a 4-phase handshake protocol.

Asynchronous Communication with Handshaking (2 Phase)

If we are using the NRZ protocols, then we do not need to return to the default state. We can
immediately start transmitting the next bit after receiving the acknowledgement. However, in
this case, we need to slightly change the semantics of the strobe and acknowledgement signals.
Figure 13.21 shows the timing diagram.

Strobe

Data

Ack

Figure 13.21: Timing diagram of a strobe based asynchronous communication system with 2-
phase handshaking

In this case, after placing the data on the bus, the transmitter toggles the value of the
strobe. Subsequently, after reading the data, the receiver toggles the value of the ack line.
After the transmitter detects that the ack line has been toggled, it starts transmitting the next
bit. After a short duration, it toggles the value of the strobe to indicate the presence of data.
Again, after reading the bit, the receiver toggles the ack line, and the protocol thus continues.
Note that in this case, instead of setting and resetting the ack and strobe lines, we toggle them
instead. This reduces the number of events that we need to track on the bus. However, this
requires us to keep some additional state at the side of the sender and the receiver. This a
negligible overhead. Our 4-phase protocol thus gets significantly simplified. The NRZ protocols
are more amenable to this approach because they have continuous data transmission, without
any intervening pause periods.

Definition 149

Simple Synchronous Bus A simple synchronous bus that assumes that the transmitter
and the receiver share the same clock, and there is no skew (deviation) between the
clocks.

Mesochronous Bus Here, the transmitter and receiver have the same clock frequency, but
there can be a phase delay between the clocks.

667 © Smruti R. Sarangi

Plesiochronous Bus In a plesiochronous bus, there is a small amount of mismatch be-
tween the frequencies of the clocks of the transmitter and receiver.

Source Synchronous Bus In a source synchronous bus, there is no relationship between
the clocks of the transmitter and receiver. Consequently, we send the clock of the
transmitter to the receiver along with the message, such that it can use it to sample
the bits in the message.

Asynchronous Bus An asynchronous bus does not assume any relationship between the
clocks of the transmitter and receiver. It typically has sophisticated circuitry to recover
the clock of the transmitter by analysing the voltage transitions in the message.

13.4 Data Link Layer

Now, we are ready to discuss the data link layer. The data link layer gets sequences of logical
bits from the physical layer. If the width of the serial in – parallel out register is n bits,
then we are guaranteed to get n bits at one go. The job of the data link layer is to break
the data into frames, and buffer frames for transmission on other outgoing links. Secondly, it
performs rudimentary error checking and correction. It is possible that due to electromagnetic
interference, errors might be induced in the signal. For example, a logical 1 might flip to a
logical 0, and vice versa. It is possible to correct such single bit errors in the data link layer.
If there are a lot of errors, and it is not possible to correct the errors, then at this stage, the
receiver can send a message to the transmitter requesting for a retransmission. After error
checking the frame is ready to be forwarded on another link if required.

It is possible that multiple senders might be trying to access a bus at the same time. In
this case, we need to arbitrate between the requests, and ensure that only one sender can send
data at any single point of time. This process is known as arbitration, and is also typically
performed in the data link layer. Lastly, the arbitration logic needs to have special support for
handling requests that are part of a transaction. For example, the bus to the memory units
might contain a load request as a part of a memory transaction. In response, the memory unit
sends a response message containing the contents of the memory locations. We need a little bit
of additional support at the level of the bus controller to support such message patterns.

To summarise the data link layer breaks data received from the physical layer into frames,
performs error checking, manages the bus by allowing a single transmitter at a single time, and
optimises communication for common message patterns.

13.4.1 Framing and Buffering

The processing in the data link layer begins by reading sets of bits from the physical layer.
We can either have one serial link, or multiple serial links that transmit bits simultaneously.
A set of multiple serial links is known as a parallel link. In both cases, we read in data, save
them in serial in – parallel out shift registers, and send chunks of bits to the data link layer.
The role of the data link layer is to create frames of bits from the values that it gets from the

© Smruti R. Sarangi 668

physical layer. A frame might be one byte for links that transfer data from the keyboard and
mouse, and might be as high as 128 bytes for links that transfer data between the processor
and the main memory, or the main memory and the graphics card. In any case, the data link
layer for each bus controller is aware of the frame size. The main problem is to demarcate the
boundaries of a frame.

Demarcation by Inserting Long Pauses Between two consecutive frames, the bus con-
troller can insert long pauses. By examining, the duration of these pauses, the receiver
can infer frame boundaries. However, because of jitter in the I/O channel, the duration
of these pauses can change, and new pauses can be introduced. This is not a very reliable
method and it also wastes valuable bandwidth.

Bit Count We can fix the number of bits in a frame a priori. We can simply count the number
of bits that are sent, and declare a frame to be over once the required number of bits have
reached the receiver. However, the main issue is that sometimes pulses can get deleted
because of signal distortion, and it is very easy to go out of synchronisation.

Bit/Byte Stuffing This is the most flexible approach and is used in most commercial imple-
mentations of I/O buses. Here, we use a pre-specified sequence of bits to designate the
start and end of a frame. For example, we can use the pattern 0xDEADBEEF to indicate
the start of a frame, and 0x12345678 to indicate the end of a frame. The probability that
any 32-bit sequence in the frame will match the special sequences at the start and end
is very small. The probability is equal to 2−32, or 2.5e − 10. Sadly, the probability is
still non zero. Hence, we can adopt a simple solution to solve this problem. If the se-
quence, 0xDEADBEEF appears in the content of the frame, then we add 32 more dummy
bits and repeat this pattern. For example, the bit pattern 0xDEADBEEF gets replaced
with 0xDEADBEEFDEADBEEF. The link layer of the receiver can find out that the
pattern repeats an even number of times. Half of the bits in the pattern are a part of
the frame, and the rest are dummy bits. The receiver can then proceed to remove the
dummy bits. This method is flexible because it can be made very resilient to jitter and
reliability problems. These sequences are also known as commas.

Once, the data link layer creates a frame, it sends it to the error checking module, and also
buffers it.

13.4.2 Error Detection and Correction

Errors can get introduced in signal transmission for a variety of reasons. We can have external
electromagnetic interference due to other electronic gadgets operating nearby. Readers would
have noticed a loss in the voice quality of a mobile phone after they switch on an electronic
gadget such as a microwave oven. This happens because electromagnetic waves get coupled to
the copper wires of the I/O channel and introduce current pulses. We can also have additional
interference from nearby wires (known as crosstalk), and changes in the transmission delay of a
wire due to temperature. Cumulatively, interference can induce jitter (introduce variabilities in
the propagation time of the signal), and introduce distortion (change the shape of the pulses).
We can thus wrongly interpret a 0 as a 1, and vice versa. It is thus necessary to add redundant
information, such that the correct value can be recovered.

669 © Smruti R. Sarangi

The reader needs to note that the probability of an error is very low in practice. It is
typically less than 1 in every million transfers for interconnects on motherboards. However,
this is not a very small number either. If we have a million I/O operations per second, which
is plausible, then we will typically have 1 error per second. This is actually a very high error
rate. Hence, we need to add extra information to bits such that we can detect and recover from
errors. This approach is known as forward error correction. In comparison, in backward error
correction, we detect an error, discard the message, and request the sender to retransmit. Let
us now discuss the prevalent error detection and recovery schemes.

Definition 150

Forward Error Correction In this method, we add additional bits to a frame. These
additional bits contain enough information to detect and recover from single or double
bit errors if required.

Backward Error Correction In this method also, we add additional bits to a frame,
and these bits help us detect single or double bit errors. However, they do not allow
us to correct errors. We can discard the message, and ask the transmitter for a
retransmission.

Single Error Detection

Since single bit errors are fairly improbable, it is extremely unlikely that we shall have two
errors in the same frame. Let us thus focus on detecting a single error, and also assume that
only one bit flips its state due to an error.

Let us simplify our problem. Let us assume that a frame contains 8 bits, and we wish to
detect if there is a single bit error. Let us number the bits in the frame as D1, D2, . . . , D8

respectively. Let us now add an additional bit known as the parity bit. The parity bit, P is
equal to:

P = D1 ⊕D2 ⊕ . . .⊕D8 (13.1)

Here, the ⊕ operation is the XOR operator. In simple terms, the parity bit represents the
XOR of all the data bits (D1 . . . D8). For every 8 bits, we send an additional bit, which is
the parity bit. Thus, we convert a 8-bit message to an equivalent 9 bit message. In this case,
we are effectively adding a 12.5% overhead in terms of available bandwidth, at the price of
higher reliability. Figure 13.22 shows the structure of a frame or message using our 8-bit parity
scheme. Note that we can support larger frame sizes also by associating a separate parity bit
with each sequence of 8 data bits.

When the receiver receives the message, it computes the parity by computing the XOR of
the 8 data bits. If this value matches the parity bit, then we can conclude that there is no error.
However, if the parity bit in the message does not match the value of the computed parity bit,
then we can conclude that there is a single bit error. The error can be in any of the data bits

© Smruti R. Sarangi 670

Data bits Parity bit

Figure 13.22: An 8-bit message with a parity bit

in the message, or can even be in the parity bit. In this case, we have no way of knowing. All
that we can detect is that there is a single bit error. Let us now try to correct the error also.

Single Error Correction

To correct a single bit error, we need to know the index of the bit that has been flipped if there
is an error. Let us now count the set of possible outcomes. For an n-bit block, we need to
know the index of the bit that has an error. We can have n possible indices in this case. We
also need to account for the case, in which we do not have an error. Thus for a single error
correction (SEC) circuit there are a total of n+ 1 possible outcomes (n outcomes with errors,
and one outcome with no error). Thus, from a theoretical point of view, we need ⌈log(n+ 1)⌉
additional bits. For example, for an 8-bit frame, we need ⌈log(8 + 1)⌉ = 4 bits. Let us design
a (8,4) code that has four additional bits for every 8-bit data word.

Let us start out by extending the parity scheme. Let us assume that each of the four
additional bits are parity bits. However, they are not the parity functions of the entire set of
data bits. Instead, each bit is the parity of a subset of data bits. Let us name the four parity
bits P1, P2, P3, and P4. Moreover, let us arrange the 8 data bits, and the 4 parity bits as shown
in Figure 13.23.

P1 P2 P3 P4D1 D2 D3 D4 D5 D6 D7 D8

Figure 13.23: Arrangement of data and parity bits

We keep the parity bits, P1, P2, P3, and P4 in positions 1, 2, 4 and 8 respectively. We
arrange the data bits, D1 . . . D8, in positions 3, 5, 6, 7, 9, 10, 11, and 12 respectively. The
next step is to assign a set of data bits to each parity bit. Let us represent the position of each
data bit in binary. In this case, we need 4 binary bits because the largest number that we need
to represent is 12. Now, let us associate the first parity bit, P1, with all the data bits whose
positions (represented in binary) have 1 as their LSB. In this case, the data bits with 1 as their
LSB are D1 (3), D2 (5), D4 (7), D5 (9), and D7 (11). We thus compute the parity bit P1 as:

P1 = D1 ⊕D2 ⊕D4 ⊕D5 ⊕D7 (13.2)

Similarly, we associate the second parity bit, P2, with all the data bits that have a 1 in their
2nd position (assumption is that the LSB is in the first position). We use similar definitions for

671 © Smruti R. Sarangi

the 3rd, and 4th parity bits.

Parity Bits
Data Bits

D1 D2 D3 D4 D5 D6 D7 D8

0011 0101 0110 0111 1001 1010 1011 1100

P1 X X X X X

P2 X X X X X

P3 X X X X

P4 X X X X

Table 13.2: Relationship between data and parity bits

Table 13.2 shows the association between data and parity bits. An “X” indicates that a
given parity bit is a function of the data bit. Based, on this table, we arrive at the following
equations for computing the parity bits.

P1 = D1 ⊕D2 ⊕D4 ⊕D5 ⊕D7 (13.3)

P2 = D1 ⊕D3 ⊕D4 ⊕D6 ⊕D7 (13.4)

P3 = D2 ⊕D3 ⊕D4 ⊕D8 (13.5)

P4 = D5 ⊕D6 ⊕D7 ⊕D8 (13.6)

The algorithm for message transmission is as follows. We compute the parity bits according
to Equations 13.3 – 13.6. Then, we insert the parity bits in the positions 1, 2, 4, and 8
respectively, and form a message according to Figure 13.23 by adding the data bits. Once the
data link layer of the receiver gets the message it first extracts the parity bits, and forms a
number of the form P = P4P3P2P1, that is composed of the four parity bits. For example, if
P1 = 0, P2 = 0, P3 = 1, and P4 = 1, then P = 1100. Subsequently, the error detection circuit at
the receiver computes a new set of parity bits (P ′

1, P
′
2, P

′
3, P

′
4) from the received data bits, and

forms another number of the form P ′ = P ′
4P

′
3P

′
2P

′
1. Ideally P should be equal to P ′. However,

if there is an error in the data or parity bits, then this will not be the case. Let us compute
P ⊕ P ′. This value is also known as the syndrome.

Let us now try to correlate the value of the syndrome with the position of the erroneous bit.
Let us first assume that there is an error in a parity bit. In this case, the first four entries in
Table 13.3 show the position of the erroneous bit in the message, and the value of the syndrome.
The value of the syndrome is equal to the position of the erroneous bit in the message. This
should come as no surprise to the reader, because we designed our message to explicitly ensure
this. The parity bits are at positions 1, 2, 4, and 8 respectively. Consequently, if any parity
bit has an error, its corresponding bit in the syndrome gets set to 1, and the rest of the bits
remain 0. Consequently, the syndrome matches the position of the erroneous bit.

Let us now consider the case of single bit errors in data bits. Again from Table 13.3, we
can conclude that the syndrome matches the position of the data bit. This is because once a
data bit has an error, all its associated parity bits get flipped. For example, if D5 has an error
then the parity bits, P1 and P4, get flipped. Recall that the reason we associate P1 and P4 with

© Smruti R. Sarangi 672

Bit Position Syndrome Bit Position Syndrome

P1 1 0001 D3 6 0110

P2 2 0010 D4 7 0111

P3 4 0100 D5 9 1001

P4 8 1000 D6 10 1010

D1 3 0011 D7 11 1011

D2 5 0101 D8 12 1100

Table 13.3: Relationship between the position of an error and the syndrome

D5 is because D5 is bit number 9 (1001), and the two 1s in the binary representation of 9 are
in positions 1 and 4 respectively. Subsequently, when there is an error in D5, the syndrome is
equal to 1001, which is also the index of the bit in the message. Similarly, there is a unique
syndrome for every data and parity bit (refer to Table 13.2).

Thus, we can conclude that if there is an error, then the syndrome points to the index of
the erroneous bit (data or parity). Now, if there is no error, then the syndrome is equal to 0.
We thus have a method to detect and correct a single error. This method of encoding messages
with additional parity bits is known as the SEC (single error correction) code.

Single Error Correction, Double Error Detection (SECDED)

Let us now try to use the SEC code to additionally detect double errors (errors in two bits).
Let us show a counterexample, and prove that our method based on syndromes will not work.
Let us assume that there are errors in bits D2, and D3. The syndrome will be equal to 0111.
However, if there is an error in D4, the syndrome will also be equal to 0111. There is thus no
way of knowing whether we have a single bit error (D4), or a double bit error (D2 and D3).

Let us slightly augment our algorithm to detect double errors also. Let us add an additional
parity bit, P5, that computes the parity of all the data bits (D1 . . .D8), and the four parity bits
(P1 . . .P4) used in the SEC code, and then let us add P5 to the message. Let us save it in the
13th position in our message, and exclude it from the process of calculation of the syndrome.
The new algorithm is as follows. We first calculate the syndrome using the same process as
used for the SEC (single error correction) code. If the syndrome is 0, then there can be no error
(single or double). The proof for the case of a single error can be readily verified by taking a
look at Table 13.2. For a double error, let us assume that two parity bits have gotten flipped.
In this case, the syndrome will have two 1s. Similarly, if two data bits have been flipped, then
the syndrome will have at least one 1 bit, because no two data bits have identical columns in
Table 13.2. Now, if a data and a parity bit have been flipped, then also the syndrome will be
non-zero, because a data bit is associated with multiple parity bits. The correct parity bits will
indicate that there is an error.

Hence, if the syndrome is non-zero, we suspect an error; otherwise, we assume that there are
no errors. If there is an error, we take a look at the bit P5 in the message, and also recompute
it at the receiver. Let us designate the recomputed parity bit as P ′

5. Now, if P5 = P ′
5, then we

can conclude that there is a double bit error. Two single bit errors are essentially cancelling
each other while computing the final parity. Conversely, if P5 ̸= P ′

5, then it means that we have

673 © Smruti R. Sarangi

a single bit error. We can thus use this check to detect if we have errors in two bits or one bit.
If we have a single bit error, then we can also correct it. However, for a double bit error, we
can just detect it, and possible ask the source for retransmission. This code is popularly known
as the SECDED code .

Hamming Codes

All of the codes described up till now are known as Hamming codes. This is because they
implicitly rely on the Hamming distance. The Hamming distance is the number of corresponding
bits that are different between two sequences of binary bits. For example, the Hamming distance
between 0011 and 1010 is 2 (MSB and LSB are different).

Let us now consider a 4-bit parity code. If a message is 0001, then the parity bit is equal
to 1, and the transmitted message with the parity bit in the MSB position is 10001. Let us
refer to the transmitted message as the code word. Note that 00001 is not a valid code word,
and the receiver will rely on this fact to adjudge if there is an error or not. In fact, there is no
other valid code word within a Hamming distance of 1 of a valid code word. The reader needs
to prove this fact. Likewise for a SEC code, the minimum Hamming distance between code
words is 2, and for a SECDED code it is 3. Let us now consider a different class of codes that
are also very popular.

Cyclic Redundancy Check (CRC) Codes

CRC codes are mostly used for detecting errors, even though they can be used to correct single
bit errors in most cases. To motivate the use of CRC codes let us take a look at the patterns of
errors in practical I/O systems. Typically in I/O channels, we have interference for a duration
of time that is longer than a bit period. For example, if there is some external electro-magnetic
interference, then it might last for several cycles, and it is possible that several bits might get
flipped. This pattern of errors is known as a burst error. For example, a 32-bit CRC code can
detect burst errors as long as 32 bits. It typically can detect most 2-bit errors, and all single
bit errors.

The mathematics behind CRC codes is complicated, and interested readers are referred to
texts on coding theory [Neubauer et al., 2007]. Let us show a small example in this section.

Let us assume, that we wish to compute a 4-bit CRC code, for an 8-bit message. Let the
message be equal to 101100112 in binary. The first step is to pad the message by 4 bits, which
is the length of the CRC code. Thus, the new message is equal to 10110011 0000 (a space has
been added for improving readability). The CRC code requires another 5 bit number, which is
known as the generator polynomial or the divisor. In principle, we need to divide the number
represented by the message with the number represented by the divisor. The remainder is the
CRC code. However, this division is different from regular division. It is known as modulo-2
division. In this case, let us assume that the divisor is 110012. Note that for an n-bit CRC
code, the length of the divisor is n+ 1 bits.

Let us now show the algorithm. We start out by aligning the MSB of the divisor with
the MSB of the message. If the MSB of the message is equal to 1, then we compute a XOR
of the first n + 1 (5 in this case) bits, and the divisor, and replace the corresponding bits in
the message with the result. Otherwise, if the MSB is 0, we do not do anything. In the next
step, we shift the divisor one step to the right, treat the bit in the message aligned with the

© Smruti R. Sarangi 674

MSB of the divisor as the MSB of the message, and repeat the same process. We continue this
sequence of steps till the LSB of the divisor is aligned with the LSB of the message. We show
the sequence of steps in Example 156. At the end, the least significant n (4 bits) contain the
CRC code. For sending a message, we append the CRC code with the message. The receiver
recomputes the CRC code, and matches it with the code that is appended with the message.

Example 156
Show the steps for computing a 4-bit CRC code, where the message is equal to 101100112,
and the divisor is equal to 110012.
Answer:

10110011

101100110000

Padding

11001

011110110000
11001

000111110000
11001

000001100000

11001
000000000100

CRC code

In this figure, we ignore the steps in which the MSB of the relevant part of the message is
0, because in these cases nothing needs to be done.

13.4.3 Arbitration

Let us now consider the problem of bus arbitration. The word “arbitration” literally means
“resolution of disputes.” Let us consider amultidrop bus, where we can potentially have multiple
transmitters. Now, if multiple transmitters are interested in sending a value over the bus, we
need to ensure that only one transmitter can send a value on the bus at any point of time.
Thus, we need an arbitration policy to choose a device that can send data over the bus. If we
have point-to-point buses, where we have one sender and one receiver, then arbitration is not
required. If we have messages of different types waiting to be transmitted, then we need to

675 © Smruti R. Sarangi

schedule the transmission of messages on the link with respect to some optimality criteria.

Definition 151
We need to ensure that only one transmitter sends values on the bus at any point of time.
Secondly, we need to ensure that there is fairness, and a transmitter does not need to
wait for an indefinite amount of time for getting access to the bus. Furthermore, different
devices connected to a bus, typically have different priorities. It is necessary to respect
these priorities also. For example, the graphics card, should have more priority than the
hard disk. If we delay the messages to the graphics card, the user will perceive jitter on her
screen, and this will lead to a bad user experience. We thus need a bus allocation policy that
is fair to all the transmitters, and is responsive to the needs of the computer system. This
bus allocation policy is popularly known as the arbitration policy.

We envision a dedicated structure known as an arbiter, which performs the job of bus
arbitration. All the devices are connected to the bus, and to the arbiter. They indicate their
willingness to transmit data by sending a message to the arbiter. The arbiter chooses one of
the devices. There are two topologies for connecting devices to an arbiter. We can either use
a star like topology, or we can use a daisy chain topology. Let us discuss both the schemes in
the subsequent sections.

Star Topology

In this centralised protocol, we have a single central entity called the arbiter. It is a dedicated
piece of circuitry that accepts bus request requests from all the devices that are desirous of
transmitting on the bus. It enforces priorities and fairness policies, and grants the right to
individual devices to send data on the bus. Specifically, after a request finishes, the arbiter
takes a look at all the current requests, and then asserts the bus grant signal for the device that
is selected to send data. The selected device subsequently becomes the bus master and gets
exclusive control of the bus. It can then configure the bus appropriately, and transmit data.
An overview the system is shown in Figure 13.24.

We can follow two kinds of approaches to find out when a current request has finished. The
first approach is that every device connected to the bus transmits for a given number of cycles,
n. In this case, after n cycles have elapsed, the arbiter can automatically presume that the bus
is free, and it can schedule another request. However, this might not always be the case. We
might have different speeds of transmission, and different message sizes. In this case, it is the
responsibility of each transmitting device to let the arbiter know that it is done. We envision
an additional signal bus release. Every device has a dedicated line to the arbiter that is used to
send the bus release signal. Once it is done with the process of transmitting, it asserts this line
(sets it equal to 1). Subsequently, the arbiter allocates the bus to another device. It typically
follows standard policies such as round-robin or FIFO.

© Smruti R. Sarangi 676

ArbiterDevice 1

Device 2

Device 3

Device 4

Request
Grant

Release

Request
Grant

Release

Request
G

rant

Release

Request
G

rant

Release

Figure 13.24: Centralised arbiter-based architecture

Arbiter Device 1 Device 2 Device n

Bus request

Bus release

Figure 13.25: Daisy chain architecture

Daisy Chain Based Arbitration

If we have multiple devices connected to a single bus, the arbiter needs to be aware of all of
them, and their relative priorities. Moreover, as we increase the number of devices connected
to the bus, we start having high contention at the arbiter, and it becomes slow. Hence, we wish
to have a scheme, where we can easily enforce priorities, guarantee some degree of fairness, and
not incur slowdowns in making bus allocation decisions as we increase the number of connected
devices. The daisy chain bus was proposed with all of these requirements in mind.

Figure 13.25 shows the topology of a daisy chain based bus. The topology resembles a linear
chain, with the arbiter at one end. Each device other than the last one has two connections.
The protocol starts as follows. A device starts out by asserting its bus request lines. The bus

677 © Smruti R. Sarangi

request lines of all the devices are connected in a wired OR fashion. The request line that goes
to the arbiter essentially computes a logical OR of all the bus request lines. Subsequently, the
arbiter passes a token to the device connected to it if it has the token. Otherwise, we need to
wait till the arbiter gets the release signal. Once a device gets the token, it becomes the bus
master. It can transmit data on the bus if required. After transmitting messages, each device
passes the token to the next device on the chain. This device also follows the same protocol.
It transmits data if it needs to, otherwise, it just passes the token. Finally, the token reaches
the end of the chain. The last device on the chain asserts the bus release signal, and destroys
the token. The release signal is a logical OR of all the bus release signals. Once, the arbiter
observes the release signal to be asserted, it creates a token. It re-inserts this token into the
daisy chain after it sees the request line set to 1.

There are several subtle advantages to this scheme. The first is that we have an implicit
notion of priority. The device that is connected to the arbiter has the highest priority. Gradually,
as we move away form the arbiter the priority decreases. Secondly, the protocol has a degree
of fairness because after a high priority device has relinquished the token, it cannot get it back
again, until all the low priority devices have gotten the token. Thus, it is not possible for
a device to wait indefinitely. Secondly, it is easy to plug in and remove devices to the bus.
We never maintain any individual state of a device. All the communication to the arbiter is
aggregated, and we only compute OR functions for the bus request, and bus release lines. The
only state that a device has to maintain is the information regarding its relative position in the
daisy chain, and the address of its immediate neighbour.

We can also have purely distributed schemes that avoid a centralised arbiter completely.
In such schemes, all the nodes take decisions independently. However, such schemes are rarely
used, and thus we shall refrain from discussing them.

13.4.4 Transaction-Oriented Buses

Up till now, we have been only focussing on unidirectional communication, where only one node
can transmit to the other nodes at any single point of time. Let us now consider more realistic
buses. In reality, most high performance I/O buses are not multidrop buses. Multidrop buses
potentially allow multiple transmitters, albeit not at the same point of time. Modern I/O buses
are instead point-to-point buses, which typically have two end points. Secondly, an I/O bus
typically consists of two physical buses such that we can have bidirectional communication. For
example, if we have an I/O bus connecting nodes A and B. Then it is possible for them to send
messages to each other simultaneously.

Some early systems had a bus that connected the processor directly to the memory. In this
case, the processor was designated as the master, because it could only initiate the transfer of
a bus message. The memory was referred to as the slave, which could only respond to requests.
Nowadays, the notion of a master and a slave has become diluted. However, the notion of
concurrent bidirectional communication is still common. A bidirectional bus is known as a
duplex bus or full duplex bus. In comparison, we can have a half duplex bus, which only allows
one side to transmit at any point of time.

© Smruti R. Sarangi 678

Definition 152

Full Duplex Bus It is a bus that allows both of the nodes connected at its endpoints to
transmit data at the same time.

Half Duplex Bus It only allows one of its endpoints to transmit at any point of time.

clock

RAS

CAS

Address

Command

Data ready

Data

read read

row rowcol col

Figure 13.26: DRAM read timing

Let us look at a typical scenario of duplex communication between the memory controller
chip, and the DRAM module in Figure 13.26. Figure 13.26 shows the sequence and timing of
messages for a memory read operation. In practice, we have two buses. The first bus connects
the memory controller to the DRAM module. It consists of address lines (lines to carry the
memory address), and lines to carry dedicated control signals. The control signals indicate the
timing of operations, and the nature of operation that needs to be performed on the DRAM
arrays. The second bus connects the DRAM module to the memory controller. This contains
data lines (lines to carry the data read from the DRAM), and timing lines (lines to convey
timing information).

The protocol is as follows. The memory controller starts out by asserting the RAS (row
address strobe) signal. The RAS signal activates the decoder that sets the values of the word
lines. Simultaneously, the memory controller places the address of the row on the address
lines. It has an estimate of the time (trow) it takes for the DRAM module to buffer the row
address. After trow units of time, it asserts the CAS signal (column address strobe), and

679 © Smruti R. Sarangi

places the address of the columns in the DRAM array on the bus. It also enables the read
signal indicating to the DRAM module that it needs to perform a read access. Subsequently,
the DRAM module reads the contents of the memory locations and transfers it to its output
buffers. It then asserts the ready signal, and places the data on the bus. However, at this point
of time, the memory controller is not idle. It begins to place the row address of the next request
on the bus. Note that the timing of a DRAM access is very intricate. Often the processing of
consecutive messages is overlapped. For example, we can proceed to decode the row address of
the (n + 1)th request, when the nth request is transferring its data. This reduces the DRAM
latency. However, to support this functionality, we need a duplex bus, and a complex sequence
of messages.

Let us note a salient feature of the basic DRAM access protocol that we showed in Fig-
ure 13.26. Here, the request and response are very strongly coupled with each other. The source
(memory controller) is aware of the intricacies of the destination (DRAM module), and there
is a strong interrelationship between the nature and timing of the messages sent by both the
source and destination. Secondly, the I/O link between the memory controller and the DRAM
module is locked for the duration of the request. We cannot service any intervening request
between the original request and response. Such a sequence of messages is referred to as a bus
transaction.

Definition 153
A bus transaction is defined as a sequence of messages on a duplex or multidrop bus by
more than one node, where there is a strong relationship between the messages in terms of
timing and semantics. It is in general not possible to send another unrelated sequence of
messages in the middle, and then resume sending the original sequence of messages. The
bus is locked for the entire duration.

There are pros and cons of transaction oriented buses. The first is complexity. They make
a lot of assumptions regarding the timing of the receiver. Hence, the message transfer protocol
becomes very specific to each type of receiver. This is detrimental to portability. It becomes
very difficult to plug in a device that has different message semantics. Moreover, it is possible
that the bus might get locked for a long duration, with idle periods. This wastes bandwidth.
However, in some scenarios such as the example that we showed, transaction-oriented buses
perform very well and are preferred over other types of buses.

13.4.5 Split Transaction Buses

Let us now look at split transaction buses that try to rectify the shortcomings of transaction
oriented buses. Here, we do not assume a strict sequence of messages between different nodes.
For example, for the DRAM and memory controller example, we break the message transfer into
two smaller transactions. First, the memory controller sends the memory request to the DRAM.
The DRAM module buffers the message, and proceeds with the memory access. Subsequently,
it sends a separate message to the memory controller with the data from memory. The interval
between both the message sequences can be arbitrarily large. Such a bus is known as a split

© Smruti R. Sarangi 680

transaction bus, which breaks a larger transaction into smaller and shorter individual message
sequences.

The advantage here is simplicity and portability. All our transfers are essentially unidirec-
tional. We send a message, and then we do not wait for its reply by locking the bus. The sender
proceeds with other messages. Whenever, the receiver is ready with the response, it sends a
separate message. Along with simplicity, this method also allows us to connect a variety of re-
ceivers to the bus. We just need to define a simple message semantics, and any receiver circuit
that conforms with the semantics can be connected to the bus. We cannot use this bus to do
complicated operations such as overlapping multiple requests, and responses, and fine grained
timing control. For such requirements, we can always use a bus that supports transactions.

13.5 Network Layer

In Sections 13.2,13.3, and 13.4, we studied how to design a full duplex bus. In specific, we
looked at signalling, signal encoding, timing, framing, error checking, and transaction related
issues. Now, we have arrived at a point, where we can assume I/O buses that correctly transfer
messages between end points, and ensure timely and correct delivery. Let us now look at the
entire chipset, which is essentially a large network of I/O buses.

The problems that we intend to solve in this section, are related to I/O addressing. For
example, if the processor wishes to send a message to an USB port, then it needs to have a
way of uniquely addressing the USB port. Subsequently, the chipset needs to ensure that it
properly routes the message to the appropriate I/O device. Similarly, if a device such as the
keyboard, needs to send the ASCII code (see Section 2.5) of the key pressed to the processor,
it needs to have a method of addressing the processor. We shall looking at routing messages in
the chipset in this section.

13.5.1 I/O Port Addressing

Software Interface of an I/O Port

In Definition 140, we defined a hardware I/O port as a connection endpoint for an externally
attached device. Let us now consider a software port, which we define to be an abstract entity
that is visible to software as a single register, or a set of registers. For example, the USB
port physically contains a set of metallic pins, and a port controller to run the USB protocol.
However, the “software version of the USB port”, is an addressable set of registers. If we wish
to write to the USB device, then we write to the set of registers exposed by the USB port to
software. The USB port controller implements the software abstraction, by physically writing
the data sent by the processor to the connected I/O device. Likewise, for reading the value sent
by an I/O device through the USB port, the processor issues a read instruction to the software
interface of the USB port. The corresponding port controller forwards the output of the I/O
device to the processor.

Let us graphically illustrate this concept in Figure 13.27. We have a physical hardware
port that has a set of metallic pins, and associated electrical circuitry that implements the
physical and data link layers. The port controller implements the network layer by fulfilling
requests sent by the processor. It also exposes a set of 8 to 32-bit registers. These registers

681 © Smruti R. Sarangi

Port connector

Port controller

Registers

Input Output

Software interface

Figure 13.27: Software interface of an I/O port

can be either read-only, write-only, or read-write. For example, the port for the display device
such as the monitor contains write-only registers, because we do not get any inputs from it.
Similarly, the port controller of a mouse, contains read-only registers, and the port controller
of a scanner contains read-write registers. This is because we typically send configuration data
and commands to the scanner, and read the image of the document from the scanner.

For example, Intel processors define 64K (216) 8-bit I/O ports. It is possible to fuse 4
consecutive ports to have a 32-bit port. These ports are equivalent to registers that are accessible
to assembly code. Secondly, a given physical port such as the Ethernet port or the USB port
can have multiple such software ports assigned to them. For example, if we wish to write a
large piece of data to the Ethernet in one go, then we might use hundreds of ports. Each port in
the Intel processor is addressed using a 16-bit number that varies from 0 to 0xFFFF. Similarly,
other architectures define a set of I/O ports that act as software interfaces for actual hardware
ports.

Let us define the term I/O address space as the set of all the I/O port addresses that are
accessible to the operating system and user programs. Each location in the I/O address space
corresponds to an I/O port, which is the software interface to a physical I/O port controller.

Definition 154
The I/O address space is defined as the set of all the I/O port addresses that are accessible to
the operating system and user programs. Each location in the I/O address space corresponds
to an I/O port, which is the software interface to a physical I/O port controller.

© Smruti R. Sarangi 682

ISA Support for I/O Ports

Most instruction set architectures have two instructions: in and out. The semantics of the
instructions are as follows.

Instruction Semantics

in r1, ⟨I/O port⟩ r1 ← contents of ⟨I/O port⟩
out r1, ⟨I/O port⟩ contents of ⟨I/O port⟩ ← r1

Table 13.4: Semantics of the in and out instructions

The in instruction transfers data from an I/O port to a register. Conversely, the out
instruction transfers data from a register to an I/O port. This is a very generic and versatile
mechanism for programming I/O devices. For example, if we want to print a page, then we
can transfer the contents of the entire page to the I/O ports of the printer. Finally, we write
the print command to the I/O port that accepts commands for the printer. Subsequently, the
printer can start printing.

Routing Messages to I/O Ports

Let us now implement the in and out instructions. The first task is to ensure that a message
reaches the appropriate port controller, and the second task is to route the response back to
the processor in the case of an out instruction.

Let us again take a look at the architecture of the motherboard in Figure 13.4. The CPU is
connected to the North Bridge chip via the front side bus. The DRAM memory modules, and
the graphics card are also connected to the North Bridge chip. Additionally, the North Bridge
chip is connected to the South Bridge chip that handles slower devices. The South Bridge chip
is connected to the USB ports, the PCI Express Bus (and all the devices connected to it), the
hard disk, the mouse, keyboard, speakers and the network card. Each of these devices has a
set of associated I/O ports, and I/O port numbers.

Typically the motherboard designers have a scheme for allocating I/O ports. Let us try
to construct one such scheme. Let us suppose that we have 64K 8-bit I/O ports like the Intel
processors. The addresses of the I/O ports thus range from 0 to 0xFFFF. Let us first allocate
I/O ports to high-bandwidth devices that are connected to the North Bridge chip. Let us give
them port addresses in the range of 0 to 0x00FF. Let us partition the rest of the addresses for
the devices connected to the South Bridge chip. Let us assume that the hard disk has a range
of ports from 0x0100 to 0x0800. Let the USB ports have a range from 0x0801 to 0x0FFF. Let
us assign the network card the following range: 0x1000 to 0x4000. Let us assign a few of the
remaining ports to the rest of the devices, and keep a part of the range empty for any new
devices that we might want to attach later.

Now, when the processor issues an I/O instruction (in or out), the processor recognises that
it is an I/O instruction, sends the I/O port address, and the instruction type to the North
Bridge chip through the FSB (front side bus). The North Bridge chip maintains a table of
ranges for each I/O port type, and their locations. Once it sees the message from the processor,
it accesses this table and finds out the relative location of the destination. If the destination is a

683 © Smruti R. Sarangi

device that is directly connected to it, then the North Bridge chip forwards the message to the
destination. Otherwise, it forwards the request to the South Bridge chip. The South Bridge
chip maintains a similar table of I/O port ranges, and device locations. After performing a
lookup in this table, it forwards the received message to the appropriate device. These tables
are called I/O routing tables. I/O routing tables are conceptually similar to network routing
tables used by large networks and the internet.

For the reverse path, the response is typically sent to the processor. We assign a unique
identifier to the processor, and the messages gets routed appropriately by the North Bridge and
South Bridge chips. Sometimes it is necessary to route the message to the memory modules
(see Section 13.6.3). We use a similar addressing scheme.

This scheme essentially maps the set of physical I/O ports to locations in the I/O address
space, and the dedicated I/O instructions use the port addresses to communicate with them.
This method of accessing and addressing I/O devices is commonly known as I/O mapped I/O.

Definition 155 I/O mapped I/O is a scheme for addressing and accessing I/O devices by
assigning each physical I/O port a unique address in the I/O space, and by using dedicated
I/O instructions to transfer data to/from locations in the I/O address space.

13.5.2 Memory Mapped Addressing

Let us now take a look at the in and out I/O instructions again. The executing program needs
to be aware of the naming schemes for I/O ports. It is possible that different chipsets and
motherboards use different addresses for the I/O ports. For example, one motherboard might
assign the USB ports the I/O port address range, 0xFF80 to 0xFFC0, and another motherboard
might assign the range, 0xFEA0 to 0xFFB0. Consequently, a program that runs on the first
motherboard might not work on the second motherboard.

To solve this issue, we need to add an additional layer between the I/O ports and software.
Let us propose a solution similar to virtual memory. In fact, virtualisation is a standard
technique for solving various problems in computer architecture. Let us proceed to design a
virtual layer between user programs and the I/O address space.

Let us assume that we have a dedicated device driver in the operating system that is specific
to the chipset and motherboard. It needs to be aware of the semantics of the I/O ports, and
their mappings to actual devices. Now, let us consider a program (user program or OS) that
wishes to access the USB ports. At the outset, it is not aware about the I/O port addresses
of the USB ports. Hence, it needs to first request the relevant module in the operating system
to map a memory region in its virtual address space to the relevant portion of the I/O address
space. For example, if the I/O ports for the USB devices are between 0xF000 to 0xFFFF, then
this 4 KB region in the I/O address space can be mapped to a page in the program’s virtual
address space. We need to add a special bit in the TLB and page table entries to indicate that
this page actually maps to I/O ports. Secondly, instead of storing the address of the physical
frame, we need to store the I/O port addresses. It is the role of the motherboard driver that is a
a part of the operating system to create this mapping. After the operating system has mapped
the I/O address space to a process’s virtual address space, the process can proceed with the

© Smruti R. Sarangi 684

I/O access. Note that before creating the mapping, we need to ensure that the program has
sufficient privileges to access the I/O device.

After the mapping has been created, the program is free to access the I/O ports. Instead
of using I/O instructions such as in, and out, it uses regular load and store instructions to
write to locations in its virtual address space. After such instructions reach the memory access
(MA) stage of the pipeline, the effective address is sent to the TLB for translation. If there is a
TLB hit, then the pipeline also becomes aware of the fact that the virtual address maps to the
I/O address space rather than the physical address space. Secondly, the TLB also translates
the virtual address to an I/O port address. Note that at this stage it is not necessary to use
the TLB, we can use another dedicated module to translate the address. In any case, the
processor receives the equivalent I/O port address in the MA stage. Subsequently, it creates an
I/O request and dispatches the request to the I/O port. This part of the processing is exactly
similar to the case of I/O mapped I/O.

Definition 156 Memory mapped I/O is a scheme for addressing and accessing I/O devices
by assigning each address in the I/O address space to a unique address in the process’s
virtual address space. For accessing an I/O port, the process uses regular load and store
instructions.

This scheme is known as memory mapped I/O. Its main advantage is that it uses regular load
and store instructions to access I/O devices instead of dedicated I/O instructions. Secondly,
the programmer need not be aware of the actual addresses of the I/O ports in the I/O address
space. Since dedicated modules in the operating system, and the memory system, set up a
mapping between the I/O address space and the process’s virtual address space, the program
can be completely oblivious of the semantics of addressing the I/O ports.

13.6 Protocol Layer

Let us now discuss the last layer in the I/O system. The first three layers ensure that a message
is correctly delivered from one device to another in the I/O system. Let us now look at the
level of a complete I/O request such as printing an entire page, scanning an entire document,
or reading a large block of data from the hard disk. Let us consider the example of printing a
document.

Assume that the printer is connected to an USB port. The printer device driver starts out
by instructing the processor to send the contents of the document to the buffers associated with
the USB port. Let us assume that each such buffer is assigned a unique port address, and the
entire document fits within the set of buffers. Moreover, let us assume that the device driver
is aware that the buffers are empty. To send the contents of the document, the device driver
can use a sequence of out instructions, or can use memory mapped I/O. After transferring
the contents of the document, the last step is to write the PRINT command to a pre-specified
I/O port. The USB controller manages all the I/O ports associated with it, and ensures that
messages sent to these ports are sent to the attached printer. The printer starts the job of
printing after receiving the PRINT command from the USB controller.

685 © Smruti R. Sarangi

Let us now assume that the user clicks the print button for another document. Before
sending the new document to the printer, the driver needs to ensure that the printer has
finished printing the previous document. The assumption here is that we have a simple printer
that can only handle one document at a time. There should thus be a method for the driver to
know if the printer is free.

Before looking at different mechanisms for the printer to communicate with its driver, let
us consider an analogy. Let us consider a scenario in which Sofia is waiting for a letter to be
delivered to her. If the letter is being sent through one of Sofia’s friends, then Sofia can keep
calling her friend to find out when she will be back in town. Once she is back, Sofia can go to
her house, and collect the letter. Alternatively, the sender can send the letter through a courier
service. In this case, Sofia simply needs to wait for the courier delivery boy to come and deliver
the letter. The former mechanism of receiving messages is known as polling, and the latter is
known as interrupts. Let us now elaborate.

13.6.1 Polling

Let us assume that there is a dedicated register called the status register in the printer that
maintains the status of the printer. Whenever there is a change in the status of the printer, it
updates the value of the status register. Let us assume that the status register can contain two
values namely 0 (free) and 1 (busy). When the printer is printing a document, the value of the
status register is 1 (busy). Subsequently, when the printer completes printing the document, it
sets the value of the status register to 0 (free).

Now, let us assume that the printer driver wishes to read the value of the status register
of the printer. It sends a message to the printer asking it for the value of the status register.
The first step in sending a message is to send a sequence of bytes to the relevant I/O ports of
the USB port controller. The port controller in turn sends the bytes to the printer. If it uses a
split transaction bus, then it waits for the response to arrive. Meanwhile, the printer interprets
the message, and sends the value of the status register as the response, which the USB port
controller forwards to the processor through the I/O system.

If the printer is free, then the device driver can proceed to print the next document. Oth-
erwise, it needs to wait for the printer to finish. It can keep on requesting the printer for its
status till it is free. This method of repeatedly querying a device for its state till its state has
a certain value is called polling.

Definition 157
Polling is a method for waiting till an I/O device reaches a given state. It is implemented
by repeatedly querying the device for its state in a loop.

Let us show a snippet of SimpleRisc code that implements polling in a hypothetical system.
We assume that the message for getting the status of the printer is 0xDEADBEEF. We need to
first send the message to the I/O port 0xFF00, and then subsequently read the response from
the I/O port 0xFF04.

© Smruti R. Sarangi 686

Assembly Code for Polling
/* load DEADBEEF in r0 */

movh r0, 0xDEAD

addu r0, r0, 0xBEEF

/* polling loop */

.loop:

out r0, 0xFF00

in r1, 0xFF04

cmp r1, 1

beq .loop /* keep looping till status = 1 */

13.6.2 Interrupts

There are several shortcomings of the polling based approach. It keeps the processor busy,
wastes power, and increases I/O traffic. We can use interrupts instead. Here, the idea is to
send a message to the printer to notify the processor when it becomes free. After the printer
becomes free, or if it is already free, the printer sends an interrupt to the processor. The I/O
system typically treats the interrupt as a regular message. It then delivers the interrupt to
the processor, or a dedicated interrupt controller. These entities realise that an interrupt has
come from the I/O system. Subsequently, the processor stops executing the current program
as described in Section 10.8, and jumps to the interrupt handler.

Note that every interrupt needs to identify itself, or the device that has generated it. Every
device that is on the motherboard typically has a unique code. This code is a part of the
interrupt. In some cases, when we connect devices to generic ports such as the USB port, the
interrupt code contains two parts. One part is the address of the port on the motherboard that
is connected to the external device. The other part is an id that is assigned to the device by
the I/O port on the motherboard. Such interrupts that contain a unique code are known as
vectored interrupts.

In some systems such as x86 machines, the first stage of interrupt processing is done by a pro-
grammable interrupt controller (PIC). These interrupt controllers are called APICs (advanced
programmable interrupt controllers) in x86 processors. The role of these interrupt controllers
is to buffer interrupt messages, and send them to the processor according to a set of rules.

Let us take a look at the set of rules that PICs follow. Most processors disable interrupt
processing during some critical stages of computation. For example, when an interrupt handler
is saving the state of the original program, we cannot allow the processor to get interrupted.
After the state is successfully saved, interrupt handlers might re-enable interrupts. In some
systems, interrupts are completely disabled whenever an interrupt handler is running. A closely
related concept is interrupt masking that selectively enables some interrupts, and disables some
other interrupts. For example, we might allow high priority interrupts from the temperature
controller during the processing of an interrupt handler, and choose to temporarily ignore low
priority interrupts from the hard disk. The PIC typically has a vector that has one entry per
interrupt type. It is known as the interrupt mask vector. For an interrupt, if the corresponding
bit in the interrupt mask vector is 1, then the interrupt is enabled, otherwise it is disabled.

Lastly, PICs need to respect the priority of interrupts if we have multiple interrupts arriving

687 © Smruti R. Sarangi

in the same window of time. For example, interrupts from a device with real time constraints
such as an attached high speed communication device have a high priority, whereas keyboard
and mouse interrupts have lower priority. The PIC orders interrupts using heuristics that take
into account their priority and time of arrival, and presents them to the processor in that
order. Subsequently, the processor processes the interrupt according to the methods explained
in Section 10.8.

Definition 158

Vectored Interrupt An interrupt that contains the id of the device that generated it, or
the I/O port address that is connected to the external device.

Programmable Interrupt Controller(PIC) A dedicated module called the pro-
grammable interrupt controller (PIC) buffers, filters, and manages the interrupts sent
to a processor.

Interrupt Masking The user, or operating system can choose to selectively disable a set of
interrupts at some critical phases of programs such as while running device drivers and
interrupt handlers. This mechanism is known as interrupt masking. The interrupt
mask vector in the PIC is typically a bit vector (one bit per each interrupt type). If a
bit is set to 1, then the interrupt is enabled, otherwise it is disabled, and the interrupt
will either be ignored, or buffered in the PIC and processed later.

13.6.3 DMA

For accessing I/O devices, we can use both polling and interrupts. In any case, for each I/O
instruction we transfer typically 4 bytes at a time. This means that if we need to transfer a
4KB block to an I/O device, we need to issue 1024 out instructions. Similarly, if we wish to
read in 4 KB of data, we need to issue 1024 in instructions. Each I/O instruction typically
takes more than ten cycles, because it reaches an I/O port after several levels of indirection.
Secondly, the frequency of I/O buses is typically a third to a quarter of the processor frequency.
Thus, I/O for large blocks of data is a fairly slow process, and it can keep the processor busy
for a long time. Our objective is to keep sensitive code such as device drivers and interrupt
handlers as short as possible.

Hence, let us try to devise a solution that can offload some of the work of the processor.
Let us consider an analogy. Let us assume that a professor is teaching a class of more than 100
students. After an exam, she needs to grade more than 100 scripts. This will keep her busy for
at least a week, and the process of grading scripts is a very tiring and time consuming process.
Hence, she can offload the work of grading exam scripts to teaching assistants. This will ensure
that the professor has free time, and she can focus on solving state of the art research problems.
We can take cues from this example, and design a similar scheme for processors.

Let us envision a dedicated unit called a DMA (direct memory access) engine that can do
some work on behalf of the processor. In specific, if the processor wishes to transfer a large

© Smruti R. Sarangi 688

amount of data in memory to an I/O device, or vice versa, then instead of issuing a large
number of I/O instructions, the DMA engine can take over the responsibility. The procedure
for using a DMA engine is as follows. At the outset, the device driver program, determines
that there is a necessity to transfer a large amount of data between memory and an I/O device.
Subsequently, it sends the details of the memory region (range of bytes), and the details of
the I/O device (I/O port addresses) to the DMA engine. It further specifies, whether the data
transfer is from memory to I/O or in the reverse direction. Subsequently, the device driver
program suspends itself, and the processor is free to run other programs. Meanwhile, the DMA
engine or the DMA controller begins the process of transferring data between the main memory
and I/O devices. Depending on the direction of the transfer, it reads the data, temporarily
buffers it, and sends it to the destination. Once the transfer is over, it sends an interrupt to
the processor indicating that the transfer is over. Subsequently, the device driver of the I/O
device is ready to resume operation and complete any remaining steps.

The DMA based approach is typically used by modern processors to transfer a large amount
of data between main memory, and the hard disk, or the network card. The transfer of data is
done in the background, and the processor is mostly oblivious of this process. Secondly, most
operating systems have libraries to program the DMA engine to perform data transfers.

There are two subtle points that need to be discussed in the context of DMA engines. The
first is that the DMA controller needs to occasionally become the bus master. In most designs,
the DMA engine is typically a part of the North Bridge chip. The DMA engine needs to become
the bus master of the bus to memory, and the bus to the South Bridge chip, when required. It
can either transfer all the data in one go (also known as a burst), or it can wait for idle periods
in the bus, and use these cycles to schedule its own transfers. The former approach is known
as the burst mode, and the latter approach is known as the cycle stealing mode.

The second subtle point is that there might be correctness issues if we are not careful. For
example, it is possible that we have a given location in the cache, and simultaneously, the
DMA engine is writing to the location in main memory. In this case, the value in the cache
will become stale, and sadly, the processor will have no way of knowing this fact. Hence, it is
important to ensure that locations accessed by DMA controllers are not present in the cache.
This is typically achieved through a dedicated piece of logic called a DMA snoop circuit that
dynamically evicts locations present in the cache, if they are written to by the DMA engine.

13.7 Case Studies – I/O Protocols

In this section, we shall describe the operation of several state of the art I/O protocols. We
shall provide a brief overview of each of these protocols in this book. For a detailed study, or
wherever there is a doubt, the reader should take a look at their formal specifications posted
on the web. The formal specifications are typically released by a consortium of companies
that support the I/O protocol. Most of the material that we present is sourced from these
specifications.

689 © Smruti R. Sarangi

13.7.1 PCI Express®

Overview

Most motherboards require local buses that can be used to attach devices such as dedicated
sound cards, network cards, and graphics cards to the North Bridge or South Bridge chips.
In response to this requirement, a consortium of companies created the PCI (Peripheral Com-
ponent Interconnect) bus specification in 1993. In 1996, Intel created the AGP (Accelerated
Graphics Port) bus for connecting graphics cards. In the late nineties, many new bus types were
being proposed for connecting a variety of hardware devices to the North Bridge and South
Bridge chips. Designers quickly realised that having many different bus protocols hampers
standardisation efforts, and compels device vendors to support multiple bus protocols. Hence,
a consortium of companies started a standardisation effort, and created the PCI Express bus
standard in 2004. This technology superseded most of the earlier technologies, and till date it
is the most popular bus on the motherboard.

The basic idea of the PCI express bus is that it is a high speed point to point serial (single
bit) interconnect. A point to point interconnect has only two end points. To connect multiple
devices to the South Bridge chip, we create a tree of PCI express devices. The internal nodes
of the tree are PCI express switches that can multiplex traffic from multiple devices. Secondly,
as compared to older protocols, each PCI Express bus sends bits serially on a single bit line.
Typically high speed buses avoid transmitting multiple bits in parallel using several copper
wires, because different links experience different degrees of jitter and signal distortion. It
becomes very hard to keep all the signals in the different wires in synchrony with each other.
Hence, modern buses are mostly serial.

A single PCI Express bus is actually composed of many individual serial buses known as
lanes. Each lane has its separate physical layer. A PCI Express packet is striped across the lanes.
Striping means dividing a block of data (packet) into smaller blocks of data and distributing
them across the lanes. For example, in a bus with 8 lanes, and a 8-bit packet, we can send
each bit of the packet on a separate lane. The reader needs to note that sending multiple bits
in parallel across different lanes is not the same as a parallel bus that has multiple wires to
send data. This is because a parallel bus has one physical layer circuit for all the copper wires,
whereas in this case, each lane has its separate synchronisation, and timing. The data link layer
does the job of framing by aggregating the subparts of each packet collected from the different
lanes.

Definition 159
The process of striping refers to dividing a block of data into smaller blocks of data and
distributing them across a set of entities.

A lane consists of two LVDS based wires for full duplex signalling. One wire is used to send
a message from the first end point to the second, and the second wire is to send a signal in the
reverse direction. A set of lanes are grouped together to form an I/O link that is assumed to
transfer a full packet (or frame) of data. The physical layer then transfers a packet to the data
link layer that performs error correction, flow control, and implements transactions. The PCI

© Smruti R. Sarangi 690

Express protocol is a layered protocol, where the functionality of each layer is roughly similar
to the I/O layers that we have defined. Instead of considering transactions to be a part of the
data link layer, it has a separate transaction layer. We shall however use the terminology that
we have defined in this chapter for explaining all the I/O protocols unless mentioned otherwise.

Summary

PCI Express (Peripheral Component Interconnect Express)

Usage As a motherboard bus

Specification [pci,]

Topology

Connection Point to point with multiple lanes

Lane A single bit full duplex channel with data striping

Number of Lanes 1 – 32

Physical Layer

Signalling LVDS based differential signalling

Encoding 8 bit/ 10 bit

Timing Source synchronous

Data Link Layer

Frame Size 1 byte

Error Correction 32-bit CRC

Transactions Split transaction bus

Bandwidth 250 MB/s per lane

Network Layer

Routing Nodes Switches

Table 13.5: The PCI Express I/O Protocol

A summary of the specifications of the PCI Express protocol is shown in Table 13.5. We
can have 1-32 lanes. Here, each lane is an asynchronous bus, which uses a sophisticated version
of data encoding called the 8bit/10bit encoding. The 8bit/10bit encoding can be conceptually
thought of as an extension of the NRZ protocol. It maps a sequence of 8 logical bits to a sequence
of 10 physical bits. It ensures that we do not have more than five 1s or 0s consecutively such
that we can efficiently recover the clock. Recall that the receiver recovers the sender’s clock
by analysing transitions in the data. Secondly, the encoding ensures that we have almost the
same number of physical 1s and 0s in the transmitted signal. In the data link layer the PCI
Express protocol implements a split transaction bus with a 1-128 byte frame, and 32-bit CRC
based error correction.

The PCI Express bus is normally used to connect generic I/O devices. Sometimes some
slots are left unused such that users can later connect cards for their specific applications. For
example, if a user is interested in working with specialised medical devices, then she can attach
an I/O card that can connect with medical devices externally, and to the PCI Express bus
internally. Such free PCI Express slots are known as expansion slots.

691 © Smruti R. Sarangi

13.7.2 SATA

Overview

Let us now take a look at a bus, which was primarily developed for connecting storage devices
such as hard disks, and optical drives. Since the mid eighties, designers, and storage vendors,
began designing such buses. Several such buses developed over time such as the IDE (Integrated
Drive Electronics) and PATA (Parallel Advanced Technology Attachment) buses. These buses
were predominantly parallel buses, and their constituent communication links suffered from
different amounts of jitter and distortion. Thus, these technologies got replaced by a serial
standard known as SATA (Serial ATA), that is a point to point link like PCI Express.

The SATA protocol for accessing storage devices is now used in an overwhelming majority
of laptop and desktop processors. It has become the de facto standard. The SATA protocol
has three layers – physical, data link, and transport. We map the transport layer of the SATA
protocol to our protocol layer. Each SATA link contains a pair of single-bit links that use LVDS
signalling. Unlike PCI Express, it is not possible for an end point in the SATA protocol to read
and write data at the same time. Only one of the actions can be performed at any point of
time. It is thus a half duplex bus. It uses 8b/10b encoding, and it is an asynchronous bus. The
data link layer does the job of framing. Let us now discuss the network layer. Since SATA is
a point to point protocol, a set of SATA devices can be connected in a tree structure. Each
internal node of the tree is know as a multiplier. It routes requests from the parent to one of
its children, of from one of its children to its parent. Finally, the protocol layer acts on the
frames and ensures that they are transmitted in the correct sequence, and implements SATA
commands. In specific, it implements DMA requests, accesses the storage devices, buffers data,
and sends it to the processor in a predefined order.

Summary

Table 13.6 shows the specification of the SATA protocol. We need to note that the SATA
protocol has a very rich protocol layer. It defines a wide variety of commands for storage based
devices. For example, it has dedicated commands to perform DMA accesses, perform direct
hard disk accesses, encode and encrypt data, and control the internals of storage devices. The
SATA bus is a split transaction bus, and the data link layer differentiates between commands
and their responses. The protocol layer implements the semantics of all the commands.

13.7.3 SCSI and SAS

Overview of SCSI

Let us now discuss another I/O protocol also meant for peripheral devices known as the SCSI
protocol (pronounced as “scuzzy”). SCSI was originally meant to be a competitor of PCI.
However, over time the SCSI protocol metamorphosed to a protocol for connecting storage
devices.

The original SCSI bus was a multidrop parallel bus that could have 8 to 16 connections.
The SCSI protocol differentiates between a host and a peripheral device. For example, the
South Bridge chip is a host, whereas the controller of a CD drive is a peripheral. Any pair of
nodes (host or peripheral) can communicate between each other. The original SCSI bus was

© Smruti R. Sarangi 692

SATA (Serial ATA)

Usage Used to connect storage devices such as hard disks

Source [sat,]

Topology

Connection Point to point, half duplex

Topology Tree based, internal nodes known as multipliers

Physical Layer

Signalling LVDS based differential signalling

Number of parallel links 4

Encoding 8 bit/ 10 bit

Timing Asynchronous (clock recovery + comma symbols)

Data Link Layer

Frame Size variable

Error Correction CRC

Transactions Split transaction bus, command driven

Bandwidth 150-600 MB/s

Network Layer

Routing Nodes Multipliers

Protocol Layer

Each SATA node has dedicated support for processing commands, and their
responses. Examples of commands can be DMA reads, or I/O transfers

Table 13.6: The SATA Protocol

synchronous and ran at a relatively low frequency as compared to today’s high speed buses.
SCSI has still survived till date and state of the art SCSI buses use a 80-160 MHz clock to
transmit 16 bits in parallel. They thus have a theoretical maximum bandwidth of 320-640
MB/s. Note that serial buses can go up till 1 GHz, are more versatile, and can support larger
bandwidths.

Given the fact that there are issues with multidrop parallel buses, designers started retarget-
ting the SCSI protocol for point to point serial buses. Recall that PCI Express and SATA buses
were also created for the same reason. Consequently, designers proposed a host of buses that
extended the original SCSI protocols, but were essentially point to point serial buses. Two such
important technologies are the SAS (Serially Attached SCSI), and FC (fibre channel) buses.
FC buses are mainly used for very high end systems such as supercomputers. The SAS bus is
more commonly used for enterprise and scientific applications.

Let us thus primarily focus on the SAS protocol, because it is the most popular variant of the
SCSI protocol in use today. SAS is a serial point to point technology that is also compatible with
previous versions of SATA based devices, and its specification is very close to the specification
of SATA.

693 © Smruti R. Sarangi

Overview of SAS

SAS was designed to be backward compatible with SATA. Hence, both the protocols are not
very different in the physical and data link layers. However, there are still some differences. The
biggest difference is that SAS allows full duplex transmission, whereas SATA allows only half
duplex transmission. Secondly, SAS can in general support larger frame sizes, and it supports
a larger cable length between the end points as compared to SATA (8m for SAS, as compared
to 1m for SATA).

The network layer is different from SATA. Instead of using a multiplier (used in SATA),
SAS uses a much more sophisticated structure known as an expander for connecting to multiple
SAS targets. Traditionally, the bus master of a SAS bus is known as the initiator, and the
other node is known as the target. There are two kinds of expanders – edge expander, and
fanout expander. An edge expander can be used to connect up to 255 SAS devices, and a fanout
expander can be used to connect up to 255 edge expanders. We can add a large number of
devices in a tree based topology using a root node, and a set of expanders. Each device at
boot up time is assigned a unique SCSI id. A device might further be subdivided into several
logical partitions. For example, your author at this moment is working on a storage system
that is split into two logical partitions. Each partition has a logical unit number (LUN). The
routing algorithm is as follows. The initiator sends a command to either a device directly if
there is a direct connection or to an expander. The expander has a detailed routing table that
maintains the location of the device as a function of its SCSI id. It looks up this routing table
and forwards the packet to either the device, or to an edge expander. This edge expander has
another routing table, which it uses to forward the command to the appropriate SCSI device.
The SCSI device then forwards the command to the corresponding LUN. For sending a message
to another SCSI device, or to the processor, a request follows the reverse path.

Lastly, the protocol layer is very flexible for SAS buses. It supports three kinds of protocols.
We can either use SATA commands, SCSI commands, or SMP (SAS Management Protocol)
commands. SMP commands are specialised commands for configuring and maintaining the
network of SAS devices. The SCSI command set is very extensive, and is designed to control
a host of devices (mostly storage devices). Note that a device has to be compatible with the
SCSI protocol layer before we can send SCSI commands to it. If a device does not understand
a certain command, then there is a possibility that something catastrophic might happen. For
example, if we wish to read a CD, and the CD driver does not understand the command, then
it might eject the CD. Even worse, it is possible that it might never eject the CD because
it does not understand the eject command. The same argument holds true for the case of
SATA also. We need to have SATA compatible devices such as SATA compatible hard drives
and SATA compatible optical drives, if we wish to use SATA commands. SAS buses are by
design compatible with both SATA devices and SAS/SCSI devices because of the flexibility of
the protocol layer. For the protocol layer, SAS initiators send SCSI commands to SAS/SCSI
devices, and SATA commands to SATA devices.

Nearline SAS (NL-SAS) drives are essentially SATA drives, but have a SCSI interface that
translates SCSI commands to SATA commands. NL-SAS drives can thus be seamlessly used on
SAS buses. Since the SCSI command set is more expressive and more efficient, NL-SAS drives
are 10-20% faster than pure SATA drives.

Let us now very briefly describe the SCSI command set in exactly 4 sentences. The initiator

© Smruti R. Sarangi 694

begins by sending a command to the target. Each command has a 1-byte header, and it has
a variable length payload. The target then sends a reply with the execution status of the
command. The SCSI specifications defines at least 60 different commands for device control,
and transferring data. For additional information, the readers can look up the SCSI specification
at [scs,].

13.7.4 USB

Overview

Let us now consider the USB protocol, which was primarily designed for connecting external
devices to a laptop or desktop computer such as keyboards, mice, speakers, web cameras, and
printers. In the mid nineties vendors realised that there are many kinds of I/O bus protocols
and connectors. Consequently, motherboard designers, and device driver writers were finding
it hard to support a large range of devices. There was thus a need for standardisation. Hence,
a consortium of companies (DEC, IBM, Intel, Nortel, NEC, and Microsoft) conceived the USB
protocol (Universal Serial Bus).

The main aim of the USB protocol was to define a standard interface for all kinds of devices.
The designers started out by classifying devices into three types namely low speed (keyboards,
mice), full speed (high definition audio), and high speed (scanners, and video cameras). Three
versions of the USB protocol have been proposed till 2012 namely versions 1.0, 2.0, and 3.0.
The basic USB protocol is more or less the same. The protocols are backward compatible. This
means that a modern computer that has a USB 3.0 port supports USB 1.0 devices. Unlike the
SAS or SATA protocols that are designed for a specific set of hardware, and can thus make a lot
of assumptions regarding the behaviour of the target device, the USB protocol was designed to
be very generic. Consequently, designers needed to provide extensive support for the operating
system to discover the type of the device, its requirements, and configure it appropriately.
Secondly, a lot of USB devices do not have their power source such as keyboards and mice. It
is thus necessary to include a power line for running connected devices in the USB cable. The
designers of the USB protocol kept all of these requirements in mind.

From the outset, the designers wanted USB to be a fast protocol that could support high
speed devices such as high definition video in the future. They thus decided to use a point to
point serial bus (similar to PCI Express, SATA, and SAS). Every laptop, desktop, and midsized
server, has an array of USB ports on the front or back panels. Each USB port, is considered a
host that can connect with a set of USB devices. Since we are using serial links, we can create
a tree of USB devices similar to trees of PCI Express and SAS devices. Most of the time we
connect only one device to a USB port. However, this is not the only configuration. We can
alternatively connect a USB hub, which acts like an internal node of the tree. An USB hub is
in principle similar to a SATA multiplier and SAS expander.

A USB hub is most of the time a passive device, and typically has four ports to connect
to other devices and hubs downstream. The most common configuration for a hub consists of
one upstream port (connection to the parent), and four downstream ports. We can in this
manner create a tree of USB hubs, and connect multiple devices to a single USB host on the
motherboard. The USB protocol supports 127 devices per host, and we can at the most connect
5 hubs serially. Hubs can either be powered by the host, or be self powered. If a hub is self
powered it can connect more devices. This is because, the USB protocol has a limit on the

695 © Smruti R. Sarangi

amount of current that it can deliver to any single device. At the moment, it is limited to 500
mA, and power is allocated in blocks of 100 mA. Hence, a hub that is powered by the host can
have at the most 4 ports because it can give each device 100 mA, and keep 100 mA for itself.
Occasionally, a hub needs to become an active device. Whenever, a USB device is disconnected
from a hub, the hub detects this event, and sends a message to the processor.

Layers of the USB Protocol

Physical Layer
Let us now discuss the protocol in some more detail, and start with the physical layer. The
standard USB connector has 4 pins. The first pin is a power line that provides a fixed 5V DC
voltage. It is typically referred to as Vcc of Vbus. We shall use Vcc. There are two pins namely
D+ and D− for differential signalling. Their default voltage is set to 3.3V. The fourth pin is
the ground pin (GND). The mini and micro USB connectors have an additional pin called ID
that helps differentiate between a connection to the host, and to a device.

The USB protocol uses differential signalling. It uses a variant of the NRZI protocol. For
encoding logical bits, it assumes that a logical 0 is represented by a transition in physical bits,
whereas a logical 1 is represented by no transitions (reverse of the traditional NRZI protocol).
A USB bus is an asynchronous bus that recovers the clock. To aid in clock recovery, the syn-
chronisation sublayer introduces dummy transitions if there are no transitions in the data. For
example, if we have a continuous run of 1s, then there will be no transitions in the transmitted
signal. In this case, the USB protocol introduces a 0 bit after every run of six 1s. This strategy
ensures that we have some guaranteed transitions in the signal, and the receiver can recover the
clock of the transmitter without falling out of synchrony. The USB connectors only have one
pair of wires for differential signalling. Hence, full duplex signalling is not possible. Instead,
USB links use half duplex signalling.

Data Link Layer
For the data link layer, the USB protocol uses CRC based error checking, and variable frame
lengths. It uses bit stuffing (dedicated frame begin and end symbols) to demarcate frame
boundaries. Arbitration is a rather complex issue in USB hubs. This is because, we have many
kinds of traffic and many kinds of devices. The USB protocol defines four kinds of traffic.

Control Control messages that are used to configure devices.

Interrupt A small amount of data that needs to be sent to a device urgently.

Bulk A large amount of data without any guarantees of latency and bandwidth. E.g., image
data in scanners.

Isochronous A fixed rate data transfer with latency and bandwidth guarantees. E.g., au-
dio/video in web cameras.

Along with the different kinds of traffic, we have different categories of USB devices namely
low speed devices (192 KB/s), full speed devices (1.5 MB/s), and high speed devices (60 MB/s).
The latest USB 3.0 protocol has also introduced super speed devices that require up to 384

© Smruti R. Sarangi 696

MB/s. However, this category is still not very popular (as of 2012); hence, we shall refrain from
discussing it.

Now, it is possible to have a high-speed and a low-speed device connected to the same hub.
Let us assume that the high speed device is doing a bulk transfer, and the low speed device is
sending an interrupt. In this case, we need to prioritise the access to the upstream link of the
hub. Arbitration is difficult because we need to conform to the specifications of each class of
traffic and each class of devices. We have a dilemma between performing the bulk transfer, and
sending the interrupt. We would ideally like to strike a balance between conflicting requirements
by having different heuristics for traffic prioritisation. A detailed explanation of the arbitration
mechanisms can be found in the USB specification [usb,].

Let us now consider the issue of transactions. Let us assume that a high speed hub is
connected to the host. The high speed hub is also connected to full and low speed devices
downstream. In this case, if the host starts a transaction to a low speed device through the
high speed hub, then it will have to wait to get the reply from the device. This is because the
link between the high speed hub and the device is slow. There is no reason to lock up the bus
between the host, and the hub in this case. We can instead implement a split transaction. The
first part of the split transaction sends the command to the low speed device. The second part
of the split transaction consists of a message from the low speed device to the host. In the
interval between the split transactions, the host can communicate with other devices. A USB
bus implements similar split transactions for many other kinds of scenarios (refer to the USB
Specification [usb,]).

Network Layer
Let us now consider the network layer. Each USB device including the hubs is assigned a
unique ID by the host. Since we can support up to 127 devices per host, we need a 7-bit device
id. Secondly, each device has multiple I/O ports. Each such I/O port is known as an end point.
We can either have data end points (interrupt, bulk, or isochronous), or control end points.
Additionally, we can classify end points as IN or OUT. The IN end point represents an I/O
port that can only send data to the processor, and the OUT end point accepts data from the
processor. Every USB device can have at the most 16 IN end points, and 16 OUT end points.
Any USB request clearly specifies the type of end point that it needs to access (IN or OUT).
Given that the type of the end point is fixed by the request, we need only 4 bits to specify the
address of the end point.

All USB devices have a default set of IN and OUT end points whose id is equal to 0.
These end points are used for activating the device, and establishing communication with it.
Subsequently, each device defines its custom set of end points. Simple devices such as a mouse
or keyboard that typically send data to the processor define just one IN end point. However,
more complicated devices such as web cameras define multiple end points. One end point is
for the video feed, one end point is for the audio feed, and there can be multiple end points for
exchanging control and status data.

The responsibility of routing messages to the correct USB device lies with the hubs. The
hubs maintain routing tables that associate USB devices with local port ids. Once a message
reaches the device, it routes it to the correct end point.

Protocol Layer

697 © Smruti R. Sarangi

The USB protocol layer is fairly elaborate. It starts out by defining two kinds of connections
between end points known as pipes. It defines a stream pipe to be a stream of data without
any specific message structure. In comparison, message pipes are more structured and define
a message sequence that the sender and receiver must both follow. A typical message in the
message pipe consists of three kinds of packets. The communication starts with a token packet
that contains the device id, id of the end point, nature of communication, and additional
information regarding the connection. The hubs on the path route the token packet to the
destination, and a connection is thus set up. Then depending upon the direction of the transfer
(host to device or device to host), the host or the device sends a sequence of data packets.
Finally, at the end of the sequence of data packets, the receiver of the packets sends a handshake
packet to indicate the successful completion of the I/O request.

Summary

Table 13.7 summarises our discussion on USB up till now. The reader can refer to the specifi-
cations of the USB protocol [usb,] for additional information.

13.7.5 FireWire Protocol

Overview

FireWire started out with being a high speed serial bus in Apple computers. However, nowadays
it is being perceived as a competitor to USB. Even though it is not as popular as USB, it is still
commonly used. Most laptops have FireWire ports. The FireWire ports are primarily used for
connecting video cameras, and high speed optical drives. FireWire is now an IEEE standard
(IEEE 1394), and its specifications are thus open and standardised. Let us take a brief look at
the FireWire protocol.

Like all the buses that we have studied, FireWire is a high speed serial bus. For the same
generation, FireWire is typically faster than USB. For example, FireWire (S800) by default has
a bandwidth of 100 MB/s, as compared to 60 MB/s for high speed USB devices. Secondly,
the FireWire bus was designed to be a hybrid of a peripheral bus and a computer network. A
single FireWire bus can support up to 63 devices. It is possible to construct a tree of devices
by interconnecting multiple FireWire buses using FireWire bridges.

The most interesting thing about the FireWire protocol is that it does not presume a
connection to a computer. Peripherals can communicate among themselves. For example, a
printer can talk to a scanner without going through the computer. It implements a real network
in the true sense. Consequently, whenever a FireWire network boots up, all the nodes co-operate
and elect a leader. The leader node, or the root node is the root of a tree. Subsequently, the
root node sends out messages, and each node is aware of its position in the tree.

The physical layer of the FireWire protocol consists of two LVDS links (one for transmitting
data, and one for transmitting the strobe). The channel is thus half duplex. Note that latest
versions of the Firewall protocol that have bandwidths greater than 100 MB/s also support full
duplex transmission. They however, have a different connector that requires more pins. For
encoding logical bits, most FireWire buses use a method of encoding known as data strobe (DS)
encoding. The DS encoding has two lines. One line contains the data (NRZ encoding), and the
other line contains the strobe. The strobe is equal to the data XORed with the clock. Let the

© Smruti R. Sarangi 698

USB (Universal Serial Bus)

Usage Connecting peripheral devices such as key-
boards, mice, web cameras, and pen drives

Source [usb,]

Topology

Connection Point to point, serial

Width Single bit, half duplex

Physical Layer

Signalling LVDS based differential signalling.

Encoding NRZI (transition represents a logical 0)

Timing Asynchronous (a 0 added after six continuous 1s
for clock recovery)

Data Link Layer

Frame Size 46 – 1058 bits

Error Correction CRC

Transactions Split transaction bus

Bandwidth 192 KB/s (low speed), 1.5 MB/s (full speed), 60
MB/s (high speed)

Network Layer

Address 7-bit device id, 4-bit end point id

Routing Using a tree of hubs

Hub Has one upstream port, and up to 4 downstream
ports

USB network Can support a maximum of 127 devices

Protocol Layer

Connections Message pipe (structured), and stream pipe (un-
structured)

Types of traffic Control, Interrupt, Bulk, Isochronous

Table 13.7: The USB Protocol

data signal be D (sequence of 0s and 1s), the strobe signal be S, and the clock of the sender
be C. We have:

S = D ⊕ C

⇒D ⊕ S = C
(13.7)

At the side of the receiver, it can recover the clock of the sender by computing D⊕S (XOR
of the data and the strobe). Thus, we can think of the DS encoding as a variant of source
synchronous transmission, where instead of sending the clock of the sender, we send the strobe.

The link layer of the FireWire protocol implements CRC based error checking, and split
transactions. FireWire protocols have a unique way of performing arbitration. We divide time

699 © Smruti R. Sarangi

into 125 µs cycles. The root node broadcasts a start packet to all the nodes. Nodes that wish
to transmit isochronous data (data at a constant bandwidth) send their requests along with
bandwidth requirements to the root node. The root node typically uses FIFO scheduling. It
gives one device permission to use the bus and transmit data for a portion of the 125 µs cycle.
Once the request is over, it gives permission to the next isochronous request and so on. Note
that in a given cycle, we can only allot 80% of the time for isochronous transmission. Once, all
the requests are over, or we complete 80% of the cycle, all isochronous transactions stop. The
root subsequently considers asynchronous requests (single message transfers).

Devices that wish to send asynchronous data send their requests to the root through internal
nodes in the tree (other FireWire devices). If an internal node represented by a FireWire device
wishes to send an asynchronous packet in the current cycle, it denies the request to all the
requesters that are in its subtree. Once a request reaches the root node, it sends a packet
back to the requester to grant it permission to transmit a packet. The receiver is supposed
to acknowledge the receipt of the packet. After a packet transmission has finished, the root
node schedules the next request. The aspect of denying requests made by downstream nodes
is similar to the concept of a daisy chain (see Section 13.4.3).

For the network layer, each FireWire device also defines its internal set of I/O ports. All
the devices export a large I/O space to the processor. Each I/O port contains a device address
and a port address within the device. The tree of devices first routes a request to the right
device, and then the device routes the request to the correct internal port. Typically, the entire
FireWire I/O address space is mapped to memory, and most of the time we use memory mapped
I/O for FireWire devices.

Summary

Table 13.8 summarises our discussion on the FireWire protocol.

13.8 Storage

Out of all the peripheral devices that are typically attached to a processor, storage devices have
a special place. This is primarily because they are integral to the functioning of the computer
system.

The storage devices maintain persistent state. Persistent state refers to all the data that
is stored in the computer system even when it is powered off. Notably, the storage systems
store the operating system, all the programs, and their associated data. This includes all
our documents, songs, images, and videos. From the point of view of a computer architect,
the storage system plays an active role in the boot process, saving files and data, and virtual
memory. Let us discuss each of these roles one by one.

When a processor starts (process is known as booting), it needs to load the code of the
operating system. Typically, the code of the operating system is available at the beginning of
the address space of the primary hard disk. The processor then loads the code of the operating
system into main memory, and starts executing it. After the boot process, the operating system
is available to users, who can use it to run programs, and access data. Programs are saved as
regular files in the storage system, and data is also saved in files. Files are essentially blocks

© Smruti R. Sarangi 700

FireWire (IEEE 1394)

Usage Connection to video cameras and optical drives

Source [fir,]

Topology

Connection Point to Point, serial, daisy chain based tree

Width Single bit, half duplex (till FireWire 400, full duplex beyond
that)

Physical Layer

Signalling LVDS based differential signalling.

Encoding Data Strobe Encoding (FireWire 800 and above also support
8bit/10 bit encoding)

Timing Source Synchronous (sends a data strobe rather than a
clock)

Data Link Layer

Frame Size 12.5 KB (FireWire 800 protocol)

Error Correction CRC

Transactions Split Transaction Bus

Arbitration (1) Elect a leader, or root node.
(2) Each 125 µs cycle, the root sends a start packet, and
each device willing to transmit sends its requirements to the
root.
(3) The root allots 100 µs for isochronous traffic, and the
rest for asynchronous traffic

Bandwidth 100 MB/s (FireWire 800)

Network Layer

Address Space The tree of FireWire devices export a large I/O address
space.

Routing Using a tree of bridges

Table 13.8: The FireWire Protocol

of data in the hard disk, or similar storage devices. These blocks of data need to be read into
main memory such that they are accessible by the processor.

Lastly storage devices play a very important role in implementing virtual memory. They
store the swap space (see Section 11.4.4). Recall that the swap space contains all the frames that
cannot be contained in main memory. It effectively helps to extend the physical address space
to match the size of the virtual address space. A part of the frames are stored in main memory,
and the remaining frames are stored in the swap space. They are brought into (swapped in),
when there is a page fault.

Almost all types of computers have attached storage devices. There, however can be some
exceptions. Some machines especially, in a lab setting, might access a hard disk over the
network. They typically use a network boot protocol to boot from a remote hard disk, and

701 © Smruti R. Sarangi

access all the files including the swap space over the network. Conceptually, they still have an
attached storage device. It is just not physically attached to the motherboard. It is nonetheless,
accessible over the network.

Now, let us take a look at the main storage technologies. Traditionally, magnetic storage
has been the dominant technology. This storage technology records the values of bits in tiny
areas of a large ferro-magnetic disk. Depending on the state of magnetisation, we can either
infer a logical 0 or 1. Instead of magnetic disk technology, we can use optical technology such
as CD/DVD/Blu-ray drives. A CD/DVD/Blu-ray disk contains a sequence of pits (aberrations
on the surface) that encodes a sequence of binary values. The optical disk drive uses a laser to
read the values stored on the disk. Most of the operations of a computer typically access the
hard disk, whereas optical disks are mainly used to archive videos and music. However, it is
not uncommon to boot from the optical drives.

A fast emerging alternative to magnetic disks, and optical drives is solid state drives. Unlike
magnetic, and optical drives that have moving parts, solid state drives are made of semiconduc-
tors. The most common technology used in solid state drives is flash. A flash memory device
uses charge stored in a semiconductor to signify a logical 0 or 1. They are much faster than
traditional hard drives. However, they can store far less data, and as of 2012, are 5-6 times
more expensive. Hence, high end servers opt for hybrid solutions. They have a fast SSD drive
that acts as a cache for a much larger hard drive.

Let us now take a look at each of these technologies. Note that in this book, our aim is to
give the reader an understanding of the basic storage technologies such that she can optimise
the computer architecture. For a deeper understanding of storage technologies the reader can
take a look at [Brewer and Gill, 2008, Micheloni et al., 2010].

13.8.1 Hard Disks

A hard disk is an integral part of most computer systems starting from laptops to servers. It is
a storage device made of ferromagnetic material and mechanical components that can provide
a large amount of storage capacity at low cost. Consequently, for the last three decades hard
disks have been exclusively used to save persistent state in personal computers, servers, and
enterprise class systems.

Surprisingly, the basic physics of data storage is very simple. We save 0s and 1s in a series
of magnets. Let us quickly review the basic physics of data storage in hard disks.

Physics of Data Storage in Hard Disks

Let us consider a typical magnet. It has a north pole, and a south pole. Like poles repel each
other, and opposite poles attract each other. Along with mechanical properties, magnets have
electrical properties also. For example, when the magnetic field passing through a coil of wire
changes due to the relative motion between the magnet and the coil, an EMF (voltage) is
induced across the two ends of the wire according to Faraday’s law. Hard disks use Faraday’s
law as the basis of their operation.

The basic element of a hard disk is a small magnet. Magnets used in hard disks are
typically made of iron oxides and exhibit permanent magnetism. This means that their magnetic
properties hold all the time. They are called permanent magnets or Ferromagnets (because of
iron oxides). In comparison, we can have electromagnets that consist of coils of current carrying

© Smruti R. Sarangi 702

wires wrapped around iron bars. Electromagnets lose their magnetism after the current is
switched off.

N S N S NS N SNS

0 1 0 1

Figure 13.28: A sequence of tiny magnets on the surface of a hard disk

Now, let us consider a set of magnets in series as shown in Figure 13.28. There are two
options for their relative orientation namely N-S (north–south), or S-N (south–north). Let
us now move a small coil of wire over the arrangement of magnets. Whenever, it crosses the
boundary of two magnets that have opposite orientations, there is a change in the magnetic
field. Hence, as a direct consequence of Faraday’s law, an EMF is induced across the two ends
of the coil. However, when there is no change in the orientation of the magnetic field, the EMF
induced across the ends of the coil is negligible. The transition in the orientation of the tiny
magnets corresponds to a logical 1 bit, and no transition represents a logical 0 bit. Thus, the
magnets in Figure 13.28 represent the bit pattern 0101. In principle, this is similar to the NRZI
encoding for I/O channels.

Since we encode data in transitions, we need to save blocks of data. Consequently, hard
disks save a block of data in a sector. A sector has traditionally between 512 bytes for hard
disks. It is treated as an atomic block, and an entire sector is typically read or written in one
go. The structure that contains the small coil, and passes over the magnets is known as the
read head.

Let us now look at writing data to the hard disk. In this case, the task is to set the
orientation of the magnets. We have another structure called the write head that contains a
tiny electromagnet. An electromagnet can induce magnetisation of a permanent magnet if it
passes over it. Secondly, the direction of magnetisation is dependent on the direction of the
current. If we reverse the direction of the current, the direction of magnetisation changes.

For the sake of brevity, we shall refer to the combined assembly of the read head, and write
head, as the head.

Structure of the Platter

A hard disk typically consists of a set of platters. A platter is a circular disk with a hole in
the middle. A spindle is attached to the platter through the circular hole in the middle. The
platter is divided into a set of concentric rings called tracks. A track is further divided into
fixed length sectors as shown in Figure 13.29.

Definition 160
A hard disk consists of multiple platters. A platter is a circular disk that is attached to a

703 © Smruti R. Sarangi

Track

Sector

Figure 13.29: The structure of a platter

spindle. A platter further consists of a set of concentric rings called tracks, and each track
consists of a set of sectors. A sector typically contains a fixed number of bytes irrespective
of the track.

Now, let us outline the basic operation of a hard disk. The platters are attached to a spindle.
During the operation of a hard disk, the spindle, and its attached platters are constantly in
rotation. Let us for the sake of simplicity assume a single platter disk. Now, the first step is
to position the head on the track that contains the desired data. Next, the head needs to wait
at this position till the desired sector arrives under the head. Since the platter is rotating at a
constant speed, we can calculate the amount of time that we need to wait based on the current
position of the head. Once the desired sector, arrives under the head, we can proceed to read
or write the data.

There is an important question that needs to be considered here. Do we have the same
number of sectors per track, or do we have a different number of sectors per track? Note that
there are technological limitations on the number of bits that can be saved per track. Hence, if
we have the same number of sectors per track, then we are effectively wasting storage capacity
in the tracks towards the periphery. This is because we are limited by the number of bits that
we can store in the track that is closest to the center. Consequently, modern hard disks avoid
this approach.

Let us try to store a variable number of sectors per track. Tracks towards the center contain
fewer sectors, and tracks towards the periphery contain more sectors. This scheme also has its
share of problems. Let us compare the innermost and outermost tracks, and let us assume that

© Smruti R. Sarangi 704

the innermost track contains N sectors, and the outermost track contains 2N sectors. If we
assume that the number of rotations per minute is constant, then we need to read data twice
as fast on the outermost track as compared to the innermost track. In fact for every track, the
rate of data retrieval is different. This will complicate the electronic circuitry in the disk. We
can explore another option, which is to rotate the disk at different speeds for each track, such
that the rate of data transfer is constant. In this case, the electronic circuitry is simpler, but the
sophistication required to run the spindle motor at a variety of different speeds is prohibitive.
Hence, both the solutions are impractical.

How about, combining two impractical solutions to make it practical !!! We have been
following similar approaches throughout this book. Let us divide the set of tracks into a set of
zones. Each zone consists of a consecutive set of m tracks. If we have n tracks in the platter,
then we have n/m zones. In each zone, the number of sectors per track is the same. The
platter rotates with a constant angular velocity for all the tracks in a zone. In a zone, data is
more densely packed for tracks that are closer to the center as compared to tracks towards the
periphery of the platter. In other words, sectors have physically different sizes for tracks in a
zone. This is not a problem since the disk drive assumes that it takes the same amount of time
to pass over each sector in a zone, and rotation at a constant angular velocity ensures this.

Figure 13.30 shows a conceptual breakup of the platter into zones. Note that the number of
sectors per track varies across zones. This method is known as Zoned-Bit Recording(ZBR). The
two impractical designs that we refrained from considering, are special cases of ZBR. The first
design assumes that we have one zone, and the second design assumes that each track belongs
to a different zone.

Zone 1

Zone 2

Zone 3

Figure 13.30: Zoned-Bit Recording

Let us now try to see why this scheme works. Since we have multiple zones, the storage
space wasted is not as high as the design with just a single zone. Secondly, since the number of

705 © Smruti R. Sarangi

zones is typically not very large, the motor of the spindle does not need to readjust its speed
frequently. In fact because of spatial locality, the chances of staying within the same zone are
fairly high.

Structure of the Hard Disk

Spindle

Platter

Head

Arm

Figure 13.31: The structure of a hard disk (source [har,])

Let us now put all the parts together and take a look at the structure of the hard disk
in Figure 13.31 and Figure 13.32. We have a set of platters connected to a single rotating
spindle, and a set of disk arms (one for each side of the platter) that contain a head at the
end. Typically, all the arms move together, and all the heads are vertically aligned on the same
cylinder. Here, a cylinder is defined as a set of tracks from multiple platters, which have the
same radius. In most hard disks only one head is activated at a point of time. It performs a
read or write access on a given sector. In the case of a read access, the data is transmitted
back to the drive electronics for post processing (framing, error correction), and then sent on
the bus to the processor through the bus interface.

Let us now consider some subtle points in the design of a hard disk (refer to Figure 13.32).
It shows two platters connected to a spindle, and each platter has two recording surfaces. The
spindle is connected to a motor (known as the spindle motor), which adjusts its speed depending
on the zone that we wish to access. The set of all the arms move together, and are connected
using a spindle to the actuator. The actuator is a small motor used for moving the arms clock
wise or anti-clockwise. The role of the actuator is to position the head of an arm on a given
track by rotating it clockwise or ant-clockwise a given number of degrees.

A typical disk drive in a desktop processor has a track density of about 10,000 tracks per
inch. This means that the distance between tracks is 2.5 µm, and thus the actuator has to be
incredibly accurate. Typically there are some markings on a sector indicating the number of
the track. Consequently, the actuator typically needs to make slight adjustments to come to

© Smruti R. Sarangi 706

Platter

Spindle

Spindle motor

Read/Write
head

Arm

Actuator

Drive
electronics

Bus
interface

Bus

Figure 13.32: Internals of a hard disk

the exact point. This control mechanism is known as servo control. Both the actuator and the
spindle motor are controlled by electronic circuits that are inside the chassis of the hard disk.
Once the actuator has placed the head on the right track, it needs to wait for the desired sector
to come under the head. A track has markings to indicate the number of the sector. The head
keeps reading the markings after its positioned on a track. Based on these markings it can
accurately predict when the desired sector will be underneath the head.

Along with the mechanical components, a hard disk has electronic components including
small processors. They receive and transmit data on the bus, schedule requests on the hard
disk, and perform error correction. The reader needs to appreciate the fact that we have just
scratched the surface in this book. A hard disk is an incredible feat of human engineering. The
hard disk can most of the time seamlessly tolerate errors, dynamically invalidate bad sectors
(sectors with faults), and remap data to good sectors. The reader is referred to [Jacob et al.,
2007] for further study.

Mathematical Model of a Hard Disk Access

Let us now construct a quick mathematical model for the time a request takes to complete its
access to the hard disk. We can divide the time taken into three parts. The first is the seek
time, which is defined as the time required for the head to reach the right track. Subsequently,
the head needs to wait for the desired sector to arrive under it. This time interval is known as
the rotational latency. Lastly, the head needs to read the data, process it to remove errors and
redundant information, and then transmit the data on the bus. This is known as the transfer
time. Thus, we have the simple equation.

707 © Smruti R. Sarangi

Tdisk access = Tseek + Trot latency + Ttransfer (13.8)

Definition 161

Seek Time The time required for the actuator to move the head to the right track.

Rotational Latency The time required for the desired sector to arrive under the head,
after the head is correctly positioned on the right track.

Transfer Time The time required to transfer the data from the hard disk to the processor.

Example 157
Assume that a hard disk has an average seek time of 12 ms, rotates at 600 rpm, and has
a bandwidth of 106 B/s. Find the average time to transfer 10,000 bytes of data (assuming
that the data is in consecutive sectors).
Answer: Tseek = 12 ms
Since the disk rotates at 600 rpm, it takes 100 ms per rotation. On an average, the rotational
latency is half this amount because the offset between the current position of the head, and
the desired offset is assumed to be uniformly distributed between 0◦ and 360◦. Thus, the
rotational latency(Trot latency) is 50 ms. Now, the time it takes to transfer 104 contiguous
bytes is 0.01s or 10 ms, because the bandwidth is 106 B/s.

Hence, the average time per disk access is 12 ms + 50 ms + 10 ms = 72 ms

13.8.2 RAID Arrays

Most enterprise systems have an array of hard disks because their storage, bandwidth, and
reliability requirements are very high. Such arrays of hard disks are known as RAID arrays
(Redundant Arrays of Inexpensive Disks). Let us review the design space of RAID based
solutions in this section.

Definition 162
RAID (Redundant Array of Inexpensive Disks) is a class of technologies for deploying large
arrays of disks. There are different RAID levels in the design space of RAID solutions.
Each level makes separate bandwidth, capacity, and reliability guarantees.

© Smruti R. Sarangi 708

RAID 0

Let us consider the simplest RAID solution known as RAID 0. Here, the aim is to increase
bandwidth, and reliability is not a concern. It is typically used in personal computers optimised
for high performance gaming.

The basic idea is known as data striping. Here, we distribute blocks of data across disks.
A block is a contiguous sequence of data similar to cache blocks. Its size is typically 512 B;
however, its size may vary depending on the RAID system. Let us consider a two disk system
with RAID 0 as shown in Figure 13.33. We store all the odd numbered blocks (B1, B3, . . .)
in disk 1, and all the even numbered blocks (B2, B4, . . .) in disk 2. If a processor has a page
fault, then it can read blocks from both the disks in parallel, and thus in effect, the hard disk
bandwidth is doubled. We can extend this idea and implement RAID 0, using N disks. The
disk bandwidth can thus be theoretically increased N times.

B1
B3
B5
B7
B9

B2
B4
B6
B8
B10

Figure 13.33: RAID 0

RAID 1

Let us now add reliability to RAID 0. Note that the process of reading and writing bits in a hard
disk is a mechanical process. It is possible that some bits might not be read or written correctly
because there might be a slight amount of deviation from ideal operation in the actuator, or the
spindle motor. Secondly, external electro-magnetic radiation, and cosmic particle strikes can
flip bits in the hard disk and its associated electronic components. The latter type of errors are
also known as soft errors. Consequently, each sector of the disk typically has error detecting
and correcting codes. Since an entire sector is read or written atomically, error checking and
correction is a part of hard disk access. We typically care about more catastrophic failures
such as the failure of an entire hard disk drive. This means that the there is break down in
the actuator, spindle motor, or any other major component that prevents us from reading or
writing to most of the hard disk. Let us consider disk failures from this angle. Secondly, let us
also assume that disks follow the fail stop model of failure. This means that whenever there is
a failure, the disks are not operational anymore, and the system is aware of it.

In RAID 1, we typically have a 2 disk system (see Figure 13.34), and we mirror data of one
disk on the other. They are essentially duplicates of each other. We are definitely wasting half
of our storage space here. In the case of reads, we can leverage this structure to theoretically

709 © Smruti R. Sarangi

double the disk bandwidth. Let us assume that we wish to read the blocks 1 and 3. In the case
of RAID 0, we needed to serialise the accesses, because both the blocks map to the same disk.
However, in this case, since each disk has a copy of all the data, we can read block 1 from disk
1, and read block 3 from disk 3 in parallel. Thus, the read bandwidth is potentially double that
of a single disk. However, the write bandwidth is still the same as that of a single disk, because
we need to write to both the disks. Note that here it is not necessary to read both the disks
and compare the contents of a block in the interest of reliability. We assume that if a disk is
operational, it contains correct data.

B1
B2
B3
B4
B5

B1
B2
B3
B4
B5

Figure 13.34: RAID 1

RAID 2

Let us now try to increase the efficiency of RAID 1. In this case, we consider a system of N
disks. Instead of striping data at the block level, we stripe data at the bit level. We dedicate a
disk for saving the parity bit. Let us consider a system with 5 disks as shown in Figure 13.35.
We have 4 data disks, and 1 parity disk. We distribute contiguous sequences of 4 bits in a
logical block across the 4 data disks. A logical block is defined as a block of contiguous data as
seen by software. Software should be oblivious of the fact that we are using a RAID system
instead of a single disk. All software programs perceive a storage system as an array of logical
blocks. Now, the first bit of a logical block is saved in disk 1, the second bit is saved in disk
2, and finally the fourth bit is saved in disk 4. Disk 5, contains the parity of the first 4 bits.
Each physical block in a RAID 2 disk thus contains a subset of bits of the logical blocks. For
example, B1 contains bit numbers 1, 5, 9, . . . of the first logical block saved in the RAID array.
Similarly, B2 contains bit numbers 2, 6, 10, To read a logical block, the RAID controller
assembles the physical blocks and creates a logical block. Similarly, to write a logical block, the
RAID controller breaks it down into its constituent physical blocks, computes the parity bits,
and writes to all the disks.

Reads are fast in RAID 2. This is because we can read all the 9 disks in parallel. Writes
are also fast, because we can write parts of a block to different disks, in parallel. RAID 2 is
currently not used because it does not allow parallel access to different logical blocks, introduces
complexity because of bit level striping, and every I/O request requires access to all the disks.
We would like to iterate again that the parity disk is not accessed on a read. The parity disk
is accessed on a write because its contents need to be updated. Its main utility is to keep the

© Smruti R. Sarangi 710

system operational if there is a single disk failure. If a disk fails, then the contents of a block
can be recovered by reading other blocks in the same row from the other disks, and by reading
the parity disk.

B1

B5
B9

B13
B17

B2

B6
B10
B14
B18

B3

B7

B11

B15
B19

B4

B8
B12

B16
B20

P1
P2
P3

P4
P5

Parity diskData disks

Striping

Figure 13.35: RAID 2

RAID 3

RAID 3 is almost the same as RAID 2. Instead of striping at the bit level, it stripes data at
the byte level. It has the same pros and cons as RAID 2, and is thus seldom used.

RAID 4

RAID 4 is designed on the same lines as RAID 2 and 3. It stripes data at the block level. It has
a dedicated parity disk that saves the parity of all the blocks on the same row. In this scheme, a
read access for a single block is not as fast as RAID 2 and 3 because we cannot access different
parts of a block in parallel. A write access is also slower for the same reason. However, we can
read from multiple blocks at the same time if they do not map to the same disk. We cannot
unfortunately do this for writes.

For a write access, we need to access two disks – the disk that contains the block, and the
disk that contains the parity. An astute reader might try to argue that we need to access all
the disks because we need to compute the parity of all the blocks in the same row. However,
this is not true. Let us assume that there are m data disks, and the contents of the blocks in
a row are B1 . . . Bm respectively. Then the parity block, P , is equal to B1 ⊕ B2 ⊕ . . . ⊕ Bm.
Now, let us assume that we change the first block from B1 to B′

1. The new parity is given by
P ′ = B′

1 ⊕B2 . . .⊕Bm. We thus have:

P ′ = B′
1 ⊕B2 . . .⊕Bm

= B1 ⊕B1 ⊕B′
1 ⊕B2 . . .⊕Bm

= B1 ⊕B′
1 ⊕ P

(13.9)

The results used in Equation 13.9 are: B1⊕B1 = 0 and 0⊕P ′ = P ′. Thus, to compute P ′,
we need the values of B1, and P . Hence, for performing a write to a block, we need two read

711 © Smruti R. Sarangi

accesses (for reading B1 and P), and two write accesses (for writing B′
1 and P ′) to the array of

hard disks. Since all the parity blocks are saved in one disk, this becomes a point of contention,
and the write performance becomes very slow. Hence, RAID 4 is also seldom used.

RAID 5

RAID 5 mitigates the shortcomings of RAID 4. It distributes the parity blocks across all the
disks for different rows as shown in Figure 13.36. For example, the 5th disk stores the parity for
the first row, and then the 1st disk stores the parity for the second row, and the pattern thus
continues in a round robin fashion. This ensures that no disk becomes a point of contention,
and the parity blocks are evenly distributed across all the disks.

Note that RAID 5 provides high bandwidth because it allows parallel access for reads, has
relatively faster write speed, and is immune to one disk failure. Hence, it is heavily used in
commercial systems.

B1

P2
B9
B13

B17

B2

B5
P3
B14
B18

B3

B6

B10

P4
B19

B4

B7
B11

B15
P5

P1
B8
B12
B16

B20

Striping

Figure 13.36: RAID 5

RAID 6

Sometimes, we might desire additional reliability. In this case, we can add a second parity
block, and distribute both the parity blocks across all the disks. In this case, a write to the
RAID array becomes slightly slower at the cost of higdher reliability. RAID 6 is mostly used in
enterprises that desire highly reliable storage. It is important to note that the two parity blocks
in RAID 6 are not a simple XOR of bits. The contents of the two parity blocks for each row
differ from each other, and are complex functions of the data. The reader requires background
in field theory to understand the operation of the error detection blocks in RAID 6.

13.8.3 Optical Disks – CD, DVD, Blu-ray

We typically use optical disks such as CDs, DVDs, and Blu-ray disks to store videos, music,
and software. As a matter of fact, optical disks have become the default distribution media
for videos and music (other than the internet of course). Consequently, almost all desktops
and laptops have a built-in CD or DVD drive. The reader needs to note that the physics of
optical disks is very different from that of hard disks. We read the data stored in a hard disk by

© Smruti R. Sarangi 712

B1
P2B

P3A
B13

B17

B2

B5
P3B

P4A
B18

B3

B6
B9

P4B
P5A

B4

B7
B10

B14

P5B

P1A
B8
B11
B15

B19

P1B
Striping

P2A
B12
B16

B20

Figure 13.37: RAID 6

measuring the change in magnetic field due to the relative motion of tiny magnets embedded in
the platters of the hard disk. In comparison, in an optical disk, we read data by using photo-
detectors (light detectors) to measure the intensity of optical signals reflected off the surface of
the disk.

The reader needs to note that CDs (compact disks), DVDs (Digital Video Disks, or Digital
Versatile Disks), and Blu-ray disks, basically use the same technology. CDs represent first
generation optical disks, DVDs represent second generation optical disks, and Blu-ray disks
are representative of the third generation. Successive generations are typically faster and can
provide more storage capacity. Let us now consider the physics of optical storage media.

Basic Physics of Optical Storage Media

An optical disk is shown in Figure 13.38. It is a circular disk, and is typically 12 cm in diameter.
It has a hole in the center that is meant for attaching to a spindle (similar to hard disks). The
hole is 1.5 cm in diameter, and the entire optical disk is 1.2 mm thick. An optical disk is made
of multiple layers. We are primarily concerned with the reflective layer that reflects laser light
to a set of detectors. We encode data bits by modifying the surface of the reflective layer. Let
us elaborate.

The data is saved in a spiral pattern that starts from the innermost track, covers the entire
surface of the disk, and ends at the outermost track. The width of the track, and the spacing
between the tracks depends on the optical disk generation. Let us outline the basic mechanism
that is used to encode data on the spiral path. The spiral path has two kinds of regions namely
lands and pits. Lands reflect the optical signal, and thus represent the physical bit, 1. Lands are
represented by a flat region in the reflective layer. In comparison, pits have lower reflectivity,
and the reflected light is typically out of phase with the light reflected off the lands, and thus
they represent the physical bit, 0. A pit is a depression on the surface of the reflective layer.
The data on a CD is encoded using the NRZI encoding scheme (see Section 13.2.7). We infer
a logical 1 when there is a pit to land, or land to pit transition. However, if there are no
transitions, then we keep on inferring logical 0s.

Optical Disk Layers

An optical disk typically has four layers (refer to Figure 13.39).

713 © Smruti R. Sarangi

Figure 13.38: An optical disk (source [dis,])

Polycarbonate Layer The polycarbonate layer is a layer of polycarbonate plastic. Lands
and pits are created at its top using an injection moulding process.

Reflective Layer The reflective layer consists a thin layer of aluminium or gold that reflects
the laser light.

Lacquer Layer The lacquer based layer on top of the reflective layer protects the reflective
layer from scratches, and other forms of accidental damage.

Surface Layer Most vendors typically add a plastic layer over the lacquer layer such that it
is possible to add a label to the optical disk. For example, most optical disks typically
have a poster of the movie on their top surface.

The optical disk reader sends a laser signal that passes through the polycarbonate layer and
gets focused on the lands or pits. In CDs, the polycarbonate layer is typically very deep and
it occupies most of the volume. In comparison the polycarbonate layer occupies roughly half
the volume in DVDs. For third generation optical disks the reflective layer is very close to the
bottom surface.

Plastic surface
Lacquer layer
Reflective layer

Polycarbonate layerPit

Land

Figure 13.39: Optical disk layers

© Smruti R. Sarangi 714

Optical Disk Reader

Spindle

Actuator
motor

Rails

Laser assembly

Spindle
motor

Drive
electronics

Bus
interface

Figure 13.40: Optical disk reader

An optical disk reader is very similar to a hard disk drive (refer to Figure 13.40). The
optical disk rotates on a spindle. The label of the optical disk is oriented towards the top. The
actuator and head assembly are located at the bottom. Unlike a hard disk that uses a rotary
actuator (rotating arm), an optical disk drive uses a linear actuator [Abramovitch, 2001] that
slides radially in or out. Figure 13.40 shows a laser assembly that slides on a set of rails. The
laser assembly is connected to an actuator via a system of gears and mechanical components.
The actuator motor can very precisely rotate its spindle, and the system of gears translate
rotational motion into linear motion of the laser assembly.

The head is a part of the laser assembly. The head typically contains a light source (laser)
that is focused on the reflective layer through a system of lenses. The reflective layer then
reflects the light, and a part of the reflected light gets captured by the optical disk head.
The reflected light is converted to electrical signals within the head by photodetectors. The
sequence of electrical signals are processed by dedicated circuitry in the drive, and converted
to a sequence of logical bits. Similar to hard disks, optical drives perform error detection and
correction.

One important point of difference from hard disks is that the optical disk rotates at constant
linear velocity. This means that pits and lands traverse under the head at the same velocity
irrespective of the track. In other words, the data transfer rate is the same irrespective of the
position of the head. To support this feature, it is necessary to change the rotational speed of the
spindle according to the position of the head. When the head is travelling towards the periphery

715 © Smruti R. Sarangi

of the disk, it is necessary to slow the disk down. The spindle motor has sophisticated support
for acceleration and deceleration in optical drives. To simplify the logic, we can implement
zoning here similar to the zoning in hard disk drives (see Section 13.8.1). However, in the case
of optical drives, zoning is mostly used in high performance drives.

Advanced Features

Most audio, video, and software CDs/DVDs are written once by the original vendors, and are
sold as read-only media. Users are not expected to overwrite the optical storage media. Such
kind of optical disks use 4 layers as described in Figure 13.39. Optical disks are also used
to archive data. Such disks are typically meant to be written once, and read multiple times
(CD-R and DVD-R formats). To create such recordable media, the polycarbonate layer is
coated with an organic dye that is sensitive to light. The organic dye layer is coated with the
reflective metallic layer, the lacquer layer, and the surface layer. While writing the CD, a high
powered write-laser focuses light on the dye and changes its reflectivity. Lands are regions of
high reflectivity, and pits are regions of low reflectivity. Such write-once optical media were
superseded by optical media (CDs or DVDs) that can be read and written many times. Here,
the reflective layer is made of a silver-indium-antimony-tellurium alloy. When it is heated to
500◦C, spots in the reflective layer lose their reflectivity because the structure of the alloy
becomes amorphous. To make the spots reflective they are heated to 200◦C such that the state
of the alloy changes to the polycrystalline state. We can thus encode lands and pits in the
reflective layer, erase them, and rewrite them as required.

Modern disks can additionally have an extra layer of lands and pits. The first layer is
coated with a chemical that is partially transparent to light. For example, pits can be coated
with fluorescent material. When irradiated with red light they glow and emit light of a certain
wavelength. However, most of the red light passes to the second layer, and then interacts with
the fluorescent material in the pits, which is different from the material in the first layer. By
analysing the nature of reflected light, and by using sophisticated image filtering algorithms, it
is possible to read the encoded data in both the layers. A simpler solution is to encode data
on both sides of the optical disk. This is often as simple as taking two single side disks and
pasting their surface layers together. To read such a disk, we need two laser assemblies.

Comparison of CDs, DVDs, and Blu-ray Disks

CD DVD Blu-ray

Generation 1st 2nd 3rd

Capacity 700 MB 4.7 GB 25 GB

Uses Audio Video High definition Video

Laser wavelength 780 nm 650 nm 405 nm

Raw 1X transfer rate 153 KB/s 1.39 MB/s 4.5 MB/s

Table 13.9: Comparison between CD, DVD, and Blu-ray disks

Refer to Table 13.9 for a comparison of CD, DVD, and Blu-ray disks.

© Smruti R. Sarangi 716

13.8.4 Flash Memory

Hard disks, and optical drives are fairly bulky, and need to be handled carefully because they
contain sensitive mechanical parts. An additional shortcoming of optical storage media is that
they are very sensitive to scratches and other forms of minor accidental damage. Consequently,
these devices are not ideally suited for portable and mobile applications. We need a storage
device that does not consist of sensitive mechanical parts, can be carried in a pocket, can be
attached to any computer, and is extremely durable. Flash drives such as USB pen drives
satisfy all these requirements. A typical pen drive can fit in a wallet, can be attached to all
kinds of devices, and is extremely robust and durable. It does not lose its data when it is
disconnected from the computer. We have flash based storage devices in most portable devices,
medical devices, industrial electronics, disk caches in high end servers, and small data storage
devices. Flash memory is an example of an EEPROM (Electrically Erasable Programmable
Read Only Memory) or EPROM (Erasable Programmable Read Only Memory). Note that
traditionally EPROM based memories used ultraviolet light for erasing data. They have been
superseded by flash based devices.

Let us look at flash based technology in this section. The basic element of storage is a
floating gate transistor.

The Floating Gate Transistor

Source Drain
SiO2 Floating gate

Control gate

Symbol

(a) (b)

Figure 13.41: A floating gate transistor

Figure 13.41 shows a floating gate transistor. The figure shows a regular NMOS transistor
with two gates instead of one. The gate on top is known as the control gate, and is equivalent to
the gate in normal MOS transistors. The gate below the control gate is known as the floating
gate. It is surrounded on all sides by an SiO2 based electrical insulation layer. Hence, the
floating gate is electrically isolated from the rest of the device. By some means if we are able to
implant a certain amount of charge in the floating gate, then the floating gate will maintain its
potential for a very long time. In practice, there is a negligible amount of current flow between
the floating gate and the rest of the components in the floating gate transistor under normal
conditions. Let us consider two scenarios. In the first scenario, the floating gate is not charged.
In this case, the floating gate transistor acts as a regular NMOS transistor. However, if the

717 © Smruti R. Sarangi

floating gate has accumulated electrons containing negative charge, then we have a negative
potential gradient between the channel and the control gate. Recall that to create a n-type
channel in the transistor, it is necessary to apply a positive voltage to the gate, where this
voltage is greater than the threshold voltage. In this case the threshold voltage is effectively
higher because of the accumulation of electrons in the floating gate. In other words, to induce
a channel in the substrate, we need to apply a larger positive voltage at the control gate.

Let the threshold voltage when the floating gate is not charged with electrons be VT , and
let the threshold voltage when the floating gate contains negative charge be V +

T (V +
T > VT). If

we apply a voltage that is in between VT and V +
T to the control gate, then the NMOS transistor

conducts current if no charge is stored in the floating gate (threshold voltage is VT). If the
threshold voltage of the transistor is equal to V +

T , then the transistor remains in the off state.
It thus does not conduct any current. We typically assume that the default state (no charge on
the floating gate) corresponds to the 1 state. When the floating gate is charged with electrons,
we assume that the transistor is in the 0 state. When we set the voltage at the control gate to
a value between VT and V +

T , we enable the floating gate transistor.

Now, to write a value of 0 or program the transistor, we need to deposit electrons in the
floating gate. This can be done by applying a strong positive voltage to the control gate, and
a smaller positive voltage to the drain terminal. Since there is a positive potential difference
between the drain and source, a channel gets established between the drain and source. The
control gate has an even higher voltage, and thus the resulting electric field pulls electrons from
the n-type channel and deposits some of them in the floating gate.

Similarly, to erase the stored 0 bit, we apply a strong negative voltage between the control
gate and the source terminal. The resulting electric field pulls the electrons away from the
floating gate into the substrate, and source terminal. At the end of this process, the floating
gate loses all its negative charge, and the flash device comes back to its original state. It now
stores a logical 1.

To summarise, programming a flash cell means writing a logical 0, and erasing it means
writing a logical 1. There are two fundamental ways in which we can arrange such floating gate
transistors to make a basic flash memory cell. These methods are known as NOR flash and
NAND flash respectively.

NOR FLash

Figure 13.42 shows the topology of a two transistor NOR flash cell that saves 2 bits. Each
floating gate transistor is connected to a bit line on one side, and to the ground on the other
side. Each of the control gates are connected to distinct word lines. After we enable a floating
gate transistor it pulls the bit line low if it stores a logical 1, otherwise it does not have any
effect because it is in the off state. Thus the voltage transition in the bit line is logically the
reverse of the value stored in the transistor. The bit line is connected to a sense amplifier that
senses its voltage, flips the bit, and reports it as the output. Similarly, for writing and erasing
we need to set the word lines, bit lines, and source lines to appropriate voltages. The advantage
of NOR flash is that it is very similar to a traditional DRAM cell. We can build an array of
NOR flash cells similar to a DRAM array. The array based layout allows us to access each
individual location in the array uniquely.

© Smruti R. Sarangi 718

WL1

WL2

Bit
line

Figure 13.42: NOR Flash Cell

NAND Flash

Bit line
selectWL4 WL3 WL2 WL1WL8 WL7 WL6 WL5

Ground
select

Bit line

Figure 13.43: NAND Flash Cell

A NAND flash cell has a different topology. It consists of a set of NMOS floating gate
transistors in series similar to series connections in CMOS NAND gates (refer to Figure 13.43).
There are two dedicated transistors at both ends known as the bit line select transistor, and
ground select transistor. A typical array of transistors connected in the NAND configuration
contains 8 or 16 transistors. To read the value saved in a certain transistor in a NAND flash
array, there are three steps. The first step is to enable the ground select, and bit line transistors.
The second step is to turn on the rest of the floating gate transistors other than the one we
wish to read by setting their word line voltages to V +

T . Lastly, we read a specific transistor by
setting its word line voltage to some value between VT and V +

T . If the cell is not programmed
(contains a 1), it drives the bit line low, otherwise it does not change the voltage on the bit
line. Sense amplifiers infer the value of the logical bit saved in the transistor. Such arrays of

719 © Smruti R. Sarangi

floating gate transistors known as NAND flash cells are connected in a configuration similar to
NOR flash cells.

This scheme might look complicated at the outset; however, it has a lot of advantages.
Consequently, most of the flash devices in use today use NAND flash memories instead of NOR
flash memories. The bit storage density is much higher. A typical NAND flash cell uses a lesser
number of wires than a NOR flash cell because all the floating gate transistors are directly
connected to each other, and there is just one connection to the bit line and ground terminal.
Hence, NAND flash memories have at least 40-60% higher density as compared to NOR flash
cells. Let us thus only consider NAND flash memories from now on, and refrain from discussing
NOR flash memories.

Blocks and Pages

The most important point to note here is that a (NAND) flash memory device is not a memory
device, it is a storage device. Memory devices provide byte level access. In comparison, storage
devices typically provide block level access, where one block can be hundreds of kilobytes long.
Due to temporal and spatial locality in accesses to storage media, the working set of most
programs is restricted to a few blocks. Secondly, to reduce the number of accesses to storage
devices, most operating systems have in-memory storage caches such as hard disk caches. Most
of the time, the operating system reads and writes to the in-memory caches. This reduces the
I/O access time.

However, after certain events it is necessary to synchronise the cache with the underlying
storage device. For example, after executing a sync() system call in Linux, the hard disk cache
writes its updates to the hard disk. Depending on the semantics of the operating system, and file
system, writes are sent to the underlying storage media after a variety of events. For example,
when we right click on the icon for an USB drive in the “My Computer” screen on Windows
and select the eject option, the operating system ensures that all the outstanding write requests
are sent to the USB device. Most of the time users simply unplug an USB device. This practice
can occasionally lead to data corruption, and unfortunately your author has committed this
mistake several times. This is because, when we pull out an USB drive, some uncommitted
changes are still present in the in-memory cache. Consequently, the USB pen drive contains
stale and possibly half-written data.

Data in NAND flash devices is organised in the granularity of pages and blocks. A page
of data typically contains 512 – 4096 bytes (in powers of 2). Most NAND flash devices can
typically read or write data at the granularity of pages. Each page additionally has extra bits
for error correction based on CRC codes. A set of pages are organised into a block. Blocks can
contain 32 – 128 pages, and their total size ranges from 16 – 512 KB. Most NAND flash devices
can erase data at the level of blocks. Let us now look at some of the salient points of NAND
flash devices.

Program/Erase Cycles

Writing to a flash device essentially means writing a logical 0 bit since by default each floating
gate transistor contains a logical 1. In general, after we have written data to a block, we
cannot write data again to the same block without performing additional steps. For example,
if we have written 0110 to a set of locations in a block, we cannot write 1001 to the same

© Smruti R. Sarangi 720

set of locations without erasing the original data. This is because, we cannot convert a 0 to
a 1, without erasing data. Erasing is a slow operation, and consumes a lot of power. Hence,
the designers of NAND flash memories decided to erase data at large granularities, i.e., at the
granularity of a block. We can think of accesses to flash memory as consisting of a program
phase, where data is written, and an erase phase, where the data stored in all the transistors of
the block is erased. In other words, after the erase phase, each transistor in the block contains
a logical 1. We can have an indefinite number of read accesses between the program phase, and
the erase phase. A pair of program and erase operations is known as a program/erase cycle, or
P/E cycle.

Unfortunately, flash devices can endure a finite number of P/E cycles. As of 2013, this
number is between 100,000 to 1 million. This is because each P/E cycle damages the silicon
dioxide layer surrounding the floating gate. There is a gradual breakdown of this layer, and
ultimately after hundreds of thousands of P/E cycles it does not remain an electrical insulator
anymore. It starts to conduct current, and thus a flash cell loses its ability to hold charge. This
gradual damage to the insulator layer is known as wear and tear. To mitigate this problem,
designers use a technique called wear levelling.

Wear Levelling

The main objective of wear levelling is to ensure that accesses are symmetrically distributed
across blocks. If accesses are non-uniformly distributed, then the blocks that receive a large
number of requests will wear out faster, and develop faults. Since data accesses follow both
temporal and spatial locality we expect a small set of blocks to be accessed most often. This
is precisely the behaviour that we wish to prevent. Let us further elaborate with an example.
Consider a pen drive that contains songs. Most people typically do not listen to all the songs
in a round robin fashion. Instead they most of the time listen to their favourite songs. This
means that a few blocks that contain their favourite songs are accessed most often, and these
blocks will ultimately develop faults. Hence, to maximise the lifetime of the flash device, we
need to ensure that all the blocks are accessed with roughly the same frequency. This is the
best case scenario, and is known as wear levelling.

The basic idea of wear levelling is that we define a logical address and a physical address
for a flash device. A physical address corresponds to the address of a block within the flash
device. The logical address is used by the processor and operating system to refer to data in the
flash drive. We can think of the logical address as virtual memory, and the physical address as
physical memory. Every flash device contains a circuit that maps logical addresses to physical
addresses. Now, we need to ensure that accesses to blocks are uniformly distributed. Most
flash devices have an access counter associated with each block. This counter is incremented
once every P/E cycle. Once the access count for a block exceeds the access counts of other
blocks by a predefined threshold, it is time to swap the contents of the frequently accessed block
with another less frequently accessed block. Flash devices use a separate temporary block for
implementing the swap. First the contents of block 1 are copied to it. Subsequently, block 1
is erased, and the contents of block 2 are copied to block 1. The last step is to erase block 2,
and copy the contents of the temporary block to it. Optionally, at the end, we can erase the
contents of the temporary block. By doing such periodic swaps, flash devices ensure that no
single block wears out faster than others. The logical to physical block mapping needs to be

721 © Smruti R. Sarangi

updated to reflect the change.

Definition 163
A technique to ensure that no single block wears out faster than other blocks is known as
wear levelling. Most flash devices implement wear levelling by swapping the contents of a
block that is frequently accessed with a block that is less frequently accessed.

Read Disturbance

Another reliability issue in flash memories is known as read disturbance. If we read the contents
of one page continuously, then the neighbouring transistors in each NAND cell start getting
programmed. Recall that the control gate voltage of the neighbouring transistors needs to be
greater than V +

T such that they can pass current. In this case, the voltage of the gate is not
as high as the voltage that is required to program a transistor, and it also lasts for a shorter
duration. Nonetheless, a few electrons do accumulate in the floating gate. After thousands of
read accesses to just one transistor, the neighbouring transistors start accumulating negative
charge in their floating gates, and ultimately get programmed to store a 0 bit.

To mitigate this problem, most designs have a read counter with each page or block. If the
read counter exceeds a certain threshold, then the flash controller needs to move the contents
of the block to another location. Before copying the data, the new block needs to be erased.
Subsequently, we transfer the contents of the old block to the new block. In the new block, all
the transistors that are not programmed start out with a negligible amount of negative charge
in their floating gates. As the number of read accesses to the new block increases, transistors
start getting programmed. Before we reach a threshold, we need to migrate the block again.

13.9 Summary and Further Reading

13.9.1 Summary

Summary 13

1. The I/O system connects the processor to the I/O devices. The processor and all the
chips for processing I/O data (chipset), are attached to a printed circuit board known
as the motherboard. The motherboard also contains ports (hardware connectors) for
attaching I/O devices.

(a) The most important chips in the chipset are known as the North Bridge and
Soutbridge chips in Intel-based systems.

(b) The North Bridge chip connects the processor to the graphics card, and main
memory.

© Smruti R. Sarangi 722

(c) The South Bridge chip is connected to the North Bridge chip and a host of I/O
and storage devices such as the keyboard, mouse, hard disk, and network card.

2. Most operating system define two basic I/O operations namely read and write. An
I/O request typically passes from the application to the I/O device through the kernel,
device driver, the processor, and elements of the I/O system.

3. We divide the functionality of the I/O system into 4 layers.

(a) The physical layer defines the electrical specifications, signalling and timing pro-
tocols of a bus. It is further divided into two sublayers namely the transmission
sublayer, and the synchronisation sublayer.

(b) The data link layer gets a sequence of logical bits from the physical layer, and then
performs the tasks of framing, buffering, and error correction. If multiple devices
want to access the bus, then the process of scheduling the requests is known as
arbitration. The data link layer implements arbitration, and also has support for
I/O transactions (sequence of messages between sender and receiver), and split
transactions (transactions divided into multiple mini transactions).

(c) The network layer helps to route data from the processor to I/O devices and back.

(d) The protocol layer is concerned with implementing an entire I/O request end-to-
end.

4. Physical Layer:

(a) Transmission Sublayer Protocols: active high, active low, return to zero (RZ),
non return to zero (NRZ), non return to zero inverted (NRZI), and Manchester
encoding.

(b) Synchronisation Sublayer Protocols: synchronous (same clock for both ends),
mesochronous (fixed phase delay), plesiochronous (slow drift in the clock), source
synchronous (clock passed along with the data), and asynchronous (2 phase hand-
shake, and 4 phase handshake).

5. Data Link Layer

(a) Framing protocols: bit stuffing, pauses, bit count

(b) Error Detection/ Correction: parity, SEC, SECDED, CRC

(c) Arbitration: centralised, daisy chain (supports priority, and notion of tokens)

(d) Transaction: single transaction (example, DRAM bus), split transaction (break
a transaction into smaller transactions)

6. Network Layer

(a) I/O Mapped I/O: Each I/O port is mapped to a set of registers that have unique
addresses. The in and out instructions are used to read and write data to the
ports respectively.

723 © Smruti R. Sarangi

(b) Memory Mapped I/O: Here, we map the I/O ports to the virtual address space.

7. Protocol Layer:

(a) Polling: Keep querying the device for a change in its state.

(b) Interrupts: The device sends a message to the processor, when its status changes.

(c) DMA (Direct Memory Access): Instead of transferring data from an I/O device
to main memory by issuing I/O instructions, the device driver instructs the DMA
engine to transfer a chunk of data between I/O devices and main memory. The
DMA engine interrupts the processor after it is done.

8. Case Studies:
Protocol Usage Salient Points

PCI Express motherboard bus high speed asynchronous bus, sup-
ports multiple lanes

SATA storage devices half duplex, asynchronous bus, sup-
ports low level commands on storage
devices

SAS storage devices full duplex, asynchronous bus, back-
ward compatible with SATA, exten-
sive SCSI command set

USB peripherals single bit, half duplex, asynchronous
bus. Extensive support for all
kinds of traffic (bulk, interrupt, and
isochronous).

FireWire peripherals full duplex, data strobe encoding.
Peripherals organised as a computer
network with a leader node.

9. Storage Devices: Hard Disk

(a) In a hard disk we encode data by changing the relative orientations of tiny mag-
nets on the surface of the platter.

(b) We group a set of typically 512 bytes into a sector. On a platter, sectors are
arranged in concentric circles known as tracks.

(c) The head of a hard disk first needs to move to the right track (seek time), then wait
for the correct sector to arrive under the head (rotational latency). Finally, we
need to transfer the data to the processor after post processing (transfer latency).

10. Storage Devices: Optical disc

(a) The surface of an optical disc contains flat region (lands), and depressions (pits).
The pits have lower reflectivity.

© Smruti R. Sarangi 724

(b) Optical discs rotate on a spindle similar to a platter in a hard disk. The optical
head focuses a laser light on the surface of the disc, and then an array of pho-
todetectors analyse the reflected light. A transition between a pit and a land (or
vice versa) indicates a logical 1. Otherwise, we read a logical 0.

(c) CDs (compact discs) are first generation optical discs, DVDs are second gener-
ation optical discs, and Blu-Ray discs are third generation optical discs.

11. Storage Devices: Flash Memory

(a) Flash memory contains a floating gate transistor that has two gates – control and
floating. If the floating gate has accumulated electrons then the transistor stores
a logical 0 (else it stores a logical 1).

(b) We program (set to 0) a floating gate transistor by applying a high positive voltage
pulse to the control gate. Likewise, we erase the value when we apply a pulse
with the opposite polarity.

(c) Floating gate transistors can be connected in the NAND and NOR configurations.
The NAND configuration has much higher density and is thus more commonly
used.

(d) While designing flash devices we need to perform wear levelling, and take the
phenomenon of read disturbance into account.

13.9.2 Further Reading

For the latest designs of motherboards, and chipsets, the most accurate and up to date source
of information is the vendor’s website. Most vendors such as Intel and AMD post the details
and configurations of their motherboards and chipsets after they are released. However, they
typically do not post a lot of details about the architecture of the chips. The reader can refer to
research papers for the architectural details of the AMD Opteron North Bridge chip [Conway
and Hughes, 2007], Intel Blackford North Bridge chip [Radhakrishnan et al., 2007], and AMD
North Bridge chip [Owen and Steinman, 2008] for the Griffin processor family. The book by
Dally and Poulton [Dally and Poulton, 1998] is one of the best sources for information on the
physical layer, and is a source of a lot of information presented in this book. Other books on
digital communication [Proakis and Salehi, 2007, Sklar, 2001] are also excellent resources for
further reading. Error control codes are mostly taught in courses on coding and information
theory. Hence, for a deeper understanding of error control codes, the reader is referred to
[Ling and Xing, 2004, Cover and Thomas, 2013]. For a detailed description of the Intel’s I/O
architecture and I/O ports, we shall point the reader to Intel’s software developer manuals at
[int,]. The best sources for the I/O protocols are their official specifications – PCI Express [pci,
], SATA [sat,], SCSI and SAS [scs,], USB [usb,], and FireWire [fir,]. The book on memory
systems by Jacob, Ng, and Wang [Jacob et al., 2007] is one of the best resources for additional
information on hard disks, and DRAM memories. They explain the structure of a hard disk,
and its internals in great detail. The official standards for compact discs are documented in
the rainbow books. Each book in this collection contains the specifications of a certain type

725 © Smruti R. Sarangi

of optical disc. One of the earliest and most influential books in this collection is the Red
Book [red,] that contains the specifications for audio CDs. The latest DVD standards are
available from http://www.dvdforum.org, and the latest Blu Ray standards are available at
the official website of the Blu Ray Disc Association (http://www.blu-raydisc.com/en).

Exercises

Overview of the I/O System

Ex. 1 — What are the roles of the North Bridge and South Bridge chips?

Ex. 2 — What is the role of the chipset in a motherboard?

Ex. 3 — Describe the four layers in the I/O system.

Ex. 4 — Why is it a good idea to design a complex system as a sequence of layers?

Physical Layer

Ex. 5 — What is the advantage of LVDS signalling?

Ex. 6 — Draw the circuit diagram of a LVDS transmitter and receiver.

Ex. 7 — Assume that we are transmitting the bit sequence: 01101110001101. Show the
voltage on the bus as a function of time for the following protocols: RZ, NRZ, Manchester,
NRZI.

Ex. 8 — What is the advantage of the NRZI protocol over the NRZ protocol?

* Ex. 9 — Draw the circuit diagram of the receiver of a plesiochronous bus.

* Ex. 10 — What are the advantages of a source synchronous bus?

* Ex. 11 — Why is it necessary to avoid transitions in the keep-out region?

Ex. 12 — Differentiate between a 2-phase handshake, and a 4-phase handshake?

* Ex. 13 — Why do we set the strobe after the data is stable on the bus?

** Ex. 14 — Design the circuit for a tunable delay element.

Data Link, Network, and Protocol Layer

Ex. 15 — What are the different methods for demarcating frames?

Ex. 16 — Consider a 8-5 SECDED code. Encode the message: 10011001.

http://www.dvdforum.org
http://www.blu-raydisc.com/en)

© Smruti R. Sarangi 726

** Ex. 17 — Construct a code that can detect 3 bit errors.

** Ex. 18 — Construct a fully distributed arbiter. It should not have any central node that
schedules requests.

Ex. 19 — What is the advantage of split transaction buses?

Ex. 20 — How do we access I/O ports?

Ex. 21 — What is the benefit of memory mapped I/O?

Ex. 22 — What are the various methods of communication between an I/O device and the
processor? Order them in the increasing order of processor utilisation.

Ex. 23 — Assume that for a single polling operation, a processor running at 1 MHz takes
200 cycles. A processor polls a printer 1000 times per minute. What percentage of time does
the processor spend in polling?

Ex. 24 — When is polling more preferable than interrupts?

Ex. 25 — When are interrupts more preferable than polling?

Ex. 26 — Explain the operation of the DMA controller.

Hard Disks

Ex. 27 — What is the advantage of zoned recording?

Ex. 28 — Describe the operation of a hard disk.

Ex. 29 — We have a hard disk with the following parameters:

Seek Time 50 ms

Rotational Speed 600 RPM

Bandwidth 100 MB/s

(a) How long will it take to read 25 MB on an average if 25 MB can be read in one pass.

(b) Assume that we can only read 5 MB in one pass. Then, we need to wait for the platter
to rotate by 360◦ such that the same sector comes under the head again. Now, we can
read the next chunk of 5 MB. In this case, how long will it take to read the entire 25MB
chunk?

* Ex. 30 — Typically, in hard disks, all the heads do not read data in parallel. Why is this
the case?

Ex. 31 — Let us assume that we need to read or write long sequences of data. What is the
best way of arranging the sectors on a hard disk? Assume that we ideally do not want to change
tracks, and all the tracks in a cylinder are aligned.

727 © Smruti R. Sarangi

* Ex. 32 — Now, let us change the assumptions in the previous exercise. Assume that it
is faster to move to the next track on the same recording surface, than starting to read from
another track in the same cylinder. With these assumptions, how should we arrange the sectors?
[NOTE: The question is not as easy as it sounds.]

Ex. 33 — Explain the operation of RAID 0,1,2,3,4,5, and 6.

Ex. 34 — Consider 4 disks D0, D1, D2, D3 and a parity disk P using RAID 4. The following
table shows the contents of the disks for a given sector address, S, which is the same across all
the disks. Assume the size of a block to be 16 bits.

D0 D1 D2 D3

0xFF00 0x3421 0x32FF 0x98AB

Compute the value of the parity block? Now the contents of D0 are changed to 0xABD1. What
is the new value of the parity block?

Ex. 35 — Assume that we want to read a block as fast as possible, and there are no parallel
accesses. Which RAID technology should we choose?

Ex. 36 — What is the advantage of RAID 5 over RAID 4?

Optical and Flash Drives

Ex. 37 — What is the main difference between a CD and DVD?

Ex. 38 — How do we use the NRZI encoding in optical drives?

* Ex. 39 — What is the advantage of running a drive at constant linear velocity over running
it at constant angular velocity?

* Ex. 40 — For an optical drive that runs at constant linear velocity, what is the relationship
between the angular velocity, and the position of the head?

Ex. 41 — What are the basic differences between NAND and NOR flash?

Ex. 42 — Explain wear levelling, and read disturbance? How are these issues typically han-
dled in modern flash drives?

Design Problems

Ex. 43 — Read more about the Hypertransport™, Intel Quickpath, Infiniband™, and Myrinet®

protocols? Try to divide their functionality into layers as we have presented in this chapter.

© Smruti R. Sarangi 728

Part IV

Appendix

729

A
Case Studies of Real Processors

Let us now look at the design of some real processors such that we can put all the concepts that
we have learned up till now in a practical perspective. We shall study embedded (for smaller
mobile devices), and server processors of three major processor companies namely ARM, AMD,
and Intel. Let us start with a disclaimer. The aim of this section is not to compare and contrast
the design of processors across the three companies, or even between different models of the
same company. Every processor is designed optimally for a certain market segment with certain
key business decisions in mind. Hence, our focus in this section would be to study the designs
from a technical perspective, and appreciate the nuances of the design.

A.1 ARM® Processors

Let us now describe the design of ARM processors. The most important point to note about
the ARM processors (popularly referred as ARM cores) is that ARM designs the processors,
and then licenses the design to customers. Unlike other vendors such as Intel or IBM, ARM
does not manufacture silicon chips. Instead, vendors such as Texas Instruments and Qualcomm
buy the license to use the design of ARM cores, and add additional components. They then
give a contract to semiconductor manufacturing companies, or use their own manufacturing
facilities to manufacture an entire SOC(System on Chip) in silicon.

ARM has three processor lines for its latest (as of 2012) ARMv8 architecture. The first
line of processors is known as the ARM® Cortex® -M series. These processors are mainly
designed to be used as micro-controllers in embedded applications such as medical devices,
automobiles, and industrial electronics. The main focus behind the design of such processors
is power efficiency, and cost. In this section, we shall describe the ARM Cortex-M3 processor
that has a three stage pipeline.

The second line of processors is known as the ARM® Cortex® -R series. These processors
are designed for real time applications. The main focus here is reliability, high speed and real
time response. They are not meant to be used by consumer electronics devices such as smart

731

© Smruti R. Sarangi 732

phones. The Cortex-R series processors do not have support for running operating systems
that use virtual memory.

The ARM® Cortex® -A series processors are designed to run regular user applications on
smart phones, tablets, and a host of high end embedded devices. These ARM cores typically
have complex pipelines, support for vector operations, and can run complex operating systems
that require hardware support for virtual memory. We shall study the Cortex-A8 and Cortex-
A15 processors in this section.

A.1.1 ARM® Cortex® -M3

System Design

Let us begin with the ARM Cortex-M series processors that have been designed primarily for
the embedded processor market. For such embedded processors, energy efficiency and cost
are more important than raw performance. Consequently, ARM engineers designed a 3 issue
pipeline devoid of very complicated features.

The Cortex-M3 supports a basic version of the ARMv7-M instruction set as described in
Chapter 4. It is typically attached to other components using the ARM® AMBA® bus as
shown in Figure A.1.

ARM core

Memory
interface

On-chip
RAM

DMA
engine

Bridge

UART

Timer

Keypad

PIO

AMBA bus

Figure A.1: The ARM Cortex-M3 connected to the AMBA bus along with other components ,
source [arm, b]. Reproduced with permission from ARM Limited. Copyright ©ARM Limited
(or its affiliates)

AMBA (Advanced Microcontroller Bus Architecture) is a bus architecture designed by
ARM. It is used to connect an ARM core with other components in SOC based systems.
For example, most of the processors in smart phones and mobile devices use the AMBA bus
to connect to high speed memory devices, DMA engines, and other external buses through
bridge devices. One such external bus is the APB bus (Advanced Peripheral Bus) that is used
to connect to peripherals such as the keyboard, UART controller (Universal Asynchronous
Receiver/Transmitter Protocol), timer, and the PIO (parallel input output) interface.

733 © Smruti R. Sarangi

Fetch Decode and
register read

Address
generation

unit

Branch
unitBranch prediction

Address
phase

Data
phase

Multiply and divide

Shift
ALU/

Branch

Branch outcome/target

W
ri

te
b

a
ck

F D E

Figure A.2: The pipeline of the ARM Cortex-M3 , source [arm, b]. Reproduced with permission
from ARM Limited. Copyright ©ARM Limited (or its affiliates).

Pipeline Design

Figure A.2 shows the pipeline of the ARM Cortex-M3. It has three stages namely fetch (F),
decode (D), and execute (E). The fetch stage fetches the instruction from memory, and is the
smallest stage of all the three stages.

The decode stage(D stage) has three different sub-units as shown in Figure A.2. The D
stage has an instruction decode and register read unit, which is similar to the operand fetch unit
in SimpleRisc . It decodes the instruction, and forms the instruction packet. Simultaneously, it
reads the values of the operands that are embedded in the instruction, and also reads values from
the register file. The AGU (address generation unit) extracts all the fields in the instruction, and
schedules the execution of the load or store instruction in the next stage of the pipeline. It plays
a special role while processing the ldm (load multiple) and stm (store multiple) instructions.
Recall from our discussion in Section 4.3.2 that these instructions can read or write to multiple
registers at the same time. The AGU creates multiple operations out of a single ldm or stm
instruction in the pipeline. The branch unit is used for branch prediction. It predicts both the
branch outcome, and the branch target.

The execute stage is fairly heavy in terms of functionality, and some instructions take 2
cycles to execute. Let us look at the regular ALU and branch instructions first. Recall from
our discussion in Section 4.2.2 that ARM instructions can have one shifter operand. Secondly,
computing the value of the 32-bit immediate from its 12 bit encoding is essentially a shift (rotate
is a type of shift) operation. Both of these operations are executed by the shift unit that has a
hardware structure known as a barrel shifter. Once the operands are ready, they are passed to
the ALU and branch unit that computes the branch outcome/target, and the ALU result.

ARM has two kinds of branches – direct and indirect. For direct branches, the offset of the
branch target from the current PC is embedded in the instruction. For example, a branch to a
label is an example of a direct branch. It is possible to compute the branch target of a direct
branch in the decode stage. ARM also supports indirect branches, where the branch target is
the result of an ALU or memory instruction. For example, the instruction ldr pc, [r1, #10] is an

© Smruti R. Sarangi 734

example of an indirect branch. Here, the value of the branch target is equal to the value loaded
from memory by the load instruction. It is in general difficult to predict the target of indirect
branches. In the Cortex-M3 processor, whenever there is a branch misprediction (either target
or outcome), the two instructions fetched after the branch are cancelled. The processors starts
fetching instructions from the correct branch target.

Along with the basic ALU, the Cortex-M3 has a multiply and divide unit that can per-
form both signed and unsigned, multiplication and division. The Cortex-M3 supports two
instructions, sdiv, and udiv for signed and unsigned division respectively. Along with these
instructions it has support for multiply, and multiply-accumulate operations as described in
Section 4.2.1.

The load and store instructions typically take two cycles. They have an address generation
phase, and a memory access phase. The load instructions takes 2 cycles to execute. Note that in
the second cycle, it is not possible for other instructions to execute in the E stage. The pipeline
is thus stalled for one cycle. This specific feature reduces the performance of the pipeline.
ARM removed this restriction in its high performance processors. The store instruction also
takes 2 cycles to execute. However, the second cycle that accesses memory does not stall the
pipeline. The processor writes the value to a store buffer (similar to a write buffer as discussed
in Section 11.3.3), and proceeds with its execution. It is further possible to issue back to back
(consecutive cycles) store and load instructions, where the load reads the value written by the
store. The pipeline does not need to stall for the load instruction because it reads the value
written by the store from the store buffer.

A.1.2 ARM® Cortex® -A8

As compared to the Cortex-M3, which is an embedded processor, the Cortex-A8 was designed
to be a full fledged processor that can run on sophisticated smart phones and tablet processors.
Here, A stands for application, and ARM’s intent was to use this processor to run regular
applications on mobile devices. Secondly, these processors were designed to support virtual
memory, and also contained dedicated floating point and SIMD units.

Overview of the Cortex-A8

The defining feature of the pipeline of the Cortex-A8 core is that it is a dual issue superscalar
processor. However, it is not a full blown out-of-order processor. The issue logic is inorder. The
Cortex-A8 has a 13-stage integer pipeline with sophisticated branch prediction logic. Since it
uses a deep pipeline, it is possible to clock it at a higher frequency than other ARM processors
that have shallower pipelines. The Cortex-A8 core is designed to be clocked between 500 MHz
and 1GHz, which is a fairly fast clock speed in the embedded domain.

Along with the integer pipeline, the Cortex-A8 contains a dedicated floating point and SIMD
unit. The floating point unit implements ARM’s VFP (vector floating point) ISA extension,
and the SIMD unit implements the ARM® NEON® instruction set. This unit is also pipelined
and has 10 stages. Moreover, the ARM Cortex-A8 processor has a separate instruction and
data cache, which can be optionally connected to a large shared L2 cache.

735 © Smruti R. Sarangi

Fetch Decode
R

e
g

is
te

r
fi
le

ALU pipe

Mul pipe

ALU pipe

Load/Store pipe

NEON/VFP
instruction

decode

NEON
register

file

Integer ALU pipe

Integer mul pipe

Integer shift pipe

Non-IEEE FP add pipe

Non-IEEE FP mul pipe

IEEE FP engine

Load/Store pipe

Register writeback

L2cache

Load
queue

(2) (5)

(6)

(10)

(3) (1)

(6)

(8)

Integer execution unit

NEON/VFP unit

L1 cache

Inst.
cache

Figure A.3: The pipeline of the ARM Cortex-A8 processor , source [arm, a]. Reproduced with
permission from ARM Limited. Copyright ©ARM Limited (or its affiliates).

Design of the Pipeline

Figure A.3 shows the design of the pipeline of the ARM Cortex-A8 processor. The fetch unit is
pipelined across two stages. Its primary purpose is to fetch an instruction, and update the PC.
Additionally, it also has a built in instruction prefetcher, ITLB (instruction TLB), and branch
predictor. The advanced features of the branch predictors of Cortex-A8 and Cortex A-15 are
discussed in Section A.1.3. The instructions subsequently pass to the decode unit.

The decode unit is pipelined across 5 stages. The decode unit is more complicated in the
Cortex-A8 processor than the Cortex-M3 because it has the additional responsibility of check-
ing the dependences across instructions, and issuing two instructions together. The forwarding,
stall, and interlock logic is thus much more complicated. Let us number the two instruction
issue slots 0 and 1. If the decode stage finds two instructions that do not have any interde-
pendences, then it fills both the issue slots with instructions, and sends them to the execution
unit. Otherwise, the decode stage just fills one issue slot.

The execution unit is pipelined across 6 stages, and it contains 4 separate pipelines. It has
two ALU pipelines that can be used by both the instructions. It has a multiply pipeline that
can be used by the instruction issued in slot 0 only. Lastly, it has a load/store pipeline that
can again be used by instructions issued in both the issue slots.

NEON and VFP instructions are sent to the NEON/VFP unit. It takes three cycles to

© Smruti R. Sarangi 736

decode and schedule the NEON/VFP instructions. Subsequently, the NEON/VFP unit fetches
the operands from the NEON register file that contains thirty two 64-bit registers. NEON
instructions can also view the register file as sixteen 128 bit registers. The NEON/VFP unit
has six 6 stage pipelines for arithmetic operations, and it has one 6 stage pipeline for load/store
operations. As discussed in Section 12.5.2, loading vector data is a very performance critical
operation in SIMD processors. Hence, ARM has a dedicated load queue in the NEON unit for
populating the NEON register file by loading data from the L1 cache. For storing data, the
NEON unit writes data directly back to the L1 cache.

Each L1 cache (instruction/data) has a 64 byte block size, has an associativity of 4, and can
either be 16 KB of 32 KB. Secondly, each L1 cache has two ports, and can provide 4 words per
cycle for NEON and floating point operations. The point to note here is that the NEON/VFP
unit and the integer pipelines share the L1 data cache. The L1 caches are optionally connected
to a large L2 cache. It has a block size of 64 bytes, is 8 way set associative, and can be as large
as 1 MB. The L2 cache is split into multiple banks. We can lookup two tags at the same time,
and the data array accesses proceed in parallel.

A.1.3 ARM® Cortex® -A15

The ARM Cortex-A15 is the latest ARM processor to be released as of early 2013. This
processor is targeted towards high performance applications.

Overview

The Cortex-A15 processor is much more complicated, and much more powerful than the Cortex-
M3 and Cortex-A8. Instead of using an inorder core, it uses a 3-issue superscalar out-of-order
core. It also has a deeper pipeline. Specifically, it has a 15 stage integer pipeline, and a
17-25 stage floating point pipeline. The deeper pipeline allows it to run at a significantly
higher frequency (1.5 – 2.5 GHz). Additionally, it fully integrates VFP and NEON units
on the core instead of having them as separate execution units. Like server processors, it
is designed to access a large amount of memory. It can support a 40 bit physical address,
which means that it can address up to 1 TB of memory using the latest AMBA bus protocol
that supports system level coherence. The Cortex-A15 is designed to run modern operating
systems, and virtual machines. Virtual machines are special programs that can help run multiple
operating systems concurrently on the same processor. They are used in server and cloud
computing environments to support users with varying software requirements. The Cortex-A15
incorporates sophisticated power management techniques that dynamically shut off parts of the
processor when they are not being used.

Another iconic feature of the Cortex-A15 processor is that it is a multicore processor. It
organises 4 cores per cluster, and we can have multiple clusters per chip. The Snoop Control
Unit provides coherency within a cluster. The AMBA4 specification defines the protocol for
supporting cache and system level coherence across clusters. Additionally, the AMBA4 bus also
supports synchronisation operations. The memory system is also faster and more reliable. The
Cortex-A15’s memory system uses SECDED (single error correct, double error detect) error
control codes.

737 © Smruti R. Sarangi

Design of the Pipeline

Fetch

5 stages

Decode
Rename
Dispatch

7 stages

ALU

Branch W
B

Is
su

e

Multiply

Load/ Store W
B

Is
su

e

Neon/ VFP W
B

Is
su

e

15 stage integer pipeline

Figure A.4: Overview of the ARM Cortex A-15 processor, source [arm, d]. Reproduced with
permission from ARM Limited. Copyright ©ARM Limited (or its affiliates).

Figure A.4 shows an overview of the pipeline of a Cortex-A15 core. We have 5 fetch stages.
Here, fetch is more complicated because, the Cortex-A15 has a sophisticated branch predictor
that can handle many types of branch instructions. The decode, rename, and instruction
dispatch units are pipelined across 7 stages. Recall from our discussion in Section 10.11.4 that
the register rename unit, and instruction window are critical to the performance of out-of-order
processors. Their role is to find sets of instructions that are ready to execute in a given cycle.

The Cortex-A15 has several execution pipelines. The integer ALU, and branch pipelines
require 3 cycles each. However, the multiply, and load/store pipelines are longer. Unlike other
ARM processors that treat the NEON/VFP units as a physically separate unit, the Cortex-A15
integrates it on the core. It is a part of the out-of-order pipeline. Let us now look at the pipeline
in some more detail (refer to Figure A.5).

The Cortex-A15 core’s (the same features are available in the branch predictor of the Cortex-
A8 also) branch predictor contains a predictor for direct branches, a predictor for indirect
branches, and a predictor to predict the return address. The indirect branch predictor tries
to predict the branch target based on the PC of the branch instruction. It has a 256 entry
buffer that is indexed by the history of a given branch, and its PC. We do not actually need
sophisticated branch prediction logic to predict the target of a return instruction. A simpler
method is to record the return address whenever we call a function, and push it on a stack
(referred to as the return address stack(RAS)). Since function calls exhibit last in-first out
behaviour, we need to simply pop the RAS and get the value of the return address while
returning from a function. Lastly, to support wider issue widths the fetch unit is designed to
fetch 128 bits at once from the instruction cache.

The loop buffer (present in the Cortex-A8 also) is a very interesting addition to the decode
stage. Let us assume that we are executing a set of instructions in a loop, which is most
often the case. In any other processor, we need to fetch the instructions in a loop repeatedly,
and decode them. This process wastes energy, and memory bandwidth. We can optimise this

© Smruti R. Sarangi 738

Fetch

Decode

Loop
buffer

Rename

Instruction
Cache

Branch
predictor

Return
adddress

stack

ITLB

Dispatch

Register
file

L2 TLB

Processor bus

Integer
ALU

Neon
VFP

Load/
Store TLB Data

cache W
ri

te
b
a
ck

Processor 1

Processor 2
Processor 3

Processor 4

L2 bus

L2 Cache L2 Directory Cache controller
logic

Indirect
branch pred.

Figure A.5: The pipeline of the ARM Cortex A-15 processor , source [arm, c]. Reproduced
with permission from ARM Limited. Copyright ©ARM Limited (or its affiliates).

process by saving all the decoded instruction packets in a loop buffer such that we can bypass
the fetch and decode units altogether while executing a loop. The register rename stage can
thus get instructions from the decode unit or the loop buffer.

The core maintains a reorder buffer (ROB) (see Section 10.11.4) that contains the results
of all the instructions. Recall that entries in the ROB are allocated in program order. The
rename stage maps operands to entries in the ROB (referred to as the result queue in ARM’s
documentation). For example, if instruction 3 needs a value that is going to be produced by
instruction 1, then the corresponding operand is mapped to the ROB entry of instruction 1. All
the instructions subsequently enter the instruction window and wait for their source operands
to be ready. Once they are ready, they are dispatched to the corresponding pipelines. The
Cortex-A15 has 2 integer ALUs, 1 branch unit, 1 multiply unit, and 2 load/store units. The
NEON/VFP unit can accept 2 instructions per cycle.

739 © Smruti R. Sarangi

The load/store unit has a 4 stage pipeline. For ensuring precise exceptions stores are only
issued to the memory system, when the instruction reaches the head of the ROB (there are no
earlier instructions in the pipeline). Meanwhile, any load operation that has a store operation
to the same address in the pipeline gets its value through a forwarding path. Both the L1
caches (instruction and data) are typically 32 KB each.

The Cortex-A15 processor supports a large L2 cache (up to 4 MB). It is a 16 way set
associative cache with an aggressive prefetcher. The L1 caches, and the L2 cache are a part of
the cache coherence protocol. The Cortex-A15 uses a directory based MESI protocol. The L2
cache contains a snoop tag array that maintains a copy of all the directories at the L1 level. If
an I/O operation wishes to modify some line, then the L2 cache uses the snoop tag array to
find if the line resides in any L1 cache. If any L1 cache contains a copy of the line, then this
copy is invalidated. Likewise, if there is a DMA read operation, then the L2 controller fetches
the line from the L1 cache that contains a copy of it. It is additionally possible to extend this
protocol to support L3 caches, and a host of peripherals.

A.2 AMD® Processors

Let us now study the design of AMD processors. Recall that AMD processors implement the
x86 instruction set, and AMD manufactures processors for mobile devices, netbooks, laptops,
desktops, and servers. In this section, we shall look at two processors at both the ends of
the design spectrum. The AMD Bobcat processor is meant for mobile devices, tablets, and
netbooks. It implements a subset of the x86 instruction set, and the main objectives of its
design are power efficiency, and an acceptable level of performance. The AMD Bulldozer
processor is at the other end of the spectrum, and is meant for high end servers. It is optimised
for performance and instruction throughput. It is also AMD’s first multithreaded processor,
which uses a novel type of core known as a conjoined core for implementing multithreading.

A.2.1 AMD Bobcat

Overview

The Bobcat processor (original paper [Burgess et al., 2011]) was designed to operate within a 10-
15W power budget. Within this power budget, the designers of Bobcat were able to implement
a large number of complex architectural features in the processor. For example, Bobcat uses
a fairly elaborate 2 issue out-of-order pipeline. Bobcat’s pipeline uses a sophisticated branch
predictor, and is designed to fetch 2 instructions in the same cycle. It can subsequently decode
them at that rate and convert them to complex micro-ops (Cops). A complex micro-op (Cop)
in AMD’s terminology is a CISC like instruction that can read and write to memory. The set
of Cops are subsequently sent to the instruction queue, renaming engine, and scheduler.

The scheduler selects instructions out-of-order and dispatches them to the ALU, memory
address generation units, and the load/store units. The load/store unit also sends requests to
the memory system out-of-order in the interest of performance. Hence, we can readily conclude
that Bobcat supports a weak memory model. Along with sophisticated micro-architectural
features, the Bobcat processor also supports SIMD instruction sets (up to SSE 4), methods to
automatically save the processor state in memory, and 64-bit instructions. To ensure that the

© Smruti R. Sarangi 740

power consumption of the processor is within limits, Bobcat contains a large number of power
saving optimisations. One such prominent mechanism is known as clock gating. Here, the clock
signal is set to a logical 0 for units that are unused. This ensures that there are no signal
transitions in the unused units, and consequently there is no dissipation of dynamic power.
The Bobcat processor also uses pointers to data as much as possible, and tries to minimise
copying data across different locations in the processor. Let us now look at the design of the
pipeline in some more detail.

Design of the Pipeline

ITLB I cache
Branch predictor

Branch
locator

Outcome
predictor

Return
addr. stack

Fetch queue

Decoder
μcode

memory

Inst. queue

Rename unit

Scheduler

Register file

ALU ALU LAGU SAGU

Mul

Ld/St unitL1 cache

L2 cache

FP decoder

FP rename unit

FP scheduler

FP register file

SIMD ALU SIMD ALU

Int. mul Store unit

FP logical FP logical

FP add FP mul

Bus LAGU Load address
 generation unit

SAGU Load address
 generation unit

Figure A.6: The pipeline of the AMD Bobcat processor. ©[2011] IEEE. Adapted and reprinted,
with permission. Source [Burgess et al., 2011]

741 © Smruti R. Sarangi

Figure A.6 shows a block diagram of the pipeline of the AMD Bobcat processor. A dis-
tinguishing feature of the Bobcat processor is the fairly sophisticated branch predictor. We
need to first predict if an instruction is a branch or not. This is because, there is no way of
finding this out quickly in the x86 ISA. If an instruction is predicted to be a branch, we need
to compute its outcome (taken/not taken), and the target. AMD uses an advanced pattern
matching based proprietary algorithm for branch prediction. After branch prediction, the fetch
engine fetches 32 bytes from the I cache at once, and sends it to an instruction buffer.

The decoder considers 22 instruction bytes at a time, and tries to demarcate instruction
boundaries. This is a slow and computationally intensive process because x86 instruction
lengths can have a lot of variability. Larger processors typically cache this information such
that decoding an instruction for the second time is easier. Since the decode throughput of
Bobcat is only limited to 2 instructions, it does not have this feature. Now, most pairs of x86
instructions fit within 22 bytes, and thus the decoder can most of the time extract the contents
of both the x86 instructions. The decoder typically converts each x86 instruction to 1-2 Cops.
For some infrequently used instructions, it replaces the instruction with a microcode sequence.

Subsequently, the Cops are added to a 56 entry reorder buffer (ROB). Bobcat has two
schedulers. The integer scheduler has 16 entries, and the floating point scheduler has 18 entries.
The integer scheduler selects two instructions for execution every cycle. The integer pipeline
has two ALUs, and two address generation units (1 for load, and 1 for store). The floating
point pipeline can also execute two Cops per cycle with some restrictions.

The load-store unit in the processor forwards values from store to load instructions in the
pipeline whenever possible. Bobcat has 32 KB (8 way associative) L1 D and I caches. They
are connected to a 512 KB L2 cache (16 way set associative). The bus interface connects the
L2 cache to the main memory, and system bus.

Let us now consider the timing of the pipeline. The Bobcat integer pipeline is divided into
16 stages. Because of the deep pipeline, it is possible to clock the core at frequencies between
1-2 GHz. The Bobcat pipeline has 6 fetch cycles, and 3 decode cycles. The last 3 fetch cycles
are overlapped with the decode cycles. The renaming engine, and scheduler take 4 more cycles.
For most integer instructions, we require 1 cycle to read the register file, 1 cycle to access
the ALU, and 1 more cycle to write the results back to the register file. The floating point
pipeline has 7 additional stages, and the load-store unit requires 3 additional stages for address
generation, and data cache access.

A.2.2 AMD Bulldozer

As the name suggests, the Bulldozer core (original paper [Butler et al., 2011]) is at the other
end of the spectrum, and is primarily meant for high end desktops, workstations, and servers.
Along with being an aggressive out-of-order machine, it also has multithreading capabilities.
The Bulldozer is actually a combination of a multicore, fine grained multithreaded processor
and an SMT. The Bulldozer core is actually a “conjoined core”, which consists of two smaller
cores that share functional units.

Overview

Both the Bulldozer threads share the fetch engine (refer to Figure A.7), and decode logic. This
part of the pipeline (known as the front end) switches between the two threads once every cycle,

© Smruti R. Sarangi 742

Fetch/decode pipeline

Integer core

Integer core

FP unit

L2 cache

Figure A.7: Overview of the Bulldozer processor

or few cycles. The integer, load-store, and branch instructions, are then dispatched to one of
the two cores. Each core contains an instruction scheduler, register file, integer execution units,
L1 caches, and a load-store unit. We can think of each core as a self sufficient core without
instruction fetch and decode capabilities. Both the cores share the floating point unit that runs
in SMT mode. It has its dedicated scheduler, and execution units. The Bulldozer processor
is designed to run server as well as numerical workloads at 3-4 GHz. The maximum power
dissipation is limited to 125-140W.

Detailed Design

Let us now consider a more detailed view of the processor in Figure A.8.

Branch
predictor

Prediction queue I cache
Fetch queue

Decodercodeμ memory

Scheduler

A
LU

A
LU

A
dd

r.
G

en
.

A
dd

r.
G

en
.

Inst.
retire

Ld/St
unit

L1 DTLBD cache

FP scheduler

In
t S

IM
D

In
t S

IM
D

FM
AC

FM
AC

Ld/st unit

Scheduler

A
LU

A
LU

A
dd

r.
G

en
.

A
dd

r.
G

en
.

Inst.
retire

Ld/St
unit

L1 DTLB D cache

L2 cache

Figure A.8: Detailed view of the Bulldozer processor. ©[2011] IEEE. Adapted and reprinted,
with permission. Source [Butler et al., 2011]

The Bulldozer processor has twice the fetch width of the Bobcat processor. It can fetch

743 © Smruti R. Sarangi

and decode up to 4 x86 instructions per cycle. Akin to Bobcat, the Bulldozer processor has
sophisticated branch prediction logic that predicts whether an instruction is a branch, the
branch outcome, and the branch target. It has a multilevel branch target buffer that saves the
predicted branch targets of roughly 5500 branch instructions. The decode engine converts x86
instructions into Cops. One Cop in AMD is a CISC instruction albeit sometimes simpler than
the original x86 instruction. Most x86 instructions get converted to just one Cop. However,
some instructions get translated to more than one Cop, and it is sometimes necessary to use
the microcode memory for instruction translation. An interesting aspect of the decode engine
is that it can dynamically merge instructions to make a larger instruction. For example, it
can merge a compare instruction, and a subsequent branch instruction, into one Cop. This is
known as macro-instruction fusion.

Subsequently, the integer instructions are dispatched to the cores for execution. Each core
has a rename engine, instruction scheduler (40 entries), a register file, and a 128 entry ROB.
The core’s execution unit consists of 4 separate pipelines. Two pipelines have ALUs, and two
other pipelines are dedicated to memory address generation. The load-store unit co-ordinates
access to memory, forwards data between stores to loads, and performs aggressive prefetching
using stride prefetchers. Recall that stride prefetchers can automatically deduce array accesses,
and fetch from array indices that are most likely to be accessed in the future.

Both the cores share a 64 KB instruction cache. However, each core has a 16 KB write-
through L1 cache, where each load access takes 4 cycles. The L1 caches are connected to an
L2 cache that comes in various sizes (ranging from 1-2 MB in the design presented in [Butler
et al., 2011]). It is shared across the cores, and has a 18 cycle latency.

The floating point unit is shared between both the cores. It is more than a mere functional
unit. We can think of it as an SMT processor that schedules and executes instructions for two
threads simultaneously. It has its own instruction window, register file, rename, and wakeup-
select (out of order scheduling) logic. Bulldozer’s floating point unit has 4 pipelines that process
SIMD instructions (both integer and floating point), and regular floating point instructions. The
first two pipelines have 128 bit floating point ALUs called FMAC units. An FMAC (floating
point multiply accumulate) unit can perform an operation of the form (a ← a + b × c), along
with regular floating point operations. The last two pipelines have 128 bit integer SIMD units,
and additionally the last pipeline is also used to store results to memory. Lastly, the floating
point unit has a dedicated load-store unit to access the caches present in the cores.

A.3 Intel® Processors

Let us now discuss the design of Intel processors. As of writing this book (2012-13) Intel
processors dominate the laptop and desktop markets. In this section, we shall present the
design of two Intel processors that have very different designs. The first processor is the Intel®

Atom™, which has been designed for mobile phones, tablets, and embedded computers. At
the other end of the spectrum lies the Sandy Bridge multicore, which is a part of the Intel®

Core™i7 line of processors. These processors are meant to be used by high end desktops and
servers. Both of these processors have very different business requirements. This has translated
to two very different designs

© Smruti R. Sarangi 744

A.3.1 Intel® Atom™

Overview

The Intel Atom processor started out with a unique set of requirements (see [Halfhill, 2008]).
The designers had to design a core that was extremely power efficient, had enough features to
run commercial operating systems and web browsers, and was fully x86 compatible. A naive
approach to reduce power would have been to implement a subset of the x86 ISA. This approach
would have led to a simpler and more power efficient decoder. Since the decoding logic is known
to be power hungry in x86 processors, reducing its complexity is one of the simplest methods
to reduce power. However, full x86 compatibility precluded this option.

Hence, the designers were forced to consider novel designs that are extremely power efficient,
and do not compromise on performance. Consequently, they decided to simplify the pipeline,
and consider 2-issue inorder pipelines only. Recall from our discussion in Section 10.11.4 that
out-of-order pipelines have complicated structures for finding the dependences between instruc-
tions, and for executing them out of order. Some of these structures are the instruction window,
renaming logic, scheduler, and wakeup-select logic. These structures add to the complexity of
the processor, and increase its power dissipation.

Secondly, most Intel processors typically translate CISC instructions into RISC like micro-
ops. These micro-ops execute like normal RISC instructions in the pipeline. The process of
instruction translation consumes a lot of power. Hence, the designers of the Intel Atom decided
to discard instruction translation. The Atom pipeline processes CISC instructions directly. For
some instructions that are very complicated, the Atom processor does use a microcode ROM
to translate them into simpler CISC instructions. However, this is more of an exception that
the norm.

Fetch

(3)

Decode

(3)

Schedule
Dispatch

(2)

Operand
fetch

(1)

Memory access

AG

(1)
Cache access

(2)

Execute

(1)

Exceptions, Multiple
thread handling

(2)

Commit

(1)

Figure A.9: The pipeline of the Intel Atom processor. (AG → address generation) ©[2008]
The Linley Group. Adapted and reprinted, with permission. (Originally published in the
Microprocessor Report. source [Halfhill, 2008])

As compared to RISC processors, the fetch and decode stages are more complicated in CISC
processors. This is because instructions have variable lengths, and demarcating instruction
boundaries is a tedious process. Secondly, the process of decoding is also more complicated.
Hence, Atom dedicates 6 stages out of its 16-stage pipeline to instruction fetch and decoding
as shown in Figure A.9. The remaining stages perform the traditional functions of register file
access, data cache access, and instruction execution. Along with the simpler pipeline, another
hallmark feature of the Intel Atom processor is that it supports 2-way multithreading. Modern
mobile devices typically run multitasking operating systems, and users run multiple programs
at the same time. Multithreading can support this requirement, enable additional parallelism,
and reduce idle time in processor pipelines. The last 3 stages in the pipeline are dedicated to
handling exceptions, handling multithreading related events, and writing data back to register

745 © Smruti R. Sarangi

or memory. Like all modern processors, store instructions are not on the critical path. In
general, processors that do not obey sequential consistency write their store values to a write
buffer and proceed with executing subsequent instructions.

Detailed Design

I cache
ITLB

P
re

fe
tc

h
b

u
ff

e
rs

Branch
predictor

Instruction
length decoder

Translator

μcode mem.

Instruction
queue

FP register
file

FP ALU

SIMD unit

FP ALU

FP adder

Int. register
file

AGU AGU

D cache

L2 cache

ALU ALU

Shifter

AGU Address
generation unit

Figure A.10: A block diagram of the Intel Atom processor ©[2008] The Linley Group.
Adapted and reprinted, with permission. (Originally published in the Microprocessor Report.
source [Halfhill, 2008])

Let us now describe the design in some more detail. Let us start with the fetch, and decode
stages (see Figure A.10). In the fetch stage, the Atom processor predicts the direction and
target of branches, and fetches a stream of bytes into the instruction prefetch buffers. The next
task is to demarcate instructions in the fetched stream of bytes. Finding, the boundaries of
x86 instructions is one of the most complicated tasks performed by this part of the pipeline.
Consequently, the Atom processor has a 2 stage pre-decode step that adds 1 bit markers between
instructions, after it decodes them for the first time. This step is performed by the ILD
(instruction length decoder) unit It then saves the instructions in the I cache. Subsequently,
pre-decoded instructions fetched from the I cache can bypass the pre-decoding step, and directly
proceed to the decoding step because its length is already known. Saving these additional
markers, reduces the effective size of the I cache. The size of the I cache is 36 KB; however,
after adding the markers, it is effectively 32 KB. The decoder does not convert most CISC
instructions into RISC like micro-ops. However, for some complicated x86 instructions, it is

© Smruti R. Sarangi 746

necessary to translate them into simpler micro-ops by accessing the microcode memory.
Subsequently, integer instructions are dispatched to the integer execution units, and the FP

instructions are dispatched to the FP execution units. Atom has two integer ALUs, two FP
ALUs, and two address generation units for memory operations. For supporting multithreading,
it is necessary to have two copies of the instruction queue (1 per thread), and two copies of
the integer and FP register files. Instead of creating a copy of a hardware structure like an
instruction queue, Intel follows a different approach. For example, in the Atom processor, the
32 entry instruction queue is split into two parts (with 16 entries each). Each thread uses its
part of the instruction queue.

Let us now discuss a general point about multithreading. Multithreading increases the
utilisation of resources on a chip by decreasing the time that they remain idle. Thus, a mul-
tithreaded processor is ideally expected to have a higher power overhead (because of higher
activity), and also have better instruction throughput. It is important to note that unless a
processor is designed wisely, the throughput might not predictably increase. Multithreading
increases the contention in shared resources such as the caches, the TLBs, and the instruction
schedule/dispatch logic. Especially, the caches get partitioned between the threads, and we
expect the miss rates to increase. Similar is the case for the TLBs also. On the other hand,
the pipeline need not remain idle in the shadow of an L2 miss or in low ILP (instruction level
parallelism) phases of a program. Hence, there are pros and cons of multithreading, and we
have performance benefits only when the good effects (performance increasing effects) outweigh
the bad effects (contention increasing effects).

A.3.2 Intel Sandy Bridge

Overview

GPU

CPUs Cache

North Bridge
Bus

interface

DDR3

DDR3

PCIx
DDR3

South Bridge

Figure A.11: Overview of the Sandy Bridge processor ©[2010] The Linley Group. Adapted and
reprinted, with permission. (Originally published in the Microprocessor Report. Source [Gwen-
nap, 2010])

Let us now discuss the design of a high performance Intel processor called the Sandy Bridge
processor, which is a part of some of the latest (as of 2012) Intel Core i7 processors in the

747 © Smruti R. Sarangi

market. The main aims [Gwennap, 2010] while designing the Sandy Bridge processor was
to support emerging multimedia workloads, numerically intensive applications, and multicore
friendly parallel applications.

The most distinguishing features of the Sandy Bridge processor is that it contains an on-
chip graphics processor. The graphics processor is loaded with specialised units for performing
image rendering, video encoding/decoding, and custom image processing. The CPU and GPU
communicate through a large shared on chip L3 cache. An overview of the Sandy Bridge
processor is shown in Figure A.11.

Along with the addition of more components on chip, a lot of modifications to the CPU were
also made. Sandy Bridge processor has full support for the new AVX instruction set, which is a
256 bit SIMD instruction set. For each SIMD unit, it is possible to perform 4 double precision
operations or 8 single precision operations simultaneously. Since so many high performance
features were being added it was necessary to add many power saving features also. Nowadays,
techniques such as DVFS (dynamic voltage frequency scaling), clock gating (shutting off the
clock) and power gating (shutting off the power for a set of functional units) for unused units are
common. Additionally, the Sandy Bridge designers modified the design of the core to minimise
copying values between units as much as possible (recall that a similar design decision was also
taken by the designers of AMD Bobcat also), and also made basic changes to the design of
some core structures such as the branch predictor and branch target buffer for power efficiency.

An important point to note here is that processors such as the Intel Sandy Bridge are
designed to support multiple cores (4-8). Secondly, each core supports 2-way multithreading.
Hence, we can run 16 threads on an 8 core machine. These threads can actively communicate
between each other, the L3 cache banks, the GPU, and the on chip North Bridge controller.
With so many communicating entities we need to design flexible on chip networks that facilitate
high bandwidth and low latency communication. The designers of the Sandy Bridge have opted
for a ring based interconnect over the traditional bus.

The Sandy Bridge processor was designed for a 32 nm 1 semiconductor process. Its successor
is the Intel Ivy Bridge processor, which has the same design, but is designed for a 22 nm process.

Detailed Design

Let us now consider the detailed design of a Sandy Bridge Core in Figure A.12 (also refer
to [Gwennap, 2010]). The Sandy Bridge processor has a 32 KB instruction cache, that can
provide 4 x86 instructions every cycle. The first step in decoding a stream of x86 instructions,
is to demarcate their boundaries (known as predecoding). Once, 4 instructions are predecoded,
they are sent to the decoders. Sandy Bridge has 4 decoders. Three of them are simple decoders,
and one decoder is known as a complex decoder that uses the microprogram memory. All the
decoders convert CISC instructions into RISC like micro-ops. Sandy Bridge has a L0 cache
for micro-ops that can store roughly 1500 micro-ops. The L0 micro-op cache has performance
benefits in terms of both performance and power. It reduces the branch misprediction latency
if the instruction at the branch target is available in the L0 cache. Since most of the branches
in programs are near branches, we expect to have a good hit rate at the L0 cache. Secondly,
we can also save power. If an instruction’s micro-ops are available in the L0 cache, then we

1The smallest possible structure that can be fabricated reliably has a dimension of 32 nm

© Smruti R. Sarangi 748

Branch
predictor

Fetch
unit

ITLB Instruction cache

x86 predecode

Complex
decoder

Simple
decoder

Simple
decoder

Simple
decoder

μcode
memory

1.5k μop cache

Rename/schedule

Load
unit

Load/
Store

ALU/
Branch

ALU/
Divide

Integer
ALU

FP
multiply

FP
add

Integer register file FP register file

L1 cacheDTLB

Retire
unit

L2
cache

Figure A.12: Detailed view of the Sandy Bridge processor ©[2010] The Linley Group.
Adapted and reprinted, with permission. (Originally published in the Microprocessor Report.
Source [Gwennap, 2010])

do not need to fetch, predecode, and decode the instruction once again. We thus avoid these
power hungry operations.

We need to point out an interesting design decision (see [Gwennap, 2010]) that was taken
by the designers with respect to the branch predictor. This design decision is representative of
many similar problems in computer architecture. One such problem is whether we should design
a small structure with complicated entries, or should we design a large structure with simple
entries? For example, should we have a 4-way associative 16 KB cache, or a 2-way associative
32 KB cache? In general, there is no definite answer to questions of this nature. They are
highly dependent on the nature of the target workloads. For the Sandy Bridge processors, the
designers had a choice. They could have either chosen a branch predictor with 2-bit saturating
counters, or a predictor with more entries, and a 1 bit saturating counter. The power and
performance tradeoffs of the latter design was found to be better. Hence, they chose to have 1
bit counters.

Subsequently, 4 micro-ops are sent to the rename and dispatch units that perform out-of-
order scheduling. In earlier processors such as the Nehalem processor, temporary results of
instructions that were in flight were saved in the ROB. Once the instructions finished, they
were copied to the register file. This operation involves copying data, and is thus not efficient
from the point of view of power. Hence, Sandy Bridge avoids this, and saves results directly
in the physical register file similar to high performance RISC processors. When an instruction

749 © Smruti R. Sarangi

reaches the rename stage, we check the mappings in the rename table, and find the ids of the
physical registers that contain, or are supposed to contain at a future point of time, the values
of source operands. We subsequently either read the physical register file, or wait for their
values to be generated. In your author’s view, using physical register files is a better approach
than using other approaches that save the results of unfinished instructions in the ROB, and
later copy the results back to the register files. Using physical register files is fast, simple, and
power efficient. By using this approach in the Sandy Bridge processor, the ROB got simplified,
and it was possible to have 168 in-flight instructions at any point of time.

The Sandy Bridge processor has 3 integer ALUs, 1 load unit, and 1 load/store unit. The
integer units read and write their operands from a 160 entry register file. For supporting floating
point operations, it has one FP add unit, and 1 FP multiply unit. They support the AVX SIMD
instruction set (256-bit operations on sets of single and double precision numbers). Moreover,
to support 256 bit operations, Intel added new 256-bit vector registers (YMM registers) in the
x86 AVX ISA.

To implement the AVX instruction set, it is necessary to support 256-bit transfers from the
32 KB data cache. The Sandy Bridge processor can perform two 128 bit loads, and one 128
bit store per cycle. In the case of loading a YMM (256 bit) register, both the 128 bit load
operations are fused into one (256 bit) load operation. Sandy Bridge has a 256 KB L2 cache,
and a large (1-8 MB) L3 cache that is divided into banks. The L3 banks, cores, GPU, and
North Bridge controllers are connected using a unidirectional ring based interconnect. Note
that the diameter of an unidirectional ring is (N − 1) because we can send messages in only
one direction. To overcome this restriction, each node is actually connected to two points on
the ring. These points are diametrically opposite to each other. Hence, the effective diameter
is close to N/2.

Let us conclude by describing a unique feature of the Sandy Bridge processor called turbo
mode. The idea is as follows. Assume that a processor has a period of quiescence (less activity).
In this case, the temperature of all the cores will remain relatively low. Now, assume that
the user decides to perform a computationally intensive activity such as sharpen an image,
and remove “red eyes.” This requires numerically intensive computations that are also power
intensive. Every processor has a rated thermal design power (TDP), which is the maximum
amount of power a processor is allowed to dissipate. In the turbo mode, the processor is
permitted to dissipate more power than the TDP for short durations of time (20-25s). This
allows the processor to run all the units at a frequency higher than the nominal value. Once the
temperature reaches a certain threshold, the turbo mode is automatically switched off, and the
processor resumes normal operation. The main point to note is that dissipating a large amount
of power for a short duration is not a problem. However, having very high temperatures for even
a short duration is not allowed. This is because high temperature can permanently damage
a chip. For example, if a wire melts, then the entire chip is destroyed. Since it takes several
seconds for a processor to heat up, we can take advantage of this effect to have high frequency
and high power phases to quickly complete sporadic jobs. Note that the turbo mode is not
useful for long running jobs that take hours.

© Smruti R. Sarangi 750

B
Graphics Processors

B.1 Overview

High intensity graphics is a hallmark of contemporary computer systems. Today’s computers
from smart phones to high end desktops use a variety of sophisticated visual effects to enhance
user experience. Additionally, users use computers to play graphics intensive games, watch high
definition videos, and for computer aided engineering design. All of these applications require
a significant amount of graphics processing.

In the early days, graphics support in computers was very rudimentary. The programmer
needed to specify the co-ordinates of every single shape that was drawn on the screen. For
example, to draw a line the programmer needed to explicitly provide the co-ordinates of the
line, and specify its colour. The range of colours was very limited, and there was almost no
hardware for off loading graphics intensive tasks. Since each line or circle drawn on the screen
required several assembly statements, the process of creating, and using computer graphics was
very slow. Gradually, a need arose to have some support for graphics in hardware.

Let us discuss a little bit of background before delving into hardware accelerated graphics.
A typical computer monitor contains a matrix of pixels. A pixel is a small point on the screen.
For example a 1920×1080 monitor has 1920 pixels in each row, and 1080 pixels in each column.
Each pixel has a colour at a certain point of time. Modern computer systems can set 16 million
colours for each pixel. A picture on a computer screen is essentially an array of coloured pixels,
and a video is essentially a sequence of pictures. In a video, we typically show 50-100 pictures
every second (known as the refresh rate), where one picture is marginally different from the
previous one. The human eye cannot figure out the fact that the pictures on the computer screen
are changing in rapid succession. The brain creates an illusion of a continuous animation.

751

© Smruti R. Sarangi 752

B.1.1 Graphics Applications

We can divide modern graphics applications into two types. The first type is automatic image
synthesis. For example, let us consider a complex scene in a game, where a character is running
with a machine gun in a moonlit night. In this case, the programmer is not manually setting
the value of every pixel to a given colour. This process is too slow and time consuming. None
of our interactive games would work, if this method was used. Instead, the programmer writes
a program at the level of high level objects. For example, she can define a scene with a set
of objects like roads, plants, and obstacles. She can define a character, and the artefacts that
he carries such as a machine gun, a knife, and a cloak. The programmer writes a program in
terms of these objects. Additionally, she specifies a set of rules that define the interactions of
such objects. For example, she might specify that if a character collides with a wall, then the
character turns around and runs in the other direction. Along with defining objects, and the
semantics of objects, it is essential to define the sources of light in a scene. In this case, the
programmer needs to specify the intensity of light in a moonlit night. The illumination of the
character and the background is then automatically calculated by dedicated graphics software
and hardware.

Sadly, the graphics hardware does not understand the language of complex objects, and
characters. Hence, most graphics toolkits have graphics libraries to break down complex struc-
tures into a set of basic shapes. Most shapes in computer graphics applications are broken down
into a set of triangles. All operations such as object collision, movement, lighting, shadows,
and illumination, are converted to basic operations on triangles. However, graphics libraries do
not use the regular processor to process these triangles and ultimately create an array of pixels
to be displayed on a computer screen. Once, the programmer’s intent has been translated to
operations on basic shapes, the graphics libraries send the code to a dedicated graphics processor
that does the rest of the processing. The graphics processor generates a complex scene from
data and rules supplied by the user. It operates on shapes specified by edges and vertices. Most
of the time these shapes are triangles in 2D space, or tetrahedra in 3D space. The graphics
processors also calculate the effect of lighting, object position, depth, and perspectives while
generating the final image. Once, the graphics processor has generated the final image, it sends
it to the display device. If we are playing a computer game, then this process needs to be done
at least 50-100 times every second.

To summarise, we observe that since generating complex graphics scenes is difficult, and
slow, programmers operate on a high-level description of objects. Subsequently, graphics li-
braries convert the programmer’s directives into operations on basic shapes, and send the set
of shapes, and rules for operating on them to the graphics processor. The graphics processor
generates the final scene by operating on the basic shapes, and then converting them to an
array of pixels.

The second important application of graphics processors is to display animated content
such as videos. A high definition video has millions of pixels per scene. To reduce the storage
requirements, most high definition videos are severely compressed (encoded). Hence, a computer
needs to decode or decompress a video, compute the array of pixels 50-100 times per second,
and display them on screen. This is a very compute intensive process, and can tie up the
resources of a CPU. Hence, video decoding is also typically offloaded to the graphics processor
that contains specialised units for handling videos.

753 © Smruti R. Sarangi

Almost all modern computer systems contain a graphics processor, and it is referred to as
the GPU (Graphics Processing Unit). A modern GPU contains more than 64-128 cores, and
thus is designed for extensive parallel processing.

B.1.2 Graphics Pipeline

Let us now look at the pipeline of a typical graphics processor in Figure B.1.

Vertex
processing

Shapes, objects,
rules, effects

Rasterisation
Triangles Fragments

Fragment
processing

Pixels
Framebuffer
processing

Framebuffer

Figure B.1: A graphics pipeline [Blythe, 2008]

The first stage is called vertex processing. In this stage, the set of vertices, shapes, and
triangles, are processed. The GPU performs complex operations such as object rotation, and
translation. The programmer might specify that she wants a given object to move at a certain
velocity towards another object. It is thus necessary to translate the position of a shape at a
given rate. Such operations are also performed in this stage. The output of this stage is a set
of simple triangles in a 2D plane.

The second stage is known as rasterisation. The process of rasterisation converts each of
the triangles into a set of pixels, known as fragments. Moreover, it associates each pixel in a
fragment with a set of parameters. These parameters are later used to interpolate the value of
the colour. The third stage does fragment processing. This stage either colours the pixels of a
fragment according to a fixed set of rules using the intermediate results computed in the previous
stage, or, it maps a given texture to the fragment. For example, if a fragment represents the
surface of a wooden table, then this stage maps the texture of wood to the colours of the pixels.
This stage is also used to incorporate effects such as shadows and illumination.

Note that up till now we have computed the colours of the fragments for all the objects in
a scene. However, it is possible that one object might be in front of another object, and thus a
part of the second object might be hidden. The fourth stage aggregates all the fragments from
the third stage, and performs an operation called frame buffer processing. The frame buffer is
a large array that contains the colour values for each pixel. The graphics card passes the frame
buffer to the display device 50-100 times per second. One of the operations performed in this
stage is known as depth buffering. Here, it computes a 2D view of the 3D space at a certain
angle by hiding parts of objects. Once the final scene is created, the graphics pipeline transfers
the image to the frame buffer.

This is precisely the way complex games, or even standard operations such as minimising
or maximising a window are rendered by a graphics processor. Rendering is defined as the
process of generating a scene in pixels, by processing the high level description of a scene in
terms of objects, rules, and visual effects. Discussing the exact details of rendering is beyond
the scope of this book. The interested reader can refer to a book on computer graphics [Hughes
et al., 2013]. The only point that the user should appreciate is that the process of rendering
essentially involves a lot of linear algebra operations. Readers familiar with linear algebra will

© Smruti R. Sarangi 754

quickly appreciate the fact that object rotation or translation are all matrix operations. These
operations process a large number of floating point values, and are inherently parallel.

B.1.3 Fusion of High Performance Computing and Graphics Computing

Towards the late nineties, there was a rapid growth in the field of computer graphics. There
was a surge in computer gaming, desktop visual effects, and advanced engineering software
that required sophisticated hardware accelerators for computer graphics. Hence, designers
increasingly faced the need to create more vivid scenes, and more life like objects. Readers can
compare the animation movies produced in the late eighties and today’s Hollywood movies.
Animated movies today have very life like characters with very detailed facial expressions.
Thanks to graphics hardware, all of this is possible. To create such immersive experiences
it became necessary to add a great degree of flexibility in graphics processors to incorporate
different kinds of visual effects. Hence, graphics processor designers exposed a lot of internals
of the processor to low level software and allowed the programmers to use the processor more
flexibly. A set of programs called shaders were born in the early years of 2000. They allowed
the programmer to create flexible fragment, and pixel processing routines.

By 2006, major GPU vendors had the realisation that the graphics pipeline can be used
for general purpose computations also. For example, heavily numerical scientific code is con-
ceptually similar to fragment, or pixel processing operations. Hence, if we allow regular user
programs to access the graphics processor to perform their tasks then we can run a host of
scientific programs on graphics processors. In response to this requirement, NVIDIA released
the CUDA API that allowed C programmers to write code in C, and run it on a graphics
processor. Hence, the term GPGPU (General Purpose GPU) was born.

Definition 164
GPGPU stands for General Purpose Graphics Processing Unit. It is essentially a graphics
processor that allows regular users to write and run their code on it. Users typically use ded-
icated languages, or extensions to standard languages for producing code that is compatible
with GPGPUs.

In this book we shall discuss the design of the NVIDIA® Tesla® GPU architecture. Specif-
ically, we will discuss the design of the GeForce® 8800 GPU. The fastest parts of the GPU
(the cores) typically operate at 1.5 GHz. Other parts operate at 600 MHz, or 750 MHz.

B.2 NVIDIA Tesla Architecture

Figure B.2 shows the Tesla architecture. Let us start explaining from the top of the figure.
The host CPU sends sequences of commands and data to the graphics processor through a
dedicated bus. The dedicated bus then transfers the set of commands and data to buffers on
the GPU. Subsequently, the units of the GPU process the information. In Figure B.2 the work
flows from top to bottom. Before we start discussing the details of the GPU, the reader needs to
understand that the GPU is essentially a set of very simple inorder cores. Additionally, it has a

755 © Smruti R. Sarangi

Host CPU Bridge System Memory

Host interface

Input assembler

Vertex work
distribution

Viewport/clip/setup
/raster/zcull

Pixel work
distribution

Compute work
distribution

TPC

Texture unit

SM SM

TPC

Texture unit

SM SM

TPC

Texture unit

SM SM

ROP L2

DRAM

Interconnection network

ROP L2

DRAM

ROP L2

DRAM

(1) (2) (8)

(1) (2) (6)

Figure B.2: NVIDIA Tesla Architecture ©[2008] IEEE. Reprinted, with permission.
Source [Lindholm et al., 2008]

large amount of extra hardware to co-ordinate the execution of complex tasks and allocate work
to the set of cores. The GPU also supports a multilevel memory hierarchy, and has specialised
units that exclusively perform a few graphics specific operations.

B.2.1 Work Distribution

Three kinds of work can be assigned to the GPU – vertex processing, pixel processing, and
regular computing jobs. The GPU defines its own assembly code, which uses the PTX and
SASS instruction sets. Each instruction in these instruction sets defines a basic operation on
the GPU. It uses either register operands, or memory operands. Unlike CPUs the structure of
the register file in a GPU is typically not exposed to software. The programmer is expected to
use an unlimited number of virtual registers. The GPU or the device driver map them to real
registers.

Now, for processing vertices, low level graphics software sends a sequence of assembly in-

© Smruti R. Sarangi 756

structions to the GPU. The GPU has a hardware assembler that produces binary code, and
sends it to a dedicated vertex processing unit that co-ordinates and distributes the work among
the cores in the GPU. Alternatively, the CPU can send pixel processing operations to the GPU.
The GPU does the process of rasterisation, fragment processing, and depth buffering. A dedi-
cated unit in the GPU generates code snippets for these operations, and sends them to a pixel
processing unit that distributes the work items among the set of GPU cores. The third unit
is a compute work distributor that accepts regular computational tasks from the CPU such as
adding two matrices, or computing a dot product of two vectors. The programmer specifies
a set of subtasks. The role of the compute work distribution engine is to send these set of
subtasks to cores in the GPU.

Beyond this stage, the GPU is more or less oblivious of the source of the instructions. Note
that this piece of engineering is the key contribution behind making GPUs successful. Designers
have successfully split the functionality of a GPU into two layers. The first layer is specific to
the type of operation (graphics or general purpose). The role of each pipeline in this stage is to
transform the specific sequence of operations into a generic set of actions such that irrespective
of the nature of the high level operation, the same set of hardware units can be used. Let us
now take a look at the second half of the GPGPU that contains the compute engines.

B.2.2 GPU Compute Engines

The GeForce 8800 GPU has 128 cores. The Cores are organised into 8 groups. Each group is
known as a TPC (texture/ processor cluster). Each TPC contains two SMs (Streaming Multi-
processors). Moreover, each SM contains 8 cores known as streaming processors (SPs). Each
SP is a simple inorder core that has an IEEE 754 compliant floating point ALU, branch and
memory access units. Along with the set of simple cores, each SM contains some dedicated
memory structures. These memory structures contain constants, texture data, and GPU in-
structions. All the SPs can execute a set of instructions in parallel, and are tightly synchronised
with each other.

B.2.3 Interconnection Network, DRAM Modules, L2 Caches, and ROPs

The 8 TPCs are connected via an interconnection network to a set of caches, DRAM modules,
and ROPs (raster operation processors). The SMs contain the first level caches. Upon a cache
miss, the SP cores access the relevant L2 cache bank via the NOC. In the case of GPUs,
the L2 cache is a shared cache split at the level of banks. Beneath the L2 caches, GPUs
have a large external DRAM memory. The GeForce 8800 had 384 pins to connect to external
DRAM modules. The set of pins are divided into 6 groups, where each group contains 64
pins. The physical memory space is also split into 6 parts, across the 6 groups. Rasterisation
operations typically require some specialised processing routines. Unfortunately, these routines
run inefficiently on TPCs. Hence, the GeForce 8800 chip has 6 ROPs. Each ROP processor can
process at the most 4 pixels per cycle. It mostly interpolates the colour of pixels, and performs
colour blending operations.

We are primarily interested in the design of the SMs. Hence, let us look at them in slightly
greater detail.

757 © Smruti R. Sarangi

B.3 Streaming Multiprocessors (SMs)

TPC
Geometry controller

SMC

SM
I cache
MT issue

C cache

SP SP

SP SP

SP SP

SP SP

SFU SFU

Shared
memory

SM
I cache
MT issue

C cache

SP SP

SP SP

SP SP

SP SP

SFU SFU

Shared
memory

Tex. L1
Texture unit

Figure B.3: A texture/processor cluster ©[2008] IEEE. Reprinted, with permission.
Source [Lindholm et al., 2008]

Figure B.3 shows the structure of a TPC with two SMs. The geometry controller orchestrates
vertex and shape processing on the individual cores. It brings in vertex data from the memory
hierarchy, directs the cores to process them, and then co-ordinates the process of storing the
output in the memory hierarchy. Moreover, it also helps in forwarding the output to the next
stage of processing. The SMC (SM controller) schedules the requests for external resources.
For example, it is possible that multiple cores in an SM might want to write to the DRAM
memory, or access the texture unit. In this case, the SMC arbitrates the requests. Let us now
look at the structure of an SM.

Each SM has an I Cache (instruction cache), a C cache (constant cache), and a built in
thread scheduler for multithreaded workloads (MT Issue Unit). The 8 SP cores can access the
shared memory unit embedded in the SM for communication between themselves. An SP core
has an IEEE 754 compliant floating point ALU. It can perform regular floating point operations
such as add, subtract, and multiply. It also supports a special instruction called multiply-add,
which is required very frequently in graphics computations. This instruction computes the
value of the expression: a ∗ b + c. Along with the FP ALU each SP has an integer ALU that

© Smruti R. Sarangi 758

can execute regular integer instructions, and logical instructions. Moreover, the SP core can
execute memory instructions, and branch instructions. Similar to vector processors, SP cores
implement predicated instructions. This means that they dedicate issue slots to instructions in
the wrong path; though, they are replaced with nop instructions. The SPs are optimised for
speed, and are the fastest units in the entire GPU. This is due to the fact that they implement
a very simple RISC like instruction set, which consists mostly of basic instructions.

For computing more sophisticated mathematical functions such as transcendental functions
or trigonometric functions there are two special function units (SFUs) in each SM. The SFUs
also have specialised units for interpolating the value of colours inside a fragment. GPUs use
this functionality for colouring the inside of each triangular fragment. Along with specialised
units, the SFUs have regular integer/ floating point ALUs also that are used to run general
purpose codes.

The two SMs in a TPC share a texture unit. The texture unit can simultaneously process
four threads, and fill the triangles produced after rasterisation with the texture of the surface
associated with the triangles. The texture information is stored in a small cache within the
texture unit. Upon a cache miss, the texture unit can fetch data from the relevant L2 cache,
or from main DRAM memory. Now that we have described the different parts of a GPU, let
us discuss how to perform a computation on a GPU.

Each thread in an SM (mapped to an SP) can either access per thread local memory (saved
on external DRAM), or shared memory (shared across all the threads in an SM, and saved on
chip), or global DRAM memory. Programmers can explicitly direct the GPU to use a certain
kind of memory.

B.4 Computation on a GPU

The graphics processing model is actually a combination of multi-threading, multi-programming,
and SIMD execution. NVIDIA calls its model SIMT (Single Instruction, Multi-threaded). Let
us look at NVIDIA’s SIMT execution model.

The programmer starts out by writing code in the CUDA programming language. CUDA
stands for Compute Unified Device Architecture. It is a custom extension to C/C++ that is
compiled by NVIDIA’s nvcc compiler to generate code in both the CPU’s ISA (for the CPU),
and in the PTX instruction set (for the GPU). A CUDA program contains a set of kernels that
run on the GPU and a set of functions that run on the host CPU. The functions on the host
CPU transfer data to and from the GPU, initialise the variables, and co-ordinate the execution
of kernels on the GPU. A kernel is defined as a function that executes in parallel on the GPU.
The graphics hardware creates multiple copies of each CUDA kernel, and each copy executes
on a separate thread.

The GPU maps each such thread to an SP core. It is possible to seamlessly create and
execute hundreds of threads for a single CUDA kernel. An astute reader might argue that if
the code is the same for multiple copies then what is the point of running multiple copies. Well,
the answer is that the code is not exactly the same. The code implicitly takes the id of the
thread as an input. For example, if we generate 100 threads for each CUDA kernel, then each
thread has an unique id in the set [0 . . . 99]. Based on the id of the thread, the code in the CUDA
kernel performs appropriate processing. Recall that we had seen a very similar example, when
we had written OpenMP programs (see Example 149). Now, it is possible that the threads of

759 © Smruti R. Sarangi

SM multithreaded
instruction scheduler

Warp 8, instruction 11

Warp 1, instruction 42

Warp 3, instruction 95

Warp 8, instruction 11

Warp 1, instruction 42

Warp 3, instruction 95

Figure B.4: Scheduling of warps ©[2008] IEEE. Reprinted, with permission. Source [Lindholm
et al., 2008]

many separate applications might be running at the same time. The MT issue logic of each SM
schedules the threads and co-ordinates their execution. An SM in this architecture can handle
up to 768 threads.

If we are running multiple applications in parallel then the GPU as a whole will need to
schedule thousands of threads. The scheduling overhead is prohibitive. Hence, to make the
task of scheduling simpler, the GeForce 8800 GPU groups a set of 32 threads into a warp. Each
SM can manage 24 warps. A warp is an atomic unit of threads, and either all the threads of a
warp are scheduled, or no thread in the warp is scheduled. Moreover, all the threads in a warp
belong to the same kernel, and start at exactly the same address. However, after they have
started they can have different program counters.

Each SM maps the threads of a warp to SP cores. It executes the warp instruction by
instruction. This is similar to classic SIMD execution, where we execute one instruction on
multiple data streams, and then move to the next instruction. The SM executes an instruction
for each thread in the warp, and after all the threads have completed the instruction, it executes
the next instruction. If the kernel has a branch that is data or thread dependent, then the
SM executes instructions for only those threads that have instructions in the correct branch
path. The GeForce GPU uses predicated instructions. For the instructions on the wrong path,
the predicated condition is false. Hence, these instructions are dynamically replaced with nop
instructions. Once the branch paths (taken, and not taken) reconverge, all the threads in a warp
become active again. The main difference from the SIMD model is that in a SIMD processor,
the same thread handles multiple data streams in the same instruction. Whereas, in this case,

© Smruti R. Sarangi 760

the same instruction is executed in multiple threads, and each instruction operates on different
data streams. After executing an instruction in a warp the MT issue unit might schedule the
same warp, another warp from the same application, or a warp from another application. The
GPU essentially implements fine grained multithreading at the level of warps. Figure B.4 shows
an example.

For executing, a 32 thread warp, an SM typically uses 4 cycles. In the first cycle, it issues
8 threads to each of the 8 SP cores. In the second cycle, it issues 8 more threads to the SFUs.
Since the two SFUs have 4 functional units each, they can process 8 instructions in parallel
without any structural hazards. In the third cycle, 8 more threads, are sent to the SP cores, and
finally in the fourth cycle, 8 threads are sent to the two SFU cores. This strategy of switching
between using SFUs, and SP cores, ensures that both the units are kept busy. Since a warp
is an atomic unit, it cannot be split across SMs, and each instruction of the warp must finish
executing for all the active threads, before we can execute the next instruction in the warp. We
can conceptually equate the concept of warps to a 32 lane wide SIMD machine. Multiple warps
in the same application can execute independently. To synchronise between warps we need to
use global memory, or sophisticated synchronisation primitives available in modern GPUs.

B.5 CUDA Programs

A CUDA program naturally maps to the structure of a GPU. We first write a kernel in CUDA
that performs a set of operations depending on the thread id that it is assigned at runtime.
A dynamic instance of a kernel is a thread (similar to a thread in the context of a CPU). We
group a set of threads into a block, or a CTA (co-operative thread array). A block or a CTA
corresponds to a warp. We can have 1–512 threads in a block, and each SM can buffer the
state of at most 8 blocks at any point of time. Each thread in a block has a unique thread
id. Similarly, blocks are grouped together in a grid. The grid contains all the threads for an
application. Different blocks (or warps) may execute independently of each other, unless we
explicitly enforce some form of synchronisation. In our simple example, we consider a block to
be a linear array of threads, and a grid to be a linear array of blocks. Additionally, we can
define a block to be a 2D or 3D array of threads, or a grid to be a 2D or 3D array of blocks.

Let us now look at a small CUDA program to add two n element arrays. Let us consider
the CUDA program in parts. In the following code snippet, we initialise three arrays a, b, and
c. We wish to add a and b element wise and save the results in c.

1 #define N 1024

2

3 void main() {
4 /* Declare three arrays a, b, and c */

5 int a[N], b[N], c[N];

6

7 /* Declare the corresponding arrays in the GPU */

8 int size = N * sizeof(int);

9 int *gpu_a, *gpu_b, *gpu_c;

10

11 /* allocate space for the arrays in the GPU */

761 © Smruti R. Sarangi

12 cudaMalloc((void**) &gpu_a, size);

13 cudaMalloc((void**) &gpu_b, size);

14 cudaMalloc((void**) &gpu_c, size);

15

16 /* initialise arrays, a and b */

17 ...

18

19 /* copy the arrays to the GPU */

20 cudaMemcpy (gpu_a, a, size, cudaMemcpyHostToDevice);

21 cudaMemcpy (gpu_b, b, size, cudaMemcpyHostToDevice);

In this code snippet we declare three arrays (a, b, and c) with N elements in Line 5.
Subsequently, in Line 9, we define their corresponding storage locations (gpu a, gpu b and
gpu c) in the GPU. We then allocate space for them in the GPU by using the cudaMalloc
call. Next, we initialise arrays a and b with values (code not shown), and then copy these
arrays to the corresponding locations (gpu a, and gpu b) in the GPU using the CUDA function
cudaMemcpy. It uses a flag called cudaMemcpyHostToDevice. In this case the host is the
CPU and the device is the GPU.

The next operation is to add the vectors gpu a, and gpu b in the GPU. For this purpose, we
need to write a vectorAdd function that can add the vectors. This function should take three
arguments consisting of two input vectors, and an output vector. Let us for the time being
assume that we have such a function with us. Let us show the code to invoke this function.

1 vectorAdd <<< N/32, 32 >>> (gpu_a, gpu_b, gpu_c);

We invoke the vectorAdd function with three arguments: gpu a, gpu b and gpu c. Let us
now look at the expression: <<< N/32, 32 >>>. This piece of code indicates to the GPU that
we have N/32 blocks, and each block contains 32 threads. Let us now assume that the GPU
magically adds the two arrays and saves the results in the array gpu c in its physical memory
space. The last step in the main function is to fetch the results from the GPU, and free space
in the GPU. The code for it is as follows.

1 /* Copy from the GPU to the CPU */

2 cudaMemcpy (c, gpu_c, size, cudaMemcpyDeviceToHost);

3

4 /* free space in the GPU */

5 cudaFree (gpu_a);

6 cudaFree (gpu_b);

7 cudaFree (gpu_c);

8

9 } /* end of the main function */

Now, let us define the function vectorAdd, which needs to be executed on the GPU.

© Smruti R. Sarangi 762

1 /* The GPU kernel */

2 __global__ void vectorAdd (int *gpu a, int *gpu b, int *gpu c) {
3 /* compute the index */

4 int idx = threadIdx.x + blockIdx.x * blockDim.x;

5

6 /* perform the addition */

7 gpu_c[idx] = gpu_a[idx] + gpu_b[idx];

8 }

Here, we access some built in variables that are populated by the CUDA runtime. In
general, a grid and a block have three axes (x, y, and z). Since we assume only one axis in
the blocks and the grid in this example, we only use the x axis. The variable blockDim.x
is equal to the number of threads in a block. If we would have considered 2D grids, then
the dimension of a block would have been blockDim.x × blockDim.y. blockIdx.x is the index
of the block, and threadIdx.x is the index of the thread in the block. Thus, the expression
threadIdx.x + blockIdx.x ∗ blockDim.x represents the index of the thread. Note that in this
example, we associate each element of the arrays with a thread. Since the overhead of creation,
initialisation, and switching of threads is small, we can adopt this approach in the case of a
GPU. In the case of a CPU that has large overheads with creating and managing threads, this
approach is not feasible. Once, we compute the index of the thread, we perform the addition
in Line 7.

The GPU creates N copies of this kernel, and distributes it among N threads. Each of the
kernels computes a different index in Line 4, and proceeds to perform the addition in Line 7.
We showed a simple example. However, it is possible to write extremely complicated programs
using the CUDA extensions to C/C++ replete with synchronisation statements, and conditional
branch statements. The reader can consult the book by Farber [Farber, 2011] for an in-depth
coverage of CUDA programming.

To summarise, let us show the entire GPU program. Note that we club the kernel of
the GPU along with the code that is executed by the CPU into a single program. NVIDIA’s
compiler splits the single file into two binaries. One binary runs on the CPU and uses the CPU’s
instruction set, and the other binary runs on the GPU and uses the PTX instruction set. This is
a classical example of a MPMD style of execution where we have different programs in different
instruction sets, and multiple streams of data. Thus, we can think of the GPU’s parallel
programming model as a combination of SIMD, MPMD, and fine grained multithreading at the
level of warps. We leave the readers with an artist’s impression of a GPU (see Figure B.5).

1 #define N 1024

2

3 /* The GPU kernel */

4 __global__ void vectorAdd (int *gpu a, int *gpu b, int *gpu c) {
5 /* compute the index */

6 int idx = threadIdx.x + blockIdx.x * blockDim.x;

7

8 /* perform the addition */

763 © Smruti R. Sarangi

Figure B.5: Artist’s impression of a GPU

9 gpu_c[idx] = gpu_a[idx] + gpu_b[idx];

10 }
11 void main() {
12 /* Declare three arrays a, b, and c */

13 int a[N], b[N], c[N];

14

15 /* Declare the corresponding arrays in the GPU */

16 int size = N * sizeof(int);

17 int *gpu_a, *gpu_b, *gpu_c;

18

19 /* allocate space for the arrays in the GPU */

20 cudaMalloc((void**) &gpu_a, size);

21 cudaMalloc((void**) &gpu_b, size);

22 cudaMalloc((void**) &gpu_c, size);

23

24 /* initialise arrays, a and b */

25 ...

26

27 /* copy the arrays to the GPU */

28 cudaMemcpy (gpu_a, a, size, cudaMemcpyHostToDevice);

29 cudaMemcpy (gpu_b, b, size, cudaMemcpyHostToDevice);

30

© Smruti R. Sarangi 764

31 /* invoke the vector add operation in the GPU */

32 vectorAdd <<< N/32, 32 >>> (gpu_a, gpu_b, gpu_c);

33

34 /* Copy from the GPU to the CPU */

35 cudaMemcpy (c, gpu_c, size, cudaMemcpyDeviceToHost);

36

37 /* free space in the GPU */

38 cudaFree (gpu_a);

39 cudaFree (gpu_b);

40 cudaFree (gpu_c);

41

42 } /* end of the main function */

Bibliography

[arm, a] The arm architecture with a focus on v7a and cortex-a8. www.arm.com/files/pdf/

ARM_Arch_A8.pdf. Online: accessed on 21st Nov, 2013.

[arm, b] Arm cortex-m3 introduction. www.arm.com/files/pdf/CortexM3_Uni_Intro.pdf.
Online: accessed on 21st Nov, 2013.

[nic,] Atm network interface. http://en.wikipedia.org/wiki/File:ForeRunnerLE_25_

ATM_Network_Interface_%281%29.jpg. Online: accessed on 12th October, 2013.

[bak,] Bakhshali manuscripl. http://en.wikipedia.org/wiki/Bakhshali_manuscript/.
Online: accessed on 21st Nov, 2013.

[dis,] Compact disc. http://openclipart.org/detail/104191/

compact-disc-by-decosigner. Online: accessed on 12th October, 2013.

[arm, c] Cortex -a15 mpcore tm tm revision: r3p2 technical reference manual. www.arm.com.
Online: accessed on 21st Nov, 2013.

[ccl,] Creative commons share alike license 3.0. http://creativecommons.org/licenses/

by-sa/3.0/. Online: accessed on 12th October, 2013.

[arm, d] Exploring the design of the cortex-a15 processor. www.arm.com/files/pdf/

at-exploring_the_design_of_the_cortex-a15.pdf. Online: accessed on 21st Nov, 2013.

[gx8,] Gnu x86 assembler. http://www.gnu.org. Online: accessed on 21st Nov, 2013.

[har,] Hard disc – open clipart. http://openclipart.org/detail/170369/

hard-disk-by-ilnanny-170369. Online: accessed on 12th October, 2013.

[fir,] Ieee 1394 standard. http://standards.ieee.org/findstds/standard/1394-1995.

html. Online: accessed on 12th October, 2013.

[int,] Intel 64 and ia 32 architectures software developer manuals. http://www.intel.com/

content/www/us/en/processors/architectures-software-developer-manuals.html.

[ind,] Interesting facts about india – my india, my pride – national portal of india. http:

//knowindia.gov.in/myindia/myindia_frame.php?id=10.

[mas,] Microsoft macro assembler 8.0 (masm) package. http://www.microsoft.com/en-in/
download/details.aspx?id=12654. Online: accessed on 21st Nov, 2013.

[nas,] The netwide assembler. http://www.nasm.us. Online: accessed on 21st Nov, 2013.

765

www.arm.com/files/pdf/ARM_Arch_A8.pdf
www.arm.com/files/pdf/ARM_Arch_A8.pdf
www.arm.com/files/pdf/CortexM3_Uni_Intro.pdf
http://en.wikipedia.org/wiki/File:ForeRunnerLE_25_ATM_Network_Interface_%281%29.jpg
http://en.wikipedia.org/wiki/File:ForeRunnerLE_25_ATM_Network_Interface_%281%29.jpg
http://en.wikipedia.org/wiki/Bakhshali_manuscript/
http://openclipart.org/detail/104191/compact-disc-by-decosigner
http://openclipart.org/detail/104191/compact-disc-by-decosigner
www.arm.com
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
www.arm.com/files/pdf/at-exploring_the_design_of_the_cortex-a15.pdf
www.arm.com/files/pdf/at-exploring_the_design_of_the_cortex-a15.pdf
http://www.gnu.org
http://openclipart.org/detail/170369/hard-disk-by-ilnanny-170369
http://openclipart.org/detail/170369/hard-disk-by-ilnanny-170369
http://standards.ieee.org/findstds/standard/1394-1995.html
http://standards.ieee.org/findstds/standard/1394-1995.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://knowindia.gov.in/myindia/myindia_frame.php?id=10
http://knowindia.gov.in/myindia/myindia_frame.php?id=10
http://www.microsoft.com/en-in/download/details.aspx?id=12654
http://www.microsoft.com/en-in/download/details.aspx?id=12654
http://www.nasm.us

© Smruti R. Sarangi 766

[pci,] Pci express specifications. http://www.pcisig.com/specifications/pciexpress. On-
line: accessed on 12th October, 2013.

[red,] Red book (audio cd standard). http://www.princeton.edu/~achaney/tmve/

wiki100k/docs/Red_Book_(audio_CD_standard).html.

[ris,] The risc-v instruction set manual volume i. www.riscv.org. Online: accessed on 16th

May, 2024.

[sat,] Sata specifications. https://www.sata-io.org/technical-library. Online: accessed
on 12th October, 2013.

[uni,] The unicode standard. http://www.unicode.org/standard/standard.html. Online:
accessed on 21st Nov, 2013.

[usb,] Usb specification. http://www.usb.org/developers/docs/. Online: accessed on 12th

October, 2013.

[scs,] Www virtual library for scsi. http://www.scsilibrary.com. Online: accessed on 12th

October, 2013.

[arm, 2000] (2000). ARM Architecture Reference Manual . ARM Limited.

[Abramovitch, 2001] Abramovitch, D. (2001). Magnetic and optical disk control: parallels and
contrasts. In American Control Conference, 2001. Proceedings of the 2001, volume 1, pages
421–428 vol.1.

[Adve and Gharachorloo, 1996] Adve, S. V. and Gharachorloo, K. (1996). Shared memory
consistency models: A tutorial. computer, 29(12):66–76.

[Adve et al., 2003] Adve, V., Lattner, C., Brukman, M., Shukla, A., and Gaeke, B. (2003).
Llva: a low-level virtual instruction set architecture. In Microarchitecture, 2003. MICRO-36.
Proceedings. 36th Annual IEEE/ACM International Symposium on, pages 205 – 216.

[Aho et al., 2006] Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2006). Compilers,
Principles, Techniques, and Tools. Addison Wesley.

[Akkary et al., 2003] Akkary, H., Rajwar, R., and Srinivasan, S. T. (2003). Checkpoint process-
ing and recovery: Towards scalable large instruction window processors. InMicroarchitecture,
2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM International Symposium on, pages
423–434. IEEE.

[Arvind and Maessen, 2006] Arvind, A. and Maessen, J.-W. (2006). Memory model= instruc-
tion reordering+ store atomicity. In ACM SIGARCH Computer Architecture News, vol-
ume 34, pages 29–40. IEEE Computer Society.

[Asanović and Patterson, 2014] Asanović, K. and Patterson, D. A. (2014). Instruction sets
should be free: The case for risc-v. EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2014-146.

http://www.pcisig.com/specifications/pciexpress
http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Red_Book_(audio_CD_standard).html
http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Red_Book_(audio_CD_standard).html
www.riscv.org
https://www.sata-io.org/technical-library
http://www.unicode.org/standard/standard.html
http://www.usb.org/developers/docs/
http://www.scsilibrary.com

767 © Smruti R. Sarangi

[Austin et al., 2002] Austin, T., Larson, E., and Ernst, D. (2002). SimpleScalar: An infras-
tructure for computer system modeling. IEEE Computer, 35(2):59–67.

[Baer, 2010] Baer, J.-L. (2010). Microprocessor Architecture: from simple pipelines to chip
multiprocessors. Cambridge University Press.

[Balasubramonian et al., 2011] Balasubramonian, R., Jouppi, N. P., and Muralimanohar, N.
(2011). Multi-core cache hierarchies. Synthesis Lectures on Computer Architecture, 6(3):1–
153.

[Bergstra and Middelburg, 2012] Bergstra, J. A. and Middelburg, C. A. (2012). Instruction
Sequences for Computer Science . Atlantis.

[Blythe, 2008] Blythe, D. (2008). Rise of the graphics processor. Proceedings of the IEEE,
96(5):761–778.

[Boggs et al., 2004] Boggs, D., Baktha, A., Hawkins, J., Marr, D. T., Miller, J. A., Roussel,
P., Singhal, R., Toll, B., and Venkatraman, K. (2004). The microarchitecture of the intel
pentium 4 processor on 90nm technology. Intel Technology Journal, 8(1):1–17.

[Borrill, 1987] Borrill, P. (1987). Ieee 896.1: the futurebus. Electronics and Power, 33(10):628–
631.

[Bourgeat et al., 2021] Bourgeat, T., Clester, I., Erbsen, A., Gruetter, S., Wright, A., and Chli-
pala, A. (2021). A multipurpose formal risc-v specification. arXiv preprint arXiv:2104.00762.

[Brent and Zimmermann, 2010] Brent, R. P. and Zimmermann, P. (2010). Modern Computer
Arithmetic. Cambridge University Press.

[Brewer and Gill, 2008] Brewer, J. and Gill, M. (2008). Nonvolatile Memory Technologies with
Emphasis on Flash: A Comprehensive Guide to Understanding and Using Flash Memory
Devices. IEEE Press Series on Microelectronic Systems (Book 8). Wiley-IEEE Press.

[Brown et al., 2001] Brown, M. D., Stark, J., and Patt, Y. N. (2001). Select-free instruction
scheduling logic. In Microarchitecture, 2001. MICRO-34. Proceedings. 34th ACM/IEEE In-
ternational Symposium on, pages 204–213. IEEE.

[Burgess et al., 2011] Burgess, B., Cohen, B., Denman, M., Dundas, J., Kaplan, D., and Rup-
ley, J. (2011). Bobcat: Amd’s low-power x86 processor. Micro, IEEE, 31(2):16–25.

[Butler et al., 2011] Butler, M., Barnes, L., Sarma, D. D., and Gelinas, B. (2011). Bulldozer:
An approach to multithreaded compute performance. Micro, IEEE, 31(2):6–15.

[Carpenter and Doran, 1986] Carpenter, B. E. and Doran, R. W. (1986). Turing’s ACE Report
of 1946 and Other Papers. Technical report, Cambridge.

[Carter, 1995] Carter, J. W. (1995). Microprocessor Architecture and Microprogramming: A
State Machine Approach. Prentice Hall.

[Cavanagh, 2013] Cavanagh, J. (2013). x86 Assembly Language and C Fundamentals. CRC
Press.

© Smruti R. Sarangi 768

[Celio et al., 2017] Celio, C., Chiu, P.-F., Nikolic, B., Patterson, D. A., and Asanovic, K. (2017).
Boomv2: an open-source out-of-order risc-v core. In First Workshop on Computer Architec-
ture Research with RISC-V (CARRV).

[Chen and Patterson, 2016] Chen, T. and Patterson, D. A. (2016). Risc-v geneology. EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2016-6.

[Cheng and Hu, 1999] Cheng, Y. and Hu, C. (1999). MOSFET Modeling and Bsim3 User’s
Guide. Kluwer Academic Publishers, Norwell, MA, USA.

[Consortium et al., 2006] Consortium, H. T. et al. (2006). Hypertransport i/o link specification
revision 3.00. Document# HTC20051222-0046-0008.

[Conway and Hughes, 2007] Conway, P. and Hughes, B. (2007). The amd opteron north bridge
architecture. Micro, IEEE, 27(2):10–21.

[Cormen et al., 2009] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009).
Introduction to Algorithms. MIT Press, third edition.

[Cover and Thomas, 2013] Cover, T. M. and Thomas, J. A. (2013). Elements of Information
Theory. Wiley.

[Culler et al., 1998] Culler, D., Singh, J. P., and Gupta, A. (1998). Parallel Computer Ar-
chitecture: A Hardware/Software Approach. The Morgan Kaufmann series in Computer
Architecture Design. Morgan Kaufmann.

[Dally and Poulton, 1998] Dally, W. J. and Poulton, J. W. (1998). Digital Systems Engineering.
Cambridge University Press.

[Danowitz et al., 2012] Danowitz, A., Kelley, K., Mao, J., Stevenson, J. P., and Horowitz, M.
(2012). Cpu db: recording microprocessor history. Communications of the ACM, 55(4):55–63.

[Das, 2010] Das, L. B. (2010). The X86 Microprocessors : Architecture and Programming (8086
to Pentium). Pearson.

[Downing and Meyer, 1997] Downing, T. and Meyer, J. (1997). Java Virtual Machine. O’Reilly
Media.

[Durr et al., 2009] Durr, S., Fodor, Z., Frison, J., Hoelbling, C., Hoffmann, R., Katz, S. D.,
Krieg, S., Kurth, T., Lellouch, L., Lippert, T., Szabo, K. K., and Vulvert, G. (2009). Ab-
initio determination of light hadron masses.

[Edler and Hill, 1999] Edler, J. and Hill, M. D. (1999). Dinero iv trace-driven uniprocessor
cache simulator” http://www. cs. wisc. edu/markhill.

[Elsner and Fenlason, 1994] Elsner, D. and Fenlason, J. (1994). Using as – The GNU Assem-
bler.

[Farber, 2011] Farber, R. (2011). CUDA Application Design and Development. Morgan Kauf-
mann.

769 © Smruti R. Sarangi

[Farquhar and Bunce, 2012] Farquhar, E. and Bunce, P. J. (2012). The MIPS Programmers
Handbook . Morgan Kaufmann.

[Frolov et al., 2021] Frolov, V. A., Galaktionov, V. A., and Sanzharov, V. V. (2021). Investi-
gation of risc-v. Programming and Computer Software, 47:493–504.

[Gharachorloo et al., 1992] Gharachorloo, K., Adve, S. V., Gupta, A., Hennessy, J. L., and Hill,
M. D. (1992). Programming for different memory consistency models. Journal of parallel
and distributed computing, 15(4):399–407.

[Gibson, 2011] Gibson, J. R. (2011). ARM Assembly Language an Introduction. Lulu.

[Gilreath and Laplante, 2003] Gilreath, W. F. and Laplante, P. A. (2003). Computer Archi-
tecture: A Minimalist Perspective. Springer.

[gnu.org,] gnu.org. Gnu binutils. http://www.gnu.org/software/binutils.

[Greengard, 2020] Greengard, S. (2020). Will risc-v revolutionize computing? Communications
of the ACM, 63(5):30–32.

[Gregg, 1998] Gregg, J. (1998). Ones and zeros: understanding boolean algebra, digital circuits,
and the logic of sets. Wiley-IEEE Press.

[Guiady et al., 1999] Guiady, C., Falsafi, B., and Vijaykumar, T. N. (1999). Is sc+ ilp= rc?
In Computer Architecture, 1999. Proceedings of the 26th International Symposium on, pages
162–171. IEEE.

[Gwennap, 2010] Gwennap, L. (2010). Sandy bridge spans generations. Microprocessor Report,
9(27):10–01.

[Halfhill, 2008] Halfhill, T. R. (2008). Intel’s tiny atom. Microprocessor Report, 22(4):1.

[Hamacher et al., 2001] Hamacher, C., Vranesic, Z., and Zaky, S. (2001). Computer Organiza-
tion. McGrawHill.

[Hartstein et al., 2006] Hartstein, A., Srinivasan, V., Puzak, T. R., and Emma, P. G. (2006).
Cache miss behavior: is it √2? In Proceedings of the 3rd conference on Computing
frontiers, CF ’06, pages 313–320.

[Henessey and Patterson, 2010] Henessey, J. and Patterson, D. (2010). Computer Organization
and Design: The Hardware/Software Interface. Morgan Kaufmann.

[Hennessy and Patterson, 2012] Hennessy, J. L. and Patterson, D. A. (2012). Computer archi-
tecture: a quantitative approach. Elsevier.

[Hill et al., 1999] Hill, M. D., Jouppi, N. P., and Sohi, G. S. (1999). Readings in Computer
Architecture. The Morgan Kaufmann series in Computer Architecture Design. Morgan Kauf-
mann.

[Hohl, 2009] Hohl, W. (2009). ARM Assembly Language: Fundamentals and Techniques. CRC
Press.

http://www.gnu.org/software/binutils

© Smruti R. Sarangi 770

[Hopcroft et al., 2006] Hopcroft, J. E., Motwani, R., and Ulmann, J. D. (2006). Introduction
to Automata Theory, Languages, and Computation. Prentice Hall.

[Hughes et al., 2013] Hughes, J. F., Dam, A. V., Mcguire, M., Sklar, D. F., Foley, J. D., Feiner,
S. K., and Akeley, K. (2013). Computer Graphics: Principles and Practice. Addison Wesley.

[Husson, 1970] Husson, S. S. (1970). Microprogramming: Principles and Practices. Prentice
Hall.

[Hwang, 2003] Hwang, K. (2003). Advanced computer architecture. Tata McGraw-Hill Educa-
tion.

[Hwu and Patt, 1987] Hwu, W.-M. W. and Patt, Y. N. (1987). Checkpoint repair for
high-performance out-of-order execution machines. Computers, IEEE Transactions on,
100(12):1496–1514.

[INTEL, 2010] INTEL, I. (2010). Intel r 64 and ia-32 architectures software developer’s manual.

[ITRS, 2011] ITRS (2011). International Technology Roadmap for Semiconductors. http:

//www.itrs.net/Links/2011ITRS/Home2011.htm.

[Jacob, 2009] Jacob, B. (2009). The memory system: you can’t avoid it, you can’t ignore it,
you can’t fake it. Synthesis Lectures on Computer Architecture, 4(1):1–77.

[Jacob et al., 2007] Jacob, B., Ng, S., and Wang, D. (2007). Memory Systems: Cache, DRAM,
Disk. Morgan Kaufmann.

[Jerger and Peh, 2009] Jerger, N. E. and Peh, L.-S. (2009). On-chip networks. Synthesis Lec-
tures on Computer Architecture, 4(1):1–141.

[Kahan, 1996] Kahan, W. (1996). Ieee standard 754 for binary floating-point arithmetic. Lec-
ture Notes on the Status of IEEE, 754.

[Kanter, 2016] Kanter, D. (2016). Risc-v offers simple, modular isa. Microprocessor Report,
1:1–5.

[Keleher et al., 1994] Keleher, P., Cox, A. L., Dwarkadas, S., and Zwaenepoel, W. (1994).
Treadmarks: Distributed shared memory on standard workstations and operating systems.
In USENIX Winter, volume 1994.

[Keltcher et al., 2003] Keltcher, C. N., McGrath, K. J., Ahmed, A., and Conway, P. (2003).
The amd opteron processor for multiprocessor servers. Micro, IEEE, 23(2):66–76.

[Kohavi and Jha, 2009] Kohavi, Z. and Jha, N. K. (2009). Switching and Finite Automata
Theory. Cambridge University Press.

[Koren, 2001] Koren, I. (2001). Computer Arithmetic Algorithms. CRC Press, second edition.

[Kreyszig, 2000] Kreyszig, E. (2000). Advanced Engineering Mathematics. Wiley, eigth edition.

[Krick et al., 2000] Krick, R. F., Hinton, G. J., Upton, M. D., Sager, D. J., and Lee, C. W.
(2000). Trace based instruction caching. US Patent 6,018,786.

http://www.itrs.net/Links/2011ITRS/Home2011.htm
http://www.itrs.net/Links/2011ITRS/Home2011.htm

771 © Smruti R. Sarangi

[Kumar, 2003] Kumar, V. R. (2003). Microprocessor x86 Programming. BPB.

[Lafore, 2002] Lafore, R. (2002). Data Structures and Algorithms in Java. Sams Publishing.

[Lin, 2011] Lin, M.-B. (2011). Introduction to VLSI Systems: A Logic, Circuit, and System
Perspective. CRC Press.

[Lindholm et al., 2008] Lindholm, E., Nickolls, J., Oberman, S., and Montrym, J. (2008).
Nvidia tesla: A unified graphics and computing architecture. Micro, IEEE, 28(2):39–55.

[Ling and Xing, 2004] Ling, S. and Xing, C. (2004). Coding Theory: A First Course. Cam-
bridge University Press.

[Mano, 2007] Mano, M. M. (2007). Computer Systems Architecture. Pearson.

[Mezger et al., 2022] Mezger, B. W., Santos, D. A., Dilillo, L., Zeferino, C. A., and Melo, D. R.
(2022). A survey of the risc-v architecture software support. IEEE Access, 10:51394–51411.

[Micheli, 1994] Micheli, G. D. (1994). Synthesis and Optimization of Digital Circuits. McGraw-
Hill.

[Micheloni et al., 2010] Micheloni, R., Crippa, L., and Marelli, A. (2010). Inside NAND Flash
Memories. Springer.

[Mitra, 1999] Mitra, T. (1999). Dynamic random access memory: A survey. Department of
Computer Science, State University of New York at Stony Brook, 25.

[Muchnick, 1997] Muchnick, S. (1997). Advanced Compiler Design and Implementation. Mor-
gan Kaufmann.

[Neubauer et al., 2007] Neubauer, A., Freudenberger, J., and Kuhn, V. (2007). Coding Theory:
Algorithms, Architectures and Applications. Wiley-Blackwell.

[Owen and Steinman, 2008] Owen, J. and Steinman, M. (2008). North bridge architecture of
amd’s griffin microprocessor family. Micro, IEEE, 28(2):10–18.

[Parhami, 2009] Parhami, B. (2009). Computer Arithmetic: Algorithms and Hardware Designs.
Oxford University Press.

[Patsidis et al., 2020] Patsidis, K., Nicopoulos, C., Sirakoulis, G. C., and Dimitrakopoulos, G.
(2020). Risc-v 2: a scalable risc-v vector processor. In 2020 IEEE International Symposium
on Circuits and Systems (ISCAS), pages 1–5. IEEE.

[Patt and Patel, 2003] Patt, Y. and Patel, S. (2003). Introduction to Computing Systems: From
bits & gates to C & beyond. McGraw-Hill.

[Patterson and Waterman, 2017] Patterson, D. and Waterman, A. (2017). The risc-v reader:
an open architecture atlas.

[Paul, 1993] Paul, R. (1993). SPARC Architecture, Assembly Language Programming and C .
Prentice Hall.

© Smruti R. Sarangi 772

[Peterson et al., 1991] Peterson, C., Sutton, J., and Wiley, P. (1991). iwarp: a 100-mops, liw
microprocessor for multicomputers. Micro, IEEE, 11(3):26–29.

[Petric et al., 2005] Petric, V., Sha, T., and Roth, A. (2005). Reno: A rename-based instruction
optimizer, volume 33. IEEE Computer Society.

[Phelps and Parks, 2004] Phelps, A. M. and Parks, D. M. (2004). Fun and Games: Multi-
Language Development. Queue, 1(10):46–56.

[Pratt, 1995] Pratt, V. (1995). Anatomy of the pentium bug. In TAPSOFT’95: Theory and
Practice of Software Development, pages 97–107. Springer.

[Proakis and Salehi, 2007] Proakis, J. and Salehi, M. (2007). Digital Communications. Mc-
GrawHill.

[Quinn, 2003] Quinn, M. (2003). Parallel Programming in C with OpenMP and MPI. Tata
McGrawHill.

[Qureshi et al., 2011] Qureshi, M. K., Gurumurthi, S., and Rajendran, B. (2011). Phase change
memory: From devices to systems. Synthesis Lectures on Computer Architecture, 6(4):1–134.

[Radhakrishnan et al., 2007] Radhakrishnan, S., Chinthamani, S., and Cheng, K. (2007). The
blackford north bridge chipset for the intel 5000. Micro, IEEE, 27(2):22–33.

[Ramı́rez et al., 2020] Ramı́rez, C., Hernández, C. A., Palomar, O., Unsal, O., Ramı́rez, M. A.,
and Cristal, A. (2020). A risc-v simulator and benchmark suite for designing and evaluating
vector architectures. ACM Transactions on Architecture and Code Optimization (TACO),
17(4):1–30.

[russell, 1978] russell, r. m. (1978). the cray-1 computer system. communications of the acm,
21(1):63–72.

[Sarangi,] Sarangi, S. R. Next-Gen Computer Architecture. White Falcon, 1st edition edition.

[Sarangi et al., 2014] Sarangi, S. R., Ananthanarayanan, G., and Balakrishnan, M. (2014).
Lightsim: A leakage aware ultrafast temperature simulator. In ASPDAC.

[Sarangi et al., 2006] Sarangi, S. R., Tiwari, A., and Torrellas, J. (2006). Phoenix: Detecting
and recovering from permanent processor design bugs with programmable hardware. In
Proceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 26–37. IEEE Computer Society.

[Silberschatz et al., 2008] Silberschatz, A., Galvin, P. B., and Gagne, G. (2008). Operating
System Concepts. Wiley, 8 edition.

[Sima et al., 1997] Sima, D., Fountain, T., and Karsuk, P. (1997). Advanced Computer Archi-
tectures: A Design Space Approach. Addison-Wesley.

[Singh and Sarangi, 2021] Singh, S. S. and Sarangi, S. R. (2021). Isamod: A tool for designing
asips by comparing different isas. In 2021 34th International Conference on VLSI Design
and 2021 20th International Conference on Embedded Systems (VLSID), pages 1–6. IEEE.

773 © Smruti R. Sarangi

[Sklar, 2001] Sklar, B. (2001). Digital Communications: Fundamentals and Applications. Pren-
tice Hall.

[Smith and Sohi, 1995] Smith, J. E. and Sohi, G. S. (1995). The microarchitecture of super-
scalar processors. Proceedings of the IEEE, 83(12):1609–1624.

[Snir et al., 1995] Snir, M., Otto, S. W., Walker, D. W., Dongarra, J., and Huss-Lederman, S.
(1995). MPI: the complete reference. MIT press.

[Sorin et al., 2011] Sorin, D. J., Hill, M. D., and Wood, D. A. (2011). A primer on memory
consistency and cache coherence. Synthesis Lectures on Computer Architecture, 6(3):1–212.

[Srinivasan et al., 2004] Srinivasan, J., Adve, S. V., Bose, P., and Rivers, J. A. (2004). The case
for lifetime reliability-aware microprocessors. In Proceedings of the 31st annual international
symposium on Computer architecture, ISCA ’04, pages 276–.

[Stallings, 2010] Stallings, W. (2010). Computer Organization and Architecture: Designing for
Performance. Pearson.

[Stangherlin and Sachdev, 2022] Stangherlin, K. and Sachdev, M. (2022). Design and imple-
mentation of a secure risc-v microprocessor. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 30(11):1705–1715.

[Stenstrom, 1990] Stenstrom, P. (1990). A survey of cache coherence schemes for multiproces-
sors. Computer, 23(6):12–24.

[Streetman and Banerjee, 2005] Streetman, B. and Banerjee, S. (2005). Solid State Electronic
Devices. Prentice-Hall.

[Sze and Ng, 2006] Sze, S. M. and Ng, K. K. (2006). Physics of semiconductor devices. Wiley-
Interscience.

[Tanenbaum, 2007] Tanenbaum, A. S. (2007). Modern Operating Systems. Prentice Hall, third
edition.

[Tarjan et al., 2006] Tarjan, D., Thoziyoor, S., and Jouppi, N. P. (2006). Cacti 4.0. HP labo-
ratories, Technical report.

[Taub and Schilling, 1977] Taub, H. and Schilling, D. L. (1977). Digital integrated electronics.
McGraw-Hill New York.

[Verma et al., 2008] Verma, A. K., Brisk, P., and Ienne, P. (2008). Variable Latency Specula-
tive Addition: A New Paradigm for Arithmetic Circuit Design. In DATE, pages 1250–1255.

[von Neumann, 1945] von Neumann, J. (1945). First Draft of a Report on the EDVAC. Tech-
nical report.

[Vranas et al., 2006] Vranas, P., Bhanot, G., Blumrich, M., Chen, D., Gara, A., Heidelberger,
P., Salapura, V., and Sexton, J. C. (2006). The BlueGene/L Supercomputer and Quantum
ChromoDynamics. In Proceedings of the 2006 ACM/IEEE conference on Supercomputing,
SC ’06, New York, NY, USA. ACM.

© Smruti R. Sarangi 774

[Wakerly, 2000] Wakerly, J. F. (2000). Digital design: principles and practices. Prentice-Hall,
Inc.

[Ware et al., 2010] Ware, M., Rajamani, K., Floyd, M., Brock, B., Rubio, J. C., Rawson, F.,
and Carter, J. B. (2010). Architecting for power management: the ibm® power7™ approach.
In High Performance Computer Architecture (HPCA), 2010 IEEE 16th International Sym-
posium on, pages 1–11. IEEE.

[Waterman, 2016] Waterman, A. S. (2016). Design of the RISC-V instruction set architecture.
University of California, Berkeley.

[Wessman et al., 2021] Wessman, N.-J., Malatesta, F., Andersson, J., Gomez, P., Masmano,
M., Nicolau, V., Le Rhun, J., Cabo, G., Bas, F., Lorenzo, R., et al. (2021). De-risc: the
first risc-v space-grade platform for safety-critical systems. In 2021 IEEE space computing
conference (SCC), pages 17–26. IEEE.

[Whitesitt, 2010] Whitesitt, J. E. (2010). Boolean Algebra and its Applications. Dover Books
on Computer Science.

[Wikipedia,] Wikipedia. Dadda multiplier. http://en.wikipedia.org/wiki/Dadda_

multiplier. Accessed on Oct 22nd, 2012.

[Yeager, 1996] Yeager, K. (1996). The mips r10000 superscalar microprocessor. Micro, IEEE,
16(2):28–41.

[Yeh and Patt, 1991] Yeh, T.-Y. and Patt, Y. N. (1991). Two-level adaptive training branch
prediction. In Proceedings of the 24th annual international symposium on Microarchitecture,
pages 51–61. ACM.

[Yeh and Patt, 1992] Yeh, T.-Y. and Patt, Y. N. (1992). Alternative implementations of two-
level adaptive branch prediction. In ACM SIGARCH Computer Architecture News, vol-
ume 20, pages 124–134. ACM.

[Yeh and Patt, 1993] Yeh, T.-Y. and Patt, Y. N. (1993). A comparison of dynamic branch
predictors that use two levels of branch history. ACM SIGARCH Computer Architecture
News, 21(2):257–266.

[Yiu, 2009] Yiu, J. (2009). The Definitive Guide to ARM Cortex-M3. Newnes.

[Yiu, 2011] Yiu, J. (2011). The Definitive Guide to ARM Cortex-M0. Newnes.

[Yourst, 2007] Yourst, M. (2007). Ptlsim: A cycle accurate full system x86-64 microarchitec-
tural simulator. In ISPASS, pages 23–34.

http://en.wikipedia.org/wiki/Dadda_multiplier
http://en.wikipedia.org/wiki/Dadda_multiplier

Index

1’s Complement, 55
2 Phase Handshaking, 656
2’s Complement, 57

alternative representation, 63
properties, 60
overflow checking, 63
sign extension, 62

2-bit Saturating Counter, 477
2-bit Saturating Counter based Branch Predic-

tor, 477
2.5D Memory Organisation, 278
4 Phase Handshaking, 655

, 435

Access Graph, 594
Addition, 295
Address Distance, 501
Address format, 93
Addressing mode, 94, 95

base-index, 95
base-index-offset, 95
immediate, 95
memory-direct, 95
memory-indirect, 95
register, 95
register-indirect, 95

Ageing, 468
ALU, 351
Ambient Temperature, 473
AMD Bobcat, 729
AMD Bulldozer, 731
Amdahl’s Law, 566
Ancient Number Systems, 47

Indian numerals, 48
Roman numerals, 48

Antifuse, 284
Arbiter, 665
Arbitration, 664

bus grant signal, 665

bus request signal, 665

star topology, 665

Arbitration Policy, 665

Architecture, 4

ARM

condition code, 143

condition codes, 142

CPSR register, 136

instruction encoding, 153

shifter operand, 135

ARM assembly, 129

ARM Cortex-A15, 726

ARM Cortex-A8, 724

ARM Cortex-M3, 722

ARM instruction

adc, 137

add, 131

and, 131

b, 138

beq, 138

bic, 131

bl, 140

bne, 138

branch instructions, 138

cmn, 137

cmp, 137

conditional instruction, 142

eor, 131

ldmfd, 150

ldr, 145

mla, 132

mov, 130

mul, 132

mvn, 130

orr, 131

rsb, 131

rsc, 137

775

© Smruti R. Sarangi 776

sbc, 137

smull, 132

stmfd, 150

str, 145

sub, 131

teq, 137

tst, 137

umull, 132

ARM instruction set, 129

machine model, 129

registers, 129

Array of CAM Cells, 280

Array of DRAM Cells, 283

Array of SRAM Cells, 277

ASCII format, 72

Assembler, 85

Assembly language, 84

generic statement structure, 92

label, 92

statement, 90

Assembly language file structure, 90

Associativity Rule, 527

Asymmetric Multiprocessing, 557

Asymptotic time complexity, 300

Asynchronous Bus, 653

Asynchronous I/O, 654

clock detection, 653

clock recovery, 653

Atomic Instruction, 177

Atomicity, 577

Back Side Bus, 638

Backplane Bus, 638

Backward Error Correction, 659

Bias Based Representation, 56

Big endian, 88

Binary, 9

Binary Number System, 49

Bisection Bandwidth, 613

Bit, 29, 37

Bit Error Rate, 658

Bit Line, 277

Bit Period, 645

Bit Stuffing, 658

Boolean Algebra, 40

Booth Multiplier, 314

Branch Prediction, 475

Branch Target Buffer, 477

Bss Section, 533

Bubble, 423

Buffering, 657

Burst Error, 663

Burst Mode, 678

Bus, 371

Bus Controller, 637

Bus Frequency, 642

Bus Master, 665

Bus Transaction, 669

Byte, 29, 37

Byte Stuffing, 658

Cache, 504

associativity, 512

cache hit, 504

cache miss, 504

data read operation, 516

data write operation, 516

global miss rate, 524

insert operation, 517

local miss rate, 524

lookup, 508

operations, 507

replacement policy, 518

replacement schemes, 518

way, 512

write back, 516

write through, 516

Cache Bank, 586

Cache Coherence, 584, 586

directory protocol, 589

write-invalidate protocol, 590

write-update protocol, 588

Callee, 106

Caller, 106

CAM Cell, 279

match line, 279

Card, 636

Carry, 296

Carry lookahead adder, 304

Carry select adder, 303

777 © Smruti R. Sarangi

Case Studies, 721

Channel, 257

Charge Carriers, 255

electron, 255

hole, 255

Checkerboard Design, 610

Chip Package, 468

Chipset, 637

Church Turing Thesis, 16

CISC, 11

Clock, 269

Clock Detection, 653

Clock Recovery, 653

Clocked SR Latch, 270

Cluster Computer, 613

CMOS Logic, 258

Coarse-Grained Multithreading, 599

Code Reordering, 418

Coherence, 572

axioms, 572

Column major, 89

Comma, 658

Compiler, 82

Computer, 5

Computer arithmetic, 295

Consensus Rule, 42

Constant Linear Velocity, 704

Content Addressable Memory, 279

Context of a Program, 449

Control Hazard, 415

Control Path, 353

Control Unit, 366

CPI, 455

CPU, 6

Critical Word First, 528

Cross compiler, 83

Crosstalk, 658

CUDA, 748, 750

block, 750

CTA, 750

grid, 750

kernel, 748

program, 750

Current Privilege Level (CPL), 452

Cycle Stealing Mode, 678

Cyclic Redundancy Check (CRC) Codes, 663

D Flip-flop, 273

Daisy Chain Based Arbitration, 666

Daisy Chain Bus, 666

Data Array, 508

Data Hazard, 414

RAW hazard, 414

WAR hazard, 414

WAW hazard, 414

Data Lane, 606

Data Link Layer, 657

Data Path, 353

Data Section, 533

Data Strobe Encoding, 687

DDR Memory, 283

DDR 1, 283

DDR 2, 283

DDR 3, 283

De Morgan’s Laws, 42

Decoder, 261

decoder, 121

Decoding, 350

Delay Slot, 420

Delayed Branch, 420

Demultiplexer, 264

Denormal Numbers, 69

Device Driver, 531

Diffusion, 256

Digital Logic, 253

Diode, 256

Direct Mapped Cache, 510

Direct Memory Access, see DMA

Directory, 589

Directory Protocol, 589

Displacement, 174

Division, 323

DMA, 677

burst mode, 678

cache snoop engine, 678

cycle stealing mode, 678

Doping, 255

Double Precision Numbers, 70

Drain, 257

DRAM, 281

© Smruti R. Sarangi 778

Drift, 256
Dynamic Instruction, 457
Dynamic Power, 469
Dynamic RAM (DRAM), 281
Dynamic Voltage Frequency Scaling (DVFS),

474
Dynamically Loaded Libraries, 534

Early Restart, 528
Edge Sensitive, 271
Edge Sensitive SR Flip-flop, 271
EEPROM, 706
Effective memory address, 96
Encoder, 264
Energy Delay2, 473
EPIC, 481
EPROM, 706
Error Detection and Correction, 658
Exception, 446
Executable, 9
Execute Unit, 359

Fail Stop Failure Model, 698
FC (Fibre Channel) , see also SCSI
fcsr, 235
Feature Size, 559
Fetch Unit, 351
fflags, 235
Fine-Grained Multithreading, 601
FireWire Protocol, 687
Firmware, 370
Flash

program/erase cycle, 709
Flash Memory, 706

block, 709
floating gate transistor, 706
page, 709
read disturbance, 711
wear levelling, 710

Flip-flop, 270
Floating Gate Transistor, 706
Floating point addition

opposite signs, 336
Floating Point Control and Status Register,

235
Floating point division, 339

Goldschmidt division, 339
Newton-Raphson division, 340
simple method, 339

Floating Point Mathematics, 71
Floating point multiplication, 337
Floating Point Numbers, 64

binary, 65
IEEE 754 format, 67
normal form, 66
special numbers, 68

Floating Point Rounding, 334
Floating point subtraction, 336
Flynn’s Classification, 568
Forward Bias, 256
Forward Error Correction, 659
Forwarding, 430
Forwarding Conditions, 440
Forwarding Unit, 441
Frame, 538
Framing, 657
Front Side Bus, 638
Full Adder, 296
Full Duplex Bus, 668
Fully Associative Cache, 508

GCC Intrinsics, 606
Generate function, 304
Generic I/O Device, 632
GFLOPS, 464
Global Descriptor Table (GDT), 171
Global Miss Rate, 524
Goldschmidt division, 339
GPU, see Graphics Processors
Graphics Pipeline, 743

depth buffering, 743
rendering, 743

Graphics Processors, 741
CUDA programming model, see CUDA

Half adder, 296
Half Duplex Bus, 668
Hamming Code, 663
Hamming Distance, 663
Happens Before Relationship, 594
Hard Disk, 691

cylinder, 695

779 © Smruti R. Sarangi

head, 692

platter, 692

read head, 692

rotational latency, 697

seek time, 697

servo control, 696

track, 692

transfer time, 697

write head, 692

zoned-bit recording(zbr), 694

Hardwired Control Unit, 366

Harvard Architecture, 24

Hazard

control, 415

data, 414

structural, 417

Hazards, 410

Heap, 534

Heat Sink, 468

Hexadecimal Number System, 50

High level language, 82

Hold Time, 274

Horizontal Microprogramming, 395

Hyperthreading, 602

I/O Address Space, 671

I/O and Storage, 631

I/O Case Studies, 678

I/O Clock, 645

I/O Devices, 631

I/O Layers, 640

data link layer, 640

network layer, 640

physical layer, 640

protocol layer, 640

I/O Mapped I/O, 673

I/O Port, 631, 632

software interface, 670

I/O Port Addressing

I/O mapped I/O, 673

memory mapped i/o, 674

I/O Routing Table, 673

IDE (Integrated Drive Electronics), 681

IEEE 754 Format, 67

denormal numbers, 69

infinity, 68

NAN, 68

ILP, 484

Immediate, 90

In-order Pipeline, 414

Inorder Pipeline, 479

Inorder Processor, 479

Instruction

definition, 8

Instruction format

branch, 117

immediate, 118

register, 118

Instruction Level Parallelism, 484

Instruction Packet, 406

Instruction Queue, 483

Instruction Select, 483

Instruction set architecture, 9

complete, 10

concise, 10

generic, 11

multiple instruction ISA, 21

simple, 11

Single Instruction ISA, 20

Instruction Wakeup, 483

Instruction Window, 483

Intel 8086, 165

Intel Atom, 734

Intel Sandy Bridge, 736

Interconnection Networks, see Network-on-Chip

Interrupt, 445

Interrupt Handler, 445

interrupt masking, 676

Interrupts, 676

Inverted Page Table, 541

Inverter, 258

IPC, 457

ISA, 9

Iterative Multiplier, 310

JK Flip-flop, 272

Karnaugh Maps, 44

Kernel, 531

KIPS, 464

© Smruti R. Sarangi 780

Last Level Cache (LLC), 586

Leakage Current, 471

Leakage Power, 471

Level Sensitive, 271

Linear Memory Model, 170

Link, 611

Little endian, 88

Load Store Queue, 483

Local Descriptor Table (LDT), 171

Local Miss Rate, 524

Logic Gates, 42

Logical Operator

and, 39

nand, 40

nor, 40

not, 39

or, 39

xor, 41

Logical Operators, 39

Loop Buffer, 727

Loosely Coupled Multiprocessing, 560

Low level programming language, 84

LSB, 50

LVDS (Low Voltage Differential Signalling) ,
643

Main Memory, 503

Manchester Encoding, 646

Master Slave Flip-flop, 271

Master-slave D Flip-flop, 273

Memory, 276

theoretical definition, 19

Memory Access Unit, 362

Memory Consistency, 573

Memory Management Unit, 543

Memory Map, 532

Memory Mapped Files, 534

Memory Mapped I/O, 673, 674

Memory Model, 574

Memory System, 495

average memory access time, 524

performance, 523

MESI Protocol, 593

Mesochronous Bus, 649

Metastability, 274

MFLOPS, 464

Microassembly Language, 376

Microcode, 369

Microcode Preamble, 380

Microcontrol Unit, 376

Microinstruction, 369

Microprogram Counter, 376

Microprogram Memory, 376

Microprogrammed Processor, 369

decode unit, 372

register file, 373

Microprogrammed processor

alu, 374

data path, 371, 375

fetch unit, 372

memory unit, 375

Microprogramming, 369

MIMD, 568

minterm, 44

MIPS, 464

MISD, 568

MMU, 543

Modifiers, 114

Moore’s Law, 558

Motherboard, 637

MPMD, 568

MSB, 50

MSI Protocol, 588

Multicomputer, 560

Multicore, 557

Multidrop Bus, 667

Multiple instruction ISA, 21

Multiple Issue In-Order Pipeline, 479

Multiplexer, 262

Multiplication, 309

multiplicand, 309

multiplier, 309

product, 309

Multiprocessing, 557

Multiprocessor Systems, 555

Multithreaded Processors, 598

Multithreading, 598

N-type Semiconductor, 255

NAND Gate, 259

781 © Smruti R. Sarangi

NASM, 174

NBTI, 468

Need for a Fast Memory System, 496

Negative Integers, 55

1’s complement , 55

2’s complement , 57

bias based representation, 56

sign magnitude representation, 55

Network Diameter, 613

Network Layer, 670

Network-on-Chip, 610

butterfly, 618

chain, 613

fat tree, 614

folded torus, 617

hypercube, 617

mesh, 615

ring, 613

torus, 615

Newton-Raphson division, 340

NMOS Transistor, 257

channel, 257

drain, 257

source, 257

NOC, see Network-on-Chip

Non Return to Zero (NRZ) Protocol, 647

Non Return to Zero (NRZI) Inverted Protocol,
648

Non-restoring division, 328

Nop, 113, 418

NOR Gate, 259

Normal Form, 66

North Bridge, 638

Number Circle, 59

NVIDIA Tesla Architecture, 744

computation on a GPU, 748

ROP (Raster Operations Processor), 746

SM, 746

SM (Streaming Multiprocessor), 747

TPC, 746

work distribution, 745

O notation, 300

Octal Number System, 50

oldFlags, 450

oldPC, 449

oldSP, 450

Opcode, 115

Operand Fetch Unit, 354, 356

Operating System, 531

Optical Disk, 701

Blu-ray, 701

CD, 701

DVD, 701

layers, 702

physics, 702

reader, 704

Optical disk

constant linear velocity, 704

Organisation, 4

Out-of-order Pipeline, 414, 482

Out-of-order Processor, 482

instruction queue, 483

instruction select, 483

instruction wakeup, 483

instruction window, 483

load store queue, 483

register renaming, 483

reorder buffer, 483

Overflow, 57

Overlap Problem, 536

P-N Junction, 256

P-type Semiconductor, 255

Page, 538

Page Fault, 544

Page Table, 538

single level, 538

two level, 540

Parity Bit, 659

Partial product, 309

Partial sum, 309

PATA (Parallel ATA), 681

PC, 86

PCI Express, 679

expansion slots, 680

lane, 679

striping, 679

Performance, 455

Performance Equation, 457

© Smruti R. Sarangi 782

Performance of a Non-Ideal Pipeline, 460

Performance of an Ideal Pipeline, 457

Peripherals, 631

Persistent State, 689

PFLOPS, 464

Phase Locked Loop (PLL), 653

Physical Address, 537

Physical Address Space, 523

Physical Layer, 640

Physical Memory, 503

Physical View of Memory, 583

Pipeline, 403

exceptions, 445

interrupts, 445

Pipeline Bubble, 423

Pipeline Diagram, 410

Pipeline Flush, 476

Pipeline Hazards, 410

Pipeline Interlock, 421

Pipeline Latch, 405

Pipeline Register, 405

Pipeline Stall, 421

Pipelined Processor, 401, 403

Pipelining, 401–403

interlocks, 421

PLA, 285

AND plane, 288

cell, 286

OR plane, 288

Plesiochronous Bus, 650

PMOS Transistor, 258

Point-to-Point Bus, 667

Polling, 675

Port, 357

Positive Integers, 47

Power, 467

dynamic power, 469

Power Wall, 467

Precharging, 278

Precise Exceptions, 447

Predicated Instructions, 609

Prefetcher, 526

Primary Page Table, 540

Priority Encoder, 266

Private Cache, 583

Privileged Instruction, 451

Process, 564

process, 530

Process Management, 531

Processor, 6

execution unit, 359

instruction fetch, 351

memory access unit, 362

operand fetch unit, 354

register writeback unit, 363

Processor Design, 349

Program counter, 22

Program Order, 479, 574

Program State, 449

Programmable Interrupt Controller (PIC), 676

Programmable Logic Array, see PLA

PROM (Programmable ROM) Memories, 284

Propagate function, 304

Protocol Layer, 674

RAID, 697

data striping, 698

distributed parity, 701

RAID 0, 698

RAID 1, 698

RAID 2, 699

RAID 3, 700

RAID 4, 700

RAID 5, 701

RAID 6, 701

RAID Arrays, see RAID

Read Only Memory (ROM), 283

Reduce Operation, 566

Refresh Rate, 741

Register File, 351

Register Renaming, 415, 483

Register spilling, 107

Register transfer notation, 95

Register Window, 452

Register Writeback Unit, 363

Registers, 275

parallel in–parallel out, 275

serial in–parallel out, 276

Renormalisation, 336

Reorder Buffer, 483

783 © Smruti R. Sarangi

Replacement Policy

fifo, 518

lru, 519

pseudo lru, 519

random, 518

Restoring division, 324

Return address, 105

Return Address Stack, 727

Return to Zero(RZ) Protocol, 645

Reverse Bias, 256

Ripple carry adder, 299

RISC, 11

RISC-V, 215

addition and subtraction instructions, 221

conditional branches, 225

instruction encoding, 241

integer instructions, 219

load and store instructions, 231

logical and shift instructions, 224

machine model, 216

moving values, 219

multiplication and division instructions, 222

registers, 218

unconditional branches, 229

RISC-V branch instructions, 225

RISC-V floating point instructions, 235

arithmetic, 238

comparison, 240

conversion, 239

flags, 236

loads and stores, 237

registers, 235

rounding modes, 236

ROB, 483

Rotational Latency, 697

Rounding, 334

Router, 611

Row major, 89

SAS, 682

initiator, 683

nearline SAS, 683

target, 683

SAS , see also SCSI

SAS (Serially Attached SCSI), see SCSI

SATA (Serial ATA), 681

Scatter-Gather Operation, 605

SCSI, 681

LUN, 683

SCSI (Small Computer System Interface), 681

SDRAM (synchronous DRAM), 283

SEC code, 662

sec:ioport, 670

SECDED, 663

Secondary Page Table, 540

Seek Time, 697

Segment Descriptor Cache, 171

Segmented Memory Model, 170

Self Clocked Signal, 647

Sense Amplifiers, 278

Sequential Consistency, 575

Sequential Logic, 267

Serial Interconnect, 679

Set Associative Cache, 512

Setup Time, 274

Shaders, 744

Shared Cache, 583

Shared Caches, 586

Shared Microprogram Bus, 391

read bus, 391

write bus, 391

Shift and rotate instructions, 134

Shift Register, 276

Sign Extension, 62

Sign Magnitude Representation, 55

Silicon based Transistors, 254

SIMD, 568

SIMD Multiprocessors, 602

Simple Synchronous Bus, 649

SimpleRisc, 97

arithmetic instructions, 98

call and return instructions, 111

conditional branch instruction, 102

encoding, 115

instruction formats, 121

load and store instructions, 101

logical instructions, 100

machine model, 98

modifiers, 114

register transfer instruction, 98

© Smruti R. Sarangi 784

shift instructions, 100

unconditional branch instruction, 101

Simultaneous Multithreading, 601

Single Ended Signalling, 642

Single Error Correction (SEC), 660

Single Error Detection, 659

Single instruction ISA, 20

SISD, 568

Size Problem, 536

Sizes of Integers, 53

Slice, 610

SMP, 557

SMT, see Simultaneous Multithreading

Soft Errors, 698

Software Solutions to Hazards, 418

Source, 257

Source Synchronous Bus, 652

South Bridge, 638

Spatial Locality, 498

SPEC Benchmarks, 463

Speculative Instructions, 475

Split Transaction Buses, 669

SPMD, 568

Spreader, 468

Square Root Rule, 527

SR Latch, 267

SRAM, 276

SRAM Cell, 276

Stack, 108, 534

Stack Distance, 499

Static Instruction, 457

Static Power, see Leakage Power

Static RAM (SRAM), 276

Storage, 689

Stored Program Concept, 25

Strings, 72

ascii, 72

unicode, 72

Strip Mining, 607

Striping, 679

Strobe Signal, 654

Strongly Coupled Multiprocessing, 560

Structural Hazard, 417

Subtract and branch if negative, 20

Sum, 296

Superscalar, 479

Swap Space, 542

Symmetric Multiprocessing, 557

Synchronisation Sublayer, 649

Synchronous Bus, 649

delay element, 650

Syndrome, 661

System on Chip (SOC), 639

System Utilities, 531

Systolic Array, 603

T State, 424

Tag Array, 508

Temperature, 467, 472

Temporal Locality, 498

Ternary Signalling, 644

Text Section, 533

TFLOPS, 464

Thermal Interface Material (TIM), 468

Thermal Resistance Matrix, 473

Thread, 563

hardware, 600

software, 600

Tiles, 610

Transaction-Oriented Buses, 667

Transfer Multiplexer, 391

Transfer Time, 697

Transmission of Multiple Bits, 644

Transmission Sublayer, 640

Turing Complete, 18

Turing Machine, 13

Types of instructions, 93

Underflow, 57

Unicode format, 72

Universal Machine, 13

Universal Turing Machine, 17

USB

end point, 686

hub, 684

pipe, 687

split transaction bus, 686

UTF-16, 72

UTF-32, 72

UTF-8, 72

785 © Smruti R. Sarangi

Vector Processors, 603
design, 610

Vectored Interrupt, 676
Vertical Microprogramming, 393
Victim Cache, 526
Virtual , 536
Virtual Address, 537
Virtual Machine, 726
Virtual Memory, 528, 532

size problem, 536
VLIW, 481
Von Neumann Architecture, 24

accumulator, 28
registers, 26
stack, 27

Wallace tree multiplier, 321
Weak Consistency, 575
Weak Memory Model, 576
Wear Levelling, 710, 711
Word, 29
word line, 276
Working Set, 525
Write Buffer, 527
Write-Invalidate Protocol, 590
Write-Update Protocol, 588
Wrong Path, 416

x86, 165
32-bit, 168
64-bit, 168
addressing modes, 172
eflags, 169
floating point arithmetic instructions, 200
floating point exchange, 199
floating point load, 198
floating point registers, 169
floating point stack, 169
floating point store, 199
machine model, 167
memory operands, 173
nasm, 174
register set, 167
rep instructions, 195
string instructions, 193

x86-64, 166, 168

XOR Gate, 261

Zoned-Bit Recording(ZBR), 694

	Introduction to Computer Architecture
	What is a Computer?
	Structure of a Typical Desktop Computer
	Computers are Dumb Machines
	The Language of Instructions
	Instruction Set Design
	Complete - The ISA should be able to Implement all User Programs
	Concise – Limited Size of the Instruction Set
	Generic – Instructions should Capture the Common Case
	Simple – Instructions should be Simple

	How to Ensure that an ISA is Complete?
	Towards a Universal ISA*
	Turing Machine*
	Universal Turing Machine*
	A Modified Universal Turing Machine*
	Single Instruction ISA*
	Multiple Instruction ISA*
	Summary of Theoretical Results

	Design of Practical Machines
	Harvard Architecture
	Von Neumann Architecture
	Towards a Modern Machine with Registers and Stacks

	The Road Ahead
	Representing Information
	Processing Information
	Processing More Information

	Summary and Further Reading
	Summary
	Further Reading

	I Architecture: Software Interface
	The Language of Bits
	Logical Operations
	Basic Operators
	Derived Operators
	Boolean Algebra
	De Morgan's Laws
	Logic Gates
	Implementing Boolean Functions
	The Road Ahead

	Positive Integers
	Ancient Number Systems
	Binary Number System
	Adding Binary Numbers
	Sizes of Integers

	Negative Integers
	Sign-Magnitude based Representation
	The 1's Complement Approach
	Bias-based Approach
	The 2's Complement Method

	Floating Point Numbers
	Fixed Point Numbers
	Generic Form of Floating Point Numbers
	IEEE 754 Format for Representing Floating Point Numbers
	Denormal Numbers
	Double Precision Numbers
	Floating Point Mathematics

	Strings
	ASCII Format
	UTF-8
	UTF-16 and UTF-32

	Summary and Further Reading
	Summary
	Further Reading

	Assembly Language
	Why Assembly Language
	Software Developer's Perspective
	Hardware Designer's Perspective

	The Basics of Assembly Language
	Machine Model
	View of Memory
	Assembly Language Syntax
	Types of Instructions
	Types of Operands

	SimpleRisc
	Different Instruction Sets
	Model of the SimpleRisc Machine
	Register Transfer Instruction – mov
	Arithmetic Instructions
	Logical Instructions
	Shift Instructions – lsl, lsr, asr
	Data Transfer Instructions: ld and st
	Unconditional Branch Instructions
	Conditional Branch Instructions
	Functions
	Function Call/Return Instructions
	The nop Instruction
	Modifiers
	Encoding the SimpleRisc Instruction Set

	Summary and Further Reading
	Summary
	Further Reading

	ARM® Assembly Language
	The ARM® Machine Model
	Basic Assembly Instructions
	Simple Data Processing Instructions
	Advanced Data-Processing Instructions
	Compare Instructions
	Instructions that Set CPSR Flags – The `S' Suffix
	Data Processing Instructions that use CPSR Flags
	Simple Branch Instructions
	Branch and Link Instruction
	Conditional Instructions
	Load-Store Instructions

	Advanced Features
	Arrays
	Functions

	Encoding the Instruction Set
	Data Processing Instructions
	Load-Store Instructions
	Branch Instructions

	Summary and Further Reading
	Summary
	Further Reading

	x86 Assembly Language
	Overview of the x86 Family of Assembly Languages
	Brief History
	Main Features of the x86 ISA

	x86 Machine Model
	Integer Registers
	Floating Point Registers
	View of Memory
	Addressing Modes
	x86 Assembly Language

	Integer Instructions
	Data Transfer Instructions
	ALU Instructions
	Branch/ Function Call Instructions
	Advanced Memory Instructions

	Floating Point Instructions
	Data Transfer Instructions
	Arithmetic Instructions
	Instructions for Special Functions
	Compare Instruction
	Stack Cleanup Instructions

	Encoding the x86 ISA
	High Level View of x86 Instruction Encoding

	Summary and Further Reading
	Summary
	Further Reading

	RISC-V Assembly Language
	RISC-V Machine Model
	RISC-V Base ISAs and Extensions
	View of Registers

	Integer Instructions
	Moving Values to Registers
	Add and Subtract Instructions
	Multiplication and Division Instructions
	Logical and Shift Instructions

	Control Transfer Instructions
	Conditional Branches
	Unconditional Branches
	Load and Store Instructions

	Floating Point Instructions
	View of Registers
	Load and Store Instructions
	Floating Point Arithmetic Instructions
	Floating Point Conversion Instructions
	Floating Point Comparison Instructions

	Instruction Encoding
	Arithmetic and Data Transfer Instructions
	Control Flow Instructions
	Floating Point Instructions

	Summary and Further Reading
	Summary
	Further Reading

	II Organisation: Processor Design
	Logic Gates, Registers, and Memories
	 Silicon based Transistors
	Doping
	P-N Junction
	NMOS Transistor
	PMOS Transistor
	A Basic CMOS based Inverter
	NAND and NOR Gates

	Combinational Logic
	XOR Gate
	Decoder
	Multiplexer
	Demultiplexer
	Encoder
	Priority Encoder

	Sequential Logic
	SR Latch
	The Clock
	Clocked SR Latch
	Edge Sensitive SR Flip-flop
	JK Flip-flop
	D Flip-flop
	Master-slave D Flip-flop
	Metastability
	Registers

	Memories
	Static RAM (SRAM)
	Content Addressable Memory (CAM)
	Dynamic RAM (DRAM)
	Read Only Memory (ROM)
	Programmable Logic Arrays

	Summary and Further Reading
	Summary
	Further Reading

	Computer Arithmetic
	Addition
	Addition of Two 1-bit Numbers
	Addition of Three 1-bit Numbers
	Ripple Carry Adder
	Carry Select Adder
	Carry Lookahead Adder

	Multiplication
	Overview
	Iterative Multiplier
	Booth Multiplier
	An O(log(n)2) Time Algorithm
	Wallace Tree Multiplier

	Division
	Overview
	Restoring Division
	Non-Restoring Division

	Floating Point Addition and Subtraction
	Simple Addition with Same Signs
	Rounding
	Implementing Rounding
	Addition of Numbers with Opposite Signs
	Generic Algorithm for Adding Floating Point Numbers

	Multiplication of Floating Point Numbers
	Division of Floating Point Numbers
	Simple Division
	Goldschmidt Division
	Division Using the Newton-Raphson Method

	Summary and Further Reading
	Summary
	Further Reading

	Processor Design
	Design of a Basic Processor
	Overview

	Units in a Processor
	Instruction Fetch – Fetch Unit
	Data Path and Control Path
	Operand Fetch Unit
	Execute Unit
	Memory Access Unit
	Register Writeback Unit
	The Data Path

	The Control Unit
	Microprogram-Based Processor
	Microprogrammed Data Path
	Fetch Unit
	Decode Unit
	Register File
	ALU
	Memory Unit
	Overview of the Data Path

	Microassembly Language
	Machine Model
	Microinstructions
	Implementing Instructions in the Microassembly Language
	3-Address Format ALU Instructions
	2-Address Format ALU Instructions
	The nop Instruction
	ld and st instructions
	Branch Instructions

	Shared Bus and Control Signals
	Control Signals
	Functional Unit Arguments

	The Microcontrol Unit
	Vertical Microprogramming
	Horizontal Microprogramming
	Tradeoffs between Horizontal and Vertical Microprogramming

	Summary and Further Reading
	Summary
	Further Reading

	Principles of Pipelining
	A Pipelined Processor
	The Notion of Pipelining
	Overview of Pipelining
	Performance Benefits

	Design of a Simple Pipeline
	Splitting the Data Path
	Timing
	The Instruction Packet

	Pipeline Stages
	IF Stage
	OF Stage
	EX Stage
	MA Stage
	RW Stage
	Putting it All Together

	Pipeline Hazards
	The Pipeline Diagram
	Data Hazards
	Control Hazards
	Structural Hazards

	Solutions in Software
	RAW Hazards
	Control Hazards

	Pipeline with Interlocks
	A Conceptual Look at a Pipeline with Interlocks
	Ensuring the Data-Lock Condition
	Ensuring the Branch-Lock condition

	Pipeline with Forwarding
	Basic Concepts
	Forwarding Paths in a Pipeline
	Data Hazards with Forwarding
	Implementation of a Pipeline with Forwarding
	Forwarding Conditions

	Support for Interrupts/ Exceptions*
	Interrupts
	Exceptions
	Precise Exceptions
	Saving and Restoring Program State
	 SimpleRisc Assembly Code of an Interrupt Handler
	Processor with Support for Exceptions

	Performance Metrics
	The Performance Equation
	Performance of an Ideal Pipelined Processor
	Performance of a Non-Ideal Pipeline
	Performance of a Suite of Programs
	Inter-Relationship between Performance, the Compiler, Architecture, and Technology

	Power and Temperature Issues
	Overview
	Dynamic Power
	Leakage Power
	Modeling Temperature*
	The ED2 Metric

	Advanced Techniques*
	Branch Prediction
	Multiple Issue In-Order Pipeline
	EPIC and VLIW Processors
	Out-of-Order Pipelines

	Summary and Further Reading
	Summary
	Further Reading

	III Organisation: System Design
	The Memory System
	Overview
	Need for a Fast Memory System
	Memory Access Patterns
	Temporal and Spatial Locality of Instruction Accesses
	Characterising Temporal Locality
	Characterising Spatial Locality
	Utilising Spatial and Temporal Locality
	Exploiting Temporal Locality – Hierarchical Memory System
	Exploiting Spatial Locality – Cache Blocks

	Caches
	Overview of a Basic Cache
	Cache Lookup and Cache Design
	Data read and data write Operations
	The insert Operation
	The replace Operation
	The evict Operation
	Putting all the Pieces Together

	The Memory System
	Mathematical Model of the Memory System
	Cache Misses
	Reduction of Hit Time and Miss Penalty
	Summary of Memory System Optimisation Techniques

	Virtual Memory
	Process – A Running Instance of a Program
	The ``Overlap'' and ``Size'' Problems
	Implementation of Virtual Memory with Paging
	Swap Space
	Memory Management Unit (MMU)
	Advanced Features of the Paging System

	Summary and Further Reading
	Summary
	Further Reading

	Multiprocessor Systems
	Background
	Moore's Law
	Implications of the Moore's Law

	Software for Multiprocessor Systems
	Strong and Loosely Coupled Multiprocessing
	Shared Memory vs Message Passing
	Amdahl's Law

	Design Space of Multiprocessors
	MIMD Multiprocessors
	Logical Point of View
	Coherence
	Memory Consistency
	Physical View of Memory
	Shared Caches
	Coherent Private Caches
	Implementing a Memory Consistency Model*
	Multithreaded Processors

	SIMD Multiprocessors
	SIMD – Vector Processors
	Software Interface
	A Practical Example using SSE Instructions
	Predicated Instructions
	Design of a Vector Processor

	Interconnection Networks
	Overview
	Bisection Bandwidth and Network Diameter
	Network Topologies

	Summary and Further Reading
	Summary
	Further Reading

	I/O and Storage Devices
	I/O System – Overview
	Overview
	Requirements of the I/O System
	Design of the I/O System
	Layers in the I/O System

	Physical Layer – Transmission Sublayer
	Single Ended Signalling
	Low Voltage Differential Signalling (LVDS)
	Transmission of Multiple Bits
	Return to Zero (RZ) Protocols
	Manchester Encoding
	Non Return to Zero (NRZ) Protocol
	Non Return to Zero (NRZI) Inverted Protocol

	Physical Layer – Synchronisation Sublayer
	Synchronous Buses
	Source Synchronous Bus*
	Asynchronous Buses

	Data Link Layer
	Framing and Buffering
	Error Detection and Correction
	Arbitration
	Transaction-Oriented Buses
	Split Transaction Buses

	Network Layer
	I/O Port Addressing
	Memory Mapped Addressing

	Protocol Layer
	Polling
	Interrupts
	DMA

	Case Studies – I/O Protocols
	PCI Express®
	SATA
	SCSI and SAS
	USB
	FireWire Protocol

	Storage
	Hard Disks
	RAID Arrays
	Optical Disks – CD, DVD, Blu-ray
	Flash Memory

	Summary and Further Reading
	Summary
	Further Reading

	IV Appendix
	Case Studies of Real Processors
	ARM® Processors
	ARM® Cortex® -M3
	ARM® Cortex® -A8
	ARM® Cortex® -A15

	AMD® Processors
	AMD Bobcat
	AMD Bulldozer

	Intel® Processors
	Intel® Atom™
	Intel Sandy Bridge

	Graphics Processors
	Overview
	Graphics Applications
	Graphics Pipeline
	Fusion of High Performance Computing and Graphics Computing

	NVIDIA Tesla Architecture
	Work Distribution
	GPU Compute Engines
	Interconnection Network, DRAM Modules, L2 Caches, and ROPs

	Streaming Multiprocessors (SMs)
	Computation on a GPU
	CUDA Programs

